Marshall Plan Scholarship Report

System Layer Modeling in Cellular Mobile Communication Systems

Martin Taranetz
martin.taranetz@nt.tuwien.ac.at
April 2014

Advisors

Prof. Markus Rupp
Vienna University of Technology

Prof. Robert W. Heath Jr.
The University of Texas at Austin
Contents

1 Introduction .. 3

2 System Model .. 4
 2.1 Topology Model for Urban Environments 4
 2.2 Network Deployment .. 5
 2.3 User Association ... 5
 2.4 Virtual Building Approximation 6
 2.5 Signal Propagation ... 7
 2.5.1 Macro Base Station (BS) to Indoor User 7
 2.5.2 Small Cell to Indoor User 7

3 Performance Analysis ... 8
 3.1 Typical Building with Small Cell 8
 3.2 Typical Building without Small Cell 9
 3.3 Typical Indoor User 10

4 Numerical Evaluation .. 10

5 Conclusion .. 12

6 Extensions .. 12
 6.1 Intra-Building Interference 13
 6.2 Boolean Model .. 13
 6.3 Intensity of Inter-Building Interference Process 14
 6.4 Occupied Target Building 15
 6.5 Non-Occupied Target Building 16
 6.6 Numerical Evaluation of Combined Results 17
 6.7 Intra-Building Blockage by Walls 19
 6.8 Floor Loss in Multistory Buildings 21
 6.9 Line of Sight (LOS) Macro BSs 22
Preface

This report outlines my investigations as a visiting scholar at the University of Texas at Austin. It comprises a peer reviewed conference paper and extended work.

First and foremost I want to thank my advisor Prof. Dr. Markus Rupp, whose good contacts to Prof. Robert W. Heath Jr. made this work possible. Being surrounded by world-renowned experts offered an amazing working environment and greatly enhanced scientific work towards my PhD. I also want to thank Mrs. Angelika Schweighart for her commitment and guidance through the scholarship application.

Finally, I want to express my deep gratitude for the support of the Austrian Marshall Plan Foundation, which helped me to overcome the financial burden and enabled an experience which by far exceeded academic life.

"What starts here changes the world."
(Walter Cronkite)
Abstract

This paper presents a system model that enables the analysis of indoor downlink performance in urban two-tier heterogeneous cellular networks. The urban building topology is modeled as a process of randomly distributed circles. Each building is deployed with an indoor small cell with a certain occupation probability. Macro base stations are sited outdoors. Their signals experience distance-dependent shadowing due to the blockage of the buildings. Given a typical building at the origin, expressions for the coverage probability with- and without small cell occupation are derived. The analysis of the asymmetric interference field as observed by a typical indoor user is simplified by approximations. Their accuracy is verified by Monte Carlo simulations. Our results show that isolation by wall partitioning can enhance indoor rate, and that the improvement is more sensitive to building density, rather than penetration loss per building.

1 Introduction

There is a broad consensus among communication engineers that two of the key characteristics of future wireless cellular networks are spatial randomness and heterogeneity [1–14]. Yet, numerous studies have met the challenge of finding representative, analytically tractable models for the emerging systems, most of which are based on techniques from stochastic geometry [7, 11, 15]. However, when it comes to convenient expressions, this mathematical framework imposes its own particular limitations [1, 14]. Firstly, in the analysis on stochastic geometry, shadowing is typically incorporated by log-normally distributed Random Variates (RVs) [8, 12, 13] or neglected at all [1–7, 9, 10]. A recent study on blockage effects in urban environments indicates a dependency on the link length [16]. It follows the intuition that a longer link increases the likelihood of buildings to intersect with it. Secondly, scenarios comprising both indoor- and outdoor environments have not received much attention in analytical studies due to the imposed inhomogeneities on signal propagation. The designated area of operation for small cells is indoors. Existing approaches either neglect the wall partitioning [8, 17], oversimplify the macro-tier topology [4–6] or the omit cross-tier interference [12]. Considering a two-tier cellular network with outdoor macro Base Stations (BSs) and indoor-deployed small cells, our contributions are:

- A tractable model for urban environment topologies. It comprises an outdoor environment, which is partly covered by circular building objects with a certain density. Based on concepts from random shape theory, the model is applied to characterize both signal propagation and network deployment.

- A novel virtual building approximation to simplify aggregate-interference analysis. The key idea is to establish a user-centric interference environment
Figure 1: Two-tier cellular network deployment in dense urban environment. Macro BS are sited outdoors. Buildings are deployed with indoor small cells with a certain occupation probability.

by shifting the centers of the typical building and its exclusion regions to the user location.

- Analytical expressions for the coverage probability of indoor users with small cell- and macro BS association, assuming that a building is served by a small cell with a certain occupation probability.

- Evaluation of the spectral efficiency of typical indoor users with respect to building density, wall penetration loss and small cell occupation probability.

