Bounds for weight distribution of weakly self–dual codes

Vwani P. Roychowdhury† and Farrokh Vatan†

January 16, 2014

Abstract

Upper bounds are given for the weight distribution of binary weakly self–dual codes. To get these new bounds, we introduce a novel method of utilizing unitary operations on Hilbert spaces. This method is motivated by recent progress on quantum computing. This new approach leads to much simpler proofs for such genre of bounds on the weight distributions of certain classes of codes. Moreover, in some cases, our bounds are improvements on the earlier bounds. These improvements are achieved, either by extending the range of the weights over which the bounds apply, or by extending the class of codes subjected to these bounds.

Keywords: Weight distribution, Self–dual code, Hilbert space, Unitary operation.

1 Background

For a random linear $[n, k]$ code C with weight distribution (A_0, A_1, \ldots, A_n) it is known that the expected value of the normalized weight distribution, i.e., $\frac{1}{2^k}A_w$, is the same as the normalized binomial distribution $\frac{1}{2^n} \binom{n}{w}$ (see, e.g., [14, p. 287]). So for such a code the expected value for the number of codewords of weight w is $\frac{1}{2^{n-k}} \binom{n}{w}$. The problem to determine which explicit classes of codes have binomial weight distribution has been investigated in several papers (see references). Most of these results are about the BCH codes, their extensions, or their dual codes. For example, it is shown that for these codes the number of codewords of weight w is

$$A_w = \frac{1}{2^{n-k}} \left(\binom{n}{w} + E_w \right),$$

*This work was supported in part by grants from the Revolutionary Computing group at JPL (contract #961360), and from the DARPA Ultra program (subcontract from Purdue University #530–1415–01).

†V. Roychowdhury is with the Electrical Engineering Department, UCLA, Los Angeles, CA 90095 (e-mail: vwani@ee.ucla.edu).

‡F. Vatan is with the Electrical Engineering Department, UCLA, Los Angeles, CA 90095 (e-mail: vatan@ee.ucla.edu).
for w in some range, and the error term E_w tends to zero when n tends to infinity.

There are also bounds for other classes of linear codes. Let \mathcal{C} be a doubly–even self–dual $[n, n/2, d]$ code \mathcal{C} with weight distribution (A_0, A_1, \ldots, A_n). Let $\delta = \frac{d}{n}$, then in [11] it is shown that

$$A_w \leq 2^{(H_2(\frac{n}{w})-\frac{1}{2})} n,$$

if $\frac{n}{w} \in [c, 1-c]$, where

$$c = \frac{1}{2} - \sqrt{6\delta - 1 + \sqrt{1 - 8\delta + 32\delta^2}}.$$ \hspace{1cm} (2)

This shows that for this class of codes, the weight distribution around $\frac{n}{2}$ is upper–bounded by the binomial distribution.

In [12] an upper bound for weight distribution of the dual of extended BCH codes is given. Let \mathcal{C} of length $n = 2^m$ be the dual of the extended code of a t–error correcting BCH code. Then $\dim(\mathcal{C}) \leq mt$; i.e., $|\mathcal{C}| \leq n^t$. If (A_0, A_1, \ldots, A_n) is the weight distribution of \mathcal{C}, then for $w > \sqrt{\frac{n}{t+1}} + 2$ we have

$$A_w \leq \frac{4\sqrt{2\pi n t^t}}{|2\sqrt{n(t+1)} - n + 2w|} \cdot e^{-\left(\frac{n - 2w}{n}\right)^2} \left(1 + O\left(\frac{1}{t}\right)\right).$$ \hspace{1cm} (3)

In [18] several bounds for the weight distribution of subfield subcodes of algebraic–geometric codes is given. This class of codes contains important classes of codes, such as the binary BCH and Goppa codes. For an $[n, k]$ binary code of this type, with weight distribution (A_0, A_1, \ldots, A_n), they derived the following bound

$$\left|A_w - \frac{1}{2^{n-k}} \binom{n}{w}\right| < c_1 n^{\frac{w}{2}},$$ \hspace{1cm} (4)

and for the special case of $w = \frac{n}{2}$, they get the following bound

$$\left|A_{\frac{n}{2}} - \frac{1}{2^{n-k}} \binom{n}{\frac{n}{2}}\right| < c_2 \left(\frac{n}{\sqrt{2}}\right)^\frac{1}{2} n^{\frac{1}{4}}.$$ \hspace{1cm} (5)

Here c_1 and c_2 are two constants, both much larger than \sqrt{e}.

