Alkaline marine tephra layers at ODP Site 1241 - Major explosive eruptions from an oceanic volcano in a pre-shield stage?

J.C. Schindlbeck a,⁎, S. Kutterolf a, A. Freundt a, G.D.M. Andrews b, K.-L. Wang c, D. Völker d, R. Werner a, M. Frische a, K. Hoernle a

a GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
b Department of Geology and Geography, West Virginia University, Morgantown, WV, 26506, USA
c Institute of Earth Sciences, Academia Sinica, Taipei 11529, Taiwan
d MARUM - Zentrum für Marine Umweltwissenschaften der Universität Bremen, 28359 Bremen, Germany

⁎ Corresponding author.
E-mail address: jschindlbeck@geomar.de (J.C. Schindlbeck).

ARTICLE INFO

Article history:
Received 20 June 2016
Received in revised form 12 October 2016
Accepted 12 October 2016
Available online 24 October 2016

Keywords:
Ocean island evolution
Subaerial explosive volcanism
Pleistocene marine tephrostratigraphy
Widespread fallout tephra
Tectonically controlled melt ascent

ABSTRACT

We report a series of fourteen marine tephra layers that are the products of large explosive eruptions of Subplinian to Plinian intensities and magnitudes (VEI > 4) from Cocos Island, Costa Rica. Cocos Island is a volcanic island in the eastern Central Pacific Ocean – 500 km offshore Costa Rica, and is situated on the northwestern flank of the aseismic Cocos Ridge. Geochemical fingerprinting of Pleistocene (~2.4–1.4 Ma) marine tephra layers from Ocean Drilling Project (ODP) Leg 202 Site 1241 using major and trace element compositions of volcanic glass shards demonstrates unequivocally their origin from Cocos Island rather than the Galápagos Archipelago or the Central American Volcanic Arc (CAVA). Cocos Island and the adjacent seamounts of the Cocos Island Province have alkalic compositions and formed on young (≤3 Ma) oceanic crust from an extinct spreading ridge bounded by a transform fault against the older and thicker crust of the aseismic Cocos Ridge. Cocos Island has six times the average volume of the adjacent seamounts although all appear to have formed during the 3–1.4 Ma time period. Cocos Island lies closest to the transform fault and we explain its excessive growth by melts rising from garnet-bearing mantle being deflected from the thick Cocos Ridge lithosphere toward the thinner lithosphere on the other side of the transform, thus enlarging the melt catchment area for Cocos Island compared to the seamounts farther away from the transform. This special setting favored growth above sea level and subaerial explosive eruptions even though the absence of appropriate compositions suggests that the entirely alkalic Cocos Island (and seamounts) never evolved through the productive theleitic shield stage typical of other Pacific Ocean islands, possibly because melt production rates remained too small. Conditions of magma generation and ascent resembled Hawaiian pre-shield volcanoes but persisted for much longer (<1 m.y.) and formed evolved, trachytic magmas. Therefore Cocos Island may be a unique example for a volcanic ocean island that did not pass through the typical growth stages.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Growing oceanic intraplate volcanoes eventually reach a mature stage when they breach the sea surface and generate subaerial explosive volcanism (e.g., Canary Islands, Schmincke and Sumita, 1998a; Cape Verde Islands, Holm et al., 2005). Pacific ocean islands typically reach that stage by building most of their volume through a very productive theleitic shield phase followed by post-shield alkalic volcanism (Fig. 1; e.g., Hawaiian Islands, Clague and Sherrod, 2014; Galápagos Islands, White et al., 1993). However, at Hawaiian Islands the theleitic shield stage was preceded by a pre-shield phase of alkalic volcanism (Fig. 1) considered to represent incipient melting and melt ascent conditions at the hotspot margin prior to fully established melt production of the shield phase above hotspot center (Calvert and Lanphere, 2006; Lipman et al., 2006). Loihi seamount is an example of an oceanic volcano still in its pre-shield phase. Stratigraphically sampled sections show an increase in theleitic lavas at the expense of alkalic lavas toward younger units, and Loihi already has developed structures such as a caldera, rift zone and flank collapse typical of shield volcanoes (Clague and Sherrod, 2014). Representing the first phase of growth on the ocean floor, the alkalic pre-shield volcanoes are submarine structures. However, here we propose the hypothesis that alkalic Cocos Island grew above sea level and produced highly explosive subaerial eruptions without evolving through the pre-shield, shield, and post-shield stages typical of other Pacific Ocean islands.
The starting point to arrive at that hypothesis is our identification of tephra layers at ODP Leg 202 Site 1241 on the Cocos Ridge offshore Costa Rica (Fig. 2; Mix et al., 2003). We show that these are trachytic products of subaerial, Subplinian to Plinian eruptions on Cocos Island 80 km away from the drill site. We discuss how this marine tephra record modifies published ideas about the subaerial evolution of Cocos Island (Castillo et al., 1988). Our data, and published data on the Cocos Island Seamount Province, show that these volcanoes all have alkalic compositions and formed within the 3–1.4 Ma time window, much younger than the surrounding Cocos Ridge crust. We discuss the special conditions that may have facilitated growth of Cocos Island to a subaerial volcano without passing through the typical shield stage.

