Novel Morphometric Image Analysis of Chronic Kidney Disease STNx Model Generates Quantitative and Continuous Scores for the Evaluation of Fibrosis

Matthew Rankin¹, Li Chen², Mathieu Petitjean², Teodelinda Mirabella¹
¹ Cardiovascular and Metabolism Discovery, Janssen Pharmaceuticals, Inc. ² PharmaNest Princeton, NJ, USA

Introduction

Kidney fibrosis is characterized by excessive production and deposition of collagens and other extracellular matrix proteins primarily in the organ interstitium, and is a prominent histological finding in chronic kidney disease (CKD). Here, we used a novel image analysis platform (FibroNest™) to quantify fibrosis and generate a normalized continuous Phenotypic Fibrosis Composite Score (Ph-FCS) in a murine model of CKD characterized by structural damage and impairment of renal function.

Objective

In the Subtotal Nephrectomy (STNx) model, traditional staining methods of tissue fibrosis show sensitivity limitations to detect differential patterns of collagen deposition between sham and STNx mice. The objective of this study was to test the ability of the innovative FibroNest™ platform to quantify and score the severity of fibrosis in this CKD model.

Materials and Methods

Kidney fibrosis was induced in 129S6 mice by subtotal (5/6) nephrectomy (STNx, n=10) and sham operated mice were used as controls (n=6). Kidney function was assessed at 12-weeks post surgery: Glomerular filtration rate (GFR) was measured by transdermal detection of FITC-Sinistrin, urea nitrogen was measured in plasma, and urine albumin and creatinine were used to calculate the albumin to creatinine ratio (uACR). Remnant kidneys were formalin fixed and paraffin embedded, 8µM sections (unstained) were imaged by the Genesis2000© Two-Photon/Second Harmonic Generation (SHG) microscope at 20X to detect fibrillar collagen, and subsequently stained with PicroSirius Red (total Collagen) and digitally scanned at 20X.

Results – Imaging and Image Analysis

FibroNest™ image analysis software was used to assess 350+ quantifiable fibrosis parameters (qFPs), based on collagen content, structure, morphometry and texture. The resulting selected qFPs were combined to form a phenotypic fibrosis composite score (Ph-FCS), which was calculated for cortex, medulla and whole kidney sections.

Results – Quantification

There was a significant correlation between kidney function as measured by glomerular filtration rate (GFR) and whole tissue Phenotypic fibrosis composite score.

Conclusion

The PharmaNest platform offers a sensitive method for fibrosis detection and quantification. The Phenotypic continuous Fibrosis Composite Score (Ph-FCS) calculated with the FibroNest™ software correlates with the disease severity in the STNx model and is an effective multiparameter scoring endpoint for fibrosis studies. Additional evaluation of disease progression, interglomerular fibrosis and response to an anti-fibrotic therapy will further validate the FCS as a key endpoint in the discovery of novel CKD therapeutics.