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Abstract. In this paper we discuss the analysis of mobile networks communi-
cation patterns in the presence of some anomalous “real world event”. We argue
that given limited analysis resources (namely, limited number of network edges
we can analyze), it is best to select edges that are located around ‘hubs’ in the
network, resulting in an improved ability to detect such events. We demonstrate
this method using a dataset containing the call log data of 3 years from a major
mobile carrier in a developed European nation.
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1 Introduction

Analyzing the spreading of information in human networks has long been the focus
in many studies of social networks [17, 20]. A main challenge in practical analysis of
the way information flows between network’s participants is the trade-off between the
available analytic resources and the accuracy of the prediction they yield [3, 6].

Imagine a scenario where several people observe some extraordinary event, which
triggers a cascading sequence of reports between “social neighbors”. In this scenario,
it is possible for an external observer to track the volume of network traffic, but not its
content. How might that observer effectively make the inference that an extraordinary
event has occurred?

This is in fact a plausible scenario, with the existence of communication systems
where timing and volume of traffic is observed, but (typically) not content. Mobile
phones are particularly notable in this regard, because of how pervasive they are.
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Here we build on work examining detection of anomalous events in networks [10],
but with the focus on how to aggregate those signals in a computationally efficient
fashion. That is, if one cannot observe all nodes and edges, how best to sample the
network? We argue that an efficient monitoring strategy is focusing on network edges
that are located in vicinity to network hubs.

We demonstrate our approach using a comprehensive dataset, containing the entire
internal calls as well as many of the incoming and outgoing calls within a major mo-
bile carrier in a west European country, for a period of roughly 3 years. During this
period that mobile users have made approximately 12 billion phone calls. We used the
company’s log files, providing all phone calls (initiator, recipient, duration, and timing)
and SMS/MMS messages that the users exchange within and outside the company’s
network. The dataset also identifies the active cell towers of each call, thereby offering
real time location (with tower resolution) data for each user. All personal details have
been anonymized, and we have obtained IRB approval to perform research on it.

The rest of this paper contains related work that is discussed in Section 2, problem’s
definitions that is presented in Section 3, a demonstration of the proposed method using
real world cellular data in Section 4 and concluding remarks appear in Section 5.

2 Related Work

Recent research around the use of mobile network data for detection of extraordinary
events, had examined the question pertaining to the area where the event has occurred,
and its nature: a bomb attack is narrowly localized in space, thus likely the anomalous
calling activity will be limited to the immediate neighborhood of the event. This was
observed in an analysis of mobile data in the vicinity of a bomb attack [10].

It has been recently shown that in trying to assess the societal changes and anoma-
lous patterns that emerge in response to emergencies and security related events, it
is crucial to understand the underlying social network [26, 27], the role of the link
weights [16], as well as the response of the network to node and link removal [2].

Other works had examined the evolution of social groups, developing algorithms
capable of identifying “new groups” – a certain kind of anomalous network pattern [23],
or ways to cluster networks based on social and behavioral features [11]. In [19] the
behavior and social patterns 2.5 million mobile phone users, making 810 million phone
calls, were analyzed and resulted in clustering of the network to components showing
striking resemblance to the geographical districts the users live in.

In the broader scope, this line of work aims for creating techniques for analyzing
mobile phone data as ubiquitous and pervasive sensors networks. These techniques can
be used to detect social relations [1, 13], evolving behavioral trends [7, 24], mobility
patterns [15], environmental hazards [18, 25], socio-economical properties [14], and
various security related features [4, 5].

Another question of interest with this regards is the specific way we utilize our
sensors network. Namely, given a large number of sensors, what would be the best way
to deploy them, in order to obtain maximal pervasiveness ? Is the optimal deployment
must always be symmetric (as some works actually argue against this approach [8, 9,
21]) ?
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3 Problem Definitions

We denote the “global social network” as a graph G =< V,E > where V is the set of
all nodes and E is the set of directed edges over those nodes (an edge (u, v) exists if
and only if there has been a reciprocal call between users u and v).

