Habu coagulotoxicity: Clinical implications of the functional diversification of Protobothrops snake venoms upon blood clotting factors

Jordan Debono, Mettine H.A. Bos, Amanda Nouwens, Lilin Ge, Nathaniel Frank, Hang Fai Kwok, Bryan G. Fry

Abstract
Venom can affect any part of the body reachable via the bloodstream. Toxins which specifically act upon the coagulation cascade do so either by anticoagulant or procoagulant mechanisms. Here we investigated the coagulotoxic effects of six species within the medically important pit viper genus Protobothrops (Habu) from the Chinese mainland and Japanese islands, a genus known to produce hemorrhagic shock in envenomed patients. Differential coagulotoxicity was revealed: P. jerdonii and P. mangshanensis produced an overall net anticoagulant effect through the pseudo-procoagulant clotting of fibrinogen; P. flavoviridis and P. tokarensis exhibit a strong anticoagulant activity through the destructive cleavage of fibrinogen; and while P. elegans and P. macrosquamatus both cleaved the A-alpha and B-beta chains of fibrinogen they did not exhibit strong anticoagulant activity. These variations in coagulant properties were congruent with phylogeny, with the closest relatives exhibiting similar venom effects in their action upon fibrinogen. Ancestral state reconstruction indicated that anticoagulation mediated by pseudo-procoagulant cleavage of fibrinogen is the basal state, while anticoagulation produced by destructive cleavage of fibrinogen is the derived state within this genus. This is the first in depth study of its kind highlighting extreme enzymatic variability, functional diversification and clotting diversification within one genus surrounding one target site, governed by variability in co-factor dependency. The documentation that the same net overall function, anticoagulation, is mediated by different selective mechanisms suggests limited antivenom cross-reactivity, although this must be tested in future work. These results add to the body of knowledge necessary to inform clinical management of the envenomed patient.

1. Introduction
Venom is defined as a secretion produced in specialised cells that is delivered to a target animal through a wound, and consequently disrupts normal physiological or biochemical processes (Fry et al., 2009a; Fry et al., 2009b; Jackson and Fry, 2016; Jackson et al., 2017; Nelsen et al., 2014). Venoms are complex mixtures of enzymes, toxins, peptides, organic molecules and salts (Fry et al., 2009a; Fry et al., 2009b) which are used to facilitate feeding, (Fry et al., 2008; Fry et al., 2013; Fry et al., 2009b; Jackson et al., 2013) defence such as that found in spitting cobras (Cascardi et al., 1999; Hayes et al., 2008; Panagides et al., 2017) or competition (Deufel and Cundall, 2003) for the producing organism (Fry and Wüster, 2004; Sunagar et al., 2013). Numerous studies have demonstrated that venom evolution is not always at a much faster rate than housekeeping genes, facilitating a drive towards a highly specialised and complex venom composition (Casewell et al., 2013; Jackson et al., 2013; Sunagar et al., 2013; Vonk et al., 2013). This facilitated diversification allows toxins within venom to evolve rapidly, and at different rates, through a variety of different selective mechanisms. These mechanisms include, but are not limited to, ecological niche occupation, which is in-turn directly related to prey ecology, and in some cases taxon-specific toxins including the potential for prey escape or prey retaliation (Daltry et al., 1996; Fry et al., 2013; Jackson et al., 2013; Koludarov et al., 2014; Li et al., 2005; Pawlak et al., 2006; Pawlak et al., 2009; Sunagar et al., 2013; Sunagar et al., 2014; Yang et al., 2016).

Snake venoms are made up of a myriad of mutated protein families, each responsible for varying pathophysiological effects (Fry, 2005). Coagulatotoxins target the blood coagulation cascade via one of two mutually exclusive functional mechanisms: anticoagulation or procoagulation (Fry et al., 2009a). Anticoagulation that is mediated via proteolytic cleavage is accomplished through two different mechanisms:
cleavage in a non-clotting, destructive manner which results in direct anticoagulation; or cleavage in a pseudo-procoagulant manner, resulting in weak fibrin clots with very short-half lives. While kallikrein-type serine proteases and snake venom metalloproteases (SVMP) both may cleave fibrinogen in a non-clotting, destructive manner (Casewell et al., 2015; Vaiyapuri et al., 2015), only kallikrein toxins are currently known for the pseudo-procoagulant activity.

Fibrinogen is a trinodular protein, present in high concentrations in plasma (Wolberg, 2007), and is made up of three polypeptide chains (Aα, Bβ, γ). Under normal cleavage by thrombin, fibrinopeptides A and B are cleaved from the Aα and Bβ chains, thereby exposing the γ chain and producing strong, well-ordered lattices. These fibrin clots are further strengthened by thrombin-mediated activation of Factor XIII into FXIIIa, with FXIIIa in turn additionally cross linking the fibrin strands (Bagoly et al., 2012; Collet et al., 2000; Koh and Kini, 2012; Longstaff and Kolev, 2015; Ryan et al., 1999; Wolberg, 2007). When fibrinogen is cleaved by snake venom in a non-clotting manner, SVMPs cleave the Aα-chain while kallikreins cleave the Bβ-chain (Kini, 2005; Kini and Koh, 2016; Sajevic et al., 2011; Swenson and Markland, 2005) with both cleaving at sites distinct from that of thrombin. In contrast, when fibrinogen is cleaved in a pseudo-procoagulant manner by venom kallikreins, fibrinopeptides A or B (or both) are cleaved from their respective chains but through aberrant cleavage sites, resulting in disordered lattice-works and weak, short-lived clots (Sajevic et al., 2011; Swenson and Markland, 2005).

The wide-ranging Asian pit viper genus Protobothrops occupies the islands of Japan, mainland China and islands off China, with the occupation of diverse ecological niches mirrored by diverse morphology. Protobothrops bites are known for potent haemorrhagic shock effects in prey and human bite victims (Chen et al., 2009; Nishimura et al., 2016). Target sites include impeding primary haemostasis by disruption along the cascade from the blockage of platelet aggregation through to inhibiting clot formation due to the unnatural cleavage of fibrinogen (Collet et al., 2000; Kolev and Longstaff, 2016; Longstaff and Kolev, 2015; Mosesson, 2005).