2 System Model

2.1 Topology Model for Urban Environments

Consider a two-tier cellular network comprising outdoor BSs and indoor small cells, as shown in Figure 2. Buildings are modeled by a Boolean scheme of circles on the \(\mathbb{R}^2 \) plane. Therefore, the centers of the circles form a Poisson Point Process (PPP) \(\Phi_B \) of intensity \(\lambda_B \) [18]. For simplicity, we assume that all circles have a fixed radius \(R_B \). A point on the plane is said to be indoors, if it is covered by a building, and outdoors otherwise. Indoor- and outdoor environment are partitioned by wall penetration loss, which is hereafter denoted as \(L_W \) and assumed constant for all buildings.
2.2 Network Deployment

Macro BSs are distributed according to a PPP Φ_M of intensity μ_M. Note that we require these BSs to be located outdoors. Thus, the macro BS process can equivalently be constructed by independently thinning an initial PPP of density $\mu'_M = \mu_M/p_O$, where p_O equals the probability that a point on \mathbb{R}^2 is not covered by a building. According to [16, Corollary 1.2], the thinning probability is $p_O = \exp(-\lambda_B R_I^2 \pi)$.

A building will deploy an indoor small cell with a certain occupation probability η. Assume the indoor small cells to be located at the center points of the occupied buildings. Then, their spatial distribution can be modeled by a PPP Φ_S of intensity $\lambda_B \eta$, which results from independently thinning the object center PPP Φ_B [18].

2.3 User Association

In this paper, we aim to characterize the coverage and rate performance of indoor users. Noting that the buildings are assumed to form a Boolean scheme, the centers of the buildings form a PPP on the plane [16]. Therefore, by Slivnyak’s theorem [18], when fixing a typical building at the origin, the centers of the other buildings still form a PPP. We will investigate the performance of users inside
the typical building. We define separate association rules, depending on whether or not the typical building is occupied by a small cell.

Case 1 [Typical Building with Small Cell]: Consider a typical building at the origin, which is equipped with an indoor small cell. For simplicity, we assume that all users inside this building are associated with the small cell at the origin. We omit the cases in which indoor users at the edge of the typical building may receive stronger signals from a close-by outdoor macro BS, thus underestimating the coverage probability. Similar to the analysis in [11], exclusion guard regions are imposed on both macro- and small cell tier, where no BSs from the corresponding tier are allowed to distribute. For simplicity, we assume that the exclusion region for macro BSs is a ball of radius R_1 centered at the origin, ensuring that no macro BSs are located inside the typical building. The exclusion region of the small cell tier is defined as a ball of radius $2R_1$ in order to prevent overlapping association regions of two small cells.

Case 2 [Typical Building without Small Cell]: When the typical building is not occupied by a small cell, the user is either associated to the dominant macro BS or a small cell in the immediate vicinity. We regard the former as being of greater relevance and omit the latter, which leads to a lower bound on coverage probability. In this case, the indoor user will be served by the nearest BS of the macro tier. The same exclusion regions as defined in Case 1 are employed for macro BSs and small cells.

2.4 Virtual Building Approximation

Without loss of generality, a typical indoor user is assumed to be located at $(r, 0)$. Note that the exclusion regions as defined in Section 2.3 are centered at the origin rather than at the user. Consequently, the interference field as observed by the user is asymmetric and renders analysis difficult in general. Thus, we propose the following approximation.

Let (R, θ) denote the position of an interference. Its distance to a user located at $(r, 0)$ is determined as

\[d(r) = \sqrt{R^2 + r^2 - 2Rr \cos \theta}. \quad (1) \]

Since typically $R \gg r$, we approximate $d(r)$ as

\[d(r) \approx R, \quad (2) \]

which is independent of the angle θ. As shown in Figure 3, the approximation in (2) is equivalent to shifting all the BSs along with the exclusion regions by a vector $(r, 0)$, as if the typical building was centered at the user location. Thus, this approach is referred to as virtual building approximation, and is applied to simplify further analysis.
Figure 3: Target area without small cell (gray shaded) and user-centric virtual building (dashed). Dashed-dotted circles denotes the shifted small cell exclusion region. The indoor user is assumed to be served by the nearest Macro BS at distance R_0.

2.5 Signal Propagation

2.5.1 Macro BS to Indoor User

A signal originating from a macro BS experiences small scale fading, log-distance dependent path loss with path loss exponent α_O, attenuation due to building blockage and wall penetration, L_W. Small scale fading is modeled by a Rayleigh RV g_i, with $\mathbb{E}[g_i] = 1$. Along the lines of [16, Theorem 1], the number of obstructing blockages along a link of length R is a Poisson RV with parameter $\beta_B R$, where $\beta_B = 2\lambda_B R_l$ in the introduced topology model. For analytical tractability we employ the expected blockage attenuation, as referred from [16, Theorem 6]. Combining blockage- and log-distance path loss along a link of length R yields

$$\ell(R) = e^{-\beta_B R (1 - \gamma_B)} R^{-\alpha_O},$$

(3)

where γ_B refers to the attenuation of a single blockage, also denoted as building penetration loss. Note that (3) characterizes shadowing entirely by the parameters of the underlying environment topology and accounts for the condition that the macro BS is deployed outdoors.

2.5.2 Small Cell to Indoor User

When user and small cell are situated in the same building, the signal experiences small scale fading and log-distance path loss with exponent α_I. The signals from all other small cells are subject to small scale fading, log-distance
path loss with exponent α_0 and attenuation by a factor L_W^2, as caused by the indoor-to-outdoor and outdoor-to-indoor wall penetration. Since small cell transmit power is typically low, only small cell interferers from neighboring buildings are taken into account. We define two building as being neighbors to each other, if the segment connecting their centers is not intersected by any other building.

3 Performance Analysis

In this section we derive analytical expressions for the coverage probability of an indoor users at position $(r, 0)$, regarding both buildings with- and without small cell deployment. We assume the network to be interference limited, as is typically the case in urban areas [19]. Thus, thermal noise is neglected in the analysis.

