
A

Simple and scalable response prediction for display advertising

OLIVIER CHAPELLE, Criteo†

EREN MANAVOGLU, Microsoft
ROMER ROSALES, LinkedIn

Clickthrough and conversation rates estimation are two core predictions tasks in display advertising. We
present in this paper a machine learning framework based on logistic regression that is specifically designed
to tackle the specifics of display advertising. The resulting system has the following characteristics: it is
easy to implement and deploy; it is highly scalable (we have trained it on terabytes of data); and it provides
models with state-of-the-art accuracy.

Categories and Subject Descriptors: H.3.5 [Information Storage And Retrieval]: Online Information
Services; I.2.6 [Artificial Intelligence]: Learning

General Terms: Algorithms, Experimentations

Additional Key Words and Phrases: Display advertising, machine learning, click prediction, hashing, feature
selection, distributed learning

ACM Reference Format:
ACM Trans. Intell. Syst. Technol. V, N, Article A (January YYYY), 34 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Display advertising is a form of online advertising where advertisers pay publishers
for placing graphical ads on their web pages. The traditional method of selling display
advertising has been pre-negotiated long term contracts between the advertisers and
the publishers. In the last decade spot markets have emerged as a popular alterna-
tive due to the promise of increased liquidity for publishers, and increased reach with
granular audience targeting capabilities for the advertisers [Muthukrishnan 2009].

Spot markets also offer the advertisers a wide range of payment options. If the goal
of an advertising campaign is getting their message to the target audience (for instance
in brand awareness campaigns) then paying per impression (CPM) with targeting con-
straints is normally the appropriate choice for the advertiser. However, many advertis-
ers would prefer not to pay for an ad impression unless that impression leads the user
to the advertiser’s website. Performance dependent payment models, such as cost-per-
click (CPC) and cost-per-conversion (CPA), were introduced to address this concern.
Under the cost-per-click model advertisers will only be charged if the users click on
their ads. The cost-per-conversion option reduces the advertiser’s risk even further by
allowing them to pay only if the user takes a predefined action on their website (such
as purchasing a product or subscribing to an email list). An auction that supports such
conditional payment options needs to convert advertiser bids to Expected price per im-

†Most of this work has been done while the authors were at Yahoo! Labs.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 2157-6904/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

pression (eCPM). For CPM ads, eCPM is identical to the bid. The eCPM of a CPC or
CPA ad, however, will depend on the probability that the impression will lead to a
click or a conversion event. Estimating these probabilities accurately is critical for an
efficient marketplace [McAfee 2011].

There has been significant work in the literature on modeling clicks in the context
of search and search advertising. Click and conversion prediction for display advertis-
ing presents a different set of challenges. In display advertising the auctioneer does
not readily have access to the content of the ads. Ads might not even be hosted by
the auctioneers. Furthermore, the content of the ads might be generated dynamically,
depending on the properties of the user. Similarly landing pages of the ads may not
be known to the auctioneer and/or they might contain dynamically generated content.
While there have been some attempts to capture the content of the ad or the land-
ing page recently [Cheng et al. 2012; Liu et al. 2012], this requires non-trivial effort
and is not always possible. Content related, web graph, and anchor text information
are therefore absent in display advertising, leaving the auctioneer mostly with unique
identifiers for representation. Despite almost 10 billion ad impressions per day in our
data set, hundreds of millions of unique user ids, millions of unique pages and millions
of unique ads, combined with the lack of easily generalizable features makes sparsity
a significant problem.

In this paper we propose a simple machine learning framework that can scale to
billions of samples and hundreds of millions of parameters, and that addresses the
issues discussed above effectively with a small memory footprint. Our proposed frame-
work uses Maximum Entropy [Nigam et al. 1999] (also known as Logistic Regression)
because it is an easy to implement regression model that, as will be seen, can appropri-
ately scale with respect to the number of features and can be parallelized efficiently.
The Maximum Entropy model is advantageous also because incremental model up-
dates are trivial and there exists an exploration strategy that can be incorporated
easily. A two-phase feature selection algorithm is provided to increase automation and
reduce the need for domain expertise: use a generalized mutual information method to
select the feature groups to be included in the model; and feature hashing to regulate
the size of the models.

Large-scale experimental results on live traffic data show that our framework out-
performs the state-of-the-art models used in display advertising [Agarwal et al. 2010].
We believe these results and the simplicity of the proposed framework make a strong
case for its use as a baseline for response prediction in display advertising.

The rest of the paper is organized as follows: In section 2 we discuss related work. In
section 3 we look at the differences between click and conversion rates with respect to
features and analyze the delay between clicks and conversions. Section 4 describes the
Maximum Entropy model, the features and the hashing trick used in our framework.
In this section we also show that smoothing and regularization are asymptotically
similar. We present results of the proposed modeling techniques in section 5. Section
6 introduces a modified version of mutual information that is used to select feature
groups and provides experimental results. In section 7, motivated by our analysis, we
propose an algorithm for exploration. Section 8 describes an efficient map-reduce im-
plementation for the proposed model. Finally, we summarize our results and conclude
in section 9.

2. RELATED WORK
Learning methods developed for response prediction in computational advertising of-
ten use regression or classification models in which all factors that can have an impact
on user’s response are included explicitly as features or covariates.

The features used in such models can be categorized as:

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

context features such as the query in sponsored search or the publisher page in content
match;

content features discussed in [Ciaramita et al. 2008; Hillard et al. 2010] for text ads
and in [Cheng et al. 2012; Liu et al. 2012] for display ads;

user features introduced by [Cheng and Cantú-Paz 2010];
feedback features that are generated by aggregating historical data and described in
[Chakrabarti et al. 2008; Hillard et al. 2010].

Not all of these features are available in the context of display advertising, in which
advertiser and publisher information is typically represented as unique identifiers. In
such a space where each unique identifier is considered a feature, dimensionality be-
comes a major concern. Mutual information and similar filter methods [Guyon and
Elisseeff 2003] are frequently used over wrapper based methods in this domain. A
recent approach to handle dimensionality reduction is the use of feature hashing as
described in [Weinberger et al. 2009]. The idea behind hashing is to reduce the num-
ber of values a feature can take by projecting it to a lower dimensional space. This
approach has gained popularity in the context of large scale machine learning due to
its simplicity and empirical efficacy.

Logistic regression and decision trees are popular models used in the computational
advertising literature. Applying decision trees to display advertising, however, has ad-
ditional challenges due to having categorical features with very large cardinality and
the sparse nature of the data. Kota and Agarwal [2011] use gain ratio as the splitting
criterion with a threshold on positive responses as an additional stopping criterion to
avoid having too many nodes with zero positives. Authors then perform autoregressive
Gamma-Poisson smoothing, top-down, to fallback to parent nodes’ response rates. De-
cision trees are sometimes used in multi-layer approaches due to high computational
cost.

Logistic regression is frequently preferred because it can be parallelized easily to
handle large scale problems. Agarwal et al. [2011] present a new framework to paral-
lelize linear models which is shown to reduce training times by an order of magnitude.
Graepel et al. [2010] propose the use of an online Bayesian probit regression model.
This approach maintains a posterior distribution over model parameters instead of
point estimates. This posterior distribution is then used as the prior in the next up-
date cycle. The authors also suggest sampling from the posterior distribution as a
means to do exploration (a method known as Thompson sampling), but do not provide
any analysis or empirical results using this methodology. In our framework we employ
similar techniques within the logistic regression framework, and provide an analysis
of the Thompson sampling method as well as simulation results.

Predicting user response with sparse data has been the focus of several studies.
However, most of this work was conducted on search advertising and therefore utilized
either the query [Ashkan et al. 2009; Hillard et al. 2011] or the keywords advertisers
bid on [Regelson and Fain 2006; Richardson et al. 2007]. More recently Agarwal et al.
[2010] and Kota and Agarwal [2011] proposed using hierarchies present in the data
to address this issue explicitly. This approach uses a baseline model trained on stan-
dard set of features to estimate baseline probabilities, and then learns a correction
factor by exploiting the hierarchical nature of the publisher and advertiser related
features. The model uses the assumption that the correction factors for the full adver-
tiser and publisher paths can be estimated employing a log-linear function of pairs of
nodes, where the pairwise state parameters are modeled as Poisson distributions. It
then uses non-centered parametrization to take advantage of the hierarchical correla-
tions in estimating these state parameters. This is required because many states will
have very few observations and no positive samples. The approach in [Menon et al.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

2011] incorporated this hierarchical smoothing technique with matrix factorization
methods used in collaborative filtering and reported additional gains. Our approach,
instead, is to encode the relations between features, hierarchical or otherwise, directly
in the same model as additional conjunction features. In section 4.8 we show that using
Tikhonov regularization with logistic regression implicitly achieves the effect of hier-
archical smoothing. The framework proposed in this paper therefore uses conjunction
features and regularization to exploit the relationship between features, and hash-
ing to keep the model size tractable. We argue that our method requires less domain
knowledge (for example we do not need to know the structure of ad campaigns or pub-
lisher pages to encode the relations), has better scaling properties, and is simpler to
implement.

3. DATA AND FEATURES
This section provides some background information on the display advertising data
used in this paper. More details can be found in [Agarwal et al. 2010; Rosales et al.
2012].

3.1. Data and The Yahoo! Real Media Exchange
For this work we collected live traffic logs from Yahoo!’s Right Media Exchange (RMX),
one of the largest ad exchanges in the world, which serves around ten billion ad im-
pressions every day. RMX follows a network-of-networks model where the connections
between advertisers and publishers are facilitated by intermediaries called networks.
Networks can have either only publishers or advertisers, or both. Every entity in the
exchange (networks, publishers and advertisers) has a unique identifier (id).

Publishers label their web-pages with site id’s. They can also tag different parts of
the same page with a different section id. While the exchange does not enforce any
rules on the semantics of section id’s, publishers often use a different section id for dif-
ferent ad slots on the same page. A relationship between a network and an advertiser
or a publisher is specified by a series of attributes such as pricing type, budget, and
targeting profile.

3.2. Click-Through Rate and Conversion Rate
We are interested in uncovering the fundamental properties of the click and post-click
conversion (PCC) events. In the context of this paper, click refers to the event that
occurs when a user interacts with an ad by means of a mouse click (or equivalent).
Post-click conversion, on the other hand, is an action that the user takes after visit-
ing the landing page of the advertiser and is regarded as valuable by that advertiser.
Typical examples of conversion actions include subscribing to an email list, making a
reservation or purchasing a product. The basic quantities to measure the properties
of these two types of events are the click-through rate (CTR) and the conversion rate
(CVR), respectively.