Despite the medical importance of these snakes, a comprehensive examination of intra-genus venom variation has not been undertaken. Such data will provide fundamental information which may aid the prediction of clinical effects and thus guide snake bite case management. This study used a myriad of techniques to investigate the effects of six Protobothrops venoms upon the clotting cascade, with a particular focus upon their actions upon fibrinogen.

2. Materials and methods

A multidisciplinary approach was used to investigate the functional variability of a range of representative species from the Asian pit viper genus Protobothrops. Venom samples from six Protobothrops species were from captive snakes: P. elegans (unknown locality founding stock), P. flavoviridis (Okinawa, Japan founding stock), P. jerdonii (Chinese founding stock), P. mangshanensis (Mt Mang, Hunan, China founding stock), P. mucrosquamatus (Sa Pa, Vietnam founding stock) and P. tokarenensis (Tokara Island, Japan founding stock). Human plasma was obtained from the Australian Red Cross (Research agreement #18-03QLD-09 and University of Queensland Human Ethics Committee Approval #2016000256). All plasma was prepared as 3.2% citrated stock, aliquoted into 1 ml quantities, which were snap frozen in liquid nitrogen, and stored in a – 80°C freezer until needed, at which time an aliquot was defrosted by placing into a 37°C water bath for 10 min. All venom and plasma work was undertaken under the University of Queensland Biosafety Approval #IBC134BBS2015.

2.1. Enzyme assays

2.1.1. Fluorescent substrate activation

In order to investigate variation in enzymatic activities, artificial substrates were used as previously described by us (Debono et al., 2017). 1 mg/ml stock solutions were made by reconstituting freeze dried venom in 50% deionised water/50% glycerol (> 99.9%, Sigma, St Louis, MO, USA) at a 1:1 ratio to preserve enzymatic activity and reduce enzyme degradation. This stock solution was diluted with enzyme buffer for use in assays.

For metalloprotease and serine protease assays, varying concentrations of crude venom (10 ng/μl and 50 ng/μl) were plated out in triplicates on a 384-well plate (black, Lot#1171125, nunc™ Thermoflag Scientific, Rochester, NY, USA) and measured by adding 90 μl quenched fluorescent substrate per well (total volume 100 μl/well, 10 μl/5 ml enzyme buffer, 150 mM NaCl, and 50 mM Tri-HCl (pH 7.3), Fluorogenic Peptide Substrate, R & D systems, Cat#ES001, ES003, ES005, ES010, ES011, Minneapolis, Minnesota). Fluorescence was monitored by a Fluoroskan Ascent™ (Thermo Scientific, Vantaa, Finland) Microplate Fluorometer (Cat#1506450, Thermo Scientific, Vantaa, Finland) with the wavelengths of excitation of 320 nm, emission at 405 nm for Cat#ES001, ES003, ES005, ES010, and 390 nm, emission at 460 nm for Cat#ES011, run over 400 mins or until activity had ceased. Data was collected using Ascent® Software v2.6 (Thermo Scientific, Vantaa, Finland).

For phospholipase A2 (PLA2) assays we assessed the venoms using a fluorescence substrate assay (EnzChek® Phospholipase A2 Assay Kit, Cat#E10217, Thermoflag Scientific, Rochester, NY, USA), measured on a Fluoroskan Ascent® Microplate Fluorometer (Cat#1506450, Thermoflag Scientific, Vantaa, Finland). Venom was brought up in 12.5 μl 1 × PLA2 reaction buffer (50 mM Tris-HCl, 100 mM NaCl, 1 mM CaCl₂, pH 8.9), thus being diluted to (50 ng/μl), and plated out in triplicates on a 384-well plate (black, Lot#1171125, nunc™ Thermoflag Scientific, Rochester, NY, USA). The triplicates were measured by dispensing 12.5 μl quenched 1 μM EnzChek® (Thermo Scientific, Rochester, NY, USA) Phospholipase A2 Substance per well (total volume 25 μl/well) over 100 min or until activity had ceased (at an excitation of 485 nm, emission 538 nm). Purified PLA2 from bee venom (1 U/ml) was used as a positive control and data was collected using Ascent® Software v2.6 (Thermo Scientific, Vantaa, Finland).

2.1.2. Plasminogen activation

1 mg/ml venom stock solutions were combined with enzyme buffer to make the following dilutions: 10 ng/μl, 50 ng/μl and 100 ng/μl. These varying concentrations of enzyme activity in venom were plated out on a 384-well plate (black, Lot#1171125, nunc™ Thermoflag Scientific, Rochester, NY, USA) in triplicates, with and without 10 ng/μl plasminogen per well (Lot#FF0125 HCPG-0130, Haematologic Technologies Inc., Essex Junction, VT, USA). Plasminogen, a serine protease, can be activated by a serine protease specific substrate (Fluorogenic Peptide Substrate, R & D systems, Cat# ES001, Minneapolis, Minnesota). Plasmin was used as a positive control (10 ng/μl per positive control well, Lot#EE1120, HCPM-0140, Haematologic Technologies Inc., Essex Junction, VT, USA). Activation from venoms was measured by adding 90 μl quenched fluorescent substrate per well (total volume 100 μl/well; 20 μl/5 ml enzyme buffer - 150 mM NaCl and 50 mM Tri-HCl (pH 7.3), Fluorogenic Peptide Substrate, R & D systems, Cat# ES001, Minneapolis, Minnesota). Fluorescence was monitored by a Fluoroskan Ascent™ Microplate Fluorometer (Cat#1506450, Thermoflag Scientific, Vantaa, Finland) at excitation 390 nm and emission at 460 nm over 150 mins or until activity had ceased. Data was collected using Ascent® Software v2.6 (Thermo Scientific, Vantaa, Finland). Experiments were conducted in triplicate.