In this paper, we apply a novel approach based on unitary operations on Hilbert spaces, and derive bounds for the weight distribution of another class of linear codes. In particular, we study the class of weakly self–dual codes, i.e., the class of codes \mathcal{C} such that $\mathcal{C} \subseteq \mathcal{C}^\perp$. We show that, for $0 < w < \frac{n}{2}$, the number A_w of codewords of weight w in \mathcal{C} satisfies the following bounds

$$A_w \leq 2^{\frac{1}{2}H_2(\frac{n}{w})} n,$$ \hspace{1cm} (6)
and

\[A_w \leq \sqrt{e}(n - w + 1)^{\frac{3}{2}}. \quad (7) \]

If we compare our bounds with previously known bounds (1), (3), and (4), we realize that these new bounds, for some values of \(w \) and in the intersection of their corresponding classes of codes, give a better estimate than the old bounds. For example, (6) holds for any value of \(w, 0 < w < \frac{n}{2} \), and it applies also to the special case of doubly–even self–dual codes, and, hence, comparable to the bounds in [11]. The bound in (1) applies to doubly–even self–dual codes, but holds only in the interval \([c, 1 - c]\), with \(c \) defined by (2). So if \(\frac{d}{n} \leq H_2^{-1}(\frac{1}{2}) = 0.1100 \ldots \) then \(c > 0.27 \). Hence, for this choice of \(\frac{d}{n} \), (6) is a better bound than (1) for \(\frac{w}{n} \leq 0.27 \), since (1) does not even hold for these values of \(w \); we should note, however, that (1) is a better bound if \(\frac{w}{n} > 0.27 \). One can also verify that (7) gives a better bound than (4), as the constant \(c_1 \) is much larger than \(\sqrt{e} \).

2 Unitary operations on Hilbert spaces

We derive our bounds via actions of unitary operations on Hilbert spaces. Toward this end, we find it more comfortable to use the language of “bra–ket” of quantum mechanics (see, e.g., [3]) as it is used in the theory of quantum computation (see, e.g., [15] and [1]). We briefly describe the necessary notions and notations.

Consider the two–dimensional Hilbert space \(\mathcal{H} = \mathbb{C}^2 \). We denote its standard basis by \(\{ |0\rangle, |1\rangle \} \); i.e., \(|0\rangle = (1, 0) \) and \(|1\rangle = (0, 1) \). We consider also the tensor product

\[\mathcal{H}^{\otimes n} = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \cdots \otimes \mathbb{C}^2 \]

of \(n \) copies of \(\mathbb{C}^2 \). So \(\mathcal{H}^{\otimes n} \) is a \(2^n \)–dimensional Hilbert space isomorphic with \(\mathbb{C}^{2^n} \). We represent the standard basis of \(\mathcal{H}^{\otimes n} \) by \(2^n \) products of the form

\[|c_1\rangle \otimes |c_2\rangle \otimes \cdots \otimes |c_n\rangle, \]

where \(c_i \in \{0, 1\} \). For simplicity, we write \(|c_1c_2 \cdots c_n\rangle \) instead of \(|c_1\rangle \otimes |c_2\rangle \otimes \cdots \otimes |c_n\rangle \). The Euclidean length on \(\mathcal{H}^{\otimes n} \) is defined in the natural way; we denote the length of the vector \(|a\rangle \in \mathcal{H}^{\otimes n} \) by \(||a|| \). For example, \(\mathcal{H}^{\otimes 2} = \mathbb{C}^2 \otimes \mathbb{C}^2 \) is a \(4 \)–dimensional Hilbert space with

\[\{ |00\rangle, |01\rangle, |10\rangle, |11\rangle \} \]

as its standard basis. If

\[|a\rangle = a |00\rangle + b |01\rangle + c |10\rangle + d |11\rangle \in \mathcal{H}^{\otimes 2} \]
then \[\| a \| = (a^* + bb^* + cc^* + dd^*)^{1/2}, \] where * stands for the complex conjugate.