2. Geological background

Due to its proximity to the Galápagos (Cocos-Nazca) spreading center (GSC), the Galápagos hotspot has formed two sets of tracks (Fig. 2a): 1) the NE-SW trending aseismic Cocos Ridge and associated seamount provinces (i.e., the Costa Rica Seamount Province, Cocos Island Seamount Province, and Southwest Seamount Province) located on the Cocos Plate extending from the GSC just north of the Galápagos Archipelago to the Central American Trench offshore Costa Rica, and 2) the Carnegie, Malpelo and Coiba Ridges located on the Nazca Plate extending from the Galápagos Archipelago to Central and South American Trenches offshore Ecuador to Panama (Hey, 1977; Lonsdale and Klitgord, 1978; Wilson and Hey, 1995) (Fig. 2a). The Cocos Island Seamount Province comprises Cocos Island (~35 km² area above the sea level, roughly rectangular shape, highest peak at 575 m asl [Castillo et al., 1988]) and an adjacent group of seven large and several smaller seamounts scattered up to 200 km west and ~80 km southwest of the island (Werner et al., 2003).

The volcanism on Cocos Island is unusual in that it has a more alkalic composition and is significantly younger (<3 Ma) than the surrounding Cocos Ridge basement (~10 Ma; Castillo et al., 1988; Werner et al., 2003; O’Connor et al., 2007). Cocos Island lies near the eastern end of an approximately east-west trending trough that has been interpreted as an extinct spreading center that was active from ~3.5 to ~1.8 m.y. ago (Meschede et al., 1998). This spreading ridge segment is bounded in the east by a transform fault that juxtaposes the spreading ridge with the Cocos ridge (Fig. 4 in O’Connor et al., 2007).

The geology of Cocos Island (Fig. 2c) is subdivided into three lithostratigraphic units (Castillo et al., 1988): 1) The Lower Volcanic Series represents the subaerial phase of basaltic lava effusion. 2) This is unconformably overlain by a thick pyroclastic succession mainly of massive breccias, products of phreatomagmatic eruptions and some fallout deposits, and locally capped by subaerially extruded trachytic
domes that may represent the late-stage activity of a previously collapsed caldera (Castillo et al., 1988). 3) The Upper Volcanic Series again comprises subaerial mafic lavas and remnant cinder cones predominantly produced by fissure eruptions. Radiometrically dated lava samples constrain the age of the subaerial part of Cocos Island to 2.3–1.5 Ma (O’Connor et al., 2007).

3. Methods

Marine and terrestrial samples were analyzed for major and trace element glass compositions with electron microprobe (EMP) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Twenty-four marine tephra samples where selected from core sections archived at the IODP (International Ocean Discovery Program) core repository in College Station, Texas, were wet-sieved and prepared for geochemical analyses following the methods described in Schindlbeck et al. (2015).

