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Abstract During the period 1985-2005, studies examined
the proposal that adaptation to a low-carbohydrate (<25 %
energy), high-fat (>60 % energy) diet (LCHF) to increase
muscle fat utilization during exercise could enhance perfor-
mance in trained individuals by reducing reliance on muscle
glycogen. Aslittle as 5 days of training with LCHF retools the
muscle to enhance fat-burning capacity with robust changes
that persist despite acute strategies to restore carbohydrate
availability (e.g., glycogen supercompensation, carbohydrate
intake during exercise). Furthermore, a 2- to 3-week exposure
to minimal carbohydrate (<20 g/day) intake achieves adap-
tation to high blood ketone concentrations. However, the
failure to detect clear performance benefits during endurance/
ultra-endurance protocols, combined with evidence of
impaired performance of high-intensity exercise via a down-
regulation of carbohydrate metabolism led this author to dis-
miss the use of such fat-adaptation strategies by competitive
athletes in conventional sports. Recent re-emergence of
interest in LCHF diets, coupled with anecdotes of improved
performance by sportspeople who follow them, has created a
need to re-examine the potential benefits of this eating style.
Unfortunately, the absence of new data prevents a different
conclusion from being made. Notwithstanding the outcomes
of future research, there is a need for better recognition of
current sports nutrition guidelines that promote an individu-
alized and periodized approach to fuel availability during
training, allowing the athlete to prepare for competition
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performance with metabolic flexibility and optimal utilization
of all muscle substrates. Nevertheless, there may be a few
scenarios where LCHF diets are of benefit, or at least are not
detrimental, for sports performance.

Key Points

The current interest in low carbohydrate high fat
(LCHF) diets for sports performance is based on
enthusiastic claims and testimonials rather than a
strong evidence base. Although adaptation to a
LCHF (whether ketogenic or not) increases the
muscle’s capacity to utilize fat as an exercise
substrate, there is no proof that this leads to a clear
performance advantage. In fact, there is a risk of
impairing the capacity for high intensity exercise.

The current guidelines for carbohydrate intake in the
athlete’s training diet appear to be poorly
understood. Sports nutrition experts do not promote a
“high carbohydrate diet” for all athletes. Rather, the
evolving model is that athletes should follow an
individualized approach, whereby carbohydrate
intake is periodized throughout the training cycle
according to the fuel needs of each workout, the
importance of performing well in the session and/or
the potential to amplify the adaptive response to
exercise via exposure to low carbohydrate
availability. There is a need for ongoing research and
practice to identify a range of approaches to optimal
training and competition diets according to the
specific requirements of an event and the experience
of the individual athlete.
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1 Introduction

In 2006, after ~15 years of failed attempts to harness
adaptations to a high-fat diet as an ergogenic strategy for
sports performance in well-trained competitors, this author
and a colleague were invited to contribute a commentary
on the publication of a new study from the University of
Cape Town [1]. After careful inspection of the paper, we
speculated on its role as ‘the nail in the coffin’ of fat
adaptation for athletic performance [2]. We wrote about
what is now known as low-carbohydrate, high-fat (LCHF)
diets, “... it seems that we are near to closing the door on
one application of this dietary protocol. Scientists may
remain interested in the body’s response to different dietary
stimuli, and may hunt for the mechanisms that underpin the
observed changes in metabolism and function. However,
those at the coal face of sports nutrition can delete ‘fat
loading’ and high-fat diets from their list of genuine
ergogenic aids for endurance and ultra-endurance sports—
at least for the conventional events within these categories”
[2].

A decade later, theories and claims that fat adaptation
can enhance sports performance have strongly re-emerged
from several sources via peer-reviewed literature [3-6], lay
publications [7], and a highly developed information net-
work that did not exist during the previous incarnation of
this dietary theory: social media [8, 9]. Because of the
number and fervor of the discussions and the rapidity/reach
of the information spread among both scientific and athletic
circles, there is a need to re-examine the proposal that an
LCHF diet enhances sports performance in competitive
athletes. This review summarizes the theory and the evi-
dence to support LCHF diets for athletic performance. It
reviews experimental data that informed the conclusions
made by this author in 2006 and the context of competitive
sport to which they were applied. It then frames the current
claims made for the LCHF diet and athletic performance
against the current sports nutrition guidelines and any
additional evidence against which they should be judged.
Finally, it provides a judgement about whether there is
justification to recommend the LCHF diet for athletic
performance, overall or in specific scenarios, and the
research that should be undertaken to continue to evolve
the guidelines for the optimal training/competition diet. To
provide objectivity in discussing the current promotion of
the LCHF diet for enhanced sports performance, quotes
from key proponents taken from both peer-reviewed liter-
ature and less formal sources are presented. While the
inclusion of the latter sources in a scientific review may be
considered unconventional, it is now recognized that many
scientists actively use social media to promote their views
[10] and even conduct research [11], albeit involving non-
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traditional methodologies. Therefore, it provides an
important source of information for constructing the theo-
ries that need to be examined. In addition, although the
examination of current evidence is primarily based on peer-
reviewed literature involving well-controlled scientific tri-
als in trained individuals [12], consideration will be given
to anecdotal accounts provided via lay sources to guide
future research efforts or identify scenarios in which LCHF
diets appear to have utility.