3.3. Features/Covariates in Display Advertising
In this section we summarize the information sources utilized for modeling click-
through and conversion rates.

We consider four sets of features that are available in most online advertising sys-
tems: advertiser, publisher, user and time features. It is worth mentioning that the
availability of the user features varies by publisher. A representative list of features
for each group can be found in Table I. Some of the above features are continuous
rather than categorical (user age for instance) and have been quantized appropriately.

These features are obtained at the event level, that is every time an ad is shown on
a page and every time a user clicks on an ad or converts, an event will be recorded.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Table I. Sample of features considered divided into feature
families.

Feature family Feature members
Advertiser advertiser (id), advertiser network,

campaign, creative, conversion id,
ad group, ad size, creative type,
offer type id (ad category)

Publisher publisher (id), publisher network,
site, section, url, page referrer

User (when avail.) gender, age, region, network speed,
accept cookies, geo

Time serve time, click time

3.4. Analysis of the Click→Conversion Delay
In this paper, the conversion estimation task is defined as the probability that a user
will convert after they click on an ad (post-click conversion, PCC). A critical aspect in
PCC modeling is identifying the click events that lead to conversion actions (such as
subscribing to an email list, making a reservation or purchasing a product).

In order to build a conversion model, we need to attribute the conversion event to the
correct click event as this represents a positive PCC example (vs. a click event without
any associated conversion event). A conversion event can happen minutes, hours or
even days after a click event. The proper attribution of the conversion event to the right
click event, which can be done by properly matching the click and conversion event
attributes, is essential not only for PCC prediction but also for payment processing.

In general several conversion events could be associated with the same click, as ad-
vertisers may show a sequence of conversion-generating pages to the user after a click
on the relevant ad. This association process faces certain practical limitations as the
longer the time elapsed between click and conversion the more logged events that need
to be maintained and matched. In order to get a better picture of the click-conversion
process and to answer the question of how much data needs to be utilized for matching
conversions with their corresponding click events, we analyzed the properties of the
time delay for conversion events.

We calculated the percentage of conversion events with different attribution time
intervals as shown in Figure 1. From the graph, we can observe that a large major-
ity (86.7%) of conversion events are triggered within 10 minutes of the click events.
Approximately half of these conversion events (39.2%) occur within 1 minute of the
corresponding click event. If we look further, we observe that we can match 95.5% of
the conversion events within one hour of the clicks. As we are interested in achieving
the largest possible recall within practical boundaries, we decided to consider various
days of delay. Within two days of the click, 98.5% of the conversions can be recovered.

These considerations are important for modeling, and in particular for building
proper training/test sets. The use of too short a time window would generate inac-
curate data sets, while the use of too large a time window is impractical due to the re-
quirements in data storage and matching (click-conversion) could become prohibitive.
Given the above experiments and data, we would be ignoring approximately 1.5% of
the conversion events and as a consequence incorrectly labeling a click event as nega-
tive (no conversion) if the time frame set for post click conversion attribution is limited
to 2 days. This was believed to be sufficient given the practical cost of looking further
in time; and thus, we utilize this limit throughout the paper.

In contrast to conversions, a click can be relatively easily attributed to a particular
ad impression as there is a direct association between a click with the page where the

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

Distribution of Post Click Conversion Attribution Time Delay

0

0.2

0.4

0.6

0.8

1

1.2

<1m <10m <30m <1h <2h <12h <1d <2d all

Click-Conversion Attribution Time Delay
P

e
rc

e
n

ta
g

e
 o

f
D

a
ta

Percentage

Fig. 1. Distribution of click conversion attribution time delay.

ad is displayed. The large majority of ad clicks (97%) occur within a minute of the ad
impression.

4. MODELING
This section describes the various modeling techniques that are used to learn a re-
sponse predictor from clicks or conversions logs.

4.1. Logistic regression
The model considered in this paper is Maximum Entropy [Nigam et al. 1999] (a.k.a.
Logistic Regression [Menard 2001]).

Given a training set (xi, yi) with xi ∈ {0, 1}d a sparse binary feature vector in a d-
dimensional space, and yi ∈ {−1, 1} a binary target, the goal is to find a weight vector1

w ∈ Rd. The predicted probability of an example x belonging to class 1 is:

Pr(y = 1 | x,w) =
1

1 + exp(−w>x)
.

The logistic regression model is a linear model of the log odds ratio:

log
Pr(y = 1 | x,w)

Pr(y = −1 | x,w)
= w>x. (1)

The weight vector w is found by minimizing the negative log likelihood with an L2

regularization term on the weight vector:

min
w

λ

2
‖w‖2 +

n∑
i=1

log(1 + exp(−yiw>xi)). (2)

Equation (2) is a convex, unconstrained and differentiable optimization problem. It
can be solved with any gradient based optimization technique. We use L-BFGS [No-
cedal 1980], a state-of-the-art optimizer. A review of different optimization techniques
for logistic regression can be found in [Minka 2003].

4.2. Categorical variables
All the features considered in this paper are categorical. Indeed most features are
identifiers (id of the advertiser, of the publisher, etc.). And real valued features can be
made categorical through discretization.

1The intercept is one of the weight.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

The standard way of encoding categorical features is to use several binary features,
known as the dummy coding in statistics or the 1-of-c encoding in machine learning.
If the feature can take c values, c binary features are introduced, the ith one being the
indicator function of the ith value. For instance, a feature taking the 2nd value out of 5
possibles values is encoded as

(0, 1, 0, 0, 0).

If we have F features and the f -th feature can take cf values, this encoding will lead
to a dimensionality of

d =

F∑
f=1

cf .

4.3. Hashing trick
The issue with the dummy coding presented above is that the dimensionality d can
get very large when there are variables of high cardinality. The hashing trick, made
popular by the Vowpal Wabbit learning software and first published in [Weinberger
et al. 2009], addresses this issue.

The idea is to use a hash function to reduce the number of values a feature can take.
We still make use of the dummy coding described in the previous section, but instead
of a c-dimensional code, we end up with a d-dimensional one, where d is the number of
bins used with hashing. If d < c, this results in a compressed representation. In that
case, collisions are bound to occur, but as explained later, this is not a major concern.

When dealing with several features, there are two possible strategies:
(1) Hash each feature f into a df -dimensional space and concatenate the codes, result-

ing in
∑
df dimensions.

(2) Hash all features into the same space; a different hash function is used for each
feature.

We use the latter approach as it is easier to implement.2 A summary of the hashing
trick is given in algorithm 1. The values vf can be of any type; the hash function just
acts on their internal representation. In algorithm 1, there is a hashing function hf for
every feature f . This can be implemented using a single hash function and having f
as the seed or concatenating f to the value vf to be hashed.

ALGORITHM 1: Hasing trick
Require: Values for the F features, v1, . . . , vF .
Require: Family of hash function hf , number of bins d.
xi ← 0, 1 ≤ i ≤ d.
for f = 1 . . . F do
i← [hf (vf) mod d] + 1.
xi ← xi + 1

end for
return (x1, . . . , xd).

There are some other ways of reducing the dimensionality of the model, such as
discarding infrequent values, but they require more data processing and the use of
a dictionary. A very practical appeal of the hashing trick is its simplicity: it does not
require any additional data processing or data storage and it is straightforward to
implement.

2This is also what is implemented in Vowpal Wabbit.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

4.4. Collision analysis
We quantify in this section the log likelihood degradation due to two values colliding
into the same bin.

Consider the scenario when the first value has been observed n1 times, all on nega-
tive examples and the second value n2 times, all on positive examples, and when there
is only one feature in the system (no fallback on other features). If there were no colli-
sion, the weight for the value would be −∞ (assuming no regularization) and the one
for the second value would be +∞. This would lead to a log likelihood of zero on all the
examples where either value is present.

When there is a collision, the negative log likelihood is:

−n1 log
n1

n1 + n2
− n2 log

n2
n1 + n2

.

This is indeed the log likelihood achieved by the solution where all the weights are at
0 except the one where there is a collision and which has a value log(n2/n1).

This log likelihood is large only when both n1 and n2 are large. This scenario can be
considered a worst case one because:

(1) The two values were extremely predictive; if these two values were not predictive,
their collision would not harm the log likelihood (zero weight in all cases);

(2) There was no redundancy in features: if the system includes redundant features, a
collision on one value could be mitigated by another value.

Regarding the last point, one could alleviate the collision issue by making use of mul-
tiple hash functions, in the same spirit as in the Bloom filter [Bloom 1970]. However
in practice this does not improve the results (see section 5.7).

This section provides only a rudimentary analysis of collisions. Given the recent
interest in hashing for categorical variables, we expect and hope that a more thorough
and theoretical analysis of the effect of collisions within a learning system will be
developed in the years to come.

4.5. Conjunctions
A linear model can only learn effects independently for each feature. For instance,
imagine a model with two categorical features, advertiser and publisher. The model
would learn that some advertisers and some publishers tend to have a higher CTR
than others, but it would not learn that the CTR of a bank of america ad is partic-
ularly high on finance.yahoo.com. For this, we need to introduce a new conjunction
feature that is the cartesian product of advertiser and publisher.

A conjunction between two categorical variables of cardinality c1 and c2 is just an-
other categorical variable of cardinality c1 × c2. If c1 and c2 are large, the conjunction
feature has high cardinality and the use of the hashing trick is even more crucial in
this case.

Note that computing conjunctions between all features is equivalent to considering
a polynomial kernel of degree 2 [Schölkopf and Smola 2001] where the mapping is
computed explicitly as in [Chang et al. 2010].

Due to the large cardinality of the representation, there will most likely be pairs of
variable values that are unseen in the training data. And these pairs, take (avertiser,
publisher) for instance, are biased by the current serving scheme, as specific advertis-
ers are selected for a given publisher. The hashing trick helps reduce the dimension-
ality of data, but might do a poor job on these unseen pairs of values due to collisions.
This can be problematic, especially in an exploration setting where predictions on in-
frequent values are required. A possible solution is to represent the variable values
using a low-dimensional representation, for example through the use of matrix fac-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

torization or a related approach [Menon et al. 2011]. This type of representation is
not studied in this paper. A promising future work direction would be to combine a
low-dimensional representation with the hashing trick: the former would capture the
general trend in the data while the latter could be use to refine the model for the
frequent pairs observed in the training set.

4.6. Multi-task learning
We show in this section how multi-task learning, as presented in [Evgeniou and Pontil
2004], is equivalent to a single model with conjunctions as presented in this paper.