We assume that occasionally various anomalous events take place in the “real world”,
that are being directly observed by some of the network’s users, that subsequently may
(or may not) react by calling one of more of their friends (i.e. their neighbors in the
social network).

Given a mobile carrier M , we denote its set of covered nodes (derived from its
market share) as VM ⊆ V , and its set of covered edges as EM ⊆ E. An edge is covered
by M if at least one of its nodes is covered by M , i.e. :

EM = {(u, v)|(u, v) ∈ E ∧ (u ∈ VM ∨ v ∈ VM )}

We assume that the operator M is interested to detect anomalous events such as
emergencies, and to do so with as high accuracy rate as possible, and using as little
resources as possible. We measure the amount of resources required by M as the overall
number of edges being analyzed, or monitored. We denote the subset of edges processed
by M as the “monitored edges”, SM ⊆ EM .

Given an upper bound, ϵ on the size of |SM |
|E| , we are interested in the highest detec-

tion performance obtainable by monitoring a portion of the edges smaller than ϵ.
Throughout this work we refer to the “1 ego-network” of a node v as the graph

G1(V1, E1) such that V1 contains all of the nodes u such that there exists an edge (v, u)
in E, and that E1 contains all the edges from v to the nodes of V1. Furthermore, we
denote by the “1.5 ego-network” the graph G1.5(V1.5, E1.5) such that V1.5 = V1, and
that E1.5 = E1 ∪ ∆1.5 where ∆1.5 contains all the edges in E between nodes ui and
uj such that ui, uj ∈ V − v. The definitions of 1 ego-network and the 1.5 ego-network
are illustrated in Figure 1.

Fig. 1. An illustration of the 1 ego-network around (left chart) and the 1.5 ego-network (right
chart) around the same node v (marked in red). The nodes V1 = V1.5 are marked in blue. The E1

edges (left chart) and the E1.5 edges (right chart) are marked in green.
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3.1 Network Sampling

In this work we compare two alternatives for sampling a pre-defined number of net-
work’s edges. The basic method is simply to randomly select edges, with uniform distri-
bution (this will serve as the baseline for comparison). The second method we propose
in this work is to use the edges of the 1.5 ego-networks around network hubs – nodes
with high traffic (either incoming or outgoing). The rationale behind the use of hubs is
that hubs are highly likely to be exposed to new information, due to their high degree.

Specifically, given available resources ϵ, we select network nodes, v1, . . . , vn, from
VM , such that those nodes have the highest degrees in VM and the set SM =

∪
1≤i≤n E

1.5
M (vi)

does not contain more than ϵ portion of the edges, where E1.5
M (v) denote the 1.5 ego-

network around node v, that is – the edges between v and all of v’s neighbors, as well
as the edges between v’s neighbors and themselves :

E1.5
M (vk) = EM (vk)

∪
{(u1, u2)|(u1, u2) ∈ EM ∧ u1 ∈ E(vk) ∧ u2 ∈ E(vk)}

3.2 Anomalies Detection

In order to detect anomalies in the dynamics of the social network around the net-
work’s hubs we use the Local-Outlier-Factor (LOF) anomaly detection algorithm. In
other words, using the LOF algorithm for each network node we detected times where
anomaly features occur. Using majority voting between all the hubs under monitoring
we detected the times with the highest probability for anomalies.

We do so by ranking each day according to the number of hubs that reported it as
anomalous. Then, for each day we look at the 29 days that preceded it, and calculate
the final score of the day by its relative position in terms of anomaly-score within those
30 days. Namely, a day would be reported as anomalous (e.g., likely to contain some
emergency) if it is “more anomalous” compared to the past month, in terms of the
number of hubs-centered social networks influenced during it. Each day is given a score
between 0 and 1, stating its relative “anomaly location” within its preceding 30 days.

4 Emergency Detection using Real World Data

For evaluating our proposed monitoring method as an enhanced method for anomalies
detection we have used a series of anomalous events that took place in the mobile net-
work country, during the time where the call logs data was recorded. Figure 2 presents
the events, including their “magnitude”, in terms of the time-span and size of population
they influenced.