An \(m \times m \) matrix \(M \) is unitary if \(M^\dagger \cdot M = I_m \), where \(I_m \) is the identity matrix and \(M^\dagger \) is the adjoint matrix of \(M \); i.e., \(M^\dagger = (M^{\text{tr}})^* \), where “\(\text{tr} \)” denotes the transpose. A linear operation on the \(m \)-dimensional Hilbert space \(\mathbb{C}^m \) is called a unitary operation if it is represented by a unitary matrix. Note that every unitary operation is a length-preserving operation.

We denote the group of \(m \times m \) unitary matrices by \(U(m) \). The general form of a matrix in \(U(2) \) is

\[
\begin{pmatrix}
\cos \theta & e^{i(\alpha+\gamma)} \\
-e^{-i(\beta-\gamma)} & \cos \theta
\end{pmatrix},
\]

Suppose that \(U_1, U_2 \in U(2) \), then the tensor product \(U_1 \otimes U_2 \) in \(\mathbb{C}^2 \otimes \mathbb{C}^2 \) is defined in the natural way. For example, if \(U_1(|0\rangle) = a|0\rangle + b|1\rangle \) and \(U_2(|1\rangle) = c|0\rangle + d|1\rangle \) then

\[
U_1 \otimes U_2(|01\rangle) = U_1(|0\rangle) \otimes U_2(|1\rangle) = (a|0\rangle + b|1\rangle) \otimes (c|0\rangle + d|1\rangle) = ac|00\rangle + ad|01\rangle + bc|01\rangle + bd|11\rangle.
\]

3 Bounds for weights

For any real number \(\theta \), consider the unitary operation \(R_\theta \in U(2) \) defined by the following matrix

\[
R_\theta = \begin{pmatrix}
\sin \theta & \cos \theta \\
\cos \theta & -\sin \theta
\end{pmatrix}.
\]

Then the action of \(R_\theta \) on a vector \(|c\rangle, c \in \{0, 1\} \), can be written as follows:

\[
R_\theta(|c\rangle) = \sum_{a \in \{0, 1\}} (-1)^{ac}(\sin \theta)^{1-c-a+2ac}(\cos \theta)^{c+a-2ac} |a\rangle.
\]

Now let \(S_\theta = R_\theta^\otimes n \), i.e., the tensor product of \(n \) copies of \(R_\theta \). Thus \(S_\theta \in U(2^n) \). The following lemma provides a closed form for the action of \(S_\theta \).

Lemma 3.1 For any vector \(|c\rangle \) in the standard basis, i.e., \(c \in \{0, 1\}^n \), we have

\[
S_\theta(|c\rangle) = \sum_{a \in \{0, 1\}^n} (-1)^{c \cdot a}(\sin \theta)^{n-\text{wt}(c+a)}(\cos \theta)^{\text{wt}(c+a)} |a\rangle,
\]

where \(c \cdot a \) is the inner product of \(c \) and \(a \) as real vectors, \(\text{wt}(x) \) denotes the Hamming weight of a binary vector \(x \), and the addition of binary vectors is considered over GF(2).
Proof. We first show that

\[S_\theta(|c\rangle) = \sum_{a \in \{0,1\}^n} (-1)^{c \cdot a} (\sin \theta)^{n - \text{wt}(c) - \text{wt}(a) + 2c \cdot a} (\cos \theta)^{\text{wt}(c) + \text{wt}(a) - 2c \cdot a} |a\rangle, \quad (9) \]

We prove the identity (9) only for \(n = 2 \); the proof in the general case is quite similar. Let \(c = (c_1, c_2) \) and \(a = (a_1, a_2) \).