2 Sports Performance: A Brief Overview of Fuel
Systems

Although it is beyond the scope of this review to ade-
quately summarize the determinants of effective training
and optimal competition performances, several general
comments related to fueling strategies for training and
competition are provided to add context to discussions in
this review. Sporting events last from seconds (e.g., jumps,
throws) to weeks (e.g., Tour de France cycling stage race),
with success being determined by a complex and often
changing range of characteristics, including power,
strength, endurance, agility, skill, and decision making.
The role of training is to accumulate adaptations in the
muscle and other body organs/systems to achieve specific
characteristics that underpin success in the athlete’s event
via a series of systematic and periodized stimuli involving
the interaction of nutrition and exercise [13]. Fueling
strategies during this period should also be periodized [14]
according to the demands of the session and the relative
priorities of training with high intensity/quality, practicing
competition nutrition and promoting the adaptive response
to the training stimulus (see Table 1). In the competition
phase, the key role for nutrition is to address the specific
limiting factors that would otherwise cause fatigue or a
decrement in performance [15]. In many sporting events,
the capacity of body fuel stores to support optimal function
of the muscle and central nervous system (CNS) is one
such factor.

In the muscle, exercise is fueled by an intricate system
that integrates the production of adenosine triphosphate
(ATP) from a combination of intra- and extra-cellular
substrates via pathways that are oxygen dependent (oxi-
dation of fat and carbohydrate) and independent (phos-
phocreatine system and anaerobic glycolysis). The relative
contribution of various substrates to the fuel mix depends
on various factors, including the mode, intensity, and
duration of exercise, the athlete’s training status, and both
recent and longer-term dietary intake [16]. For optimal
competition performance, the athlete needs a combination
of adequate fuel stores in relation to the demands of his or
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Typically unable to increase (and may even impair) exercise

Current knowledge and guidelines

Prolonged sustained or intermittent sports
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capacity/performance since enhanced fat oxidation is unable to

compensate for low muscle glycogen stores

(usually >75 min) in which additional fuel source

can replace/spare otherwise limited muscle

short-term (1-3 days) high-fat diet

Protocol: not recommended [25, 26]

glycogen stores: e.g., marathon, cycling road
races, triathlon, team and racket sports

No clear performance benefit despite

Increase in fatty

increased fat oxidation. Use of intralipid

acid availability:
high-fat pre-event

infusions and heparin to ensure high fatty

acid availability is not practical

meal (+heparin)
or intralipid

infusion

Protocol: not recommended [25, 26]

Typically unable to increase (and may even

Increase in fatty

impair) exercise capacity/performance

acid availability:

feeding of

since the large amounts needed to impact
fuel metabolism cause gut problems [68]

medium chain
triglycerides

Protocol: not recommended [25, 26]

during exercise

CHO carbohydrate, CNS central nervous system

her event as well as ‘metabolic flexibility’, hereby defined
in the context of sports performance as the ability to rapidly
and efficiently utilize these pathways to maximize ATP
regeneration. Although we lack specific data on the meta-
bolic pathways and substrate use in the majority of com-
petitive sports, technological advances such as the
development of power meters and global positioning sys-
tem units have allowed the collection of information such
as power output, heart rate, and movement patterns that
indirectly capture the metabolic demands of some events.
A key understanding from such data is that the fuel
demands of many sports are complex and often misun-
derstood. An example of particular relevance to this review
is that sports such as multi-stage road cycling, triathlons,
and marathons are classified as endurance and ultra-en-
durance events conducted at sub-maximal exercise inten-
sities; in fact, for competitive athletes at least, the terrain,
pacing strategies, and tactical elements in these events
mean that brief but critical parts of the race that often
determine the outcomes (e.g., breakaways, hill climbs,
surges, sprint finishes) are conducted at higher and often
near maximal pace [17-19]. In addition, for such athletes,
even the ‘background’ pace from which these brief spurts
are performed in endurance sports such as the marathon
requires high exercise economy and a sustained use of very
high percentage of maximal aerobic intensity [20]. The
fueling of the brain and CNS also needs to be considered,
since motor recruitment, perception of effort, pacing
strategies, and the execution of skills and decision making
are also important in determining performance. Here, the
main substrates are blood glucose and glycogen stored in
the astrocytes [21, 22], although under certain conditions
where blood concentrations of ketone bodies are high, they
may provide an additional fuel source [23].

Competition nutrition strategies that can enhance fuel
availability are summarized in Table 1 and include strate-
gies that attempt to directly increase the size of a limited
muscle store (e.g., loading with creatine or carbohydrate)
as well as others that attempt to spare the use of the limited
store by providing an alternative substrate. For events
greater than ~ 1 h duration, the focus is on tactics that
increase carbohydrate availability for the muscle and brain,
since low carbohydrate availability is associated with
fatigue via a number of peripheral and central mechanisms
[24]. Body fat stores—comprising intramuscular triglyc-
eride (IMTG), blood lipids, and adipose tissue IMTG—
represent a relatively abundant fuel substrate even in the
leanest of athletes. Although endurance training is known
to enhance an athlete’s capacity for fat oxidation during
exercise [16], a large body of research over the past 3
decades has been dedicated to exploring ways in which this
can be further up-regulated to enhance exercise capacity
and sports performance by reducing the reliance on the
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muscle’s limited glycogen stores and/or the need to con-
sume carbohydrate during the event. As summarized in
Table 2 and in several reviews [25, 26], acute tactics to
increase free fatty availability by increasing fat intake in
the hours or days prior to exercise, or consuming fat during
exercise have proved unsuccessful or impractical. There-
fore, attention has shifted to chronic tactics that could re-
tool the muscle to make better use of fat as an exercise fuel.