3.1 Typical Building with Small Cell

Assume the typical building to be occupied by a small cell. Then, the Signal-to-interference-ratio (SIR) at distance r, $0 < r \leq R_I$, is determined as

\[
\text{SIR}^{(S)}(r) = (P_S g_0 r^{-\alpha_1}) \left(\sum_{i:R_i>R_1} P_M g_i L_W \ell(R_i) + \sum_{i:R_i<2R_1} S_i P_S g_i L_W^2 R_i^{-\alpha_1} \right)^{-1},
\]

where the terms P_M and P_S denote macro BS- and small cell transmit powers, $\ell(\cdot)$ corresponds to the combined blockage- and path loss attenuation, as defined in (3) and R_i refers to the length of link i. The RVs S_i are Bernoulli distributed and, by [16, Theorem 1], have parameters $\exp(-\beta_B R_i - p_B)$, where $p_B = \lambda_B R_I^2 \pi$. They indicate whether or not an interfering small cell is in a neighboring building of the typical user.

Theorem 1 Consider a user at distance r, $0 < r \leq R_I$, away from the center of a small cell-occupied building. Then, its coverage probability is determined as

\[
P_c^{(S)}(\delta|r) = \mathbb{P}\left[\text{SIR}^{(S)}(r) > \delta|r\right] = e^{-2\pi(\mu_M I_M + \mu_S I_S)},
\]

where

\[
I_M = \int_{R_1}^{\infty} \left(1 - \frac{P_S}{P_M} + \delta \ell(t)L_W r^{-\alpha_1} \right) t dt
\]

\[
I_S = \int_{2R_1}^{\infty} \left(\delta L_W^2 r^{\alpha_1} e^{-(\beta_B t + p_B)} \right) t dt
\]
Proof 1 Applying (4), we exploit that \(g_i\) are i.i.d. exponential RVs and \(S_i\) are Bernoulli RVs with parameters \(\exp(-\beta B R_i-p_B)\). Then, it follows from Campbell’s theorem that

\[
P_c^{(S)}(\delta | r) = \mathbb{P}\left[\text{SIR}^{(S)}(r) > \delta | r \right]
= \mathbb{E}_{\Phi_M} \left[\prod_{i : R_i > R_0} \frac{P_S}{P_M} + \delta \ell(R_i) L_W r^{\alpha_1} \right]
= \mathbb{E}_{\Phi_S} \left[\prod_{i : R_i > R_0} \left(1 - \frac{\delta L^2 W r^{\alpha_1} e^{-(\beta B R_i+p_B)}}{P_i^{\alpha_0} + \delta L^2 W r^{\alpha_1}} \right) \right]
\]

Finally, (5) is obtained by computing the Laplace functional [18].

3.2 Typical Building without Small Cell

Assume a dominant macro BS to be located at distance \(R_0\), \(R_0 > R_i\) away from the center of the typical building and consider that this building is not occupied by a small cell. Then, the SIR at distance \(r\), \(0 < r \leq R_i\), calculates as

\[
\text{SIR}^{(M)}(R_0) = (M_M g_0(\ell(R_0)))^{-1} \left(\sum_{i : R_i > R_0} M_M g_i(\ell(R_i)) + \sum_{i : R_i > 2R_0} S_i M_S g_i L_W R_i^{-\alpha_0} \right)
\]

Note that (i) the expression is independent of \(r\) and (ii) the factor \(L_W\) is omitted, since attenuation due to wall penetration is experienced by all signals and therefore cancels out in the SIR term.

Theorem 2 Consider a user at distance \(r\), \(0 < r \leq R_i\), away from the center of a typical building without small cell and assume that it is associated with its dominant macro BS. Then, its coverage probability is determined as

\[
P_c^{(M)}(\delta) = \mathbb{P}\left[\mathbb{E}_{R_0} \left[\text{SIR}^{(M)}(R_0) > \delta \right] \right]
= \int_{R_i}^{\infty} P_c^{(M)}(\delta | R) f_{R_0}(R) dR,
\]

where

\[
P_c^{(M)}(\delta | R_0) = e^{-2\pi(\mu_M l_M + \mu_S l_S)},
\]
Table 1: Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro-to-small cell power ratio (\frac{P_S}{P_M})</td>
<td>(10^{-2})</td>
</tr>
<tr>
<td>Macro BS density (\mu_M)</td>
<td>(4.61 \times 10^{-6}) m(^{-2})</td>
</tr>
<tr>
<td>Outdoor path loss exponent (\alpha_O)</td>
<td>4</td>
</tr>
<tr>
<td>Indoor path loss exponent (\alpha_I)</td>
<td>2</td>
</tr>
<tr>
<td>Radius of Building Area (R_I)</td>
<td>25 m</td>
</tr>
</tbody>
</table>

with

\[
I_M = \int_{R_0}^{\infty} \left(1 - \frac{\ell(R_0)}{\ell(R_0) + \delta \ell(t)} \right) t \, dt,
\]

\[
I_S = \int_{2R_I}^{\infty} \frac{\delta L_W P_S}{P_M} e^{-(\beta_B + \epsilon_B)} \frac{\ell(R_0) + \delta L_W P_S}{P_M} t \, dt,
\]

and

\[
f_{R_0}(R) = \begin{cases}
2\pi \mu_M R e^{-\pi \mu_M (R^2 - R_0^2)} & , \ R \geq R_1 \\
0 & , \ \text{otherwise}
\end{cases}
\]

Proof 2 The conditional coverage probability \(P_c^{(M)}(\delta|\tilde{R}) \) in (31) is derived along the lines of (5). Deconditioning on the dominant macro BS distance leads to (30), where \(f_{R_0}(R) \) in (34) is the nearest neighbor distance distribution of a homogeneous PPP outside a ball of radius \(R_1 \) [20].