2.1.3. Prothrombin activation

The ability of Protobothrops crude venom to directly activate prothrombin was investigated and measured by modifying the above protocol used for plasminogen activation. Plasminogen was replaced with prothrombin (Lot#E0930, HCP-0010, Haematologic Technologies Inc., Essex Junction, VT, USA) and plasm in was replaced
with thrombin (Lot#FF0315, HCT-0020, Haematologic Technologies Inc., Essex Junction, VT, USA) as a positive control (10 ng/μl per positive control well). Data was collected using Ascent® Software v2.6 (Thermo Scientific, Vantaa, Finland). Experiments were conducted in triplicate.

2.1.4. Factor X activation

The ability for *Protobothrops* crude venom to directly activate blood coagulation Factor X (FX) was investigated and measured by modifying the above protocol used for plasminogen activation using FX (Lot#FF0407, HCX-0050, Haematologic Technologies Inc., Essex Junction, VT, USA) as the experimental target and FXa (Lot#EE1102, HCX-0060, Haematologic Technologies Inc., Essex Junction, VT, USA) as the positive control (10 ng/μl per positive control well). Data was collected using Ascent® Software v2.6 (Thermo Scientific, Vantaa, Finland). Experiments were conducted in triplicate.

2.1.5. Protein C activation

The ability for *Protobothrops* crude venom to directly activate Protein C was investigated and measured by modifying the above protocol used for plasminogen activation. Plasminogen was replaced with Protein C (Lot#FF0802, HCPC-0070, Haematologic Technologies Inc., Essex Junction, VT, USA) and plasmin was replaced with activated Protein C (Lot#FF0325, HCAPC-0080, Haematologic Technologies Inc., Essex Junction, VT, USA) as a positive control (10 ng/μl per positive control well). Data was collected using Ascent® Software v2.6 (Thermo Scientific, Vantaa, Finland). Experiments were conducted in triplicate.

2.1.6. Phylogenetic comparative analyses

Observed venom activities of the different snake species were investigated in an evolutionary framework by mapping them on a taxonomical tree (phylogeny as per Alencar et al., 2016), generated using the Mesquite software package and analyses subsequently performed using the R package Phytools using Phylogenetic Generalized Least Squares (PGLS) (Lister et al., 2017; Rogalski et al., 2017). Analyses were implemented in R v3.2.5 (Team, 2016) using the APE package for basic data manipulation (Paradis et al., 2004). Ancestral states of each substrate functional trait (ES001, ES002, ES003, ES005, ES010, ES011, PLA₂, coagulation) were estimated via maximum likelihood with the contMap function in phytools (Revell, 2012).

2.2. Coagulation analysis

2.2.1. Action upon plasma

2.2.1.1. Plasma clotting and co-factor dependency of Ca²⁺ and phospholipid. As per (Debono et al., 2017), in order to investigate whole plasma clotting and co-factor dependency clotting, we prepared healthy human plasma (citrate 3.2%, Lot#1690252, approval # 16-04QLD-10), obtained from the Australian Red Cross (44 Musk Street, Kelvin Grove, Queensland 4059). Coagulotoxic effects were measured by a modified procoagulant protocol on a Stago STA-R Max coagulation robot (France) using Stago Analyser software v0.00.04 (Stago, Asnières sur Seine, France). Plasma clotting baseline parameters were determined by performing the standardised activated Partial Thromboplastin Time (aPTT) test (Stago Cat# T1203 TriniCLOT APTT HS). This was used as a control to determine the health of the plasma according to the universal standard range of between 27 and 35 s. Plasma aliquots of 2 ml, which had been flash frozen in liquid nitrogen and stored in a −80°C freezer, were defrosted in an Arctic refrigerated circulator SC150-A40 at 37°C. In order to determine the ability of the venom to clot the plasma, a starting volume of 50 μl of crude venom (100 μg/ml concentration) was diluted with STA Owren Koller Buffer (Stago Cat# 00360) to produce an 8-dilution series of 20, 10, 4, 1.6, 0.66, 0.25, 0.125, and 0.05 μg/ml final reaction concentrations, which were performed in triplicate. CaCl₂ (50 μl; 25 mM stock solution Stago Cat# 00367 STA CaCl₂ 0.25% M) was added along with 50 μl phospholipid (solubilized in Owren Koller Buffer adapted from STA CK Prest standard kit, Stago Cat# 00597). An additional 25 μl of Owren Koller Buffer was added to the cuvette and incubated for 120 s at 37°C before adding 75 μl of human plasma. Relative clotting was then monitored for 999 s or until plasma clotted (whichever was sooner). Additional tests were run, both with and without CaCl₂ and phospholipid, respectively, to test for CaCl₂ or phospholipid dependency, with STA Owren Koller Buffer was used as a substitute, using the same volumes to allow for consistency in the final volumes (250 μl).

2.2.1.2. Plasma anticoagulant inhibition – FXa and thrombin. The ability for *Protobothrops* crude venom to directly prevent a fibrin clot from forming by inhibiting FXa or thrombin was investigated. Species were those which were unable to clot plasma in the above assay (1A). Clotting baseline parameters were established by performing FXa-initiated clotting in human plasma utilising liquid FXa from Stago Liquid Anti FXa kit (Stago Cat# 250491 Liquid Anti FXa kit). This was used as a control to determine the normal clotting of plasma caused by the activation of prothrombin via FXa under these specific conditions (result: 12.5 ± 0.2 s). A starting volume of 50 μl of crude venom (at 10 mg/ml) was diluted with STA Owren Koller Buffer (Stago Cat# 00360). An 8-dilution series of 20, 10, 4, 1.6, 0.66, 0.25, 0.125, and 0.05 μg/ml final reaction concentrations was performed in triplicate. Following, 50 μl CaCl₂ (25 mM stock solution Stago Cat# 00367 STA) was added to 50 μl phospholipid (solubilized in Owren Koller Buffer adapted from STA CK Prest standard kit, Stago Cat# 00597) and 50 μl Factor Xa (unknown concentration from supplier, Liquid Anti-Xa FXa Cat# 253047, Stago) or 50 μl TCT thrombin (unknown concentration from supplier, Thrombin, Lot# 252818, Stago) and incubated for 120 s. Post incubation 50 μl of either human plasma for the FXa inhibition test (citrate 3.2%, Lot#1690252, approval # 16-04QLD-10, obtained from the Australian Red Cross (44 Musk Street, Kelvin Grove, Queensland 4059) (deproteinized in an Arctic refrigerated circulator SC150-A40 at 37°C) or human fibrinogen for the thrombin inhibition test (at 4 mg/ml, Lot# F3879, Sigma Aldrich, St. Louis, Missouri, United States, reconstituted in enzyme buffer (150 mM NaCl and 50 mM Tri-HCl (pH 7.3)) was added to the reaction and each test run in triplicate for each concentration. Relative clotting was then monitored for 999 s or until plasma clotted (whichever was sooner) on a Stago STA-R Max coagulation robot (France) using Stago Analyser software v0.00.04 (Stago, Asnières sur Seine, France). Additional tests were run with increased incubation times of 300 s and 600 s. Venom dilutions in triplicates were mapped over time using GraphPad PRISM 7.0 (GraphPad Prism Inc., La Jolla, CA, USA) to produce concentration curves.

