Comparison of the Histological Phenotypes of Lung Fibrosis induced by Oropharyngeal and Subcutaneous Bleomycin Administration in Mouse

Louis PETITJEAN1, Joline ATTEMA2, Christa de RUITER2, Reinout STOOP2, LI CHEN1
1PharmaNest, Princeton, NJ, USA, 2TNO, Netherlands Organization for Applied Scientific Research, Leiden, The Netherlands

1 Introduction

Bleomycin (BLM) is commonly used for the induction of fibrosis in the lungs of animal models. Administration of a single dose of BLM results in a transient fibrosis development which peaks around 21-28 days and returns to baseline at day 35.

2 Aim

Here, we compare the histological outcomes between a single oropharyngeal (OP) administration and multiple (3x per week) subcutaneous (SC) injections of BLM. To detect subtle differences, we use a novel Digital Pathology quantitative image analysis and AI platform, FibroNestTM (PharmaNest, Princeton, USA) to generate and measure quantifiable Fibrosis Traits (qFTs). These parameters are used to describe the fibrosis severity and histological differences between the two methods of administration.

3 Method

Two similar fibrosis progression studies were conducted, both including a control-PBS group sacrificed on day 21 and three BLM exposed groups sacrificed on day 7, 21 and 35.

<table>
<thead>
<tr>
<th>Group Name</th>
<th>Intervention</th>
<th>Day 7</th>
<th>Day 21</th>
<th>Day 35</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Single oropharyngeal (OP) PBS administration</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>“OP” Intervention</td>
<td>Single oropharyngeal (OP); BLM (0.6 unit) administration</td>
<td>6</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Control</td>
<td>Single oropharyngeal (OP); BLM followed by multiple subcutaneous (SC) injections of BLM (3x per week)</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>“OP + SC” Intervention</td>
<td>Single oropharyngeal (OP); BLM followed by multiple administration subcutaneous (SC) injections of BLM (3x per week, 0.1 unit)</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

FFPE histological sections of both lungs were stained (Masson Trichrome) and scanned at 20X with an Aperio AT2 Scanner.

FibroNest™ was used to quantify the fibrosis histological phenotype involving 32 traits for collagen content, fiber morphometry, and architecture, generating 315 quantifiable fibrosis traits (qFT).

For each study, principal qFTs were automatically detected to best describe the progression of the Fibrosis histological phenotype and combined into a normalized Phenotypic Composite Fibrosis Score (Ph-FCS).

A Venn Diagram is constructed to identify the qFTs that are common in the two models (co-qFTs). The co-qFTs are used to create a unique composite score (co-FCS) that describe the progression of Fibrosis severity regardless of the bleomycin administration method.

4 Representative Images and Results

Fig. 1: Representative Images and Results. The panel illustrates both the structural (Masson Trichrome stain) and quantitative (Trichrome) Trichrome analysis of stained lung sections was performed to identify differences in fibrosis progression.

Fig. 2 (Top): Composite Scores: the principal qFTs identified in each study are combined into a Phenotypic Composite Score.

Fig. 3 (B) Venn Diagram: for each study and intervention, the qFTs that account for the variance in the progression of fibrosis severity (principal qFTs) are selected (≥25% change from control to BL, p<0.05). Principal qFTs are assembled in a Fibrosis Composite Score (Fig. 2). 106 principal qFTs are common to the two models, most (92) being related to the morphometric traits of the collagen fibers. These co-qFTs are used to generate a composite score (Co-model Composite Score, Fig. 4) that describe fibrosis progression in the two models.

5 Conclusions

Quantitative Digital Pathology (FibroNest) of stained lung sections was able to quantify and compare the histological phenotypes of fibrosis in OP+SC and OP administration methods of Bleomycin in mouse.

OP administration was shown to be more aggressive and rapid whereas OP+SC elicited a milder but more continuous response from the model.

Furthermore, FibroNest was able to identify differences in fibrosis phenotypes between the two models.

6 Contact Information:

louis.petitjean@pharmananest.com
Reinout.Stoop@tno.nl