3.3 Typical Indoor User

The coverage probability of a **typical** indoor user at distance \(r, 0 < r \leq R_1 \), is obtained by linearly combining \(P_c^{(S)}(\delta|r) \) from (5) and \(P_c^{(M)}(\delta) \) from (30) according to the small cell occupation probability \(\eta \). Then,

\[
P_c(\delta|r) = \eta P_c^{(S)}(\delta|r) + (1 - \eta) P_c^{(M)}(\delta).
\]

4 Numerical Evaluation

In this section, we numerically evaluate the performance of a typical user at the edge of a building, i.e., \(r = R_1 \). At this location, the proposed **virtual building approximation** is expected to perform worst.

Spectral efficiency is employed as a metric. It is defined as \(\tau = E_{\text{SIR}}[\log_2(1 + \text{SIR})] \) and can be reformulated in terms of coverage probability as

\[
\tau(r) = \frac{1}{\log(2)} \int_0^{\delta_{\text{max}}} \frac{P_c(\delta|r)}{\delta + 1} \, d\delta,
\]
Figure 4: Spectral efficiency [bps/Hz] over area ratio, which is covered by buildings. Solid- and dashed lines denote results from analysis and simulations, respectively. Curves are shown for varying small cell occupation probability (plot markers ”▽” refer to $\eta = 0.2$ and ”○” refer to $\eta = 0.8$, respectively) and wall penetration loss, L_W.

with $P_c(\delta|r)$ from (15) and $\delta_{\text{max}} = 2^6 - 1$, referring to 64-QAM, which is the highest modulation order in the current Long Term Evolution Advanced (LTE-A) standard [21].

Parameters for evaluation are listed in Table 2. To verify the accuracy of the virtual building approximation, Monte Carlo simulations are carried out, using the system model as introduced in sections 2.1 and 2.2. Macro BS density is chosen such that the inscribing ball of the typical cell has $R_c = 250 \text{m}$ and the BSs are distributed over a field of $15 R_c \times 15 R_c$. The results are estimated from averaging over 500 fading- and 500 spatial realizations.

Figure 4 depicts spectral efficiency over indoor coverage ratio, which is defined as $1 - p_{\text{O}}$ in Section 2.2. Note that when fixing the average building size, the indoor coverage ratio scales with the density of the buildings. Solid- and dashed lines correspond to analysis and simulations, respectively. Results are shown for a sparse- and a dense small cell deployment, as quantified by the occupation probability η. For both scenarios, weak- and strong wall partitioning are investigated. The wall penetration loss is correlated to the building penetration loss γ_B, as introduced in (3). In this paper, we conservatively set $\gamma_B = L_W$. This assumption can be replaced by more elaborated models in further work.

It is observed that

- The achievable spectral efficiency is improved by increasing building den-
sity. This result follows the intuition that obstructions due to large objects establish a safeguard against interference [16]. Note that for constant occupation probability, the small cell density grows in proportion to the building density. Therefore, the results render the existence of a hotspot limited regime in urban environments questionable and support simulation results in [5, 6, 22, 23].

- Low isolation by wall penetration deteriorates performance in both deployment scenarios. Intuitively, the isolation of the interfering small cells is decreased when the wall penetrations become weaker. The impact of penetration loss on coverage probability, however, becomes minor especially when the building density is high. Intuitively, this indicates that the number of penetrations rather than the loss per penetration dominates the effect of partitioning between indoor and outdoor environment.

- Even though we evaluate a user at the edge of a typical building, the analytical results closely resemble the simulations. This confirms the accuracy of the virtual building approximation as well as the inclusion of macro interferers in the immediate vicinity of the typical building, as claimed in Section 2.3.

5 Conclusion

In this paper, we introduced a novel system model for two-tier heterogeneous cellular networks in urban environments. We focused on indoor users and derived analytical expressions for the coverage probability in buildings with- and without small cell deployment. Our proposed virtual building approximation considerably improved the tractability of the analysis and its accuracy was confirmed by simulation results. Numerically evaluations were carried out to investigate the performance of a typical indoor user in terms of spectral efficiency. The results revealed subtile but crucial effects of an urban environment. Observations such as the blockage safeguard and the vanishing impact of wall isolation with increasing building density have been missed by overly simplistic models. Further work includes physical aspects such as intra-building interference, transmitter-receiver height aspects and a distinction between line-of-sight- and non-line-of-sight dominant interferers.

6 Extensions

The separation between indoor- and outdoor environment revealed crucial effects on the performance of a typical indoor user, which have been overlooked in existing approaches. The results motivate to further refine the physical details.
Figure 5: Boolean model for inter-building interference. Central sphere of radius R_I corresponds to target building. Spheres of random radius with centers outside a guard of radius R_I. Small cells are considered inter-building interferers, if their corresponding sphere overlaps with the target building.