2.2.2. Action upon fibrinogen

2.2.2.1. Fibrinogen clotting and co-factor dependency of Ca²⁺ and phospholipid. The ability for *Protobothrops* crude venom to directly clot human fibrinogen was investigated and measured by following that described by Debono et al., 2017, with human fibrinogen (4 mg/ml, Lot# F3879, Sigma Aldrich, St. Louis, Missouri, United States) used in place of human plasma. Relative clotting was then monitored for 999 s or until fibrinogen clotted (whichever was sooner). Experiments were conducted in triplicate. Venom dilutions in triplicates were mapped over time using GraphPad PRISM 7.0 (GraphPad Prism Inc., La Jolla, CA, USA) to produce concentration curves.

2.2.2.2. Thromboelastography® 5000. The strength of clots formed by *Protobothrops* venom on human fibrinogen (4 mg/ml) and human plasma for pseudo-procoagulant venoms, or the decrease in thrombin-incuded clot strength for anticoagulant venoms, was investigated using a Thrombelastogram® 5000 Haemostasis analyser (Haemogenetics®, Haemonetics Australia Pty Ltd., North Ryde, Sydney 2113, Australia). Human fibrinogen (4 mg/ml, Lot# F3879, Sigma Aldrich, St. Louis,
Missouri, United States) was reconstituted in enzyme buffer (150 mM NaCl and 50 mM Tri-HCl (pH 7.3)). Natural pins and cups (Lot# HMO3163, Haemonetics Australia Pty Ltd., North Ryde, Sydney 2113, Australia) were used. The same stoichiometry as for the clotting time tests (4.1) was maintained, with the volumes proportionally changed to accommodate the larger reaction volume: 7 μl of the 1 mg/ml venom working stock or 7 μl thrombin as a positive control (stable thrombin from Stago Liquid Fib kit, unknown concentration from supplier (Stago Cat#115081 Liquid Fib)), 72 μl CaCl₂ (25 mM stock solution Stago Cat# 00367 STA), 72 μl phospholipid (solubilized in Owren Koller Buffer adapted from STA CK Prest standard kit, Stago Cat# 00597), and 20 μl Owren Koller Buffer (Stago Cat# 00360) was combined with 189 μl fibrinogen or human plasma and run immediately for 30 mins to allow for ample time for clotting formation. An additional positive control of 7 μl Factor Xa (unknown concentration from supplier, Limited Anti-Xa FXa Cat#253047, Stago) was also incorporated for plasma only. For assays in which no clot was formed, tests for anticoagulant non-clotting cleavage of fibrinogen were undertaken by the addition of 7 μl thrombin to generate a clot and to determine the effects of fibrinogen degradation.

2.2.2.3. Fibrinogen gels. To investigate fibrinogenolysis activity demonstrating α, β and γ chain cleavage, 1D SDS PAGE 12% acrylamide gels were cast, run and stained following the protocol described in (Ali et al., 2013; Debono et al., 2017) outlining 1D SDS PAGE preparation and running conditions.

Human fibrinogen (Lot#F3879, Sigma Aldrich, St. Louis, Missouri, United States) was reconstituted to a concentration of 1 mg/ml in isotonic saline solution, flash frozen in liquid nitrogen and stored at −80 °C until use. Freeze-dried venom was reconstituted in deionised H₂O and concentrations were measured using a Thermo Fisher Scientific™ NanoDrop 2000 (Waltham, MA, USA). Assay concentrations were a 1:10 ratio of venom:fibrinogen. Human fibrinogen (Lot#F3879, Sigma Aldrich, St. Louis, Missouri, United States) stock of 1 mg/ml was dispensed into ten 120 μl aliquots. Fibrinogen from each aliquot (10 μl) was added to 10 μl buffer dye (5 μl of 4 × Laemmli sample buffer (Bio-Rad, Hercules, CA, USA), 5 μl deionised H₂O, 100 mM DTT (Sigma-Aldrich, St. Louis, MO, USA)) as an untreated control lane. An additional fibrinogen aliquot (10 μl) was firstly incubated for 60 mins at 37 °C before immediately adding 10 μl buffer dye. Venom stock (1 μl at 1 mg/ml) was added to the remaining 100 μl fibrinogen aliquot and incubated over 60 mins at 37 °C, taking out 10 μl at varying time points (1, 5, 10, 15, 20, 30, 45, and 60 mins). This 10 μl was immediately added to an additional 10 μl buffer dye. Once all 8-time points including the two controls were added to the buffer dye these were incubated at 100 °C for 4 min then immediately loaded into the precast 1D SDS-PAGE gel. The following set up within the gel was as follows: Lane 1: untreated, unincubated fibrinogen, Lane 2: 1-min 37 °C incubation, Lane 3: 5 min 37 °C incubation, Lane 4: 10 min 37 °C incubation, Lane 5: 15 min 37 °C incubation, Lane 6: 20 min 37 °C incubation, Lane 7: 30 min 37 °C incubation, Lane 8: 45 min 37 °C incubation, Lane 9: 60 min 37 °C incubation, Lane 10: untreated fibrinogen that has been incubated for 60 min at 37 °C. Gels were prepared in triplicate under the described conditions per venom and were run in 1× gel running buffer (as described by (Debono et al., 2017; Koludarov et al., 2017) at room temperature at 120 °V (Mini Protein3 power-pack from Bio-Rad, Hercules, CA, USA) until the dye front reached the bottom of the gel. Gels were stained with colloidal coomassie brilliant blue G250 (34% methanol (WVR Chemicals, Tingalpa, QLD, Australia), 3% orthophosphoric acid (Merck, Darmstadt, Germany), 170 g/L ammonium sulfate (Bio-Rad, Hercules, CA, USA), 1 g/L Coomassie blue G250 (Bio-Rad, Hercules, CA, USA), and destained in deionised H₂O.