\[S_\theta(|c\rangle) = R_\theta(|c_1\rangle) \otimes R_\theta(|c_2\rangle) \]

\[= \sum_{a_1 \in \{0,1\}} (-1)^{a_1c_1}(\sin \theta)^{1-c_1-a_1+2a_1c_1}(\cos \theta)^{c_1+a_1-2a_1c_1}|a_1\rangle \otimes \]

\[\sum_{a_2 \in \{0,1\}} (-1)^{a_2c_2}(\sin \theta)^{1-c_2-a_2+2a_2c_2}(\cos \theta)^{c_2+a_2-2a_2c_2}|a_2\rangle \]

\[= \sum_{a_1,a_2 \in \{0,1\}} (-1)^{a_1c_1+a_2c_2}(\sin \theta)^{2-(c_1+c_2)-(a_1+a_2)+2(a_1c_1+a_2c_2)}(\cos \theta)^{(c_1+c_2)+(a_1+a_2)-2(a_1c_1+a_2c_2)}|a_1a_2\rangle, \]

which is the of form of (9). We note that

\[\text{wt}(c) + \text{wt}(a) - 2c \cdot a = \text{wt}(c + a). \]

Therefore, (9) can be rewritten as (8).

Now we consider a linear code \(\mathcal{C} \subseteq \{0,1\}^n \) of dimension \(k \), and the corresponding unit vector

\[|c\rangle = \frac{1}{\sqrt{2^k}} \sum_{c \in \mathcal{C}} |c\rangle. \]

By applying the unitary operation \(S_\theta \) on the unit vector \(|c\rangle \) we get

\[S_\theta(|\mathcal{C}\rangle) = \frac{1}{\sqrt{2^k}} \sum_{c \in \mathcal{C}} \sum_{a \in \{0,1\}^n} (-1)^{c \cdot a} (\sin \theta)^{n - \text{wt}(c+a)}(\cos \theta)^{\text{wt}(c+a)} |a\rangle. \]

This can be rewritten as follows

\[S_\theta(|\mathcal{C}\rangle) = \frac{1}{\sqrt{2^k}} \sum_{a \in \mathcal{C}^\perp} \left(\sum_{c \in \mathcal{C}} (\sin \theta)^{n - \text{wt}(c+a)}(\cos \theta)^{\text{wt}(c+a)} \right) |a\rangle + |\text{remainder}\rangle. \]

Since \(\|S_\theta(|\mathcal{C}\rangle)|| = 1 \), the following lemma follows.

Lemma 3.2 For any \(k \)-dimensional linear code \(\mathcal{C} \) of length \(n \), and any real number \(\theta \) we have

\[\frac{1}{2^k} \sum_{a \in \mathcal{C}^\perp} \left(\sum_{c \in \mathcal{C}} (\sin \theta)^{n - \text{wt}(c+a)}(\cos \theta)^{\text{wt}(c+a)} \right)^2 \leq 1. \quad (10) \]
Lemma 3.3 For any k–dimensional weakly self–dual linear code C of length n, i.e., $C \subseteq C^\perp$, and any real number θ we have

$$\left| \sum_{c \in C^\perp} (\sin \theta)^{n-\text{wt}(c)} (\cos \theta)^{\text{wt}(c)} \right| \leq 2^{(n-2k)/2}. \quad (11)$$

Proof. We apply Lemma III.2 to the code C^\perp. The result is

$$\frac{1}{2^{n-k}} \sum_{a \in C} \left(\sum_{c \in C^\perp} (\sin \theta)^{n-\text{wt}(c+a)} (\cos \theta)^{\text{wt}(c+a)} \right)^2 \leq 1.$$

Since $C \subseteq C^\perp$, for every $a \in C$ we have

$$\sum_{c \in C^\perp} (\sin \theta)^{n-\text{wt}(c+a)} (\cos \theta)^{\text{wt}(c+a)} = \sum_{c \in C^\perp} (\sin \theta)^{n-\text{wt}(c)} (\cos \theta)^{\text{wt}(c)},$$

and the lemma follows. \qed

Lemma 3.4 Let C be a weakly self–dual code with weight distribution (A_0, A_1, \ldots, A_n). Then for any $0 < \lambda < 1$ we have

$$\sum_{j=0}^{n/2} A_{2j} \lambda^j \leq (1 + \lambda)^{n/2}, \quad 0 < \lambda < 1. \quad (12)$$