The following subsections outline extensions, which are not fully elaborated yet, comprising intra-building interferers, intra-building wall penetration, multistory buildings and Line of Sight (LOS) macro BSs.

6.1 Intra-Building Interference

6.2 Boolean Model

Consider a circularly shaped building of fixed radius R_I at the origin. Define a Boolean Model (BM) as a model driven by an independently marked PPP on \mathbb{R}^d,

$$\hat{\Phi} = \sum_i \epsilon_{(x_i, \xi_i)}$$

(17)

with germs x_i and grains, represented by marks Ξ_i of independent random closed sets on \mathbb{R}^d [18].

The germs of the possibly smallcell occupied indoor areas are located outside the guard region of radius R_G. For simplicity, we assume that $R_G = R_I$, as shown in Figure 5. Each indoor area is occupied by a smallcell with a certain occupation probability η. A smallcell is considered an inter-building small cell, if the grain of its corresponding indoor area overlaps with the target indoor area. One could imagine a block of directly bordering houses in a dense urban environment. The inter-building interferers then comprise an independently thinned, non homogeneous PPP Φ_{IB} with distance dependent intensity.
6.3 Intensity of Inter-Building Interference Process

Define the point process, which is formed by centers of buildings with radius \((R, R + dR)\) as \(\Phi(R)\). \(\Phi(R)\) is a subset of the germ point process and constitutes a PPP with density \(\lambda_R = \lambda f_R(R)dR\).

Consider the number of centers of circles with radius \((R, R + dR)\) falling into an annular region \(A(0, R', R' + dR')\). Define \(A(R') = |A(0, R', R' + dR')| = 2\pi R'dR'\). Then, the number of centers of circles with radius \((R, R + dR)\) falling into \(A(0, R', R' + dR')\) is Poisson with parameter

\[
J(R, R') = \lambda_R A(R') = 2\pi R'dR'\lambda f_R(R)dR
\]

(18)

In order to intersect with the target building, the minimum radius of the indoor area is \(R' - R_I\). Then, the total number of indoor areas with centers in \(A(0, R', R' + dR')\) and grains intersecting with \(R_I\) is Poisson distributed with parameter

\[
K(R') = \begin{cases}
2\pi R'dR'\lambda \int_{R' - R_I}^{\infty} f_R(x) dx & , R' > R_I \\
0 & , \text{otherwise}
\end{cases}
\]

(19)

The results follows intuition that as \(R_I\) grows, so does the number of intersecting areas. The building radius distribution \(f_R(x)\) has non-negative support and can be chosen such that \(E[R] = R_I\), as indicated in Figure 6. Then, the intensity of the inhomogeneous PPP is written as \(\Lambda(R'dR') = K(R')\).
6.4 Occupied Target Building

Let the target building be occupied by a small cell. Then, the SIR at distance \(r \), \(0 < r \leq R_t \) from the origin is calculated as

\[
\text{SIR}^{(S)}(r) = \frac{P_S g_0 r^{-\alpha_1}}{\sum_{i \in r_i > R_t} P_S g_i L_W r_i^{-\alpha_1} + \sum_{i \in r_i > R_t} P_M g_i L_W \ell(R_i)}
\]

(20)

Note that the signal from the inter-building small cells experience wall penetration \(L_W \) and log-distance path loss with exponent \(\alpha_1 \). Due to the asymmetric interference field, the virtual building, as introduced in Section 2.4 is applied. Then, along the lines of (40), the coverage probability calculates as

\[
P_c^{(S)}(\delta | r) = \mathbb{P} \left[\text{SIR}^{(S)}(r) > \delta | r \right] \\
= \mathbb{E} \left[\exp \left(-\frac{\delta r^\alpha}{P_S} \sum_{i \in r_i > R_t} P_S g_i L_W r_i^{-\alpha_1} \right) \right] \\
= \mathbb{E} \left[\prod_{i \in r_i > R_t} \exp \left(-\frac{\delta r^\alpha g_i L_W r_i^{-\alpha_1}}{P_S L_W} \right) \right] \\
= \mathbb{E}_\Phi \left[\prod_{i \in r_i > R_t} \left(\frac{1}{1 - \delta L_W \left(\frac{r_i}{r} \right)^\alpha_1} \right) \right] \\
\leq \exp \left(-2\pi \lambda_B p_S \int_{R_t}^\infty \left(1 - \frac{1}{1 + \delta L_W \left(\frac{x}{7} \right)^\alpha_1} \right) t \int_{r-t}^\infty f_R(x) \, dx \, dt \right) \\
\exp \left(-2\pi \mu_M \int_{R_t}^\infty \left(1 - \frac{P_k}{P_M} + \delta \ell(t) L_W r^{-\alpha_1} \right) t \, dt \right)
\]

(21)

where \((a)\) stems from applying the Probability Generating Functional (PGFL) with inhomogeneous intensity as defined in Section 6.3. The term \(\lambda_B p_S \) accounts for the independent thinning of the building process by the small cell occupation probability.
6.5 Non-Occupied Target Building

Inter-Building Small Cell Association. When the target building is not occupied by a small cell, it is assumed that a user associates with the closest inter-building small cell. According to [18, Lemma 3.1.5], the number of overlapping indoor areas with radius distribution \(f_R(x) \) is Poisson with parameter

\[
\Lambda_{IB} = 2\pi \lambda_B \int_{R_t}^{\infty} R' \int_{R'-R_t}^{\infty} f_R(x) dx dR'.
\] (22)

