How to Grow a Rainbow

You will need:

- Kitchen roll/paper towel
- · Felt tip pens
- Two small bowls of water
- Paper clip
- Thread

- 1. Cut your kitchen roll into the shape of a rainbow.
- Colour a rainbow with felt tips about 2 cm up on both sides.
- Attach your paper clip to the top and tie a piece of thread to it. This will give you something to hold your rainbow with.
- 4. Fill each small container with water.
- 5. Hold your rainbow with the ends slightly submerged in the water then watch your rainbow grow!

THE SCIENCE

A brief introduction to 'capillary action'! Water molecules like to stick to things - including themselves. Sticking to things is called adhesion and sticking to itself is called cohesion. The fibres in kitchen roll make lots of little holes. Water is 'sucked' through the holes because of adhesion (liking to stick to other things) and cohesion (liking to stick to itself) means the rest of the water follows. The water pressure will eventually slow down and the pressure of gravity will mean it stops moving.

DIY Lava Lamps

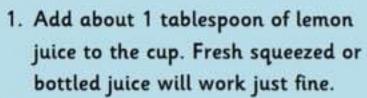
You will need:

- Vegetable/sunflower oil
- Vinegar
- Food colouring
- Bicarbonate of soda
- Tall glass or bottle
- Spoon
- Small cup
- Add three spoons of bicarbonate of soda into the tall glass or bottle.
- Fill two thirds of the container with oil – but don't mix!
- In the small cup, add some vinegar and several drops of food colouring.
- 4. Slowly add drops of your coloured vinegar into your oil/bicarb mixture and watch your lava lamp come to life!

Why not try adding different colours to your lava lamp?

THE SCIENCE

Oil and vinegar do not have the same density (how heavy something is for its size). Vinegar is more dense than this type of oil - that's why it sinks to the bottom of the container.


Once the vinegar touches
the bottom of the container,
it reacts with the bicarb.
This chemical reaction
creates bubbling carbon
dioxide which rises — these
are the bubbles you see
within the container.

@MrsBpriSTEM

Invisible Ink

You will need:

- Lemon juice
- Cotton bud or a paint brush
- Cup
- Paper
- Candle

- Soak the cotton bud or paint brush in lemon juice and use it to write a message on your paper.
- 3. Once it is dry, it will be invisible.
- 4. CAREFULLY hold your paper over a lit candle to reveal your message – try not to set fire to the paper. Get an adult to help you and make sure you have a bowl of water next to you just in case!

You can also "iron" your paper but don't use the steam setting. Put a dry cloth between the paper and iron to protect the iron's surface.

THE SCIENCE

The paper discolours before
the rest of the paper gets
hot enough to do so. Lemon
juice contains carbon
compounds which are
colourless at room
temperature. Heat breaks
down these compounds and
releases the carbon. When
carbon comes in contact
with air (specifically
oxygen), oxidation occurs
and the substance turns
light or dark brown.

Try different fruit juices — or milk! — and compare the results.

The Leakproof Bag

You will need:

- Sharpened pencils or skewers
- A sealable bag
- Water
- Make sure your pencils are sharp before you begin.
- Fill three quarters of your bag with water and seal it.
- 3. Holding the top of the bag with one hand, use the other hand to push a pencil right through to the other side. Like magic, there are no leaks!
- Repeat with several pencils making sure they are pushed through in different places on the bag.

Test how many pencils your bag can hold!

Do pencils with flat or round edges work best?

Try different thicknesses of bag to see which works best.

THE SCIENCE

The Science for this one is quite complicated! The bag is made out of a polymer which has lots of molecules attached together in long chains (think strands of cooked spaghetti!). The tip of the pencil can easily push apart the flexible strands of spaghetti but the strands' flexible property helps to form a temporary seal against the edge of the pencil. When the pencil is removed, the hole in the plastic bag remains because the molecules were pushed aside permanently and the water leaks out.

@MrsBpriSTEM