Two terrestrial Cocos Island tephra samples from RV Sonne cruise SO144-3 (Werner et al., 2000) were prepared for glass analyses of pumice clasts by cleaning and crushing the samples and handpicking fresh pumice particles.

Major element glass compositions (26 samples; in total 320 single glass shard analyses) were analyzed with a JEOL JXA 8200 wavelength-dispersive EMP at the GEOMAR Helmholtz Center for Ocean Research Kiel. Analytical procedures follow Kutterolf et al. (2011) and include measuring programs calibrated with international natural and synthetic standards. The accelerating voltage was constantly 15 kV and the beam current was 6 nA for glasses at a defocused beam size of 5 μm. The accuracy has been monitored by standard measurements on Lipari obsidian (rhyolite; e.g. Hunt and Hill, 2001) and Smithsonian basaltic standard VGA and deviations are ~0.5% for major and <10% for minor elements. Analyses are normalized to 100% anhydrous to eliminate the effects of variable post-depositional hydration.

Trace and selected main element compositions of 49 glass shards were analyzed by LA-ICP-MS at the GEOMAR Helmholtz Center for Ocean Research Kiel (April 2011) and the Academia Sinica in Taiwan (September 2015). At GEOMAR we used a 193 nm Excimer laser ablation system (Coherent, GeoLasPro) equipped with the manufacturer’s standard ablation cell and coupled to a double-focusing, high-resolution magnetic sector mass spectrometer (Nu Instruments, AttoM) in low resolution mode (300 Res, 10% valley definition). Ablation was done under He carrier gas, additionally Argon carrier gas was mixed prior to the plasma torch. Spot analyses were done by 100 s ablation at a laser repetition rate of 3 Hz using a spot diameter of 16 μm and a fluence of 8 J/cm². So gas background were collected prior to each ablation. Gas flows, torch position and ion-optics-focusing were optimized in order to provide a maximum in ion transparency, low oxide production rates (ThO/Th ≤ 0.3%) and fast sample wash-out. The NISTSRM610 glass (Wise and Watters, 2012) was used for mass calibration. Data evaluation has been performed applying the linear regression slope method (Fietzke et al., 2008). Si was used for internal standardization utilizing data from EMP analyses (see Supporting information Table S4 in Kutterolf et al. (2014) acquired during the same analytical runs).

The LA-ICPMS at the Institute of Earth Sciences, Academia Sinica in Taiwan, Taiwan, is equipped with a Photon Machines Analyte G2 laser ablation system (Photon Machines, Inc., Redmond, USA) attached to a quadrupole ICP-MS (Agilent 7900). The Photon Machines Analyte G2 laser ablation system utilizes a 193 nm ArF Excimer laser with 5 ns pulse duration. The instrument features a HeElx two-volume ablation cell providing aerosol washout times of ~10 s for a signal drop of 3 orders of magnitude. The carrier gas transporting the ablated sample from the ablation cell was mixed with the Ar gas flow prior to plasma torch. Spot analyses were done using a spot diameter of 16 to 30 μm at energy densities of 7 J/cm² and 5 Hz repetition rate. Following 45 s of blank acquisition, typical ablation times were around 75 s. Data reduction was made using Version 4.0 of “real-time on-line” GLITTER® software (van Achterberg et al., 2001) right after each ablation analysis. Calibration was performed using the NIST SRM612 glass as external reference material in conjunction with internal standardization on 43Ca. Internal standardization was used to correct for not only matrix effects and signal drift in the ICP-MS and differences in the ablation efficiency between the sample and the reference material (Günther et al., 1999). Ca concentrations determined by EMP analyses were used to normalize trace element concentrations. A basaltic glass standard (USGS BCR-2G) was used as reference material. Precision for most trace elements is better than 5% (1σ) as deduced from comparing the analytical results with literature data for BCR-2G (more details in Supplementary material). Replicate measurements at both institutes produced consistent results.