3 Chronic Adaptation to High-Fat Diets: Research
from 1980 to 2006

In contrast to short-term exposure to an LCHF diet, which
reduces exercise capacity by depleting liver and muscle
stores of glycogen without producing a compensatory
increase in fat oxidation [27, 28], longer-term adherence to
this dietary regimen causes a range of adaptations to
enhance the breakdown, transport, and oxidation of fat in
skeletal muscle [29]. Several different approaches have
been investigated.

3.1 Ketogenic High-Fat Diets

According to recent reviews [5, 6], historical observations
of considerable exercise stamina in explorers who followed
traditional Inuit diets almost devoid of carbohydrate (en-
ergy contribution: 85 % fat, 15 % protein) led to a labo-
ratory investigation of this phenomenon in the 1980s [30,
31]. In this study by Dr. Stephen Phinney, carefully con-
ducted in a metabolic ward, five well-trained cyclists were
tested following 1 week of a carbohydrate-rich diet
(~57 % of energy) and again following 28 days of a
severely carbohydrate-restricted (<20 g/day) but isoener-
getic diet with energy contributions of 85 % fat and 15 %
protein (Table 2). This diet was associated with ketosis, as
demonstrated by increased blood concentrations of beta-
hydroxybutyrate from <0.05 to >1 mmol/L after a week,
and this was maintained thereafter. Exercise was monitored
by a time to exhaustion cycling test at ~63 % of maximal
aerobic capacity (VO,max) under conditions of low car-
bohydrate availability (overnight fast and water intake
during the ride) [30], with the mean result being a main-
tenance of exercise capacity (see Fig. 1). Despite the
negligible intake of carbohydrate, resting muscle glycogen
stores were not depleted but rather reduced to ~45 % of
values seen on the high-carbohydrate phase (76 vs.
140 mmol/kg wet weight muscle). Furthermore, in both
trials, at the cessation of exercise, muscle glycogen
depletion was seen in type 1 fibers with a fourfold reduc-
tion in its contribution to fuel use in the LCHF trial. Blood
glucose contribution to fuel use was reduced threefold,
with gluconeogenic contributions from glycerol released

from triglyceride use as well as lactate, pyruvate, and
certain amino acids preventing hypoglycemia during
exercise as well as allowing glycogen storage between
training sessions. Lipid oxidation was increased to make up
the fuel substrate for the exercise task.

The researchers’ insights into the results of their study
were that “metabolic adaptation to limit CHO [carbohy-
drate] oxidation can facilitate moderate submaximal exer-
cise during ketosis to the point that it becomes comparable
to that observed after a high CHO diet.” Furthermore, they
noted that “because muscle glycogen stores require many
days for repletion, whereas even very lean individuals
maintain appreciable caloric stores as fat, there is potential
benefit in this keto-adapted state for athletes participating
in prolonged endurance exercise over two or more days”.
However, they also commented on the results of VO,max
tests undertaken during each dietary phase with respect to
the ketogenic diet: “... the price paid for the conservation
of CHO during exercise appears to be a limitation of the
intensity of exercise that can be performed ... there was a
marked attenuation of respiratory quotient [RQ] value at
VO,max suggesting a severe restriction on the ability of
subjects to do anaerobic work”. Their explanation for this
observation was that “the controlling factor does not
appear to be the presence or absence of substrate in the
fiber. Rather it is more likely a restriction on substrate
mobilization or fiber recruitment. The result, in any case, is
a throttling of function near VO,max”.

The researchers were clear that their ketogenic diet did
not, as is popularly believed, enhance exercise capacity/
performance, noting that, at best, endurance at sub-maxi-
mal intensities was preserved at the expense of ability to
undertake high-intensity exercise. However, examination
of the design and outcomes call for further caution.
Although excellent dietary control was achieved in this
study, few details were provided of the training protocols
followed by the cyclists. It is curious in light of the order
effect in the study design (all subjects undertook the
ketogenic exercise trial 4 weeks after their carbohydrate
trial), that no benefit to exercise capacity was derived from
an additional training period. Furthermore, it should be
recognized that the exercise task was undertaken under
conditions that should have favored any advantage to being
adapted to low carbohydrate availability (moderate-inten-
sity exercise, overnight fast, no intake of carbohydrate
during exercise). However, and most importantly, the focus
on the mean outcomes of the trial in a small sample size
hides the experiences of the individual cyclists. As shown
in Fig. 1, the published interpretations of the results of this
study are largely skewed by the experience of a single
subject who showed a large enhancement of exercise
capacity after the ketogenic diet (and additional training
period). Indeed, statistical analysis of the same data using a
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O High CHO
O Low CHO High Fat

147+ 13 <\/>
A
151 + 25 7 X —‘

N R B N N L
40 80 120 160 200

Time (min)

Fig. 1 Exercise capacity (time to exhaustion at 62-64 % maximal
aerobic capacity, equivalent to ~ 185 W after 7 days of high-
carbohydrate diet followed by 28 days of low-carbohydrate high-fat
diet. Data represent mean =+ standard error of the mean from five
well-trained cyclists (not significantly different), with individual data
points represented by O. Redrawn from Phinney et al. [30] CHO
carbohydrate

magnitude-based inferences approach [32] reveals an
unclear outcome, with the chances of a substantially pos-
itive, trivial, and substantially negative outcome being 32,
32, and 36 %, respectively (Stellingwerff, personal
communication).