Fibrinogen gel analysis was undertaken using the publicly available software ImageJ (V1.51r, Java 1.6.0.24, National Institutes of Health, Bethesda, Maryland, USA) (Schneider et al., 2012), gels that had been scanned using a standard printer/scanner were loaded onto the software. Gel images were opened in ImageJ and changed to 32 bit to emphasise darkens bands of fibrinogen chains. The ‘box function’ was then used to draw around the control bands selecting all three chains. This was repeated for all 10 treatment lanes. Lanes were then ‘plotted’ using the ‘plot lanes’ function which creates a gel band intensity graph. Using the ‘line function’, lines were drawn between troughs of each band separating the individual peaks and troughs representing the alpha, beta and gamma chains. The intensity represents the amount of protein within that particular band and as the chain degrades the intensity decreases. Using the ‘wand function’ each peak within the graph was selected automatically producing a quantity for the area under the curve. These values were entered into Windows Excel 2016, average taken and graphed using GraphPad Prism 7.0 (GraphPad Prism Inc., La Jolla, CA, USA). This process was repeated for all three triplicates for each venom.

2.2.2.4. Fibrinolysis +/− tPA. To investigate the fibrinolysis ability of *Protobothrops* venoms, varying concentrations of venom (100 ng/μl, 500 ng/μl and 1 μg/μl) were tested under varying conditions with the addition of tissue plasminogen activator (tPA, Sekisui Diagnostics, Lexington, MA, USA). Aliquots (100 μl) of normal pooled human plasma (Leiden University Medical Center (Leiden, NL)) stored at −80 °C were defrosted in a water bath at 37 °C. A 96-well plate was prepared under the following conditions: 6 μl tissue factor (TF) (Innovin, Siemens, USA) was added to 10 μM phospholipid vesicles (PCPS, 75% phosphatidylycholine and 25% phosphatidylinerine, Avanti Polar Lipids, Alabama, USA) in HEPES buffer (25 mM HEPES, 137 mM NaCl, 3.5 mM KCl, 0.1% BSA (Bovine Serum Albumin A7030, Sigma Aldrich, St Louis, MD, USA)) and gently incubated at 37 °C for 1 h in a water bath. 17 mM CaCl and 37.5 μM tPA (diluted in dilution buffer (20 mM HEPES, 150 mM NaCl, 0.1% PEG-8000 (Polyethylene glycol 8000,1,546,605 USP, Sigma Aldrich, St Louis, MD, USA), pH7.5) was then added to the solution. A volume of 30 μl of this solution was added to each experimental well, along with 10 μl of venom at varying concentrations and an additional 10 μl of HEPES buffer, prepared on ice (total well volume of 100 μl). Normal pooled plasma (50 μl) was immediately added to each well (heated to 37 °C). Absorbance measuring commenced immediately and was measured every 30 s over 3 h at 405 nm on a Spectra Max M2e (Molecular Devices, Sunnyvale, CA, USA) plate reader, heated to 37 °C. Measurements were captured on Softmax Pro software (V 5.2, Molecular Devices, Sunnyvale, CA, USA) and data points analysed using GraphPad Prism 7.0 (GraphPad Prism Inc., La Jolla, CA, USA). All experimental conditions were repeated in triplicates and averaged.

2.2.3. Platelet agglutination and inhibition

The ability to aggregate platelets via the GP Ib/IX receptor was tested for both venoms at varying concentrations (1, 2, and 5 μg/μl) using the ristocetin cofactor assay (Lot# H081032, Chrono-log™, Havertown, PA, USA) under modified conditions. For a control sample, in a modified glass cuvette with a rubber spacer and electrode stir bar, 200 μl of platelets (Lot# 1087–40) reconstituted in TRIS-buffer saline (Lot# 1091–35) was combined with 25 μl Ristocetin (10 mg/ml, Lot# 1088–33), reconstituted in Ultra-pure water. Prior to aggregation tracking performed on a Chrono-log 700 multichannel system (Chrono-log, DKSH, Vic, Australia), 0% and 100% baselines were established. Agglutination of platelets was measured for 6mins under the following conditions: slope length 16, gain 0.05, mode optical. For experimental samples, 200 μl of reconstituted platelets was combined with an additional 40 μl TRIS-buffer saline and incubated at 37 °C for 2mins. After incubation, 10 μl of crude venom/TRIS-buff saline solution at varying concentrations (100 ng/μl, 200 ng/μl and 5 μg/μl) were injected into the cuvette and run for 6 mins under the same conditions. Controls and experimental samples were run in triplicate.
3. Results

3.1. Enzymatic assays on the Fluoroskan Ascent

Enzymatic assays were using substrates typically cleaved by metalloproteases (ES001, ES003, and ES010), serine proteases (ES002 and ES011) or PLA2. While these are artificial substrates and may not necessarily directly correlate with ‘real world’ bioactivity, they are useful for elucidating differences between the venoms. Indeed, significant variation was observed between the venoms for each substrate class (Fig. 1). In addition to variation between venoms, there was also significant variation between substrate types, whereby the strongest for one substrate type was not the strongest for another substrate within the same generalized class (whether within the metalloprotease or serine protease class). For ES001 P. flavoviridis was twice as active as the next strongest venom (the sister species P. tokarensis), and three ...
testing was conducted to investigate the anticoagulant properties of the two most potent anticoagulant species, *P. tokarensis* and *P. flavovirdis* based off their initial inability to clot human plasma (Fig. 2). Given that both species failed to form any clot (Fig. 2), their venom components may interfere with specific reactions in the coagulation cascade. FXa inhibition and thrombin inhibition were investigated across a range of concentrations. While both venom species were unable to successfully inhibit thrombin, they were able to inhibit FXa, with *P. flavovirdis* being much more potent than *P. tokarensis* (Fig. 4).