4. Samples

4.1. Marine tephra inventory

A succession of marine ash beds was drilled during Ocean Drilling Project (ODP) Leg 202 at Site 1241 on the Cocos Ridge, ~80 km north-east of Cocos Island (Fig. 2; 5°50.570′N 86°26.81′W). Three holes (A, B, and C) were drilled that recovered Late Miocene through Holocene marine sediments containing numerous tephra layers (Fig. 2d; Mix et al., 2003). Many tephra layers originate at the Central American volcanic arc as we will demonstrate on the basis of geochemical compositions elsewhere (Schindlbeck et al., in press). Herein we focus on fourteen tephra layers that have unusual alkalic compositions (green lines in Fig. 2d). These marine tephra layers in the interval 27.53–52.66 mbsf (meters below sea floor) are 2 to 15 cm thick and range in grain size from medium ash to lapilli (up to 1 cm). The highly vesicular glass shards with round and elongated bubbles are transparent with minor amounts of brown glass shards (Fig. 3). The mineral assemblage comprises feldspar > biotite > pyroxenes > amphiboles, in order of abundance. The structural and textural features of all but one of the ash layers fulfill the criteria for primary fallout deposits from a subaerial eruption (e.g., Fisher and Schmincke, 1984). The ash and pumice lapilli layers are generally well-sort, massive, and their bottom contacts are sharp with a gradual admixing of sediment at their tops (Fig. 3a), and some layers are normally graded (e.g., Interval 202-1241A 6H-1, 71–79 cm). Additionally, the main bodies of most ash layers show no parallel or cross lamination, nor reworking of volcanic and/or sedimentary material, which would be indicative for flow processes. The one exception is a poorly sorted lapilli–ash layer (Interval 202-1241A 6H-1, 53–55 cm, Fig. 3b) that contains a heterogeneous mixture of pumice lapilli and lithic lava fragments >0.5 cm in diameter, and moderately

![Fig. 3](image-url)
vesicular blocky glass shards. This bed was likely deposited from a submarine density current rather than from pyroclastic fallout.

Based on petrographic criteria the tephra layers were correlated between the three holes at Site 1241 by the Leg 202 scientific party (Mix et al., 2003). We tested these correlations geochemically by using major and trace element glass compositions (see Supplementary dataset).

4.2. Terrestrial samples

During R/V Sonne cruise SO144-3 in 1999 a field party (Tim Worthington, Karen Harpp and Guillermo Alvarado) mapped and sampled shore sections on Cocos Island (Fig. 2c; a log is given in Werner et al., 2000). They described and sampled a several meters thick sequence at West Wafer Bay (Fig. 2c) that consists of volcanioclastic debris flow deposits at top and bottom (>4 m thick) that sandwich four pyroclastic units (0.7–1.5 m thick) in-between from which two samples were collected. Sample Cocos 3 is a light brown, weakly consolidated massive lapilli-tuff with white pumice lapilli taken from a 0.7 m thick massive fine-grained tuff. Sample Cocos 40 was taken from a 1.5 m thick pyroclastic unit that is described as a possible fallout deposit or massive fine-grained flow deposit with white pumice lapilli in an ash matrix, containing accretionary lapilli. This sequence is probably part of the middle pyroclastic series of Castillo et al. (1988) while most other samples taken during this field excursion are thought to be part of the Lower Volcanic Series. Bulk rock major and trace element analyses, and radiometric ages, of lava samples are presented in Werner et al. (2003), Harpp et al. (2005) and O’Connor et al. (2007). For this study we analyzed the glass compositions of the two pyroclastic samples, since the glass composition is the most useful tool for the correlation with the investigated marine tephra deposits from ODP Site 1241.

5. Results

5.1. Ages

The tephra layers investigated here occur between 27.53 and 52.66 msbf in lithologic unit 1 (0.05–393.67 mbsf). A robust age model for Site 1241 is published in the Initial Report of Leg 202 (Mix et al., 2003). Especially for the upper ~100 m, which includes the investigated tephra layers, there is a good agreement between microfossil datums (calcareous nanofossils planktonic foraminifers and diatoms), the Brunhes-Matuyama boundary (0.78 Ma) as well as the upper Jaramillo transition (1.07 Ma), that leads to a reliable age model for this section. The ages of individual marine tephra layers were calculated with sedimentation rates given in the Initial Report of Leg 202; the methods and errors are described in Kutterolf et al. (2008a, 2013). The calculated ages of the silicic tephra layers range from ~2.4 to 1.4 Ma (Supplementary material).