3.2 Non-Ketogenic High-Fat Diets

A number of studies have been undertaken in trained
individuals involving exposure for >7 days to a diet high
in fat and restricted in carbohydrate content without
achieving ketosis [33-37]; much of this work was driven
by Dr. Vicki Lambert and Professor Tim Noakes from the
University of Cape Town. Two studies in which carbohy-
drate and fat intake was manipulated in trained populations
have not been included in this summary since the dietary
changes were not sufficient to meet the criteria of >60 %
fat intake or <25 % carbohydrate intake [38, 39]. The
summarized literature (Table 3) includes one study that
focused on titrating the carbohydrate content of the diet in
modestly trained female cyclists [33] and four studies that
specifically set out to adapt their subjects to a high-fat diet
[34-37], although in one case, the smaller degree of car-
bohydrate restriction resulted in a failure to create clear
differences in muscle glycogen content between treatments
[37]. Again, the diets provided within studies were isoen-
ergetic and aimed at maintaining energy balance.

In the case of studies specifically focused on adapting
athletes to a high fat intake, the rationale of increasing
dietary fat involved increasing IMTG stores [37], restrict-
ing carbohydrate to reduce muscle glycogen content [34—

36] and allowing sufficient exposure for adaptations to
occur to retool the muscle to alter fuel utilization patterns
during exercise to compensate for altered fuel availability
[34-37]. The avoidance of ketosis was chosen to remove its
confounding effect on the relationship between respiratory
exchange ratio and substrate utilization during exercise,
thereby preventing a true measurement of changes in car-
bohydrate and fat oxidation during exercise [34]. A range
of adaptive responses to the LCHF diet was observed or
confirmed in the trained individuals.

As summarized in Table 3, the effect of exposure to the
LCHF diets on exercise capacity/performance was tested
under a range of different exercise scenarios and feeding
strategies. This includes a series of exercise protocols
undertaken sequentially [34] or within a single exercise
task [36], as well as dietary strategies that would either
further increase fat availability [33, 36, 37], increase car-
bohydrate availability [35-37], or deliberately decrease
carbohydrate availability against current guidelines or
common practices [34]. In some cases, different dietary
strategies were implemented before and during the exercise
protocols for the high carbohydrate and LCHF trials,
making it difficult to isolate the effects of the fat adaptation
per se [36, 37]. This variability in study design makes it
difficult to make a single and all-encompassing assessment
of the effect of LCHF on exercise, as is popularly desired.
Theoretically, however, it offers the opportunity to identify
conditions under which adaptation to a high-fat diet may be
of benefit or harm to sports performance. Unfortunately,
the small number of studies and the small sample sizes in
the available literature do not allow this opportunity to be
fully exploited. The learnings from these studies have been
incorporated into the summary at the end of this section. In
the meantime, attention is drawn to two important obser-
vations from this body of literature:

1. Evidence of reduced utilization of muscle glycogen as
an exercise fuel following adaptation to LCHF cannot
be considered true glycogen ‘sparing’ since the
observations are confounded by lower resting glyco-
gen concentrations, which are known to reduce
glycogen use per se [40]. Only scenarios in which
muscle glycogen concentrations are matched prior to
exercise can allow the specific effect of fat adaptation
on muscle glycogen utilization as an exercise fuel to be
measured.

2. The period required for adaptation to the non-keto-
genic LCHF is shorter than previously considered.
According to the time course study of Goedecke et al.
[35], whereby muscle fuel utilization was tracked after
5, 10, and 15 days of exposure to the LCHF diet, a
substantial shift to increase fat oxidation and reduce
carbohydrate utilization was achieved by 5 days
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High-Fat Diets and Sports Performance

without further enhancement thereafter. Of course, it
should be noted that a shift in respiratory exchange
ratio during exercise, marking shifts in substrate
utilization can reflect the prevailing availability of
substrate rather than a true adaptation in the muscle.

However, other studies have confirmed the presence of a
robust change in the muscle’s substrate use via observa-
tions of alterations in the concentrations or activity of
proteins or metabolites that regulate fatty acid availability,
as well as the persistence of increased fat oxidation in the
face of abundant carbohydrate supplies. Such evidence is
discussed later.

Importantly, the observation from this series of stud-
ies—that retooling of already trained muscle to optimize
muscle utilization of fat as an exercise fuel can be achieved
in a conveniently short period—Ied in part to the next
phase of investigation, in which attempts were made to
enhance sports performance by separately optimizing the
muscle’s capacity for lipid and carbohydrate utilization.

3.3 Fat Adaptation and Carbohydrate Restoration

In the absence of finding clear benefits from adapting to a
high-fat diet on exercise performance, attention was drawn
to a tactic of dietary periodization in which a short-term
adaptation to an LCHF diet might be followed by glycogen
restoration (‘carbohydrate loading’) with 1-3 days of a
carbohydrate-rich diet with [1, 36, 41-44] or without [45]
additional carbohydrate intake pre- and during subsequent
exercise. Such strategies were aimed at promoting simul-
taneous increases in fat and carbohydrate availability and
utilization during exercise. Indeed, studies that directly
compared fuel utilization during submaximal exercise
under controlled conditions after the fat adaptation protocol
and then again after carbohydrate restoration practices [41,
42, 45] showed that the muscle re-tooling was robust
enough to maintain an increase in fat utilization during
exercise in the face of the practices that supported plentiful
carbohydrate availability (Fig. 2).