3.2.2. Action upon fibrinogen

As the above tests suggested that the clotting venoms are pseudo-procoagulant in that they are producing weak fibrin clots, additional tests were undertaken to determine the specific effects upon fibrinogen.

3.2.2.1. Fibrin clot formation. Using the same STA-R Max coagulation analyser protocol as above for plasma, we tested the ability of the venoms to form fibrin clots by replacing plasma with 4 mg/ml human fibrinogen. Consistent with the plasma results, and demonstrative of direct effect upon fibrinogen in a pseudo-procoagulant manner, *P. jerdoni* and *P. mangshanensis* venoms were the only ones able to effectively trigger the formation of fibrin clots (Fig. 5). In testing for the relative influence of the physiological cofactors calcium and phospholipid, extensive variation was noted between the cofactors, and also between the species for a particular cofactor. Removal of calcium slowed the reaction, resulting in a 65.1 ± 0.7% increase in the area under the curve for *P. jerdoni*, but the removal of phospholipid had a negligible effect, with the area under the curve increasing by only 6.6 ± 1.8%. In contrast, *P. mangshanensis* showed a 128.9 ± 0.8% increase in the area under the curve when calcium was removed and a 37.2 ± 0.7% increase when phospholipid was removed.

3.2.2.2. Thromboelastography using TEG5000s. In order to determine the strength of the clots formed by fibrinogen cleavage, we investigated the ability for venom to clot fibrinogen in the presence of Ca²⁺ and phospholipid. The thrombin control rapidly (SP = 0.2 ±/− 0.0 min, R = 0.23 ±/− 0.06 min) produced a strong (13.37 +/− 1.24 mm). While *P. mangshanensis* was the most potent of the venoms, the clot was formed slower (SP = 1.5 +/− 0.4 min, R = 2.07 +/− 0.68 min) and weaker (*A* = 7.33 +/− 1.08) than the thrombin control (SP = 0.2 +/− 0.0 min, R = 0.23 +/− 0.06 min, *A* = 16.5 +/− 1.2) (Fig. 6). *P. jerdoni* and *P. elegans* also clotted the fibrinogen but slower and weaker than *P. mangshanensis* (Fig. 6).

As *P. flavovirdis*, *P. mucrosquamatus* and *P. tokarensis* did not display any ability to directly clot fibrinogen, additional tests were undertaken in order to ascertain if the venoms were cleaving the fibrinogen in a destructive manner that impeded the ability of thrombin to clot fibrinogen. Thrombin was added to the wells after the 30 min primary run in which no clot was formed. Consistent with destructive cleavage of fibrinogen by *P. mucrosquamatus* and *P. tokarensis* venoms, the addition of thrombin failed to produce a clot (Fig. 6). In contrast, *P. flavovirdis* displayed a much weaker level of destructive cleavage. As this venom showed a strong anticoagulation activity upon the plasma (Fig. 6), the low activity upon fibrinogen indicates that the anticoagulation activity is due to the direct inhibition of a clotting factor, which is consistent with the results showing an ability to inhibit FXa (Fig. 4).

3.2.2.3. Fibrinogen gels. In order to determine the specific fibrinogen chains cleaved by the venoms, additional assays were undertaken to determine the time-dependent effects upon each chain. A consistent pattern emerged with all venoms displayed the ability to cleave the α chain (with differential potency), while the β chain was cleaved more slowly and only fully cleaved by the most potent α chain acting venoms (Figs. 7-9). Similarly, the γ chain was cleaved more slowly and only cleaved by the most potent α and β chain cleavers. Full cleavage of α, β

3.2. Coagulation analyses

3.2.1. Action upon plasma

3.2.1.1. Plasma cloting and co-factor dependency of Ca²⁺ and phospholipid. Only *P. elegans*, *P. mangshanensis*, and *P. jerdoni* and displayed the ability to clot human plasma (Fig. 2). At a 20 μg/ml venom concentration, *P. mangshanensis* was able to clot plasma in 32.0 ± 5.4, compared to *P. elegans* (98.9 ± 6.66), and *P. jerdoni* (139.0 ± 11.9) relative to the spontaneous clotting time of the recalculated plasma of 325.0 ± 25.0 s. In contrast, the *P. flavovirdis* and *P. tokarensis* venom demonstrated a potently anticoagulant effect, with both species reaching the machine maximum clotting time measurement of 999.99 s. *P. mucrosquamatus* venom was also anticoagulant at a 20 μg/ml venom concentration but weaker than *P. flavovirdis* and *P. tokarensis* (Fig. 2). The venoms displayed significant variation in the relative dependency upon calcium or phospholipid, with calcium being a much stronger variable (Fig. 2B and C).

As the clotting of plasma could be due to procoagulant functions through the generation of endogenous thrombin (producing strong fibrin clots), or pseudo-procoagulant functions by directly acting upon fibrinogen (producing weak clots), additional tests were conducted to ascertain the ability to activate Factor X or prothrombin, and also to determine the relative strength of fibrin clots in the plasma tests. None of the venoms, even the ones which produced clots in the above analyses, were able to activate FX or PT. Further, the clots formed by the venoms in plasma were weak, indicated by reduced clot strength relative to the controls (Fig. 3). As this was strongly suggestive of direct action upon fibrinogen in a pseudo-procoagulant manner (Oullion et al., 2018), additional tests were undertaken (Results section 2 below) to characterise the cleavage and clotting effects upon fibrinogen.