Assume that we are given T learning tasks indexed by t ∈ {1, 2, ..., T} and a training
set (xt

1, y
t
1), . . . , (xt

nt
, ytnt

) for each of these tasks. The tasks are supposed to be different
but related. A task could for instance learning a prediction function in a given country.
Evgeniou and Pontil [2004] adapted Support Vector Machines to multi-task learning
by decomposing the weight vector for task t as

wt = w0 + vt,

where w0 can be interpreted as a global classifier capturing what is common among
all the tasks and vt is a small vector modeling what is specific for that task.

The joint optimization problem is then to minimize the following cost:

T∑
t=1

nt∑
i=1

`
(
(w0 + vt)

>xt
i

)
+ λ0‖w0‖22 + λ1

T∑
t=1

‖vt‖22, (3)

where ` is a given loss function.
Note that the relative value between λ0 and λ1 controls the strength of the connec-

tion between the tasks. In the extreme case, if λ0 → ∞, then w0 = 0 and all tasks are
decoupled; on the other hand, when λ1 → ∞, we obtain vt = 0 and all the tasks share
the same prediction function.

Instead of building explicitly these classifiers, an equivalent way of obtaining the
same result is to optimize a single weight vector w := [w>0 v

>
1 . . .v

>
T]> and introduce

conjunction features between the task and all the other features. The following vector
is thus implicitly constructed: x̃t

i := [xt
i
>
0> . . .xt

i
>
0>]>. Both approaches are indeed

equivalent when λ = λ0 = λ1 since (w0 + vt)
>xt

i = w>x̃t
i and λ‖w‖22 = λ0‖w0‖22 +

λ1
∑T

t=1 ‖vt‖22. The case λ0 6= λ1 can be handled by putting a weight
√
λ0/λ1 on the

conjunction features.3
As already noted in [Weinberger et al. 2009], the use of conjunctions features is

thus a powerful tool as it encompasses the multi-task learning framework. Its main
advantage is that a specific multi-task solver is unnecessary: a single model is trained
with a standard logistic regression solver.

4.7. Subsampling
Since the training data is large (around 9B impressions daily), it would be computa-
tionally infeasible to consider all impressions.4 On the other hand, the training data
is very imbalanced – the CTR is lower than 1%. For these reasons, we decided to sub-
sample the negative class at a rate r � 1.

3One way to see that is to perform the change of variable vt ←
√
λ1/λ0vt.

4This infeasible on a single machine but would in fact be possible with the distributed learning system that
will be described later.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

The model has of course to be corrected for this subsampling. Let us call Pr′ the
probability distribution after subsampling. Then:

Pr(y = 1 | x)

Pr(y = −1 | x)
=

Pr(x | y = 1) Pr(y = 1)

Pr(x | y = −1) Pr(y = −1)
(4)

=
Pr′(x | y = 1) Pr′(y = 1)

Pr′(x | y = −1) Pr′(y = −1)/r
(5)

= r
Pr′(y = 1 | x)

Pr′(y = −1 | x)
(6)

The above equation relies on the fact that the class conditional distribution are not
affected by the subsampling: Pr(x | y) = Pr′(x | y). Combining equations (1) and (6), it
turns out that the log odds ratio is shifted by log r. Thus, after training, the intercept of
the model has to be corrected by adding log r to it. Logistic regression with unbalanced
classes has been well studied in the literature; more details can be found in [King and
Zeng 2001; Owen 2007].

Instead of shifting the intercept, another possibility would be to give an importance
weight of 1/r to the negatives samples, as to correct for the subsampling. Preliminary
experiments with this solution showed a lower test accuracy. A potential explanation
is that generalization error bounds are worse with importance weighting [Cortes et al.
2010].

4.8. Regularization and smoothing
Single feature. We draw in this section a connection between Tikhonov regulariza-

tion as used in this paper and Laplace smoothing.
Suppose that our model contains a single categorical feature. Let us consider the

j-th value of that feature.

w∗ = arg min
w

∑
i∈Ij

log(1 + exp(−yiw)) +
λ

2
w2 (7)

with Ij = {i, xi = j}. When there is no regularization (λ = 0), the closed form solution
for w∗ is:

w∗ = log
k

m− k
with k = |{i ∈ Ij , yi = 1}| and m = |Ij |.

This leads to a prediction equal to k/m, which is the empirical probability P (y = 1|x =
xj). We have just re-derived that the logistic loss yields a Fisher consistent estimate of
the output probability.

This empirical probability may have a large variance when m is small. This is the
reason people often use a Beta prior to get a biased but lower variance estimator:

k + α

m+ 2α
. (8)

This estimator is referred to as the Laplace estimator.
The regularizer in (7) is another way of smoothing the probability estimate toward

0.5. These two methods are in general not equivalent, but they are related. The follow-
ing proposition shows that the smoothing is similar asymptotically.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

10-2 10-1 100 101 102 103 104 105

λ=α/2

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

S
m

o
o
th

e
d
 p

ro
b
a
b
ili

ty

Regularization

Beta prior

Fig. 2. Smoothed probability from 100 success and 1000 trials. The smoothing is achieved by regularization
(7) or Beta prior (8).

PROPOSITION 4.1. When α → ∞ and w∗ is the minimizer of (7) with λ = α/2, the
following asymptotic equivalence holds:

1

1 + exp(−w∗)
− 1

2
∼ k + α

m+ 2α
− 1

2

PROOF. At the optimum, the derivative of (7) should be 0:

−k exp(−w∗)
1 + exp(−w∗)

+ (m− k)
1

1 + exp(−w∗)
+ λw∗ = 0.

As λ→∞, w∗ → 0 and the above equality implies that

w∗ ∼ 2k −m
2λ

.

We also have
1

1 + exp(−w∗)
− 1

2
∼ w∗

4
,

and
k + α

m+ 2α
− 1

2
∼ 2k −m

4α
.

Combining theses 3 asymptotic equivalence yields the desired result.

This proposition is illustrated in figure 2: regularization and smoothing with a Beta
prior give similar smoothed probabilities.

Hierarchical feature. Consider now the case of two features having a hierarchical
relationship, such as advertiser and campaign. Suppose that we have a lot of training
data for a given advertiser, but very little for a given campaign of that advertiser.
Because of the regularization, the weight for that campaign will be almost zero. Thus
the predicted CTR of that campaign will mostly depend on the advertiser weight. This
is similar to the situation in previous section except that the output probability is not
smoothed toward 0.5 but toward the output probability given by the parent feature.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

This kind of hierarchical smoothing is common in language models [Chen and Good-
man 1999]. See also [Gelman and Hill 2006] for a review of multi-level hierarchical
models and [Agarwal et al. 2010] for hierarchical smoothing in display advertising.

The advantage of the logistic regression approach with regularization is that it im-
plicitly performs hierarchical smoothing: unlike the works mentioned above, we do not
need to specify the feature hierarchy.

4.9. Bayesian logistic regression
As we will see in section 7, it is convenient to have a Bayesian interpretation of logistic
regression [Bishop 2006, Section 4.5].

The solution of equation (2) can be interpreted as the Maximum A Posteriori (MAP)
solution of a probabilistic model with a logistic likelihood and a Gaussian prior on the
weights with standard deviation 1/

√
λ. There is no analytical form for the posterior

distribution Pr(w | D) ∝
∏n

i=1 Pr(yi | xi,w) Pr(w), but it can be approximated by
a Gaussian distribution using the Laplace approximation [Bishop 2006, Section 4.4].
That approximation with a diagonal covariance matrix gives:

Pr(w | D) ≈ N (µ,Σ) with µ = arg min
w

L(w) and Σ−1ii =
∂2L(w)

∂w2
i

,

and L(w) := − log Pr(w | D) is given in equation (2).

5. MODELING RESULTS
5.1. Experimental setup
The experimental results presented in this section have been obtained in various con-
ditions (training set, features, evaluation). Most of them were based on the RMX data
described in section 3, but some of the experiments – the ones in figures 3, 4, 5 and
section 5.6 – have been run on logs from Criteo, a large display advertising company.

Even though the details of the experimental setups varied, they were all similar with
the following characteristics. The training and test sets are split chronologically, both
periods ranging from several days to several weeks. After subsampling the negative
samples as explained in section 4.7, the number of training samples is of the order
of one billion. The number of base features is about 30 from which several hundreds
conjunctions are constructed. The number of bits used for hashing was 24 resulting in
a model with 16M parameters.

Depending on the experiment, the test metrics are either the negative log likeli-
hood (NLL), root mean squared error (RMSE), area under the precision / recall curve
(auPRC) or area under the ROC curve (auROC). When a metric is said to be normal-
ized, this is the value of the metric relative to the best constant baseline.

5.2. Hashing trick
The first component of our system that we want to evaluate is the use of the hash-
ing trick. Remember that because we use features that can take a large number of
values (especially the conjunction features), running the logistic regression without
dimensionality reduction is unfeasible.

An alternative to the hashing trick is to keep only the most important values. Com-
ing back to the example of section 4.2, if a feature can take 5 values, but only 2 of them
are deemed important, we would encode that feature with 2 bits, both of them being
zero when the feature value is not important.

Two simple heuristics for finding important values are:

Count: Select the most frequent values.
Mutual information: Select the values that are most helpful in determining the target.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Fig. 3. Log likelihood on a test as a function of the model size for different dimensionality reduction strate-
gies.

104 105 106 107 108 109

Model size

0.53

0.54

0.55

0.56

0.57

N
e
g
a
ti

v
e
 l
o
g
 l
ik

e
lih

o
o
d
 o

n
 t

e
st

 s
e
t

Hashing

Most frequent

Mutual Information

L1

A drawback of this approach is that the model needs to be stored as a dictionary
instead of an array. The dictionary maps each important value to its weight. The dic-
tionary is needed to avoid collisions and to keep track of the most important values.
Its size is implementation dependent, but a lower bound can be 12 bytes per entry: 4
for the key, 4 for the value and 4 for the pointer in a linked list. Empirically, in C#, the
size is about 20-25 bytes per entry.

Figure 3 shows the log likelihood as a function of the model size: 4d for hashing and
12d for dictionary based models, where d is the number of weights in the model. It
turns out that for the same model size, the hashing based model is slightly superior.
Two other advantages are convenience: there is no need to find the most important
values and keep them in a dictionary; and real-time efficiency: hashing is faster than a
dictionary look-up.

For the sake of the comparison, figure 3 also includes a method where the most
important values are selected through the use of a sparsity inducing norm. This is
achieved by adding an L1 norm on w in (2) and minimizing the objective function
using a proximal method [Bach et al. 2011, chapter 3]. Each point on the curve corre-
sponds to a regularization parameter in the set {1, 3, 10, 30, 300, 1000, 3000}: the larger
the parameter, the sparser the model. The L2 regularization parameter is kept at the
same value as for the other methods. Even though the resulting model needs to be
stored in a dictionary, this method achieves a good trade-off in terms of accuracy vs
model size. Note however that this technique is not easily scalable: during training,
it requires one weight for each value observed in the training set. This was feasible
in figure 3 because we considered a rather small training set with only 33M different
values. But in a production setting, the number of values can easily exceed a billion.