As discussed in the previous section, a range of per-
mutation and combinations of dietary strategies and exer-
cise protocols can be investigated in combination with the
fat adaptation and carbohydrate restoration strategies to test
the effect of such dietary periodization on exercise
capacity/performance. The available literature is summa-
rized in Table 4 and includes multiple studies from the
author’s own laboratory as well as from the University of
Cape Town. However, within this group of investigations,
only one fully published study [1] attempted to investigate
an exercise test that bears any real resemblance to a
sporting competition; its characteristics include a sole
focus on performance rather than a hybrid of metabolism
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Fig. 2 Effect of 5 days of adaptation to a low-carbohydrate high-fat
diet and 1 day of a high-carbohydrate diet to restore muscle glycogen
(FAT-adapt) on rate of carbohydrate oxidation (a) and rate of fat
oxidation (b) during cycling at 70 % maximal aerobic capacity
compared with control trial (6 days of a high-carbohydrate diet). Data
are taken from two studies in which no additional carbohydrate was
consumed on the day of a 120-min cycling bout at this same workload
(—carbohydrate) [45] or where carbohydrate was consumed before
and throughout the 120-min cycling task (+carbohydrate) [41].
Values are mean £ SEM for eight well-trained cyclists at day 1
(baseline), day 6 (after 5 days of low-carbohydrate high-fat diet or
5 days of high-carbohydrate diet) and during 120 min of steady-state
cycling on day 7 (following 1 day of high-carbohydrate diet). The
adaptation to 5 days of high-fat diet increased fat utilization and
reduced carbohydrate utilization during submaximal exercise, per-
sisting despite the restoration of muscle glycogen on day 6 or the
intake of additional carbohydrate before/during exercise on day 7.
Reproduced from Burke et al. [41] with permission. CHO carbohy-
drate, HCHO high carbohydrate

and performance, self-pacing, and a protocol interspersing
passages of high-intensity exercise against a background of
moderate-intensity work to reflect the stochastic profile of
many real-life events. This study [1], which prompted the
2006 editorial about which this review revolves, merits
special reflection before a general summary of the literature
is provided.

Havemann et al. [1] had well-trained cyclists undertake
either a 6-day LCHF diet followed by a 1-day high-
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Fig. 3 Power outputs during 1- and 4-km sprints undertaken within a
100-km self-paced cycling time trial after a 6-day high-carbohydrate
diet and 5 days of a low-carbohydrate high-fat diet followed by 1 day
of a high-carbohydrate diet (fat-adapt) [1]. 100-km total time: 153:10
vs. 156:54 min for carbohydrate vs. FAT-adapt, not significant.
Values are means =+ standard deviation for eight well-trained cyclists.
Power outputs decreased over time in both trials with 4-km sprints
(#p < 0.05), but did not differ between trials. However, with the 1-km
sprints, mean power was significantly lower after the fat-adaptation
treatment (Fat-adapt) compared with the high-carbohydrate diet
(*p < 0.05). Reproduced from Havemann et al. [1] with permission.
HCHO high carbohydrate

carbohydrate diet or 7 days of high-carbohydrate diet before
undertaking a laboratory-based cycling protocol designed to
test some of the features of endurance sporting events.
Specifically, cyclists were required to undertake a series of
sprints throughout the self-paced 100-km trial: 4-km sprints
undertaken at ~78-84 % peak power output and 1-km
sprints undertaken at >90 % peak power output (see Fig. 3).
Overall, differences in the performance times for the 100-km
time trial (TT) were not statistically significant, although the
mean performance on the high-carbohydrate trial was 3 min
44 sor ~2.5 % faster (153 min, 10 s for high-carbohydrate
trial and 156 min, 53 s for LCHF adapted, p = 0.23). While
there was no difference between trials with regard to the
4-km sprint times, performance of the 1-km sprints was
significantly impaired in the LCHF-adapted trial in all sub-
jects, including the three subjects whose overall 100-km TT
performance was faster than in their high-carbohydrate trial.
The authors stated that although adaptation to the LCHF diet
followed by carbohydrate restoration increased fat oxidation
during exercise, “it reduced high-intensity sprint power
performance, which was associated with increased muscle
recruitment, effort perception and heart rate”.

Although the mechanisms associated with the compro-
mised performance in this study were unclear, speculations
by the authors included “increased sympathetic activation,
or altered contractile function and/or the inability to oxi-
dize the available carbohydrate during the high intensity
sprints”. Indeed, evidence for this latter suggestion was
provided by data from this author’s own laboratory col-
lected contemporaneously. In an investigation of possible
mechanisms to explain the performance outcomes

