Non-Invasive Respiratory Volume Monitoring v. Capnography at Various Respiratory Rates in Non-Intubated Subjects

Mullen GJ¹, Jafferji M², Ladd D³

Introduction: Real-time respiratory monitoring in non-intubated patients has been integrated into clinical guidelines; yet standard monitoring technologies are often inadequate to identify early signs of respiratory compromise. Recently capnography has become more widely used, but end-tidal CO₂ (EtCO₂) measurements can be inaccurate, with variations in sensor positioning, changes in breathing pattern and dilution from flow of supplemental oxygen. Here we compare capnography to a non-invasive respiratory volume monitor (RVM) that provides continuous, accurate measurements of minute ventilation (MV), tidal volume (TV) and respiratory rate (RR) in subjects in a controlled environment without supplemental oxygen.

Methods: 25 subjects (5 females, age: 47.5 ±10.8 yrs; BMI: 28.9 ±8.6 kg/m²) were studied. Impedance based RVM (ExSpiron, Respiratory Motion, Inc., Waltham, MA) and capnograph (Capnostream 20, Covidien, Mansfield, MA) data were collected continuously. Each subject performed 4 2.5 min trials while breathing normally and 4 2.5 min breathing trials 3 defined RRs (5, 25, 30 breaths/min). Capnography data were collected with a scoop cannula (Covidien Smart CapnoLine Plus Oral/Nasal) in all patients. In 15 subjects data was also collected in similar tests using a snorkel mouthpiece with an in-line EtCO₂ sensor (Covidien Filterline Set). Pearson correlations were used to compare the from the RVM & capnograph during periods of steady breathing & paired t-tests used to compare the rate of change of RR, MV & EtCO₂ measurements between the 2 devices as breathing patterns changed.

¹ Vidant Medical Center, Greenville, NC
² Respiratory Motion, Inc., Waltham, MA
³ West Virginia University, Morgantown WV
Results: Given the minimal difference in EtCO2 and RR measurements capnography data from the sampling cannula and in-line sensor were pooled for analysis. During steady breathing, the correlation between RVM & capnography RR was 0.98 ± 0.05 (mean±SD) & the average difference in RR was 0.7 ± 0.4 breaths/min. During transitions between breathing patterns, the RVM-based RR reflected the change over 32.1 ± 1.2s, while the capnography-based RR was slower to respond (63.3 ± 4.8s, significantly greater than the RVM, $p<0.001$; Figure 1A), The differences in the rate of change of MV & EtCO2 were even more pronounced: the RVM MV reflected the change in respiratory pattern in 31 ± 1.4s on average. EtCO2 changes were notably slower, often failing to reach a new asymptote over 150 seconds. During the study subjects modulated their MV from 25.6 ± 2.9 L/min (mean ±SEM) while hyperventilating to 2.7 ± 0.3 L/min during hypoventilation. The corresponding EtCO2 measurements ranged from 23.8 ± 1.1 mmHg (hyperventilation) and 37.9 ± 0.9 mmHg (hypoventilation). No EtCO2 values above 44 mmHg were recorded.

Conclusions: in this study environment, more well controlled than a clinical setting, with cooperating subjects, EtCO2 measurements lacked the fidelity to adequately capture rapid changes in ventilation regardless of whether the EtCO2 sampling was done with an in-line sensor, simulating a properly-seated face mask capturing all of the expired air, or with an oral/nasal cannula. While in some settings EtCO2 may be a clinically useful approximation of arterial CO2, the large blood volume in a resting individual acts as a buffer, slowing down the rate of change of alveolar CO2, essentially rendering EtCO2 measurements a lagging indicator of changes in ventilation. In a steady state, the RVM correlated very well with the EtCO2 measurements, but during transient periods provided timelier reporting of ventilatory changes. RVM is potentially a better tool to measure adequacy of ventilation in non-intubated patients.
Figure 1: Comparison of the performance of an RVM and a capnograph during a substantial change in ventilation.

Top: RVM-recorded respiratory trace over the course of two 2.5 min-long cycles. At time t=0 the subject was asked to hyperventilate at a respiratory rate of 25 b/min (by metronome) and maintain that rate for the duration of one 2.5 min-long cycle. At the end of the cycle the subject was asked to transition his breathing to a hypoventilation pattern at 5 b/min for a second 2.5 min-long cycle, with shallow breaths.

Middle: The MV reported by the RVM (blue, left y-axis) along with the EtCO\(_2\) reported by the capnograph (black, right y-axis). The MV reflects the change in respiratory pattern instantaneously, reaching a new asymptote of approximately 3 L/min within 25 seconds of the transition. Meanwhile the EtCO\(_2\) continues to climb from 24 mmHg to 34 mmHg over the second 2.5 min-long cycle. The EtCO\(_2\) recorded in this patient during normal baseline breathing was between 35 and 36 mmHg.

Bottom: The RR reported by the RVM (blue) and the capnograph (black) accurately match the metronome-set RR during periods of constant rate. However, after the transition from 25 to 5 b/min, the RVM-based RR settles to the new rate in 32 seconds, while the capnograph-based RR takes 71 seconds.