5.3. Effect of subsampling
The easiest way to deal with a very large training set is to subsample it. Sometimes
similar test errors can be achieved with smaller training sets and there is no need for
large scale learning in these cases.

There are two different levels of subsampling that can be done: subsampling the
negatives as discussed in section 4.7 or subsampling the entire dataset. Both of them
speed up the training considerably, but can result in some performance drop, as shown

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Fig. 4. Change in log likelihood by subsampling the negatives. The baseline is a model with all negatives
included.

10-3 10-2 10-1 100

Negative subsample rate

3.0

2.5

2.0

1.5

1.0

0.5

0.0

C
h
a
n
g
e
 i
n
 n

o
rm

a
liz

e
d
 N

LL
 (

%
)

Table II. Test performance drop as a func-
tion of the overall subsampling rate.

1% 10%
auROC -2.0% -0.5%
auPRC -7.2% -2.1%
NLL -3.2% -2.3%

below. The choice of the subsampling rates is thus an application dependent trade-off
to be made between computational complexity and accuracy.

Subsampling the negatives. In this experiment, we keep all the positives and sub-
sample the negatives. Figure 4 shows how much the model is degraded as a function
of the subsampling rate.

We found empirically that a subsample rate of 1% was a good trade-off between
model training time and predictive accuracy. Unless otherwise noted, the negatives
are subsampled at 1% in the rest of this paper.

Overall subsampling. The entire data has been subsampled in this experiment at
1% and 10%. The results in Table II show that there is a drop in accuracy after sub-
sampling.

In summary, even if it is fine to subsample the data to some extent – the negatives
in particular – the more data the better and this motivates the use of the distributed
learning system that will be presented in section 8.

5.4. Comparison with a feedback model
An alternative class of models used for response prediction is the feedback models
described in [Hillard et al. 2010, section 4.1]. In that approach, response rate is not
encoded in the weights, but in the feature values via the use of feedback features. This
approach relies on the observation that the average historical response rate of an ad
is a good indicator of its future response rate.

Feedback features are derived by aggregating the historical data along various di-
mensions (such as ads, publishers or users) at varying levels of granularity. The cor-
responding response rate (CTR or CVR) and its support (i.e., number of impressions
or clicks) are the feature values used in modeling. When the support is under some
threshold the historical response rate is typically considered to be undefined because
the estimate would be unreliable.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

Table III. Comparison with a click
feedback model.

auROC auPRC
+0.9% +1.3%

The response rate of an ad might change depending on the publisher page it is shown
on, or the users who see it. To capture the variation of response rate across different
dimensions, multiple attributes along different dimensions could be used to gener-
ate composite feedback features (similar to conjunction features) such as: publisher-
advertiser and user-publisher-creative composites.

Feedback features are quantized using a simple k-means clustering algorithm [Mac-
Queen 1967] (with a special cluster id indicating the undefined values) before they are
fed to the logistic regression algorithm. The size of the final models are therefore typ-
ically small. However additional memory is needed to store the feature id to feedback
feature value mappings. Note that feedback features are often refreshed regularly by
updating the statistics with the latest historical information available.

One potential weakness of a feedback feature is that it may give an incorrect signal
because of confounding variables. This is the reason why it is preferable, as advocated
in this paper, to directly model the response as a function of all variables and not to
perform any aggregation.

However, from a practical standpoint, a model based on feedback features may be
preferred in cases where the cost of updating the model is substantially higher than
the cost of updating the feedback features.

We used a relatively small number of features to do the comparison between our
proposed model based on categorical features and a model based on feedback features.
Results in Table III show that both models are similar, with a slight advantage for
our proposed model. The difference would likely be larger as the number of features
increases: the model based on categorical variables would better model the effect of
confounding variables.

5.5. Comparison with a hierarchical model
Next we compare our approach to the state-of-the-art LMMH (Log-linear Model for
Multiple Hierarchies) method [Agarwal et al. 2010] that has been developed in the
same context: CTR estimation for display advertising with hierarchical features. The
LMMH approach exploits the hierarchical nature of the advertiser and publisher at-
tributes by explicitly encoding these relations. It splits the modeling task into two
stages: First a feature-based model is trained using covariates, without hierarchical
features. In the second stage the publisher (e.g., publisher type→publisher id) and ad-
vertiser hierarchies (e.g., advertiser id→campaign id →ad id) are used to learn the
correction factors on top of the baseline model. Expected number of clicks, E, for each
publisher and advertiser hierarchy is calculated by summing up the baseline probabil-
ities over all the samples in which that publisher and advertiser hierarchy is present.
Correction factors of the full hierarchies are modeled as log-linear functions of pairs of
advertiser and publisher nodes (e.g., {publisher type, advertiser id}):

λhi
=

∏
ai∈hi,ad

∏
pj∈hi,pub

φai,pj
(9)

where λhi
is the multiplicative correction factor for the hierarchy pair hi, hi,ad and

hi,pub are advertiser and publisher hierarchies for that pair, and φai,pj
is the state

parameter associated with the advertiser node ai and publisher node pj . The clicks (or
conversions) per hierarchy pair, Chi are assumed to be conditionally independent given
φ and Ehi , and are modeled using a Poisson distribution. The log-likelihood of φ under

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

Table IV. Comparison with LMMH

auROC auPRC NLL
+ 3.1% + 10.0% + 7.1%

Table V. Improvement in log likelihood on the
training set as a function of the number of
hash functions, the total number of bits re-
maining constant

2 4 8 12
-0.21% + 0.44% + 0.13% -0.14%

the Poisson assumption is given by

l(φ) =
∑
hi

(−Ehi
λhi

+ log(λhi
)Chi

) + constant (10)

The LMMH approach takes further advantage of the hierarchical structure by shar-
ing ancestor parameters among descendant nodes when estimating φ. The closer the
child nodes are to each other, the closer their correction factors will be to the parent.

Results presented in table IV show improvements in all metrics. This result could
be explained by our model’s ability to take advantage of all relations, jointly.

5.6. Value of publisher information
We now provide an analysis of the relevance of publisher information for both click-
through and post-click conversion predictions.

For this, we built, both for CTR and CVR predictions, a model without any publisher
features and we compared it with a model including publisher features.

The model with publisher features improves the normalized negative log likelihood
by 52.6% for CTR prediction, but only by 0.5% for CVR prediction. It makes sense
that the publisher features are very useful for CTR prediction as it helps in the ad
matching. But once the user clicks on the ad, the publisher’s page does not have much
impact on that user’s conversion behavior. Potentially the PCC could thus be consider-
ably simplified as no publisher-side information would be needed.

Our results differ from those reported in [Rosales et al. 2012]. The PCC experiments
in that study show larger improvements (5.62% in auROC). One hypothesis explaining
this behavior is that the coverage and reliability of the user features are different in
these two data sets. The data set used in the previous analysis includes many samples
in which the user features were not available. The data set used in the current ex-
periments, on the other hand, contain more reliable user information. In the absence
of explicit user attributes, publisher information might serve as a proxy for the user
features. The website for Disney games will surely attract more kids than adults with
no kids.

5.7. Multiple hash functions
A collision between two frequent values can lead to a degradation in the log-likelihood.
One idea to alleviate this potential issue is to use several hash functions similarly
to what is done in a Bloom filter [Bloom 1970]: each value is replicated using differ-
ent hash functions. A theoretical analysis of learning with multiple hash functions is
provided in [Shi et al. 2009, Theorem 2].

Table V shows that using multiple hash functions does not result in any significant
improvements. This could be explained by the fact that the conjunctions already induce
redundancies. All other experiments in this paper use a single hash function.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

6. FEATURE SELECTION
We tackle in this section the problem of feature selection for categorical variables.

Let us first distinguish two different levels of selection in the context of categorical
variables:

Feature selection. The goal is to select some of the features (such as age, gender
or advertiser) to be included in the learning system. This is the purpose of this
section.
Value selection. The goal is to reduce the number of parameters by discarding some
of the least important values observed in the training set. Section 5.2 compares
various schemes for this purpose.

L1 regularization is an effective way of reducing the number of parameters in the
system and is thus a value selection method. But it does not necessarily suppress all
the values of a given feature and cannot therefore be used for feature selection. For
this, a possible regularization is the so-called `1/`2 regularization or group lasso [Meier
et al. 2008]. However group lasso would be computationally expensive at the scale of
data at which we operate. We present in this section a cheaper alternative.

As for mutual information and other filter methods for feature selection [Guyon and
Elisseeff 2003], we are looking for a criterion that measures the utility of a feature in a
binary classification task. However, the goal is to do so conditioned on already existing
features, that is we want to estimate the additional utility of a feature when added to
an already existing classifier [Koepke and Bilenko 2012].

6.1. Conditional mutual information
We assume that we already have an existing logistic regression model with a base set
of features. Let si be the score predicted by this model.

The negative log likelihood of the current model is:

n∑
i=1

log(1 + exp(−yisi)). (11)

Let us approximate the log likelihood improvement we would see if we were to add
that feature to the training set.

A first approximation is to say the weights already learned are fixed and that only
the weights associated with the new features are learned. For the sake of simplicity,
let’s say the new feature takes d values and that these values are X = {1, . . . , d}.
We thus need to learn d weights w1, . . . , wd, each of them corresponding to a value of
the feature. The updated prediction with the new feature on the i-th example is then:
si + wxi

.
They are found by minimizing the new log-likelihood:

n∑
i=1

log(1 + exp(−yi(si + wxi
))),

which can be decomposed as:

d∑
k=1

∑
i∈Ik

log(1 + exp(−yi(si + wk))), with Ik = {i, xi = k}. (12)

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

This is an easy optimization problem since all wk are independent of each others:

wk = arg min
w

∑
i∈Ik

log(1 + exp(−yi(si + w)))︸ ︷︷ ︸
Lk(w)

.

There is however no closed form solution for wk. A further approximation is to set
wk to the value after one Newton step starting from 0:

wk ≈ −
L′k(0)

L′′k(0)
. (13)

The first and second derivatives of Lk are:

L′k(0) =
∑
i∈Ik

pi −
yi + 1

2
L′′k(0) =

∑
i∈Ik

pi(1− pi) with pi =
1

1 + exp(−si)
.