@ Springer

01 20 min

20 min @ 70% VO2max 1 min @ 150% PPO

Fig. 4 Pyruvate dehydrogenase activity in the active form at rest,
during 20 min of cycling at ~70 % maximal aerobic capacity
followed by a 1-min sprint at 150 % of peak power output after either
a 5-day adaptation to a low-carbohydrate high-fat diet followed by a
1-day high-carbohydrate diet (FAT-adapt) or 6 days of a high-
carbohydrate diet. Values are means & standard error of the mean for
seven well-trained cyclists. *Different from O min, *trial effect:
HCHO trial > FAT-adapt trial; Ttime point: HCHO trial > FAT-
adapt where significance is set at p < 0.05. Reproduced from
Stellingwerff et al. [46] with permission. HCHO high carbohydrate,
PDH pyruvate dehydrogenase, PPO peak power output, VO,max
maximal aerobic capacity

associated with the LCHF-adaptation and carbohydrate-
restoration model, we examined muscle metabolism at rest,
during sub-maximal exercise, and after an all-out 1-min
sprint following the usual dietary treatment (Fig. 4) [46].
In comparison with the control trial (high-carbohydrate
diet), we found that adaptation to the LCHF diet and
subsequent restoration of muscle glycogen was associated
with a reduction in glycogenolysis during exercise, and a
reduction in the active form of pyruvate dehydrogenase
(PDHa) at rest, during submaximal cycling, and during
sprint cycling. Explanations for the down-regulated activ-
ity of this enzyme complex responsible for linking the
glycolytic pathway with the citric acid cycle included the
observed post-sprint decrease in concentrations of free
adenosine monophosphate (AMP) and adenosine diphos-
phate (ADP) and potentially an up-regulation of PDH
kinase (PDK) activity, which has previously been observed
in association with a high-fat diet [47]. This study provided
evidence of glycogen ‘impairing’ rather than ‘sparing’ in
response to adaptation to an LCHF diet and a robust
explanation for the impairment of key aspects of exercise
performance as a result of this dietary treatment.

3.4 Summary of Learnings from the Literature:
1999-2006

Key interpretations by this author from the literature on
adaptation to an LCHF conducted up until 2006 are sum-
marized below:
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1. Exposure to an LCHF diet in the absence of ketosis
causes key adaptations in the muscle in as little as
5 days to retool its ability to oxidize fat as an exercise
substrate. Adaptations include, but are not limited to,
an increase in IMTG stores, increased activity of the
hormone-sensitive lipase (HSL) enzyme, which mobi-
lizes triglycerides in muscle and adipose tissue,
increases in key fat-transport proteins such as fatty
acid translocase [FAT-CD36] and carnitine-palmitoyl
transferase (CPT) (for extended review, see Yeo et al.
[29]). Together, these adaptations further increase the
already enhanced capacity of the aerobically trained
muscle to utilize endogenous and exogenous fat stores
to support the fuel cost of exercise of moderate
intensity. Rates of fat oxidation during exercise may be
doubled by fat-adaptation strategies.

2. These muscle-retooling activities stimulated by fat
adaptation are sufficiently robust that they persist in
the face of at least 36 h of aggressive dietary strategies
to increase carbohydrate availability during exercise
(e.g., glycogen supercompensation, pre-exercise car-
bohydrate intake, high rates of carbohydrate intake
during exercise). Although the increased carbohydrate
availability reduces rates of fat oxidation compared
with fat adaptation alone, fat utilization remains
similarly elevated above comparative rates in the
absence of fat adaptation. The time course of the
‘washout’ of retooling is unknown.

3. In addition to up-regulating fat oxidation at rest and
during exercise, exposure to an LCHF diet down-
regulates carbohydrate oxidation during exercise.
Direct [34, 42, 45] and indirect [45] techniques of
measuring the source of changes in substrate utiliza-
tion show that changes in utilization of muscle
glycogen, rather than blood glucose or exogenous
glucose, account for the change in carbohydrate use.
The reduction in glycogen use persists in the face of
glycogen supercompensation [45] and high-intensity
exercise [46], noting that it is robust and independent
of substrate availability. A down-regulation of PDH
activity explains at least part of the impairment of
glycogen utilization as an exercise fuel [46], repre-
senting a decrease in metabolic flexibility.

4. Despite the enhanced capacity for utilization of a
relatively limitless fuel source as an exercise substrate,
fat-adaptation strategies with or without restoration of
carbohydrate availability do not appear to enhance
exercise capacity or performance per se. Several inter-
related explanations are possible for the failure to
observe benefits:

e Type II statistical error: failure to detect small but
important changes in performance due to small

sample sizes [34], individual responses [42, 45],
and poor reliability of the performance protocol.
While this explanation often looks attractive [43],
in some cases, further exploration and enhanced
sample size increases confidence in the true
absence of a performance enhancement [43].

e Benefits are limited to specific scenarios: charac-
teristics of conditions under which fat-adaptation
strategies appear to be more likely to be beneficial
include protocols of prolonged sub-maximal exer-
cise in which pre-exercise glycogen is depleted
and/or no carbohydrate is consumed during exer-
cise (e.g., low-carbohydrate availability).

e Benefits are limited to specific individuals: char-
acteristics of individuals who may respond to fat-
adaptation strategies include carbohydrate-sensi-
tive individuals who are subjected to scenarios in
which carbohydrate cannot be consumed during
exercise.

5. The experience of athletes, at least in the short-term
exposure to LCHF diets, is of a reduction in training
capacity and increase in perceived effort, heart rate,
and other monitoring characteristics, particularly in
relation to high-intensity/quality training, which plays
a core role in a periodized training program [40].

6. Fat-adaptation strategies may actually impair exercise
performance, particularly involving shorter high-inten-
sity events or high-intensity phases during a longer
event, which require power outputs or intensities of
85-90 % maximum level or above. This is likely to be
due to the impairment of the muscle glycogen
utilization needed to support high work rates, even in
scenarios where strategies to achieve high carbohy-
drate availability are employed.

