Buteyko
For the Reversal of Chronic Hyperventilation

By: Peter Kolb BSc(Eng), MSc(Med)
Illustrations: Victor Lunn-Rockliffe
Revision 1.2

Contents

1. What is Chronic Hyperventilation Syndrome? 3
2. How does CHV develop? 4
3. How does Buteyko therapy work? 4
4. What happens to patients with CHVS? 5
5. Physiological consequences of low CO₂. 6
6. Immune system. 8
7. Other symptoms and disorders. 10
8. Buteyko for Asthma, 1st Clinical Trial. 12
9. Lung Function Test. 14

References 15

For more information:
http://members.westnet.com.au/pkolb
pkolb@westnet.com.au
1. What is Chronic Hyperventilation Syndrome?

Chronic Hyperventilation Syndrome [CHVS] is a vast complex of bizarre1,16,18,29,31 symptoms and disorders that are caused by habitually breathing too much. Technically it is not a syndrome at all since the symptoms are so variable. Notwithstanding that chronic hyperventilation [CHV] has a compelling appeal as the physiological basis for the many chronic disorders we see today, mainstream medicine has consistently failed to deal with it since its discovery over 100 years ago.1,16,18,24,29

In 1975 British cardiologist, Claude Lum wrote:16

Some forty years ago Kerr, Dalton and Gliebe wrote “Patients presenting the well-known pattern of symptoms haunt the offices of physicians and specialists in every field of medical practice. They are often shunted from one physician to another, and the sins of commission inflicted upon them fill many black pages in our book of achievement.”

Unfortunately I believe this to be still true today, despite the many and excellent reviews which have appeared in the intervening years.

2. How does CHV develop?

Chronic hyperventilation develops from any chronic, undischarged stress on the body including elements of western lifestyle, leading to a depletion of carbon dioxide (CO\textsubscript{2}) and bicarbonate (HCO\textsubscript{3}-).14,16

The respiratory centre, situated in the brain stem, paces breathing in order to maintain pH according to the Henderson-Hasselbach equation:

$$pH = 6.1 + \log \left(\frac{[HCO_3^-]}{0.03[CO_2]} \right)$$

Hence, to maintain pH, the ratio of CO\textsubscript{2} to bicarbonate in the cerebrospinal fluid (CSF) needs to remain constant. Since the blood-brain barrier is extremely permeable to CO\textsubscript{2}, this is readily accomplished by regulation of breathing.10 If the body is stressed, breathing increases, CO\textsubscript{2} is reduced and a state of alkalosis develops. If this stress is sustained, the kidneys compensate by dumping bicarbonate in order to reestablish normal pH in the blood.10,16 However, the blood brain barrier is only very slightly permeable to bicarbonate resulting in a very slow diffusion of bicarbonate from the CSF into the blood10 if the stress is sustained for a very long time (chronic stress). When the stress eventually dissipates, the CSF is left with a low bicarbonate concentration.10,16 To maintain pH the CO\textsubscript{2} will also have to be kept low and a habituation to low CO\textsubscript{2} will have taken place.14 The resulting low CO\textsubscript{2} and bicarbonate has a devastating effect on all significant biochemical processes.7,14,16,18,24,29

3. How does Buteyko therapy work?

Buteyko therapy is a simple educational programme aimed at reversing CHV. In the same way as chronic stress leads to CHV, so too a deliberate reduction in breathing over a period of time reverses this process to restore CO\textsubscript{2} back to a normal level.

“The essence of my method is in decreasing the depth of breathing. You would ask me how. The best way is through relaxation of the muscles that potentiate the breathing action. What then occurs is a sensation of having insufficient air if the breathing is reduced. These are all the instructions - the whole of the method.” — K.P. Buteyko.4
4. What happens to patients with CHVS?
Consider the following population distribution for arterial carbon dioxide. The normal range is between 35 and 45mmHg. Most people could be expected to fall into this range. Those who fall below this range but are not acutely hypocapnic, do not have hypocapnia recognized as the possible cause of their disease by mainstream medicine.\(^5,16,18,24,29\)

Here we have a population of chronic hyperventilators. Doctors do not recognize this condition. While patients are often referred for psychological therapy and sometimes even given anxiolytic drugs, many are sent home without treatment. They are variously categorized as patients with hypochondriasis or somatization disorders. Western medicine has no effective therapy for these patients. These patients that would profit from Buteyko Therapy.