Once the wk are computed, the log likelihood improvement can be measured as the
difference of (12) and (11) or using the second order approximation of the log-likelihood:

d∑
k=1

wkL
′
k(0) +

1

2
w2

kL
′′
k(0).

Special case. When s is constant and equal to the log odds class prior, there is a
closed form solution for wk. It is the value such that

1

1 + exp(−s+ wk)
=

1

|Ik|
∑
i∈Ik

yi + 1

2
= Pr(y = 1 | x = k).

With that value, the difference in the log-likelihoods (12) and (11) is:
n∑

i=1

log
Pr(yi | xi)

Pr(yi)
, (14)

which is exactly the mutual information between the variables x and y. The proposed
method can thus be seen as an extension of mutual information to the case where some
predictions are already available.

6.2. Reference distribution
As always in machine learning, there is an overfitting danger: it is particularly true for
features with a lot of values. Such features can improve the likelihood on the training
set, but not necessarily on the test set. This problem has also been noted with the
standard mutual information [Rosales and Chapelle 2011]. To prevent this issue, a
regularization term, λw2

k, can be added to Lk. And as in [Rosales and Chapelle 2011],
instead of computing the log-likelihood improvement on the training set, it can be done
on a separate reference set.

The issue of computing the mutual information on the training set can be illustrated
as follows: Consider a feature taking unique values (it can, for instance, be an event
identifier), then the mutual information between that feature and the target will be
maximum since the values of that feature can fully identify the data point and there-
fore its label. Formally, the equation (14) turns out to be in this case:

n∑
i=1

log
1

P (yi)
= H(Y),

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

Table VI. Top features for click prediction along with their
mutual information. First table: standard mutual infor-
mation; second and third table: modified mutual infor-
mation (RMI). Bottom section contains the top conjunc-
tion features.

Single feature SMI (bits)
event guid 0.59742
query string 0.59479
xcookie 0.49983
user identifier 0.49842
user segments 0.43032

Single feature RMI (bits)
section id 0.20747
creative id 0.20645
site 0.19835
campaign id 0.19142
rm ad grp id 0.19094

Conjunction feature RMI (bits)
section id x advertiser id 0.24691
section id x creative id 0.24317
section id x IO id 0.24307
creative id x publisher id 0.24250
creative id x site 0.24246
site x advertiser id 0.24234
section id x pixeloffers 0.24172
site x IO id 0.23953
publisher id x advertiser id 0.23903

since Pr(yi | xi) = 1 if all xi are unique. And of course the mutual information can
never be larger than the entropy. This example shows that the mutual information
is not a good indicator of the predictiveness of a feature because it is biased towards
features with high cardinality. Computing the mutual information on a validation set
addresses this issue.

6.3. Results
We utilized the method described above for determining feature relevance for click
prediction. Our main motivation was decreasing the model complexity as the available
number of possible features is too large to be used in their entirety during predic-
tion/modeling. Practical considerations, such as memory, latency, and training time
constraints, make feature selection a clear requirement in this task.

The evaluation is divided into two parts: we first verify that computing the mu-
tual information using a reference distribution gives more sensible results than the
standard mutual information; and then we evaluate the use of the conditional mutual
information in a forward feature selection algorithm.

6.3.1. Use of a reference distribution. For these experiments, we considered one day of
data for the training distribution and one day for the reference distribution.

Our goal is to identify predictive features in the most automated manner pos-
sible (reducing time spent by people on this task). Thus, practically all the raw
(unprocessed) data attributes available were included in the analysis. These fea-
tures are a super-set of those in Table I and include identifiers for the actual
(serve/click/conversion) event, advertiser, publisher, campaign, cookies, timestamps,
advertiser/publisher specific features, related urls, demographics, user-specific fea-
tures (identifiers, assigned segments), etc. We consider conjunctions of any of these
features, giving rise to about 5000 possible compound features in practice. Each fea-
ture in turn can take from two to millions of possible values.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

We remark that wrapper methods are rarely appropriate in this setting as they
require training using a large set of variables; this is usually impractical except for
some simple models. It is in this setting where filter methods, such as the MI methods
described here, can be more advantageous.

We applied the standard MI (SMI) ranking algorithm for feature selection. The re-
sults, summarized in Table VI (top) reflect our main concern. The spurious features,
or features that are informative about the data point per se rank substantially high.
The calculated MI score is correct in that it reflects the information content of these
features; however, these features are too specific to the training data distribution.

The proposed extension of the MI score utilizing a reference distribution (RMI) pro-
vides a more appropriate ranking as shown in Tables VI (mid-bottom). The reason for
this is that the information content is calculated with respect to (expectations on) the
reference distribution and thus feature values that are not seen in the new distribu-
tion are basically considered less important and their impact on the information score
is reduced.

More specifically, attributes such as event guid that identifies the data point have
maximal information content according to the training distribution (SMI), but near
zero information content when calculated with a reference distribution (RMI). A sim-
ilar effect was observed for other features that have low relevance for prediction such
as query string and receive time which, unless parsed, are too specific, xcookie and
user identifier which clearly do not generalize across users (but could be quite infor-
mative about a small fraction of the test data), and user segments which indexes user
categories. The results for other features are more subtle but follow the same underly-
ing principle where a reference distribution is utilized to avoid spurious dependencies
often found when utilizing empirical distributions.

6.3.2. Learning Performance Results. Here we explore the question of automatically find-
ing new conjunction features and whether these features actually offer any perfor-
mance gains. For this, we use the conditional mutual information within a forward
feature selection algorithm:

(1) Start with a set of base features and no conjunction features;
(2) Train a model with all the selected features;
(3) Compute the conditional mutual informations for all conjunctions not yet selected;
(4) Select the best conjunction;
(5) Go back to (2).

The results of this procedure are shown in Figure 5. It can be seen that selecting
50 features in this way has a two-fold advantage over including the 351 possible con-
junctions: it results in a model with less features (faster to train and evaluate); and it
generalizes better.

7. NON-STATIONARITY
Display advertising is a non stationary process as the set of active advertisers, cam-
paigns, publishers and users is constantly changing. We first quantify in sections 7.1
and 7.2 these changes, then show in section 7.3 how to efficiently update the model in
order to take into account the non-stationarity of the data, and finally discuss Thomp-
son sampling in section 7.4 and later as a way to address the explore / exploit trade-off
necessary in this kind of dynamic environment.

7.1. Ad Creation Rates
Response prediction models are trained using historical logs. When completely new
ads are added to the system, models built on past data may not perform as well, par-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

0 10 20 30 40 50 351
Number of conjunctions added

0

2

4

6

8

10

12

%
 i
m

p
ro

v
e
m

e
n
t

Fig. 5. A base model was trained with 26 base features. The method of section 6 was then used to determine
the best conjunctions to add to the model. The y-axis shows the relative improvement in normalized RMSE
on a test set. Adding in all conjunctions (green triangle) results in 351 new features, but does not yield better
performance than the top 50 conjunctions features.

Percentage of New Unique IDs

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Time from 05012011 to 05272011

P
e
rc

e
n

ta
g

e

Conversion ID Creative ID Campaign ID

Fig. 6. Percentage of new unique conversion identifiers, creatives and campaigns emerging for each day in
one month (relative to those existing in the previous month).

ticularly for those new ads (this clearly depends on the generalization power of the
features utilized for modeling). Keeping the models fresh can therefore be critical for
achieving sustained performance.

In order to design a model update mechanism (that is to be able to cope with the
dynamic nature of campaign generation) with a reasonable trade-off between model
performance and computational cost, it is important to investigate the rate at which
new ads are introduced. To this end, we used one month of data as the reference pe-
riod and computed the percentage of new ads introduced in every day of the following
month. We considered three levels of identification for ads: conversion, creative, and
campaign identifiers (these also turned out to be the most informative advertiser-based
features in the models studied).

Figure 6 shows that the percentage of unique new ads in the data is increasing
steadily day-by-day for all three identifiers. However, there is a difference in the mag-
nitude of change. Creatives are observed to change most frequently. There are 19.7%
new creatives after 10 days and 39.8% after 20 days. New ad campaigns also increase

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

Percentage of Events with New IDs

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Time from 05012011 to 05272011
P

e
rc

e
n

ta
g

e

Conversion ID Creative ID Campaign ID

Fig. 7. Percentage of events with new conversion identifiers, creatives, and campaigns for each day in one
month (relative to those existing in the previous month).

Distribution of Different ID's Lifetime

5

10

15

20

25

30

35

40

0-3 4-7 8-11 12-15 16-19 20-23 24-27 28-31 32-35 36-39 40-43 44-47 48-51 52-55 56-59 60-

Lifetime

P
e

rc
e

n
ta

g
e

conversion id creative id campaign id

Fig. 8. Distribution of lifetime for different IDs.

steadily, but at a slower rate, by approximately 16% after 10 days and 31% after 20
days. Conversion identifiers are the most stable of the three, with only 5.4% of new
unique ids after 10 days and 11.2% after 20 days. This indicates that advertisers tend
to use the same identifiers to track conversions even after they create new ad creatives
and campaigns.

Similar conclusions can be reached by looking at the percentage of events, instead of
unique identifiers. Figure 7 shows that only 1.3% of the events contain new conversion
identifiers after 10 days and 4.3% after 20 days. This is considered to be a relatively
small increase for practical purposes, because even if a model is not updated for as
long as 10 days it will still know about almost all the conversion identifiers.

This is beneficial to some extent to PCC modeling because a model that relies on
conversion identifiers would be relatively stable over time.

7.2. Ad Life-Time
Another important factor that could effect model performance is the churn rate of the
ads. Figure 8 plots the distribution of the lifetime of ads at three levels: conversion,
campaign, and creative. 37.4% of conversion ids lives longer than 2 months, which is
quite significant compared to 8% for creative ids and 14.9% for campaign ids. 23.6%
of creative ids and 18.7% of campaign ids have a lifetime shorter than 3 days, while
this number for conversion id is only 7.4%. It is notable that conversion id lives much
longer than the creative id and campaign id, which is consistent with the conclusion
reached in Section 7.1.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

0 5 10 15 20 25 30
Days

0.855

0.860

0.865

0.870

0.875

0.880

0.885

0.890

a
u
R

O
C

Daily Performance of a Post Click Conversion Model

Fig. 9. The performance (auROC) of the model degrades with time.

7.3. Model update
The results in Sections 7.1 and 7.2 indicate that there is a non-trivial percentage of
new ads entering the system every day. In this section, we first illustrate the impact
this has on a static post-click conversion model, and later provide an algorithm to
update our models efficiently.

In this analysis, data collected from a given month is used for training and that of
the following month is used as test data.