Then,

\[
P_{IB} = \mathbb{P}\{\text{There are Inter-Building Small Cells}\} = 1 - e^{-p_s \Lambda_{IB}},
\] (23)

and the distance distribution to the closest small cell is determined as

\[
F_{IB,0}(y) = \mathbb{P}[R_{IB,0} < y] = \frac{1 - e^{-2\pi \lambda_B p_s f_R^R I_R' f_R(x) dx dR'}}{1 - e^{-p_s \Lambda_{IB}}}. \tag{24}
\]

The corresponding density is obtained as

\[
f_{IB,0}(y) = \frac{2\pi \lambda_B p_s y e^{-2\pi \lambda_B p_s f_R^R I_R' f_R(x) dx dR'} \int_{y-R_t}^{\infty} f_R(x) dx}{1 - e^{-p_s \Lambda_{IB}}}. \tag{25}
\]

Assume that the user is associated with an inter-building small cell at distance \(r_0, r_0 > R_t \). Then, the SIR in a co-tier limited regime calculates as

\[
\text{SIR}^{(IB)}(r_0) = \frac{P_S g_0 r_0^{-\alpha_t}}{\sum_{i:r_i>r_0} P_S g_i r_i^{-\alpha_t} + \sum_{i:r_i>R_t} P_M g_i \ell(R_i)}, \tag{26}
\]

where \(L_W \) cancels out since it is experienced by all links.

Along the lines of (21), the conditional coverage probability is found as

\[
P_c^{(IB)}(\delta|r_0) = \mathbb{E}_{\Phi_{IB}} \left[\prod_{i:r_i>r_0} \left(\frac{1}{1 + \delta \left(\frac{r_i}{r_0} \right)^{\alpha_t}} \right) \right] \mathbb{E}_{\Phi_M} \left[\prod_{i:r_i>R_t} \left(\frac{P_S}{P_M} + \delta \ell_0(R_i) \right) \right] \nonumber
\]

\[
= \exp \left(-2\pi \lambda_B p_s \int_{r_0}^{\infty} \left(1 - \frac{1}{1 + \delta \left(\frac{r}{r_0} \right)^{\alpha_t}} \right) t \int_{t-R_t}^{\infty} f_R(x) dx dt \right),
\]

\[
= \exp \left(-2\pi \mu_M \int_{R_t}^{\infty} \left(1 - \frac{P_s}{P_M} + \delta \ell(t) r_0^{\alpha_t} \right) t dt \right). \tag{27}
\]
Table 2: Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macro-to-small cell power ratio</td>
<td>$\frac{P_c}{P_M}$</td>
</tr>
<tr>
<td>Macro BS density</td>
<td>μ_M</td>
</tr>
<tr>
<td>Outdoor path loss exponent</td>
<td>α_O</td>
</tr>
<tr>
<td>Indoor path loss exponent</td>
<td>α_I</td>
</tr>
<tr>
<td>Radius of Building Area</td>
<td>R_I</td>
</tr>
</tbody>
</table>

and, by applying (25),

$$
P_c^{(IB)}(\delta) = \mathbb{E}_{r_0} \left[P_c^{(IB)}(\delta|r_0) \right] = \int_{R_I}^{\infty} P_c^{(IB)}(\delta|y) f_{IB,0}(y) dy. \quad (28)
$$

Dominant Macro BS Association. Consider that the target building is not occupied by a small cell and that there are no inter-building small cells. In this case, the user associates with the dominant macro BS and

$$
\text{SIR}^{(M)}(R_0) = \frac{P_M g_0 \ell(R_0)}{\sum_{i: R_i > R_0} P_M g_i \ell(R_i)}. \quad (29)
$$

Along the lines of [, Theorem 2], its coverage probability is determined as

$$
P_c^{(M)}(\delta) = \mathbb{E}_{R_0} \left[P_c^{(M)}(\delta|R_0) \right] = \int_{R_I}^{\infty} P_c^{(M)}(\delta|R) f_{R_0}(R) dR, \quad (30)
$$

where

$$
P_c^{(M)}(\delta|R_0) = e^{-2\pi \mu_M I_M}, \quad (31)
$$

with

$$
I_M = \int_{R_0}^{\infty} \left(1 - \frac{\ell(R_0)}{\ell(R_0) + \delta \ell(t)} \right) t dt, \quad (32)
$$

and

$$
f_{R_0}(R) = \begin{cases}
2\pi \mu_M R e^{-\pi \mu_M (R^2 - R_I^2)} & , \quad R \geq R_I \\
0 & , \quad \text{otherwise}
\end{cases} \quad (34)
$$

6.6 Numerical Evaluation of Combined Results

Let η denote the small cell occupation probability and P_{IB} be the likelihood that there are inter-building interferers, as given in (23). Then, the coverage
probability of a *typical* indoor user at distance r from the center of the target building is determined as

$$P_c(\delta) = \eta P_c^{(S)}(\delta | r) + (1 - \eta) \left(p_{IB} P_c^{(IB)}(\delta) + (1 - p_{IB}) P_c^{(M)}(\delta) \right).$$ \hspace{1cm} (35)$$

Spectral efficiency is evaluated with the parameters as listed in Table 2. Two different occupation probabilities, $\eta = \{0.2, 0.8\}$, are taken into account. Results are plotted over indoor coverage, as shown in Figure 7.