5. Physiological consequences of low CO\(_2\).

1. Poor oxygenation of tissues due to a depressed Bohr effect.\(^5,7,16,29,31\)
Once oxygen attaches itself to the hemoglobin in the lungs, it is transported to the tissues where it is needed. CO\(_2\) is necessary to fully offload the Oxygen into the tissues. When the baseline level of CO\(_2\) is too low, the oxygen is not fully unloaded resulting in tissue hypoxia. The consequence is a feeling of breathlessness, which aggravates the condition, frequent yawning and sighing, build up of acids, such as lactic acid, in the body and joints leading to fatigueability, exhaustion\(^5,16,31,30\) and pain in muscles\(^5,16,18\) and joints.

2. Muscle spasms.\(^5,7,16,24,29\) Since calcium transport across the cell membrane involves CO\(_2\), hypcapnia results in a redistribution of Calcium, which tends to accumulate inside the cells leaving the extra cellular fluid depleted.\(^24\) This directly affects the ability of smooth muscle to relax.\(^11\) Hence, hyperventilation is associated with spasms in smooth muscle, resulting in dysfunctional gut motility as in spastic colon\(^24\), and irritable bowel syndrome,\(^24\) spasm in the bronchioles as seen in asthma,\(^5,7,12,16,24,29\) spasm in arterioles\(^5,7,16,24,29,31\) resulting in hypertension\(^24\) and ischemia,\(^24\) as well as spasm in glands and ducts. In addition, esophageal spasm can result in dysphagia,\(^5,16\) Globus Hystericus,\(^5,16,30,31\) and together with spasms in the diaphragm and sphincter, various degrees of hiatus hernia,\(^24\) may develop with associated gastric reflux. Hypoxia due to a depressed Bohr effect together with ischemia can produce angina,\(^24\) headaches,\(^16\) migraines\(^5,24\) and syncope,\(^5,7,16\).
3. Profound biochemical derangements caused by chronic hyperventilation include: hypophosphatemia, elevated lipids, elevated sugar levels, and elevated lactic acid apart from disturbances to calcium homeostasis.

CO₂ is directly involved in all biosynthetic processes including the biosynthesis of amino acids, nitrogenous bases, fats and carbohydrates. It is also involved in stimulating the production of hormones such as insulin. It also stimulates the production of gastric secretions.

CO₂ affects the production of acetylcholine in nervous tissue and the excitability of nerves. High CO₂ tends to have a calming effect on the nervous system, while low CO₂ causes increased sympathetic tone, decreased parasympathetic tone, paresthesia and numbness, twitching eyelids, visual and auditory disturbances, seizures and fits, tremors and shaking, ECG and EEG abnormalities.

6. Immune System
Particularly vulnerable is the immune system, a finely tuned biological warfare mechanism responsible for identifying, differentiating and destroying pathogenic invaders. Disturbances to the biochemical environment in which the immune system has to function can be
expected to lead to variable forms of immune system failure. As a result the system may over react to pollens or other non-pathogenic invaders. It may fail to deal effectively with bacteria and viruses and could even attack the body’s own cells as in autoimmune diseases such as arthritis, diabetes, and multiple sclerosis. The immune system is also responsible for recognizing and removing cancer cells. It should come as no surprise that post-traumatic, post-viral, post-partum and psychological stresses can lead to major failures of the immune system.

7. Other Symptoms and disorders

Chronic hyperventilation affects every organ, body part and system. The protean nature of the symptoms makes this disorder particularly insidious. The symptoms that will manifest in an individual depend mainly on genetic predisposition. Asthmatics, for example, have bronchioles that are particularly efficient at closing up whenever the lungs are hyperventilated.
Apart from the symptoms already discussed, the mainstream medical literature provides us with an astonishing array of symptoms directly attributable to CHV. For example:

Cardiovascular: Palpitations, myocardial infarction, arrhythmias, coronary artery stenosis, tachycardia, failure of coronary bypass grafts, right ventricular ectopy, mitral valve prolapse, low cardiac output/stroke volume.

Digestive: Dry mouth, flatulence and belching, duodenal spasm, vomiting, bloating, constipation, epigastric pain, aerophagia, diarrhoea.

General: Failure of transurethral resections, edema, restlessness, Da Costa's Syndrome, excessive sweating, burnout, Raynaud's Disease, chest pains, weakness and listlessness.