3.2.1.2. Plasma anticoagulant inhibition – FXa and thrombin. Additional times as active as *P. mucrosquamatus* with the other species only showing low levels of activity (Fig. 1A). A broadly similar pattern was observed for ES010, with *P. flavovirdis* being significantly more active than the other venoms, however with some venoms that showed only trace activity upon ES010 showing significant activity upon ES010 (*P. elegans*, and *P. mangshanensis*) (Fig. 1D). In contrast, for ES003 (also a metalloprotease substrate), *P. mucrosquamatus* was much more active than all other venoms, being four times as active as the next potent species (*P. tokarensis*) (Fig. 1C). A similar level of variation between the serine protease substrates was also observed, where *P. elegans* was the most potent, but all other venoms displaying at least moderate levels of activity, while for *P. jerdoni* and *P. mangshanensis* were both potent while all other venoms displayed only trace or undetectable levels of activity (Fig. 1B and E). *P. flavovirdis* displayed the highest activity upon the PLAs2 substrate, with the next nearest venom (*P. elegans*) being 66% as potent, followed by *P. tokarensis* (33%), and all others showing only very low levels of activity (Fig. 1F). These variations are strongly suggestive of differentiative activity of the venoms under physiological conditions. The extreme variation between species was evident in the ancestral state reconstructions (Fig. 1), which was consistent with rapid diversification away from an ancestral state. The basal lineages *P. jerdoni* and *P. mangshanensis* were inactive on the substrates ES001, ES003, and the PLas2 substrate, with the respective high levels of activity of *P. flavovirdis* (ES001), *P. mucrosquamatus* (ES003), and *P. flavovirdis* (PLAs2) thus representing derived states (Fig. 1A, C, and F respectively). Conversely the high levels of activity of the two basal lineages *P. jerdoni* and *P. mangshanensis* on ES011 is indicative of this being the ancestral state, with the low levels of the other lineages therefore being derived states (Fig. 1E). In contrast the low level of activity for ES010 by *P. jerdoni* represents a derived state as all other lineages are either moderately potent (*P. elegans*, *P. mangshanensis*, *P. mucrosquamatus*, and *P. tokarensis*) or highly potent (*P. flavovirdis*) (Fig. 1D).
and γ fibrinogen chains were only exhibited by *P. jerdonii* and *P. mangshanensis*. *P. mangshanensis* however cleaved all 3 chains much more quickly than *P. jerdonii* (Figs. 6-8). Cleavage of only the α and β chains were exhibited in *P. elegans* and *P. mucrosquamatus*, while *P. flavoviridis* and *P. tokarensis* only exhibited α chain degradation (Figs. 7-9). Ancestral state reconstruction suggested that the ability to cleave the α, β and γ fibrinogen chains was the basal condition, with the other cleavage patterns thus being derivations (Fig. 9), with the pseudo-procoagulant clotting (Fig. 4) being the basal activity of the genus upon fibrinogen.

3.2.2.4. Fibrinolysis +/− tissue plasminogen activator

The ability for *Protobothrops* crude venom to actively lyse a plasma clot was investigated under the presence or absence of tPA (tissue plasminogen activator) at varying concentrations. None of the 6 species tested at any of the concentrations successfully lysed plasma clots without the presence of tPA. However, in the presence of tPA, clot lysis times (CLT) were shortened relative to the control (tPA against plasma) (Fig. 10).

Fig. 2. Comparison of procoagulant co-factor dependency clotting curves of *Protobothrops* at varying venom concentrations on human plasma. X axis: final venom concentration (µg/ml), Y axis: clotting time in seconds. Data points are N = 3 and error bards indicate standard deviation. Red line = procoagulant dilution series with calcium and phospholipid against human plasma. Blue line = phospholipid dependency, procoagulant dilution series with calcium added only against human plasma. Purple line = Calcium dependency, procoagulant dilution series with phospholipid added only against human plasma. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Overlaid thromboelastography traces showing effects of 20 µg/ml venoms ability to clot plasma relative to spontaneous clot control: blue traces = re-calcified plasma spontaneous clotting control; green traces = Factor Xa or thrombin controls; red traces = venom samples. SP = split point, time taken until clot begins to form. R = time to initial clot formation where formation is 2 mm+ (mins). A (parameter) = detectable clot strength (mm) which may be < 2 mm. As *P. flavoviridis* and *P. tokarensis* did not induce a clot in A), thrombin was added in B) in order to induce a clot and measure fibrinogen degradation. Overlaid traces are N = 3 for each set of control or experimental conditions. Values are N = 3 means and standard deviation. NA indicates below machine detection limit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
4. Discussion

Extensive functional diversification was evident between the six Protobothrops venoms tested, both in artificial environments (enzyme substrate testing) and physiological conditions (plasma and fibrinogen testing). This was evident by the ancestral state reconstructions (Figs. 1 and 9) showing rapid diversification away from the basal condition. Enzyme substrate testing patterns were differential between the substrate types tested, whether metalloprotease or serine protease, with no consistent functional or phylogenetic pattern, consistent with rapid radiation away from the ancestral state. While these substrates do not necessarily correlate with a particular physiological effect, the differential activity indicates that the venoms would have highly variable effects in a physiological system. This was shown to be the case with the venoms displaying a wide variation of coagulotoxic activity, ranging from potently pseudo-procoagulant to potently anticoagulant. A correlation, however, was evident between the nature and potency of the coagulotoxicity, with the strongest pseudo-procoagulant venoms (*P. jerdonii* and *P. mangshanensis*) displaying an ability to aberrantly cleave the alpha, beta and gamma chains of fibrinogen, with this putatively being the ancestral state, while the most potent anticoagulant venoms (*P. flavoviridis* and *P. tokarensis*) cleaving only the alpha chain, with this representing an extreme derivation away from the ancestral state, with the anticoagulation potentiated by the derived state of FXa-inhibition. Thromboelastography testing confirmed the pseudo-procoagulant function of *P. jerdonii* and *P. mangshanensis* venoms, with both being the most rapid in clotting fibrinogen but producing only weak clots. As these are the two most basal species (Alencar et al., 2018; Alencar et al., 2016), and the two most potent anticoagulant species are sister to each other, consistent with pseudo-procoagulant activity as the basal condition within this genus, and that anticoagulant venoms represent the derived state.