It is observed that

- At low small cell occupation, $\eta = 0.2$, performance increases with higher indoor coverage. In this case, the interference shielding due to the blockage is exploited. Note that it also outperforms the case without inter-building small cells (green curve), as the likelihood of being associated with an inter-building small cell increases with higher building density. This effect however saturates due to the increasing probability of having more than one small cell within the block of houses and, thus, severe co-tier interference.

- In a sparsely obstructed area (low indoor coverage), performance increases with higher occupation probability. This effect however vanishes in dense urban environments (high indoor coverage) due to the co-tier interference from other inter-building small cells.

- When the wall penetration loss drops from 10^{-3} to 10^{-1}, performance hardly deteriorates in a sparse small cell deployment, $\eta = 0.2$, while it considerably
worsens at $\eta = 0.8$. In both sparse and dense small cell deployments, the sensitivity to wall penetration increases with increasing indoor coverage. This is opposed to previous findings (as shown by green curves) without inter-building interferers and indicates a hot-spot limited regime.

- Results from Monte Carlo simulations show an accurate fit with the analytically obtained curves and verify the applicability of the virtual building approximation.

6.7 Intra-Building Blockage by Walls

Indoor signal propagation is deteriorated by attenuation due to walls, as indicated in Figure 8. Define $w(r)$ as the relative gain due to multi-wall loss at distance r. Then, extending (4), the SIR of a smallcell occupied indoor area at distance r, $0 < r < R_I$, formulates as

$$\text{SIR}^{(S)}(r) = \frac{P_{S}g_{0}w(r)r^{-\alpha}}{\sum_{i:R_i<R_{I}} P_{M}g_{i}(R_{i}) + \sum_{i:R_i>2R_{I}} S_{i}P_{S}g_{i}L_{W}R_{i}^{-\alpha_0}}.$$ \hspace{1cm} (36)

Then,

$$P_c^{(S)}(\delta|r) = \mathbb{P}\left[\text{SIR}^{(S)}(r) > \delta| r\right] = e^{-2\pi(\mu_{M}\ell_{M}+\mu_{S}\ell_{S})},$$ \hspace{1cm} (37)
where

\[I_M = \int_{R_t}^{\infty} \left(1 - \frac{P_S}{P_M} \frac{w(r)}{w(r) + \delta \ell(t)t^{\alpha_1}} \right) t \, dt \] (38)

\[I_S = \int_{2R_t}^{\infty} \left(\frac{\delta L \gamma^{\alpha_1} e^{-(\beta B_i + pB_i)}}{w(r)t^{\alpha_1} + \delta L r^{\alpha_1}} \right) t \, dt \] (39)

Proof 3 Applying (36),

\[P_c^{(S)}(\delta|r) = \mathbb{P}[\text{SIR}^{(S)}(r) > \delta|r] \]

\[= \mathbb{E} \left[\exp \left(-\frac{\delta r^{\alpha_1}}{P_S w(r)} \sum_{i:R_t > R_t} P_M g_i \ell(R_i) \right) \right] \]

\[\mathbb{E} \left[\exp \left(-\frac{\delta r^{\alpha_1}}{P_S w(r)} \sum_{i:R_t > R_t} S_i P_M g_i L_W R_i^{-\alpha_0} \right) \right] \]

\[= \mathbb{E} \left[\prod_{i:R_t > R_t} \exp \left(-\frac{\delta r^{\alpha_1}}{P_S w(r)} g_i \ell(R_i) \right) \right] \]

\[\mathbb{E} \left[\prod_{i:R_t > 2R_t} \exp \left(-\frac{\delta r^{\alpha_1}}{w(r)} S_i g_i L_W R_i^{-\alpha_0} \right) \right] \]

\[= \mathbb{E}_{\Phi_M} \left[\prod_{i:R_t > R_t} \frac{P_S}{P_M} \frac{w(r)}{w(r) + \delta \ell(R_t)t^{\alpha_1}} \right] \]

\[\mathbb{E}_{\Phi_S} \left[\prod_{i:R_t > 2R_t} \left(1 - \frac{\delta L \gamma^{\alpha_1} e^{-(\beta B_i + pB_i)}}{w(r) R_i^{\alpha_0} + \delta L r^{\alpha_1}} \right) \right] \] (40)

Note that SIR\(^{(M)}\) and \(P_c^{(M)}\) are equivalent to (9) and (33), since the wall loss affects both desired and interfering signals. Similar to the large blockage objects in Section 2.1, wall objects can be modeled by a Boolean scheme. Let \(\mathcal{W}\) denote collection of wall objects, represented as lines in \(\mathbb{R}^2\):

- The wall centers \(w \in \mathcal{W}\), form a PPP of intensity \(\lambda_w\).
- Attributes of the wall objects, such as length and orientation are mutually independent.
- Sampling, attributes and location of each wall object are independent.

Along the lines of [24], the number of walls crossing a path of length \(r\) is Poisson distributed with parameter \(\beta_W = 2\lambda_W \mathbb{E}[L]/\pi\), where \(L\) is the expected length of a wall. Let \(S_{W,i} = \prod_{k=0}^{K_i} \gamma_{W,i,k}\) denote the total power attenuation due to multi-wall loss, where \(\gamma_{W,i,k}\) refers to the penetration loss of wall \(k\) on link \(i\). Then, assuming

[20]
the $\gamma_{W,i,k}$ to be independent and identically distributed (i.i.d.) on $[0, 1]$, the n-th moment of $S_{W,i}$ is determined as

$$E_K[S_{W,i}^n] = e^{-\beta_W r(1-\gamma_{W,i})}.$$

Note that the model reproduces observations from measurements which state that the single-wall penetration loss decreases with increasing number of traversed walls [25, 26].