In order to evaluate the impact of the new ads on the model performance, we divided
the test data into daily slices. In Figure 9 we present the performance of the static
model. The x-axis represents each day in the test data and the y-axis indicates the
area under the ROC curve (auROC). We can see from Figure 9 that the performance of
the model degrades with time.

It is clear that the degradation in performance is closely related to the influx rate of
new ads in the test data, as elucidated in previous analyses (Sections 7.1-7.2). For this
reason, we cannot use a static model; we need to continuously refresh it with new data
as explained below.

The Bayesian interpretation of logistic regression described in section 4.9 can be
leveraged for model updates. Remember that the posterior distribution on the weights
is approximated by a Gaussian distribution with diagonal covariance matrix. As in
the Laplace approximation, the mean of this distribution is the mode of the posterior
and the inverse variance of each weight is given by the curvature. The use of this
convenient approximation of the posterior is twofold. It first serves as a prior on the
weights to update the model when a new batch of training data becomes available,
as described in algorithm 2. And it is also the distribution used in the exploration /
exploitation heuristic described in the next section.

To illustrate the benefits of model updates, we performed the following experiment.
We considered 3 weeks of training data and 1 week of test data. A base model is trained
on the training data. The performance with model updates is measured as follows:

(1) Split the test set in n = 24× 7/k batches of k hours;
(2) For i = 1, . . . , n:

— Test the current model on the i-th batch
— Use the i-th batch of data to update the model as explained in algorithm 2.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

ALGORITHM 2: Regularized logistic regression with batch updates
Require: Regularization parameter λ > 0.
mi = 0, qi = λ. {Each weight wi has an independent prior N (mi, q

−1
i)}

for t = 1, . . . , T do
Get a new batch of training data (xj , yj), j = 1, . . . , n.

Find w as the minimizer of:
1

2

d∑
i=1

qi(wi −mi)
2 +

n∑
j=1

log(1 + exp(−yjw>xj)).

mi = wi

qi = qi +

n∑
j=1

x2ijpj(1− pj), pj = (1 + exp(−w>xj))
−1 {Laplace approximation}

end for

Table VII. Influence of the update fre-
quency (area under the PR curve).

1 day 6 hours 2 hours
+3.7% +5.1% +5.8%

The baseline is the static base model applied to the entire test data. As shown in table
VII, the more frequently the model is updated, the better its accuracy is.

7.4. Exploration / exploitation trade-off
In order to learn the CTR of a new ad, it needs to be displayed first, leading to a
potential loss of short-term revenue. This is the classical exploration / exploitation
dilemma: either exploit the best ad observed so far; or take a risk and explore new
ones resulting in either a short term loss or a long term profit depending on wether
that ad is worse or better.

Various algorithms have been proposed to solve exploration / exploitation or bandit
problems. One of the most popular one is the Upper Confidence Bound (UCB) [Lai and
Robbins 1985; Auer et al. 2002] for which theoretical guarantees on the regret can be
proved. Another representative is the Bayes-optimal approach of Gittins [1989] that
directly maximizes expected cumulative payoffs with respect to a given prior distri-
bution. A less known family of algorithms is the so-called probability matching. The
idea of this heuristic is old and dates back to Thompson [1933]. This is the reason
why this scheme is also referred to as Thompson sampling in the literature. The idea
of Thompson sampling is to randomly draw each arm according to its probability of
being optimal. In contrast to a full Bayesian method like Gittins index, one can often
implement Thompson sampling efficiently.

7.5. Thompson sampling
We give in this section a general description of Thompson sampling and provide some
experimental results in the next one. More details can be found in [Chapelle and Li
2011].

The contextual bandit setting is as follows. At each round we have a context x (op-
tional) and a set of actions A. After choosing an action a ∈ A, we observe a reward r.
The goal is to find a policy that selects actions such that the cumulative reward is as
large as possible.

Thompson sampling is best understood in a Bayesian setting as follows. The set of
past observations D is made of triplets (xi, ai, ri) and are modeled using a parametric
likelihood function P (r|a, x, θ) depending on some parameters θ. Given some prior dis-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

tribution P (θ) on these parameters, the posterior distribution of these parameters is
given by the Bayes rule, P (θ|D) ∝

∏
P (ri|ai, xi, θ)P (θ).

In the realizable case, the reward is a stochastic function of the action, context and
the unknown, true parameter θ∗. Ideally, we would like to choose the action maximiz-
ing the expected reward, maxa E(r|a, x, θ∗).

Of course, θ∗ is unknown. If we are just interested in maximizing the immediate
reward (exploitation), then one should choose the action that maximizes E(r|a, x) =∫
E(r|a, x, θ)P (θ|D)dθ.
But in an exploration / exploitation setting, the probability matching heuristic con-

sists in randomly selecting an action a according to its probability of being optimal.
That is, action a is chosen with probability∫

I
[
E(r|a, x, θ) = max

a′
E(r|a′, x, θ)

]
P (θ|D)dθ,

where I is the indicator function. Note that the integral does not have to be computed
explicitly: it suffices to draw a random parameter θ at each round as explained in Algo-
rithm 3. The implementation is thus efficient and straightforward in our application:
since the posterior is approximated by a Gaussian distribution with diagonal covari-
ance matrix (see section 4.9), each weight is drawn independently from a Gaussian
distribution.

ALGORITHM 3: Thompson sampling
D = ∅
for t = 1, . . . , T do

Receive context xt
Draw θt according to P (θ|D)
Select at = arg maxa Er(r|xt, a, θt)
Observe reward rt
D = D ∪ (xt, at, rt)

end for

In addition to being a good heuristic for explore / exploite, the advantage of Thomp-
son sampling is that the randomized predictions it generates are compatible with a
generalized second price auction, as typically use in ad exchanges. In other words, the
auction is still incentive compatible even though the predictions are randomized [Meek
et al. 2005, Example 2]. It would be unclear which generalized second price to charge
with other explore / exploit strategies.

7.6. Evaluation of Thomson sampling
Evaluating an explore / exploit policy is difficult because we typically do not know
the reward of an action that was not chosen. A possible solution, is to use a replayer
in which previous, randomized exploration data can be used to produce an unbiased
offline estimator of the new policy [Li et al. 2011]. Unfortunately, this approach cannot
be used in our case because it reduces the effective data size substantially when the
number of arms K is large, yielding too high variance in the evaluation results.

For the sake of simplicity, therefore, we considered in this section a simulated envi-
ronment. More precisely, the context and the ads are real, but the clicks are simulated
using a weight vector w∗. This weight vector could have been chosen arbitrarily, but it
was in fact a perturbed version of some weight vector learned from real clicks. The in-
put feature vectors x are thus as in the real world setting, but the clicks are artificially
generated with probability P (y = 1|x) = (1 + exp(−w∗>x))−1.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

Table VIII. CTR regrets for different explore / exploit strategies.

Method TS LinUCB ε-greedy Exploit Random
Parameter 0.25 0.5 1 0.5 1 2 0.005 0.01 0.02
Regret (%) 4.45 3.72 3.81 4.99 4.22 4.14 5.05 4.98 5.22 5.00 31.95

About 13,000 contexts, representing a small random subset of the total traffic, are
presented every hour to the policy which has to choose an ad among a set of eligible
ads. The number of eligible ads for each context depends on numerous constraints set
by the advertiser and the publisher. It varies between 5,910 and 1 with a mean of
1,364 and a median of 514 (over a set of 66,373 ads). Note that in this experiment the
number of eligible ads is smaller than what we would observe in live traffic because
we restricted the set of advertisers.

The model is updated every hour as described in algorithm 2. A feature vector is
constructed for every (context, ad) pair and the policy decides which ad to show. A click
for that ad is then generated with probability (1+exp(−w∗>x))−1. This labeled training
sample is then used at the end of the hour to update the model. The total number of
clicks received during this one hour period is the reward. But in order to eliminate
unnecessary variance in the estimation, we instead computed the expectation of that
number since the click probabilities are known.

Several explore / exploit strategies are compared; they only differ in the way the
ads are selected; all the rest, including the model updates, is identical as described in
algorithm 2. These strategies are:

Thompson sampling. This is algorithm 3 where each weight is drawn indepen-
dently according to its Gaussian posterior approximationN (mi, q

−1
i) (see algorithm

2). We also consider a variant in which the standard deviations q−1/2i are first mul-
tiplied by a factor α ∈ {0.25, 0.5}. This favors exploitation over exploration.
LinUCB. This is an extension of the UCB algorithm to the parametric case [Li
et al. 2010]. It selects the ad based on mean and standard deviation. It also has a
factor α to control the exploration / exploitation trade-off. More precisely, LinUCB

selects the ad for which
∑d

i=1mixi + α
√∑d

i=1 q
−1
i x2i is maximum.

Exploit-only. Select the ad with the highest mean.
Random. Select the ad uniformly at random.
ε-greedy. Mix between exploitation and random: with ε probability, select a random
ad; otherwise, select the one with the highest mean.

Results. A preliminary result is about the quality of the variance prediction. The di-
agonal Gaussian approximation of the posterior does not seem to harm the variance
predictions. In particular, they are very well calibrated: when constructing a 95% con-
fidence interval for CTR, the true CTR is in this interval 95.1% of the time.

The regrets of the different explore / exploit strategies can be found in table VIII.
Thompson sampling achieves the best regret and interestingly the modified version
with α = 0.5 gives slightly better results than the standard version (α = 1).

Exploit-only does pretty well, at least compared to random selection. This seems at
first a bit surprising given that the system has no prior knowledge about the CTRs. A
possible explanation is that the change in context induces some exploration, as noted
in [Sarkar 1991]. Also, the fact that exploit-only is so much better than random might
explain why ε-greedy does not beat it: whenever this strategy chooses a random action,
it suffers a large regret in average which is not compensated by its exploration benefit.

Finally figure 10 shows the regret of three algorithms across time. As expected, the
regret has a decreasing trend over time.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

0 10 20 30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Hour

C
T

R
 r

e
g
re

t

Thompson

LinUCB

Exploit

Fig. 10. CTR regret over the 4 days test period for 3 algorithms: Thompson sampling with α = 0.5, LinUCB
with α = 2, Exploit-only. The regret in the first hour is large, around 0.3, because the algorithms predict
randomly (no initial model provided).

8. LARGE SCALE LEARNING
Because of the large amount of data, we use the distributed Hadoop based learning
system of [Agarwal et al. 2011]. Below is a summary of this system with some experi-
mental results.