Consistent with the extreme variation in their venoms, Protobothrops species are highly variable in morphology and ecological niche occupied, ranging from heavily built terrestrial species (e.g. *P. mangshanensis*) to gracile semi-arboreal species (e.g. *P. flavoviridis*). While the venom variation is suggestive of this feature being a driver in their adaptive radiation, it is also indicative of the potential to produce differential clinical effects, in that while haemorrhagic shock may be produced by all (Chen et al., 2009; Nishimura et al., 2016), the underlying mechanisms may be different.

In addition to net anticoagulation produced by direct action upon fibrinogen (whether pseudo-procoagulant or anticoagulant), anticoagulation was also produced by these venoms as a by-product of irregular fibrinogen cleavage. This was evident in the fibrinolysis assays, whereby plasmin was able to lyse clots much quicker when venom from species was present (Fig. 10). It is hypothesised that this is due to venoms from some species forming a weak clot via incorrect fibrinogen degradation and irregular fibrin strand linking. This has been...
Fig. 6. Overlaid thromboelastography traces showing effects of 20 μg/ml venoms: A) ability to clot fibrinogen relative to thrombin control; B) ability to clot whereby thrombin was added to samples which did not clot fibrinogen after 30 min in order to test for venom-induced fibrinogen degradation relative to blank control. Blue traces = thrombin controls, red traces = venom samples. SP = split point, time taken until clot begins to form. R = time to initial clot formation where formation is 2 mm + (mins). A (parameter) = detectable clot strength (mm) which may be < 2 mm. Overlaid traces are N = 3 for each set of control or experimental conditions. Values are N = 3 means and standard deviation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. 1D SDS PAGE time dependent fibrinogen chain degradation (α, β or γ) by venom at 0.1 μg/μl concentration, with the fibrinogen at 1 μg/μl, at 37 °C over 60 mins. F = fibrinogen at 0 mins or 60 mins incubation controls, V = venom incubation times (min).
demonstrated in the literature that fibrin diameter and the architecture of the fibrin strands can influence the clot strength and stability (Collet et al., 2000; Longstaff and Kolev, 2015; Mosesson, 2005; Wolberg, 2007; Wolberg and Campbell, 2008). Albeit both species are able to cleave all three fibrinogen chains, fibrinogen is cleaved in incorrect places, as opposed to where thrombin cleaves fibrinogen. This would result in larger fibrin strands which do not form a well-constructed clot and instead form a turbid, highly permeable clot (Collet et al., 2000; Wolberg, 2007; Wolberg and Campbell, 2008). In addition, FXIII is not activated and covalent cross linking, which would also strengthen clots, does not occur. This overall activity would result in a net anticoagulant outcome, despite neither species being able to activate plasminogen, which would aid in this weak anticoagulant effect.

In addition to their wide-ranging fibrinogen action, co-factor dependency of fibrinogen action also impacts on the physiological degree of fibrinogenolysis that the venom exhibits. The co-factor dependency of the two most potent species, *P. jerdonii* and *P. mangshanensis*, shows that not only does the effect on fibrinogen differ, but also the degree of co-factor dependency for either calcium or phospholipid and between the two species for a particular co-factor. This is the first study to show such an extensive shift in co-factor dependency on fibrinogen action from any snake species, illustrating that not only does the co-factor dependency differ but it also differs between species of a single genus. This reinforces the fundamental importance of including both co-factors in order to replicate physiological conditions. While some venom studies have done this (Bos et al., 2016; Chester and Crawford, 1982;
Debono et al., 2017; Lister et al., 2017; Oulion et al., 2018; Pirkle et al., 1972; Rogalski et al., 2017), the inclusion of which is necessary to replicate physiological conditions, while others have neglected to include phospholipid (Isbister et al., 2010; Nielsen et al., 2018; O’Leary and Isbister, 2010; Still et al., 2017; Vargas et al., 2011), or both cofactors (Ainsworth et al., 2018; Resiere et al., 2018; Williams et al., 1994) thereby skewing the results and hampering the interpretation as to the effects upon coagulation and therefore limiting the clinical and evolutionary relevance of the results.

In addition to this variation in net anticoagulation produced, it was shown that the two most potent anticoagulant species of the genus, *P. flavoviridis* and *P. tokarensis* (those that did not form a plasma or fibrinogen clot) also inhibited FXa (Fig. 4). FX inhibition has been described previously by *P. flavoviridis* due to lectin toxins (Arlinghaus et al., 2015; Atoda et al., 1995) while it had not been previously described for *P. tokarensis*. As none of the more basal venoms displayed this activity, but it is known from other pitviper venoms (Arlinghaus et al., 2015), this suggests that the ability to inhibit FXa was present in only trace levels in the last common ancestor of all *Protobothrops* species but was upregulated in the last common ancestor of *P. flavoviridis* and *P. tokarensis*.

This continued variation in venom activity, enzymatic activity, functional diversification and clotting diversification creates further problems with predictive antivenom production raised against specific species, or species of a specific region. At present there are only two antivenoms that are produced for two of the eight species of *Protobothrops*, registered for *P. mucrosquamatus* and *P. flavoviridis*, with no available antivenom specifically made for the remainder of the genus. The two *Protobothrops* antivenoms are the ‘Bivalent Antivenin Pit Viper, National Institute of Preventative Medicine, Taiwan’, produced from *P. mucrosquamatus* and *Trimeresurus stejnegeri*, and the ‘Habu Antivenom (Kaketsuken), by the Chemo-Sero-Therapeutic Research Institute (Kaketsuken), Japan’, produced from *P. flavoviridis*. Future...
works should investigate the ability of these antivenoms to specifically neutralise coagulotoxic effects and to what degree the antivenoms cross-react with non-immunising venoms. This is particularly critical for *P. jerdonii* and *M. pangasianodon* which differ sharply in their coagulotoxic biochemistry relative to either of the *Protobothrops* venoms used in antivenon production (*P. flaviviridis* and *P. muroamazonicus*). This study therefore not only reveals evolutionary trends of interest to biologists, but also documents substantial variation in the nature and potency of coagulotoxic effects that would directly inform upon potential clinical effects and management strategies.

Acknowledgements

HFK was supported by the Science and Technology Development Fund of Macau SAR (FDCT) [019/2017/A1].

References