Proof. We first apply the following form of the MacWilliams identity (see [14]) to get a handier form of inequality (11):

$$\sum_{u \in C^\perp} x^{n-\text{wt}(u)} y^{\text{wt}(u)} = \frac{1}{|C|} \sum_{u \in C} (x + y)^{n-\text{wt}(u)} (x - y)^{\text{wt}(u)}.$$

This way, from (11), we obtain the following inequality:

$$\left| \sum_{c \in C} (\sin \theta + \cos \theta)^{n-\text{wt}(c)} (\sin \theta - \cos \theta)^{\text{wt}(c)} \right| \leq 2^{n/2}. \quad (13)$$

Now suppose that $\frac{\pi}{4} < \theta < \frac{\pi}{2}$, $\sqrt{u} = \sin \theta + \cos \theta$, and $\sqrt{v} = \sin \theta - \cos \theta$. Thus $1 < u < 2$ and $v = 2 - u$. Then inequality (13) can be written as

$$\sum_{c \in C} \sqrt{u}^{n-\text{wt}(c)} \sqrt{2-u}^{\text{wt}(c)} \leq 2^{n/2}. \quad (14)$$
Since \mathcal{C} is weakly self–dual then $A_j = 0$, for every odd index j. Therefore, (14) can be written as follows (assume n is even):

\[
\sum_{j=0}^{n/2} A_{2j} u^{\frac{n}{2} - j} (2 - u)^j \leq 2^{n/2}, \quad 1 < u < 2.
\] (15)

Let $\frac{2-u}{u} = \lambda$, then $0 < \lambda < 1$ and (15) became

\[
\sum_{j=0}^{n/2} A_{2j} \lambda^j \leq (1 + \lambda)^{n/2}.
\]

Theorem 3.5 For every weakly self–dual code \mathcal{C} with weight distribution (A_0, A_1, \ldots, A_n) we have

\[
A_w \leq 2^{\frac{1}{2}H_2(\frac{w}{n})} n, \quad 0 < w < \frac{n}{2}.
\] (16)

and

\[
A_w \leq \sqrt{e(n - w + 1)^{w/2}}, \quad 0 < w < \frac{n}{2}.
\] (17)

Proof. For $0 < w < \frac{n}{2}$, let $\alpha = \frac{w}{n}$ and $A_w = 2^{\beta n}$. From (12) it follows

\[
2^{\beta n} \lambda^{\frac{w}{2}} \leq (1 + \lambda)^{\frac{w}{2}}.
\]

Therefore,

\[
\beta \leq -\frac{1}{2} \alpha \log_2 \lambda + \frac{1}{2} \log_2 (1 + \lambda), \quad 0 < \lambda < 1.
\] (18)

For fixed $0 < \alpha < \frac{1}{2}$, let

\[
F(\lambda) = -\frac{1}{2} \alpha \log_2 \lambda + \frac{1}{2} \log_2 (1 + \lambda).
\]

A simple calculation shows that, on the interval $0 < \lambda < 1$, the minimum of $F(\lambda)$ is achieved for $\lambda = \frac{\alpha}{1 - \alpha}$. Thus, for $0 < \alpha < \frac{1}{2}$,

\[
\beta \leq \frac{1}{2} \left(-\alpha \log_2 \alpha - (1 - \alpha) \log_2 (1 - \alpha) \right) = \frac{1}{2} H_2(\alpha).
\]

Therefore, we have proved (16).

On the other hand, from (12) we have

\[
A_w \leq \left(1 + \frac{1}{\lambda} \right)^{w/2} (1 + \lambda)^{(n-w)/2}.
\]

Let $\lambda = \frac{1}{n-w}$, and note that $(1 + \frac{1}{t})^t \leq e$. This proves (17).
References