Map-Reduce [Dean and Ghemawat 2008] and its open source implementation
Hadoop5 have become the overwhelmingly favorite platforms for distributed data pro-
cessing in general. However, the abstraction is rather ill-suited for machine learning
algorithms as several researchers in the field have observed [Low et al. 2010; Zaharia
et al. 2012], because it does not easily allow iterative algorithms, such as typical opti-
mization algorithms used to minimize the objective function (2).

8.1. Hadoop-compatible AllReduce
AllReduce is a more suitable abstraction for machine learning algorithms. AllReduce
is an operation where every node starts with a number and ends up with the sum of
the numbers at all the nodes. A typical implementation is done by imposing a tree
structure on the communicating nodes—numbers can be summed up the tree (this is
the reduce phase) and then broadcasted down to all nodes—hence the name AllReduce.
See Figure 11 for a graphical illustration. When doing summing or averaging of a long
vector, such as the weight vector w in the optimization (2), the reduce and broadcast
operations can be pipelined over the vector entries hence the latency of going up and
down the tree becomes neglibible on a typical Hadoop cluster.

For problems of the form (2), AllReduce provides straightforward parallelization—
we just accumulate local gradients for a gradient based algorithm like gradient descent
or L-BFGS. In general, any statistical query algorithm [Kearns 1993] can be paral-
lelized with AllReduce with only a handful of additional lines of code. This approach
also easily implements averaging parameters of online learning algorithms.

An implementation of AllReduce is available in the MPI package. However, it is not
easy to run MPI on top of existing Hadoop clusters [Ye et al. 2009]. Moreover, MPI
implements little fault tolerance, with the bulk of robustness left to the programmer.

To address the reliability issues better, we developed an implementation of AllRe-
duce that is compatible with Hadoop. Implementation of AllReduce using a single tree

5http://hadoop.apache.org/

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

7 5

1

4

9

3

8

7

13

5 3 4

15

3737 37 37

3737

Fig. 11. AllReduce

is clearly less desirable than MapReduce in terms of reliability, because if any individ-
ual node fails, the entire computation fails. To deal with this, we make use of the spec-
ulative execution of Hadoop which makes AllReduce reliable enough to use in practice
for computations up to 10K node hours.

8.2. Proposed Algorithm
The main algorithm is a hybrid online+batch approach. To understand the motivations
for this, we start by discussing the pros and cons of purely online or batch learning
algorithms common in machine learning. An attractive feature of online learning algo-
rithms is that they can optimize the sample risk to a rough precision quite fast, in just
a handful of passes over the data. The inherent sequential nature of these algorithms,
however, makes them tricky to parallelize. Batch learning algorithms such as Newton
and Quasi-Newton methods (e.g. L-BFGS), on the other hand, are great at optimizing
the sample risk to a high accuracy, once they are in a good neighborhood of the optimal
solution. But the algorithms can be quite slow in reaching this good neighborhood.
Generalization of these approaches to distributed setups is rather straightforward,
only requiring aggregation across nodes after every iteration, as also noted in some
prior works [Teo et al. 2007].

We attempt to reap the benefits and avoid the drawbacks of both the above ap-
proaches through our hybrid method. We start with each node making one online
pass over its local data according to adaptive gradient updates [Duchi et al. 2010;
McMahan and Streeter 2010]. We notice that each online pass happens completely
asynchronously without any communication between the nodes, and we can afford to
do so since we are only seeking to get into a good neighborhood of the optimal solution
rather than recovering it to a high precision at this first stage. AllReduce is used to
average these local weights.

This solution w̄ is used to initialize L-BFGS [Nocedal 1980] with the standard Jacobi
preconditioner, with the expectation that the online stage gives us a good warmstart for
L-BFGS. At each iteration, the local gradients are summed up using AllReduce, while
all the other operations can be done locally at each node. The algorithm benefits from
the fast reduction of error initially that an online algorithm provides, and rapid con-
vergence in a good neighborhood guaranteed by Quasi-Newton algorithms. We again
point out that the number of communication operations is relatively few throughout
this process.

Note that the implementation is open source in Vowpal Wabbit [Langford et al. 2007]
and is summarized in algorithm 4.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

ALGORITHM 4: Sketch of the proposed learning architecture
Require: Data split across nodes

for all nodes k do
wk = result on the data of node k using stochastic gradient descent.

end for
Compute the average w̄ using AllReduce.
Start a preconditioned L-BFGS optimization from w̄.
for t = 1, . . . , T do

for all nodes k do
Compute gk the (local batch) gradient of examples on node k
Compute g =

∑m
k=1 g

k using AllReduce.
Add the regularization part in the gradient.
Take an L-BFGS step.

end for
end for

10 20 30 40 50 60 70 80 90 100

1

2

3

4

5

6

7

8

9

10

Nodes

S
p

e
e

d
u

p

Fig. 12. Speed-up for obtaining a fixed test error relative to the run with 10 nodes, as a function of the
number of nodes. The dashed corresponds to the ideal speed-up, the solid line is the average speed-up over
10 repetitions and the bars indicate maximum and minimal values.

8.3. Results
We provide in this section some experimental results using AllReduce and compare
them to other methods for distributed learning. The entire set of results can be found
in [Agarwal et al. 2011].

Running time. We study the running time as a function of the number of nodes. We
varied the number of nodes from 10 to 100 and computed the speed-up factor relative to
the run with 10 nodes. In each case, we measured the amount of time needed to get to
a fixed test error. Since there can be significant variations from one run to the other—
mostly because of the cluster utilization—each run was repeated 10 times. Results are
reported in Figure 12. The speed-up appears to be close to linear.

Online and batch learning. We investigate the number of iterations needed to reach
a certain test performance for different learning strategies: batch, online and hybrid.

Figure 13 compares two learning strategies—batch with and without an initial on-
line pass—on the training set. It plots the optimality gap, defined as the difference

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

0 10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Iterations

S
u
b
o
p
ti
m

a
lit

y

One online pass

No online pass

Fig. 13. Effect of initializing the L-BFGS optimization by an average solution from online runs on individual
nodes.

0 10 20 30 40 50
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Iteration

a
u

P
R

C

Online
L−BFGS w/ 5 online passes
L−BFGS w/ 1 online pass
L−BFGS

0 5 10 15 20

0.466

0.468

0.47

0.472

0.474

0.476

0.478

0.48

0.482

0.484

Iteration

a
u

P
R

C

Online
L−BFGS w/ 5 online passes
L−BFGS w/ 1 online pass
L−BFGS

Fig. 14. Test auPRC for 4 different learning strategies.

between the current objective function and the optimal one (i.e. minimum value of the
objective (2)), as a function of the number iterations. From this figure, one can see that
the initial online pass results in a saving of about 10-15 iterations.

Figure 14 shows the test auPRC as a function of the number of iterations for 4
different strategies: only online learning, only L-BFGS learning, and 2 hybrid methods
consisting of 1 or 5 passes of online learning followed by L-BFGS optimization. L-BFGS
with one online pass appears to be the most effective strategy.

Large experiment and comparison with Sibyl. We experimented with an 8 times
larger version of the data (16B examples). Using 1000 nodes and 10 passes over the
data, the training took only 70 minutes.6 Since each example is described by 125 non-

6As mentioned before, there can be substantial variations in timing between different runs; this one was
done when the cluster was not much occupied.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

Table IX. Average training time (in seconds)
per iteration of an internal logistic regression
implementation using either MapReduce or
AllReduce for gradients aggregation.

Full size 10% sample
MapReduce 1690 1322
AllReduce 670 59

zero features, the average processing speed was

16B× 10× 125 features/1000 nodes/70 minutes = 4.7 M features/node/s.

The overall learning throughput was

16B× 125 features/70 minutes = 470 M features/s.

We briefly compare this with a result reported for Sibyl for a run on 970 cores [Canini
et al. 2012, slide 24]. The run was done over 129.1B examples, with 54.61 non-zero
features per example. The reported processing speed was 2.3M features/core/s (which
is a factor of two slower than our achieved processing speed). The reported number
of iterations is 10–50, which would lead to the final learning throughput in the range
45–223 M features/s, i.e., the results appear to be slower by a factor of 2–10.

8.4. Comparison with MapReduce
The standard way of using MapReduce for iterative machine learning algorithms is
the following [Chu et al. 2007]: every iteration is a M/R job where the mappers com-
pute some local statistics (such as a gradient) and the reducers sum them up. This is
ineffective because each iteration has large overheads (job scheduling, data transfer,
data parsing, etc.). We have an internal implementation of such a M/R algorithm. We
updated this code to use AllReduce instead and compared both versions of the code
in Table IX. This table confirms that Hadoop MapReduce has substantial overheads
since the training time is not much affected by the dataset size. The speedup factor of
AllReduce over Hadoop MapReduce can become extremely large for smaller datasets,
and remains noticeable even for the largest datasets.

It is also noteworthy that all algorithms described in [Chu et al. 2007] can be par-
allelized with AllReduce, plus further algorithms such as parameter averaging ap-
proaches.

9. CONCLUSION
In this paper we presented a framework for modeling response prediction in display
advertising. Our approach has several advantages over the alternatives:

simplicity : The proposed framework is easy to implement, trivial to update and
lightweight to use on real servers. The ad servers need only to load model files that
can easily fit in memory and implement a model applier which uses only a hash func-
tion as feature generator.

scalability : Our algorithms are easy to parallelize. The map-reduce architecture pre-
sented in this paper allows us to train models using many billions of samples in one
hour, a significant improvement over existing methods.

efficiency : Finally, the results presented in this paper clearly show that our framework
is as good as or better than the state-of-the-art alternatives.

The experiments reported in this study were conducted on data from two large (and
distinct) display advertising companies. The stability and the repeatability of our re-
sults suggest strongly that the presented framework could serve as a strong baseline
in this domain.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

ACKNOWLEDGMENTS

We would like to thank our colleagues Kannan Achan, Haibin Cheng, Dmitry Pavlov, Benoı̂t Rostykus and
Huang Xu for providing us with valuable feedback as well as running some of the experiments in this paper.

REFERENCES
AGARWAL, A., CHAPELLE, O., DUDÍK, M., AND LANGFORD, J. 2011. A reliable effective terascale linear

learning system. CoRR abs/1110.4198.
AGARWAL, D., AGRAWAL, R., KHANNA, R., AND KOTA, N. 2010. Estimating rates of rare events with mul-

tiple hierarchies through scalable log-linear models. In Proceedings of the 16th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. 213–222.

ASHKAN, A., CLARKE, C. L. A., AGICHTEIN, E., AND GUO, Q. 2009. Estimating ad clickthrough rate
through query intent analysis. In Proceedings of the 2009 IEEE/WIC/ACM International Joint Con-
ference on Web Intelligence and Intelligent Agent Technology.