5.2. Geochemistry and tephra provenance

Having inferred above that all but one of the marine tephra layers originated from explosive eruptions on land, potential source regions surrounding the position of Site 1241 are the Galápagos Islands, Cocos Island and the CAVA (Fig. 2a). Judging from the ~8.5 cm/yr northeastward motion of the Cocos Plate (DeMets, 2001), the position of Site 1241 at 1.4 to 2.4 Ma was ~720–630 km from the Galápagos islands, and ~630–720 km from the CAVA, while its position 80 km southeast of Cocos Island remained unchanged. Advection of pyroclastic material by ocean currents was insignificant because the slow (~2 cm/s at 1500 mbsl; Cravatte et al., 2012) deep ocean currents near Cocos Island would laterally displace particles of the mean grain size (~250 μm) by only <2 km during their one day settling through 2000 m water depth (cf. Carey, 1997). The relatively coarse grain sizes of the tephra layers, with an average grain size about 250 μm but lapilli sizes up to 10 mm, favor Cocos Island as the much more proximal source and do not seem compatible with the other source regions at >600 km distances. This conclusion is corroborated by geochemical compositions.

The fourteen ash and lapilli layers have trachy-andesitic to rhyolitic compositions (57–72 wt% SiO2; Fig. 4) and form an alkalic trend that is shared by the glass compositions of the pyroclastic samples from Cocos Island. The tephra glasses have typical ocean-island trace-element characteristics (e.g., low Ba/La < 15, La/Nb < 1, high Nb/Rb > 0.6) and do not show typical subduction-zone features such as LILE-enrichment or a Nb–Ta trough (Fig. 5). Although there are some backarc lavas at the CAVA that lack the Nb-Ta trough and are alkalic in composition (e.g., Gazel et al., 2011), there is no evidence that these were associated with widespread, large-volume tephras and thus we exclude the CAVA as potential source region. Volcanic products from the Galápagos Islands and surrounding platform follow a rather tholeiitic trend (e.g., Geist et al., 1995) compared to the distinctly alkalic rocks from the Costa Rica and Cocos Island Seamount Provinces (Werner et al., 2003; Harpp et al., 2005). Moreover, compared to the Galápagos Islands, Cocos Island rocks and the tephra glasses have elevated Ce/Yb ratios at relatively low Zr/Nb (Fig. 6a) as well as elevated La/Sm (Fig. 6b) indicating a general LREE enrichment (Fig. 5). Major and trace element compositions thus support an origin of the investigated tephra layers at Cocos Island.

6. Discussion

6.1. Eruption volumes and frequencies

The grain sizes (up to 10 mm) and thicknesses (up to 15 cm) of the marine tephra layers at 80 km distance from their source on Cocos Island imply their emplacement by eruptions with Subplinian to Plinian intensities, because eruption columns of >30 km height are needed to disperse medium ash to fine lapilli fallout to >30 km crosswind or >40 km downwind (see Fig. 9 in Burden et al., 2011). The generation of a 30 km high, Plinian eruption column, in turn, requires high mass discharge rates of order ~107 to 108 kg/s (e.g., Fig.1 in Mastin et al., 2009). Although the occurrence of Subplinian to Plinian eruptions has not yet been recognized on Cocos Island it would be compatible with the caldera formation tentatively inferred by Castillo et al. (1988).