On the basis that conventional competitive sports gen-
erally provide opportunities to achieve adequate carbohy-
drate availability, that fat-adaptation strategies reduce
rather than enhance metabolic flexibility by reducing car-
bohydrate availability and the capacity to use it effectively
as an exercise substrate, and that athletes would be unwise
to sacrifice their ability to undertake high-quality training
or high-intensity efforts during competition that could
determine the outcome of even an ultra-endurance sport,
this author decided to abandon a research and practical
interest in fat-adaptation strategies. A meta-analysis pub-
lished about the same time on the effect of the carbohy-
drate and fat content of athletic diets on endurance
performance [48] summarized that the heterogeneity
around their findings that high-carbohydrate diets (defined
as >50 % of energy from carbohydrate) have a moderate
(effect size 0.6) benefit on exercise capacity compared with
high-fat diets (defined as >30 % of energy from fat)
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showed that “a conclusive endorsement of a high-carbo-
hydrate diet is hard to make”. However, this heterogeneity
speaks to the limitations of undertaking a meta-analysis
with such a broad and undefined theme as well as the
problem of the ‘black and white’ thinking that is discussed
in the conclusion to this review.

4 Update on Fat Adaptation Literature Since 2006

Given the recent escalation in the promotion of LCHF diets
for sports performance, it could be assumed that the last
decade has seen the publication of a considerable number of
studies with clear evidence of benefits to sports performance
following the implementation of fat-adaptation strategies.
Yet, to the knowledge of this author, only two new investi-
gations of LCHF diets in athletes have appeared in the peer-
reviewed literature since 2006 [49, 50]. These studies,
summarized in Table 2, fail to show performance benefits
associated with a ketogenic LCHF diet, although there is
evidence of a small but favorable reduction in body fat levels.
Nevertheless, there are some peculiarities with the design or
methodologies of these studies, including the failure of one
study to achieve the carbohydrate restriction typically
associated with the ketogenic LCHF diet, and they have
failed to become widely cited, even by supporters of the
LCHF movement. Rather, the current interest in chronic
application of LCHF eating by athletes appears to be driven
by enthusiastic discussion in lay and social media by
(mostly) non-elite athletes of sporting success following
experimentation with such diets as well as a range of outputs
from several sports scientists who are researchers and
advocates of this eating style [3-8]. It is uncertain whether
there is a cause—effect relationship between these sources (or
the direction of any relationship), but the fervor merits
attention. In the absence of compelling new data, the reader
is alerted to several elements in the discussions that are
positive and some that are concerning:

1. Peer-reviewed publications from the key scientific
protagonists of the LCHF movement [3, 5, 6] generally
show measured and thoughtful insights, based on a re-
examination of previously conducted studies, personal
experiences, anecdotal observations from the sports
world, and the general interest in tackling modern
health problems with the LCHF approach [51, 52]. In
these forums, the discussion points include the lack of
evidence and equivocal outcomes of research to
support the performance benefits of LCHF but also
theoretical constructs around potential benefits to
metabolism, muscle, and brain function, inflammatory
and oxidative status, and body composition manage-
ment. Discussion generally targets the potential for
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“some” [5] athletes to respond to this different dietary
approach, with this being promoted to “individuals”,
“ultra-endurance athletes”, and “athletes involved in
submaximal endurance exercise” [6] while being
discouraged for use by athletes involved in “anaerobic
performance ... or most conditions of competitive
athletics” [6]. While there are some suggestions that a
larger group of athletes might benefit from an LCHF
approach, the general tone is that further investigation
of these theories is required [3-6].

The apparent caution expressed in peer-reviewed publi-
cations is generally not present in other outputs from the
same authors. Laybooks [7], web-based information, and
social media [8, 9] enthusiastically promote the LCHF
dietary approach for a larger group of athletes or athletes
in general, with a positive view that this is an evidence-
based strategy: “...[in regard to endurance events
(60-80 % VO,max)]: I don’t think there’s much doubt
that a low-carb high-fat diet is better. That’s because you
have enough fat stores to run for hours and hours and
hours. You don’t have many carbohydrate stores to allow
you to run for very long. Many of the world’s top
endurance athletes have gone low carb, high fat” [8]. The
differences between these viewpoints can be confusing,
as is the misrepresentation of the physiological require-
ments of competitive sports (see Sect. 2).

The current focus of the LCHF diet movement appears
to lie in ketogenic adaptation, or chronic adaptation to
a carbohydrate-restricted diet (<50 g/day carbohy-
drate) with high fat intakes (>80 % of energy).
Additionally recommended characteristics include
maintenance of moderate protein intake at ~ 15 % of
energy or ~ 1.5 g/kg/day, with the note that intake
should not exceed 25 % of energy intake or ketosis
will be suppressed, and the need to ensure adequate
intake of sodium and potassium at 3—5 and 2-3 g/day,
respectively [6]. Many of the theorized benefits from
the LCHF diet are claimed to come from the adapta-
tion to high circulating levels of ketone bodies, which
provide an additional fuel source for the brain and
muscle as well as achieve other health and functional
benefits [5, 6]. The amount of energy that can be
provided by ketones as an exercise substrate has been
neither calculated nor measured, making it impossible
to verify this claim. The time required to achieve
optimal adaptation (and, therefore, the period that
requires investigation in new studies) is claimed to be
at least 2-3 weeks, with at least 1 week required
before the feelings of lethargy and reduced exercise
capacity abate [5, 6]. With such chronic keto-adapta-
tion, it is considered unnecessary to consume carbo-
hydrate during exercise, or perhaps to consume it in
small amounts [5, 6]. As has been discussed in this
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review, the current evidence for these claims is
equivocal and mostly anecdotal. Until or unless further
research is undertaken, we are unlikely to resolve any
of the current questions and claims. The role of non-
ketogenic LCHF diets is not clear.

