Year 3

Year 3	Definition	Example
Acute angle	An angle that is smaller than a right angle.	It is smaller than my right angle checker so this must be an acute angle.
Axis (plural: axes)	A real or imaginary reference line. The y-axis (vertical) and x-axis (horizontal) on charts and graphs are used to show the measuring scale or labels for the variables.	The y-axis on this bar graph shows you how many pupils preferred each colour.
Bar graph	A representation of data in which the frequencies are represented by the height or length of the bars.	This bar graph shows us the preferred colours of the pupils in our Year 3 class.
Columnar addition/subtraction	The formal written algorithms for addition and subtraction that are exemplified in Mathematics Appendix 1 of the 2014 national curriculum.	Solve the following calculations by using the appropriate method of columnar addition or subtraction.
Factor	A number, that when multiplied with one or more other factors, makes a given number.	The number six has four factors: 1, 2, 3 and 6.
Formal written methods	Exemplified in Mathematics Appendix 1 (see above). As	Pupils should only use formal written methods

	well as including columnar addition and subtraction, these also consist of written algorithms for multiplication and division.	for calculations that cannot be efficiently calculated using mental strategies (with or without jottings).
Horizontal	Horizontal refers to planes and line segments that are parallel to the horizon.	The x -axis on a graph should be horizontal.
Irregular	In geometry, irregular is a term used to describe shapes that are not regular (see below).	The sides and the angles of this pentagon are not all equal so the pentagon is irregular.
Kilometre	A metric unit measure of length that is equal to one thousand metres.	The distance from the school to Arun's house was exactly one kilometre.
Millimetre	A metric unit measure of length that is equal to one thousandth of one metre.	The length of Philippa's ruler is 300 millimetres.
Numeral	A numeral is a symbol (or group of symbols) used to represent a number.	Whole numbers can all be represented as numerals consisting of the digits o to 9 .
Obtuse angle	An angle that is greater than a right angle but less than 180 degrees.	It is greater than my right angle checker so this angle must be obtuse.
Parallel	Line segments that can be described as parallel must be on the same plane and will never meet, regardless of how far either or both line segments are extended.	The opposite sides of a square are parallel.
Perimeter	The perimeter of a 2-D shape is the total distance around its exterior.	I know that one side of this square is 2 cm so it must have a perimeter of 8 cm .
Perpendicular	A pair of line segments (or surfaces) can be described as perpendicular if they intersect at (or form) a right angle.	The adjacent sides of a rectangle are perpendicular
Place holder	A place holder is a zero used in any place value column (that contains a value of zero) to clarify the relative positions of the digits in other places.	I need to use a place holder in the ones column to make it clear that my number is 320 and not 32 .
Prism	A prism is a 3-D solid with two identical, parallel bases and otherwise rectangular faces.	A triangular prism has five faces, consisting of three rectangles and two triangles which are parallel.
Product	The result you get when you multiply two numbers.	24 is the product of 3 and 8.
Regular	Regular 2-D shapes (regular polygons) have angles that	A square is a regular 2-D shape because all four angles

Mathematics
Mastery

	are all equal and side lengths that are all equal. Regular 3-D shapes (the Platonic Solids) are those that have congruent (exactly the same) faces of a single regular polygon.	are right angles and all four sides are the same length. A cube is a regular 3-D shape with six identical square faces.
Roman numeral	Roman numerals are a system of symbols used to represent numbers that were developed and used by the Romans. They do not use a place value system.	The number twelve on this clock is represented by the Roman numerals XII, which is 10 + + + 1.
Round	Approximate a number, normally to the nearest multiple of ten, to make it easier with which to calculate.	I would round the number 17 to 20 because it is three away from 20 but seven away from 10.
Square-based pyramid	A pyramid is a 3-D shape with a 2-D shape (which gives the pyramid its name) as a base and triangular faces that taper to a point called a vertex or apex.	This square-based pyramid has five faces; one square face and four triangular faces.
	This triangle-based pyramid has four triangular faces.	
Triangle-based pyramid		