Approximate the fraction of the signal path which experiences wall loss by the smallball approach [11], as shown in Figure 9. Then $w(r)$ in (36) can be written as

$$w(r) = e^{-\beta_W (2r-R_I)(1-\gamma_W)}$$

Since $w(r) > 1$ for $2r - R_I < 0$ and $2r - R_I \leq 1$ for $r \geq 0$, the relative multi-wall penetration loss appears like a gain at $r < R_I/2$.

Open questions:

- Is the smallball approximation a valid assumption?
- Does the inclusion of the multi-wall loss achieve further insights or is it over-engineered?

6.8 Floor Loss in Multistory Buildings

Similar to wall penetration loss, measurements on intra-building transmission indicate that the loss between floors does not increase linearly with the separation
distance on a dB scale. In fact, the largest attenuation factor is obtained by separating transmitter and receiver by a single floor [27]. Let S_F be a uniformly distributed RV which accounts for the signal attenuation due to a single story. By exploiting
\[
\int_0^1 \frac{1}{1 + sx} ds = \frac{1}{x} \log(1 + x),
\]
(43)

S_F can straightforwardly be incorporated into (20) and (21), respectively.

6.9 LOS Macro BSs

Due to their relevance for conventional homogeneous macro cellular systems, numerous measurement results on outdoor-to-indoor signal propagation are yet available in literature [29–37]. While the campaigns were carried out in considerably different urban environments, the reports commonly agree on the distinct characteristics of LOS- and Non Line of Sight (NLOS) links [30]. For analytical convenience, these characteristics are often condensed into different variances of a log-normally distributed RV, which accounts for the shadowing [32]. While this approximation is valid for far- and medium LOS situations, considerable deviations have been observed in near LOS cases, as present in dense urban environments [30].

The near LOS links can be modeled by free space propagation, while NLOS links experience multi-path propagation and shadowing [30]. We account for these differences by using distinct path loss exponents and, in the NLOS case, an additional shadowing term.
Interestingly, measurements indicate that the penetration loss of the outer wall is lower in the NLOS case since the multi path components approach the building more frontally [30]. In accordance with the standard [38], we therefore employ distinct penetration losses for LOS- and NLOS links. For simplicity, receiver height is omitted in the analysis.

Assume that the shadowing of different links is uncorrelated. Then, the LOS probability of each link is independent and the LOS process Φ_L and the NLOS process Φ_N form two independent non-homogeneous PPPs. Their density functions are determined as $\mu_M v(R)$ and $\mu_M (1 - v(R))$, where $v(R) = \exp(-\beta R)$ [39].

An example scenario is shown in Figure 11.

Consider a scenario without co-tier interferers and LOS- as well as NLOS macro BS. Then, the SIR of a user at distance r within a small cell occupied indoor area is calculated as

$$\text{SIR}^{(S)}(r) = \frac{P_S g_0 r^{-\alpha_L}}{\sum_{i:R_i>R_t} P_M L_L g_i R_i^{-\alpha_L} + \sum_{j:R_j>R_t} P_M L_N g_j \ell(R_j)},$$

(44)

where L_L and α_L denote wall penetration and path loss exponent for the LOS link. The terms $\ell(R_i)$ and L_N characterize the NLOS case.
Applying the virtual building approximation, the coverage probability at distance r, $0 < r \leq R$, is determined as

$$
P_c^{(S)}(\delta|r) = \mathbb{P}[\text{SIR}^{(S)}(r) > \delta|r]$$

$$= \mathbb{E}_{\Phi_L} \left[\prod_{i: R_i > R} \exp \left(-\frac{\delta r^{\alpha_L}}{P_S} P_M L_r g_i R_i^{\alpha_L} \right) \right]$$

$$= \mathbb{E}_{\Phi_N} \left[\prod_{j: R_j > R} \exp \left(-\frac{\delta r^{\alpha_L}}{P_S} P_M L_r g_j \ell(R_j) \right) \right]$$

$$= \mathbb{E}_{\Phi_L} \left[\prod_{i: R_i > R} \frac{P_k}{P_M} r_i^{\alpha_L} \right]$$

$$= \mathbb{E}_{\Phi_N} \left[\prod_{j: R_j > R} \frac{P_k}{P_M} + \delta \ell(R_j) L_r^{\alpha_L} \right]$$

$$= \exp \left(-2\pi \mu_M \int_{R_t}^{\infty} \left(1 - \frac{P_k}{P_M} r_i^{\alpha_L} \right) t v(t) dt \right)$$

$$= \exp \left(-2\pi \mu_M \int_{R_t}^{\infty} \left(1 - \frac{P_k}{P_M} + \delta \ell(R_j) L_r^{\alpha_L} \right) t(1 - v(t)) dt \right).$$

(45)

Note that the LOS/NLOS distinction complicates analysis of the typical indoor user, since in a non-occupied target indoor area it requires to evaluate LOS- and NLOS likelihoods as well as nearest neighbor functions of the non-homogeneous macro BS processes [40].
References

vol.4, doi=10.1109/ICC.1990.117286.,” in IEEE International Conference on Communications.