Alkalic, Plinian eruptions from calderas are important events at other ocean islands like Gran Canaria (Schmincke and Sumita, 1998b) and Tenerife (Ancochea et al., 1990).
For there would yield a conservative volume estimate. Over Cocos Island compared to the Central American landmass; although the NOAA database indicates lower average wind speeds approximations for a range of windspeeds (e.g., Houghton et al., 2000). We performed volume calculations (Fig. S1). Narrower apical angles would correlate with higher wind speeds (e.g., Houghton et al., 2000). We performed volume calculations for a range of θ-values but note that an angle of 60° would be typical approximation for Plinian fallout Deposits from the CAVA (Kutterolf et al., 2008b) tentatively concluded from the occurrence of trachyte lava domes above the pyroclastic sequence on land. The marine tephra layers at Site 1241 may be related to the middle pyroclastic sequence on the island (Castillo et al., 1988). However, that sequence consists of very poorly exposed phreatomagmatic and massflow deposits and the relationship of the marine fallout deposits to this succession remains unknown.

Transferring the ash layer thickness and distance from source into the logarithmic thickness versus square root of the isopach area dia-

2.4 to 1.4 Ma age range of the marine tephra layers overlaps completely with the K-Ar ages of 2.4 to 1.9 Ma determined by Bellon et al. (1983) on samples probably taken from rocks in the Lower Volcanic Series of Castillo et al. (1988). O’Connor et al. (2007) Ar-Ar dated samples of lavas from both Lower and Upper Volcanic Series as 2.3 to 1.5 Ma old (samples C-11, 15, 26, 33, 35 collected during SO144 cruise). Overlapping age data for Lower and Upper Series lavas and the widespread tephras strongly support the conclusion that the three-part stratigraphic subdivision of Castillo et al. (1988) needs to be refined with particular emphasis on the fact that highly explosive pyroclastic events and periods of lava effusion occurred broadly contemporaneous rather than successive.

3. Magma generation at Cocos Island

The age data together demonstrate that the subaerial evolution of the island is limited to the narrow age range from 2.4 to 1.4 Ma. This age interval is significantly younger than the surrounding Cocos Ridge crust (~10 Ma), which was formed at the Galápagos hotspot, but
overlaps with the age range 3 to 1.8 Ma during which the immediately underlying crust formed at a local E–W trending spreading axis identified by marine magnetic and bathymetric data (Fig. 8a; Meschede et al., 1998; Meschede and Barckhausen, 2001). A number of models have been proposed to explain such young volcanism along the Cocos Ridge.

1. Castillo et al. (1988) implied a second hotspot 600 km NE of Galápagos because they noted an age progression of volcanic activity from northeast to southwest of Cocos Island. Meschede et al. (1998) and Meschede and Barckhausen (2001) proposed that this second hotspot, presently located 200 km southwest of Cocos Island, also formed the Malpelo Ridge. However, both the age data from Malpelo Island, providing a minimum age for the underlying Malpelo Ridge (15.8–17.3 Ma; Hoernle et al., 2002), and the geochemical composition of the Ridge (Harpp et al., 2005; Werner et al., 2003), indicate an origin of the Malpelo Ridge from the Galápagos hotspot.

2. Using geochemical comparison with the Mathematican Ridge, Harpp et al. (2005) interpret the Cocos Seamount Provinces as the result of post-abandonment volcanism after the failure of the local spreading ridge between ~3.5–2 Ma.

3. Werner et al. (2003) propose a viscous layer accreted to the overlying lithosphere that inhibits further ascent of asthenospheric material. However, decompressional melts are enabled to rise, for example, due to extension or spreading of the overlying lithosphere such as near Cocos Island.

4. O’Connor et al. (2007) argued that the Galápagos volcanism generally has not progressed in narrow, time-progressive lines of seamounts and ridges, as predicted by the conventional fixed hotspot scenario. Instead, based on seismic tomographic data showing a low-velocity anomaly beneath the Cocos Ridge extending to depths of 200–300 km, they propose a very broad Galápagos melting anomaly at 70 km depths (e.g., Werner et al., 2003), as required by the high LREE/HREE ratios of the alkalic magmas (Fig. 5), favors an origin of Cocos Island Seamount Province volcanism from plume-related mantle movements.