4. The current literature on LCHF diets is relentless in
promoting misunderstanding or misinformation on the
current guidelines for athletes in relation to carbohy-
drate intake in the training or competition diet. These
guidelines have been provided in Table 1 to frame the
current discussions, and contrast strongly with the
information presented by LCHF supporters: “In stark
contrast to long-standing dogma in sports nutrition
emphasizing the essential need for CHO in all forms of
exercise regardless of duration or intensity ...” [5].
“Exercise scientists teach that since muscle glycogen
utilization occurs at high rates (during high-intensity
exercise in CHO-adapted athletes), all athletes must be
advised to ingest large amounts of CHO before and
during exercise” [3]. As a contributor to the evolution
of the current sports nutrition guidelines, which have
moved away from a universal approach to any aspect
of the athlete’s diet, with particular effort to promote
an individualized and periodized approach to both
carbohydrate intake and carbohydrate availability
during the training phase [53], this author finds such
misrepresentation to be a disappointing thread.

5 Summary and Future Directions

It would benefit sports nutrition for researchers and prac-
titioners to show mutual respect in recognizing the evolu-
tion of new ideas and the replacement of old guidelines

with new recommendations [53]. Indeed, modern sports
nutrition practitioners teach athletes to manipulate their
eating practices to avoid unnecessary and excessive intakes
of carbohydrates per se, to optimize training outcomes via
modification of the timing, amount and type of carbohy-
drate-rich foods and drinks to balance periods of low- and
high-carbohydrate availability and to adopt well-practiced
competition strategies that provide appropriate carbohy-
drate availability according to the needs and opportunities
provided by the event and individual experience [14, 54—
57]. It is important to consider insights from research and
athlete testimonials to identify different scenarios in which
one approach might offer advantages over another or to
explain divergent outcomes (Table 5), rather than insist on
a single ‘truth’ or solution. Indeed, although there is a
continual cry to rid sports nutrition of ‘dogma’ [4], it would
seem counterproductive if new ideas were as dogmatic as
the old beliefs they seek to replace. This author and others
continue to undertake research to evolve and refine the
understanding of conditions in which low carbohydrate
availability can be tolerated or actually beneficial [58, 59].
However, we also recognize that the benefits of carbohy-
drate as a substrate for exercise across the full range of
exercise intensities via separate pathways [16], the better
economy of carbohydrate oxidation versus fat oxidation
(ATP produced per L of oxygen combusted) [60], and the
potential CNS benefits of mouth sensing of carbohydrate
[61] can contribute to optimal sporting performance and
should not be shunned simply because of the lure of the
size of body fat stores. In other words, there should not be a
choice of one fuel source or the other, or ‘black versus
white’, but rather a desire to integrate and individualize the
various dietary factors that can contribute to optimal sports
performance.

Table 5 Scenarios or explanations for testimonials/observations of enhanced performance following change to a low-carbohydrate high-fat diet

Scenarios favoring adaptation to LCHF diet

Other explanations for anecdotal reports of performance benefits from
switching to LCHF diet

Individuals or events involving prolonged sub-maximal effort where
there is no benefit or requirement for higher-intensity pieces

Individuals or events in which it is difficult to consume adequate CHO
to meet goals for optimal CHO availability (e.g., gastrointestinal
upsets, logistical difficulties with accessing supplies during the event)

Individuals who are carbohydrate sensitive and likely to be exposed to
low CHO availability

Switch to LCHF has been associated with loss of body fat and increase
in power-to-mass ratio

Previous diet and training were sub-optimal, and switch has been
associated with greater training and diet discipline

Order effect: natural progress in training and maturation in age and
sporting experience

Previous program did not include accurate measurement of
performance: awareness of performance metrics just commenced

Placebo effect/excitement about being part of new idea/culture

Athlete is not actually adhering to LCHF diet, due to misunderstanding
of its true composition or own ‘tweaking’ activities, such that eating
patterns include sufficient CHO around key training sessions and
competition to promote high CHO availability

CHO carbohydrate, LCHF low-carbohydrate high-fat diet
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The science and practice of these strategies is still
evolving, and indeed, a final comment by this author on the
current literature on LCHF diets for sports performance is
that another reason for considering it incomplete is that the
optimal ‘control’ (or additional intervention) diet has not
yet been included in comparisons with fat-adaptation
techniques. Future studies should investigate various
LCHEF strategies in comparison with the evolving model of
the ‘carbohydrate-periodized’ training diet, rather than (or
as well as) a diet chronically high in carbohydrate avail-
ability, to determine the best approaches for different
individuals, different goals, and preparation for different
sporting events. Considering that athletes might best ben-
efit from a range of options in the dietary tool box is likely
to be a better model for optimal sports nutrition than
insisting on a single, one-size-fits-all solution.
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