Neuromuscular: Muscular stiffness and aching, myalgia, cramps, fibromyositis, muscle spasm.

Neurological: Paresthesia and numbness, headaches, diplopia, feeling of chilliness, hot/cold sensations, dizziness, hyperactivity, epileptic fits and seizures.

Respiratory Disorders: Asthma, choking, chest tightness, irritable cough, dyspnea, Shortness of breath or air hunger.

Psychological: Tension, fear of insanity, depersonalization, hallucination, lack of concentration and memory loss, unreal feelings, panic attacks, anorexia, depression, feelings of inadequacy, anxiety, maladjustments in life, phobias, obsessional behaviour.

It is also known that K.P. Buteyko worked on the role of hyperventilation in addictive behaviours such as alcoholism and drug dependency.

8. Buteyko for Asthma

With over 40 years of experience in treating patients with chronic hyperventilation (CHV) disorders in the USSR, Dr. K.P. Buteyko confirmed the observations of Kerr, Dalton and Gliebe in the 1930's, that CHV developed mainly from life style.

For example, he found that in children, the three most important reasons for developing asthma and other hyperventilation disorders are:

1. Over feeding.
2. Over heating (too much clothing, too many blankets from over protective parenting)
3. Too little physical activity.

Dr. K.P Buteyko

Theory
- Bronchospasm results directly from low alveolar CO₂
- Inflammatory hyper responsiveness due to malfunctioning immune system (see pages 8, 9)

The first Clinical Trial in the west.

Double blinded controlled trial (Brisbane 1995)

- 170 candidates presented, stratified and randomized:
 - 19 to BBT
 - 20 to Control
 - 20 normals were also tested
- Average of 23 years of asthma (3-60)
- “Buteyko” was never mentioned.
- Controls taught standard physiotherapy relaxation and diaphragmatic breathing techniques.
- Trial lasted 3 months when blinding was lost.
- Controls offered Buteyko therapy after trial.
Results after 12 Weeks

1. Medication used
 • Bronchodilators reduced by 96%
 • Steroids reduced by 49%

2. Minute Volume and ETCO₂

<table>
<thead>
<tr>
<th>ETCO₂</th>
<th>Buteyko</th>
<th>Control</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>33</td>
<td>32</td>
<td>41</td>
</tr>
<tr>
<td>After</td>
<td>35</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MV</th>
<th>Buteyko</th>
<th>Control</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>14.0</td>
<td>14.2</td>
<td>11.9</td>
</tr>
<tr>
<td>After</td>
<td>9.6</td>
<td>13.3</td>
<td></td>
</tr>
</tbody>
</table>

- Asthmatics have significantly lower ETCO₂ than normals
- Minute volume significantly reduced in Buteyko group
- Increase in ETCO₂ in Buteyko group statistically NOT significant
- Reduction in medication use found to be proportional to reduction in minute volume

3. Quality of Life and Symptom Score

<table>
<thead>
<tr>
<th>QOL</th>
<th>0 - 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buteyko</td>
<td>Control</td>
</tr>
<tr>
<td>Up 1.4</td>
<td>Up 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptom Score</th>
<th>Buteyko</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvement</td>
<td>71%</td>
<td>14%</td>
</tr>
</tbody>
</table>

4. Lung Function Testing

 No statistically significant improvement in Lung function noted. See § 9.

9. Lung Function Test

At this stage the sole impediment to acceptance of the Buteyko method for dealing with asthma appears to be the lack of improvement in lung function. But this argument is flawed on 3 levels:

1. There was no reduction in lung function not withstanding the significant reduction in medication.
2. According to Buteyko’s hyperventilation theory, bronchospasm is not a disease, but a natural reaction by the body to hyperventilation. It just so happens that asthmatics have lungs that perform this function particularly well.
3. The test itself affects the variable being measured by constricting the bronchioles during the hyperventilation manoeuvre. Measurement science invalidates this type of testing.
References:

28. Pfeffer JM, “Hyperventilation and the hyperventilation syndrome”, Postgrad Med, VOL 60(Sup.2), 1984, 12-15

Clinical Trials

See Ref.: 2, 6, 19, 20, 21, 25, 33

Peter Kolb
64 VALENCE ROAD, CARMEL, 6076
WESTERN AUSTRALIA
Mobile:041-991-6325 Messages: +61-8-9293-5414
E-mail: pkolb@westnet.com.au