AUER, P., CESA-BIANCHI, N., AND FISCHER, P. 2002. Finite-time analysis of the multiarmed bandit prob-
lem. Machine learning 47, 2, 235–256.

BACH, F., JENATTON, R., MAIRAL, J., AND OBOZINSKI, G. 2011. Optimization with sparsity-inducing
penalties. Foundations and Trends in Machine Learning 4, 1, 1–106.

BISHOP, C. M. 2006. Pattern Recognition and Machine Learning. Springer-Verlag New York, Inc.
BLOOM, B. 1970. Space/time trade-offs in hash coding with allowable errors. Communications of the

ACM 13, 7, 422–426.
CANINI, K., CHANDRA, T., IE, E., MCFADDEN, J., GOLDMAN, K., GUNTER, M., HARMSEN, J., LEFEVRE,

K., LEPIKHIN, D., LLINARES, T. L., MUKHERJEE, I., PEREIRA, F., REDSTONE, J., SHAKED, T., AND
SINGER, Y. 2012. Sibyl: A system for large scale supervised machine learning. Presentation at MLSS
Santa Cruz, http://users.soe.ucsc.edu/~niejiazhong/slides/chandra.pdf.

CHAKRABARTI, D., AGARWAL, D., AND JOSIFOVSKI, V. 2008. Contextual advertising by combining rel-
evance with click feedback. In Proceedings of the 17th international conference on World Wide Web.
417–426.

CHANG, Y.-W., HSIEH, C.-J., CHANG, K.-W., RINGGAARD, M., AND LIN, C.-J. 2010. Training and testing
low-degree polynomial data mappings via linear SVM. The Journal of Machine Learning Research 11,
1471–1490.

CHAPELLE, O. AND LI, L. 2011. An empirical evaluation of thompson sampling. In Advances in Neural In-
formation Processing Systems 24, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger,
Eds. 2249–2257.

CHEN, S. AND GOODMAN, J. 1999. An empirical study of smoothing techniques for language modeling.
Computer Speech & Language 13, 4, 359–393.

CHENG, H. AND CANTÚ-PAZ, E. 2010. Personalized click prediction in sponsored search. In Proceedings of
the third ACM international conference on Web search and data mining.

CHENG, H., ZWOL, R. V., AZIMI, J., MANAVOGLU, E., ZHANG, R., ZHOU, Y., AND NAVALPAKKAM, V. 2012.
Multimedia features for click prediction of new ads in display advertising. In Proceedings of the 18th
ACM SIGKDD international conference on Knowledge discovery and data mining.

CHU, C., KIM, S., LIN, Y., YU, Y., BRADSKI, G., NG, A., AND OLUKOTUN, K. 2007. Map-reduce for machine
learning on multicore. In Advances in Neural Information Processing Systems 19: Proceedings of the
2006 Conference. Vol. 19.

CIARAMITA, M., MURDOCK, V., AND PLACHOURAS, V. 2008. Online learning from click data for sponsored
search. In Proceedings of the 17th international conference on World Wide Web. 227–236.

CORTES, C., MANSOUR, Y., AND MOHRI, M. 2010. Learning bounds for importance weighting. In Advances
in Neural Information Processing Systems. Vol. 23. 442–450.

DEAN, J. AND GHEMAWAT, S. 2008. Mapreduce: simplified data processing on large clusters. Communica-
tions of the ACM 51, 1, 107–113.

DUCHI, J., HAZAN, E., AND SINGER, Y. 2010. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research 12, 2121–2159.

EVGENIOU, T. AND PONTIL, M. 2004. Regularized multi-task learning. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM, 109–117.

GELMAN, A. AND HILL, J. 2006. Data analysis using regression and multilevel/hierarchical models. Cam-
bridge University Press.

GITTINS, J. C. 1989. Multi-armed Bandit Allocation Indices. Wiley Interscience Series in Systems and Op-
timization. John Wiley & Sons Inc.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

GRAEPEL, T., CANDELA, J. Q., BORCHERT, T., AND HERBRICH, R. 2010. Web-scale bayesian click-through
rate prediction for sponsored search advertising in microsoft’s bing search engine. In Proceedings of the
27th International Conference on Machine Learning.

GUYON, I. AND ELISSEEFF, A. 2003. An introduction to variable and feature selection. The Journal of
Machine Learning Research 3, 1157–1182.

HILLARD, D., MANAVOGLU, E., RAGHAVAN, H., LEGGETTER, C., CANTÚ-PAZ, E., AND IYER, R. 2011. The
sum of its parts: reducing sparsity in click estimation with query segments. Information Retrieval, 1–22.

HILLARD, D., SCHROEDL, S., MANAVOGLU, E., RAGHAVAN, H., AND LEGGETTER, C. 2010. Improving ad
relevance in sponsored search. In Proceedings of the third ACM international conference on Web search
and data mining. 361–370.

KEARNS, M. 1993. Efficient noise-tolerant learning from statistical queries. In Proceedings of the Twenty-
Fifth Annual ACM Symposium on the Theory of Computing. 392–401.

KING, G. AND ZENG, L. 2001. Logistic regression in rare events data. Political analysis 9, 2, 137–163.
KOEPKE, H. AND BILENKO, M. 2012. Fast prediction of new feature utility. In Proceedings of the 29th

International Conference on Machine Learning.
KOTA, N. AND AGARWAL, D. 2011. Temporal multi-hierarchy smoothing for estimating rates of rare events.

In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining.

LAI, T. AND ROBBINS, H. 1985. Asymptotically efficient adaptive allocation rules. Advances in applied
mathematics 6, 4–22.

LANGFORD, J., LI, L., AND STREHL, A. 2007. Vowpal wabbit open source project. https://github.com/
JohnLangford/vowpal_wabbit/wiki.

LI, L., CHU, W., LANGFORD, J., AND SCHAPIRE, R. E. 2010. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the 19th international conference on World wide web.
661–670.

LI, L., CHU, W., LANGFORD, J., AND WANG, X. 2011. Unbiased offline evaluation of contextual-bandit-based
news article recommendation algorithms. In Proceedings of the fourth ACM international conference on
Web search and data mining. 297–306.

LIU, Y., PANDEY, S., AGARWAL, D., AND JOSIFOVSKI, V. 2012. Finding the right consumer: optimizing for
conversion in display advertising campaigns. In Proceedings of the fifth ACM international conference
on Web search and data mining.

LOW, Y., GONZALEZ, J., KYROLA, A., BICKSON, D., GUESTRIN, C., AND HELLERSTEIN, J. M. 2010.
Graphlab: A new framework for parallel machine learning. In The 26th Conference on Uncertainty in
Artificial Intelligence.

MACQUEEN, J. 1967. Some methods for classification and analysis of multivariate observations. In Proceed-
ings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California
Press, Berkeley, CA, 281–297.

MCAFEE, R. 2011. The design of advertising exchanges. Review of Industrial Organization, 1–17.
MCMAHAN, H. B. AND STREETER, M. 2010. Adaptive bound optimization for online convex optimization.

In Proceedings of the 23rd Annual Conference on Learning Theory.
MEEK, C., CHICKERING, D. M., AND WILSON, D. 2005. Stochastic and contingent payment auctions. In

Workshop on Sponsored Search Auctions, ACM Electronic Commerce.
MEIER, L., VAN DE GEER, S., AND BÜHLMANN, P. 2008. The group lasso for logistic regression. Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 70, 1, 53–71.
MENARD, S. 2001. Applied logistic regression analysis. Vol. 106. Sage Publications, Inc.
MENON, A. K., CHITRAPURA, K.-P., GARG, S., AGARWAL, D., AND KOTA, N. 2011. Response prediction

using collaborative filtering with hierarchies and side-information. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data mining.

MINKA, T. 2003. A comparison of numerical optimizers for logistic regression. Tech. rep., Microsoft Research.
MUTHUKRISHNAN, S. 2009. Ad exchanges: Research issues. In Proceedings of the 5th International Work-

shop on Internet and Network Economics.
NIGAM, K., LAFFERTY, J., AND MCCALLUM, A. 1999. Using maximum entropy for text classification. In

IJCAI-99 workshop on machine learning for information filtering. Vol. 1. 61–67.
NOCEDAL, J. 1980. Updating quasi-newton matrices with limited storage. Mathematics of computa-

tion 35, 151, 773–782.
OWEN, A. 2007. Infinitely imbalanced logistic regression. The Journal of Machine Learning Research 8,

761–773.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

REGELSON, M. AND FAIN, D. C. 2006. Predicting click-through rate using keyword clusters. In Proceedings
of the Second Workshop on Sponsored Search Auctions.

RICHARDSON, M., DOMINOWSKA, E., AND RAGNO, R. 2007. Predicting clicks: estimating the click-through
rate for new ads. In Proceedings of the 16th International conference on World Wide Web. New York, NY,
521–530.

ROSALES, R. AND CHAPELLE, O. 2011. Attribute selection by measuring information on reference distribu-
tions. In Tech Pulse Conference, Yahoo!

ROSALES, R., CHENG, H., AND MANAVOGLU, E. 2012. Post-click conversion modeling and analysis for non-
guaranteed delivery display advertising. In Proceedings of the fifth ACM international conference on
Web search and data mining. ACM, 293–302.

SARKAR, J. 1991. One-armed bandit problems with covariates. The Annals of Statistics, 1978–2002.
SCHÖLKOPF, B. AND SMOLA, A. 2001. Learning with kernels: Support vector machines, regularization, op-

timization, and beyond. MIT press.
SHI, Q., PETTERSON, J., DROR, G., LANGFORD, J., SMOLA, A., AND VISHWANATHAN, S. 2009. Hash kernels

for structured data. The Journal of Machine Learning Research 10, 2615–2637.
TEO, C., LE, Q., SMOLA, A., AND VISHWANATHAN, S. 2007. A scalable modular convex solver for regularized

risk minimization. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining.

THOMPSON, W. R. 1933. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika 25, 3–4, 285–294.

WEINBERGER, K., DASGUPTA, A., LANGFORD, J., SMOLA, A., AND ATTENBERG, J. 2009. Feature hash-
ing for large scale multitask learning. In Proceedings of the 26th Annual International Conference on
Machine Learning. 1113–1120.

YE, J., CHOW, J.-H., CHEN, J., AND ZHENG, Z. 2009. Stochastic gradient boosted distributed decision trees.
In Proceeding of the 18th ACM conference on Information and knowledge management. 2061–2064.

ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J., MCCAULEY, M., FRANKLIN, M., SHENKER,
S., AND STOICA, I. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation.

Received Dec 2012; revised Apr 2013; accepted Aug 2013

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