We have divided the anomalies into the following three groups :

Concerts and Festivals Events that are anomalous, but whose existence is known in
advance to a large enough group of people. Those include events number 9-16, as
appears in Figure 2.

“Small exposure events” Anomalous events whose existence is unforseen, and that
were limited in their effect. Those include events number 1,2,5,6.
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Fig. 2. A detailed list of the anomalous events that were identified, including their duration (in
hours) and the number of population that resided in the relevant region (denoted as GP ). Further
details can be found in [10].

“Large exposure events” Anomalous events whose existence is unforseen, that af-
fected a large population. Those include events number 3,4,7,8.

We rank each day between 0 and 1, according to its “anomalousness”, based on the
method explained above. This was done for increasingly growing number of monitored
edges, in order to track the evolution of the detection accuracy. The result of this process
was a series a numeric vectors pairs: (VBASE ,VHUBS)|E|, corresponding to the two
sampling methods used (e.g. the random network sampling for VBASE and the hubs-
sampling for VHUBS), for |E| edges which were monitored. In addition, we created a
binary vector V̂ having ‘1’ for anomalous days and ’0’ otherwise.

For |E| edges which were monitored we denote by δ|E| the difference between the
correlation coefficient of VHUBS and V̂ , and the correlation coefficient of VBASE and
V̂ , namely :

δ|E| = CORR(VHUBS , V̂)− CORR(VBASE , V̂)

for (VBASE ,VHUBS)|E|, and for CORR(x, y) the correlation coefficient function.
Figure 3 presents the values of δ|E| for number of monitored edges ranging between

300 and 800. It can be seen how the hubs-sampling outperforms the basic random-
sampling method. Furthermore, it can be seen that the positive delta increases with the
increase in the amount of available resources (namely, number of monitored edges).

Figure 4 presents the values of δ|E| for number of monitored edges between 300
and 800, for the three types of events.
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Fig. 3. The changes in the value of δ|E| for growing numbers of edges being analyzed, evaluated
using real anomalies and mobile calls data collected from a developed European country for a pe-
riod of 3 years. Positive values indicate a higher detection efficiency of hubs-sampling compared
to the basic random edge sampling, for the same number of monitored edges.

Fig. 4. The changes in the value of δ|E| for growing numbers of edges being analysed, segregated
by the type of event detected. Notice how concerts and festivals that have high exposure value a
generate relatively lower values of δ|E| (but still monotonously increase with |E|), while the small
exposure events are characterized by the highest values of δ|E|, specifically for low values of |E|.
It is important to note that a low value of δ|E| does not imply that the accuracy of the detection
itself is low, but rather that the difference in accuracy between the two methods is small.
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5 Conclusions

In this paper we examined the problem of monitoring resources allocation for analyzing
mobile networks, and have shown that by using social features of the network (namely,
focusing on network hubs) prediction accuracy of anomalous events can be significantly
increased. Specifically, we have shown that focusing on the neighborhood around a hub
(the connections among the alters) will detect events external to the network that pro-
voke spreading communication within the network. Hubs act as collectors (and as a re-
sult, amplifiers) of social information, through facilitating the spread of communication
in their immediate neighborhood. Traces of small scale information diffusion processes
are more likely to be revealed when tracking hubs’ activities compared to randomly
selected nodes. In this work we show that this effect is so intense that in many cases
it outperforms the analysis of significantly larger amount of random nodes (in order to
compensate of the fact that the analysis of a single hub requires coverage of much more
edges than required for an arbitrary node).

We anticipate, however, that this methodology could be further extended and re-
fined. For example, as hubs can sometimes be major bottlenecks, it is plausible that
other neighborhoods within a large scale network would more efficiently act as social
amplifiers. For example, it is possible that generally densely connected communities
within a network would more efficiently disseminate observable changes in commu-
nication behavior, virtually acting as a kind of “distributed hub” (the dramatic effect
of the network topology on the dynamics of information diffusion in communities was
demonstrated in works such as [12,22]). It is also possible that the incorporation of other
kinds of information about the properties of nodes would greatly improve the model.
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