6.4. Cocos Island in the framework of Ocean Island evolution

Alkaline eruption phases of plume-related ocean island volcanoes, particularly when associated with explosive subaerial activity, are typically interpreted as post-shield volcanism, following the basaltic shield-forming phase that produced >80% of the edifice volume and has tholeiitic compositions at Pacific ocean islands (e.g., Hawaiian chain, e.g. Clague and Sherrod, 2014; Galápagos; White et al., 1993). However, the Cocos Island seamounts, with edifice volumes of just a few hundred km³ (Fig. 8b), are roughly two orders of magnitude smaller than the Galápagos or Hawaiian islands (e.g., Robinson and Eakins, 2006), and none of the samples dredged in the Cocos Island Seamount Province, or collected on the island itself, has a tholeiitic composition (Harpp et al., 2005; Werner et al., 2003). We therefore propose that the entirely alkalic Cocos Island province volcanoes did not form a tholeiitic shield. This eliminates an interpretation as post-shield volcanism because that develops continuously from shield volcanism (e.g., Clague and Sherrod, 2014). This leaves the pre-shield or rejuvenated options for Cocos Island. Rejuvenated volcanism occurs after a considerable time break following post-shield activity (Fig. 1), at distances up to 550 km from the hotspot at Hawaii, and may persist for ~1 m.y. while producing <1% of the total volcanic volume (Clague and Sherrod, 2014). Cocos Island is almost 800 km from the Galápagos hotspot but the ~1 m.y. lifespan would fit. Factors that do not fit the rejuvenated model are (1) that this volcanism formed the entire volume of the volcanic structure (Fig. 9), and (2) that alkali-basaltic to rhyotachytic compositions differ greatly from the typically basanitic to foiditic, mafic compositions of Hawaiian rejuvenated volcanism. Moreover, Cocos Island formed on oceanic crust not much older than the island itself (Fig. 8a) so it is questionable if the ~10 Ma old Cocos Ridge crust in the wider surroundings could count as the shield to post-shield precursor stages.
6.5. Growth of Cocos Megas"}
passage across a hotspot as at Hawaii. Magma generation at the Cocos Island province terminated for unknown reasons about 1.4 Ma ago.

7. Summary

Geochemical fingerprinting of a series of Pleistocene marine tephra deposits from ODP Leg 202 Site 1241 in the eastern Pacific indicates that these layers originated from Cocos Island. Grain-sizes from medium ash to fine lapilli and layer thicknesses of 2–15 cm at ~80 km distance from the source (Cocos Island), as well as the calculated minimum tephra volumes of 0.3 to 2 km³ suggest that these tephras formed by eruptions of Plinian intensities and magnitudes (VEI = 4 to 5). This is the first record demonstrating that such highly explosive eruptions of thachytic magmas occurred regularly on Cocos Island between 2.4 and 1.4 Ma. This age range completely overlaps with ages from lava sequences and implies that dominantly maﬁc effusive and felsic explosive phases occurred roughly contemporaneously rather than sequentially during the subaerial evolution of Cocos Island.

The volcanic edifices of the Cocos Island province grew on young (mostly ≤3 Ma) oceanic crust and have alkalic compositions inherited from low-degree partial melting of garnet-bearing mantle (≥70 km depth). No evidence for tholeiitic shield volcanism typical of Paciﬁc Ocean islands has yet been detected at the Cocos Island province. We interpret that Cocos Island and adjacent seamounts did not evolve through the growth stages typical of Paciﬁc oceanic island basins but formed entirely under growth conditions similar to Hawaiian pre-shield volcanism but persisting over much longer time (~10⁶ vs. ~10⁸ years) and terminating 1.4 Ma ago. We do, however, emphasize that denser sampling of the submarine edifices will be needed to verify the absence of tholeitic rocks. Cocos Island itself differs from the adjacent seamounts in being more voluminous by about an order of magnitude, which is why it breached the sea surface and produced subaerial explosive eruptions. We relate this large size of Cocos Island to its proximity to a transform fault where thickened lithosphere of the aseismic Cocos Ridge is juxtaposed against thin lithosphere of the now extinct spreading axis. Rising melts channeled up along the edge of the transform spreading axis. Rising melts channeled up along the edge of the transform

supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.jvolgeores.2016.10.009.

Acknowledgement


References


