Design&Build the ultimate **DUMPTRACK**

1.74

Waterloo, QC – BMXpert/Sentiers Boréals

Session content

- What is a pumptrack?
- Types of tracks
- Design
- Construction
- Maintenance
- Cost estimate
- Trends & inspiration

What is a pumptrack?

Pump Track – series of rollers, berms, and sometimes jumps, built and spaced in such a way as to al low a person to ride the course without pedaling, generating forward momentum through a technique called pumping.

Source: RideRedding.com

What is pumping?

Pumping – using your arms, legs, and body to move the bike down and up (unweighting / weighting) in a manner that propels the bike and rider across terrain without the need for pedaling.

Source: JamesProvost.com

More intense skill building in 30 minutes than typical 4 hour ride

Builds the following skills:

- Anaerobic fitness
- Proprioception and bike control
- Vision
- Cornering
- Pressure Control
- Trail speed
- Trail finesse

Creates solid foundation for more advanced skills:

- Manuals
- Jumping

- Any bike will do! (or runbike, skateboard, roller blade, scooter, etc)
- BMX geometry recommended
- Lower your seat
- Add air to tires & suspension

Source: Norco Bikes

Bike park consideration

A pumptrack by itself have a limited appeal over time. It should always be viewed as an element of a more complete *bike park*.

Other features might includes:

- Skills area
- Dirt jumps
- Flow trails
- Gateway/kids trails
- XC trails
- Gravity oriented trails
- Slalom courses
- CX track

Source: Progressive Trail Design

Type of tracks

- Backyard
- Wood
- Composite
- Dirt

- Dirt w/ additive
- Surfaced dirt
- Asphalt track

- Pre-cast concrete
- In-place concrete

Source: BMXpert

Backyard track

Side note : Nice landscaping is key to good « wife acceptability »

Source: LeeLikesBikes.com

Source: Unknown

Wood (indoor park)

Source: The Lumberyard, Portland, OR

Fiberglass (wood frame)

Source: Elevated Trails Design

Dirt w/ soil additive

Source: Schneider Grading

Crushed stone surface

Source: Architrails, UK

Asphalt

Source: BMXpert

Pre-cast concrete

Source: Progressive Bike Ramps

In-place concrete

Sentiers D Boréals

Source: ???

Pump park

Source: VeloSolutions

What is flow?

Flow is defined as a *predictable rythm*, based on a regular pattern.

Source: StockPhotos.com

Rythm (flow) is defined by a smooth repetitive oscillation

A sine wave is a mathematical curve that describe a smooth repetitive oscillation

A pumptrack is a perfect sine wave.

* NO FLAT SPOTS. NEVER.

Source: Wiki

Golden Ratio

Golden Ratio

Source: MTBR forum

Berm 101

Source: Chur, Switzerland (VeloSolutions)

Berm vs bank

Inslope bank

Berm

Remember: You ride a bank, you rail a berm

Source: Google Image | LeeLikesBikes.com

Berm science

Vertical profile of a berm

Flat berm

Flat berm Top of berm is constant

Rising berm

Source: BMXpert

Off-center apex

Notice that the apex is off-center, based on an ellipsoid path

Typical berm defect

Sentiers 🔊 Boréals

Typical berm defect

Source: Google Images

Retaining wall behind berm

Drainage & erosion control

Source: Elevated Trails Design

Surface drainage

Source: Sentiers Boréals (2016 PTBA Workshop)

Surface drainage

Foundation drainage

Foundation drainage

Standard detail for drainage in low-percolation soil

Soil selection

Soil selection

DYI soil test

Fill 1/3 of jar with clean, loose dirt
 Add 1 teaspoon of dish soap
 Fill jar with water
 Mix vigorously for 2min
 Let rest for 24h
 Calculate height of each layer
 (from bottom, sand-silt-clay)
 Translate each layer in %

After 1 minute

After 1 day

Source: http://www.lawnlad.com/upload/fyi/FYI_SoilAnalysis.pdf

Soil compaction ratio

Soil Type	Soil Condition	Converted to		
		In-place	Loose	Compacted
Sand	In place	1.00	1.11	0.95
	Loose	.90	1.00	.86
	Compacted	1.05	1.17	1.00
Loam	In place	1.00	1.25	0.90
	Loose	.80	1.00	.72
	Compacted	1.11	1.39	1.00
Clay	In place	1.00	1.43	0.90
	Loose	.70	1.00	.63
	Compacted	1.11	1.59	1.00
Rock (blasted)	In place	1.00	1.50	1.30
	Loose	.67	1.00	.87
	Compacted	.77	1.15	1.00
Hard coral	In place	1.00	1.50	1.30
	Loose	.67	1.00	.87
	Compacted	.77	1.15	1.00

Table 10-1.—Soil Conversion Factors (Conversion Factors for Earth-Volume Change)

Description of Material	E, Young's modulus (GPa)	
Rubber	0.001-0.003	
Clay	0.035	
Sand	0.03-0.32	
Sandstone	0.06	
Crushed gravel	0.15-0.6	
Asphalt 60°C	0.15-0.35	
Asphalt 20°C	2-3.5	
Concrete	14-21	
Asphalt 0°C	13.5-35	
Aluminum	70	
Slate	95	
Steel	200	

Source: http://www.slowtwitch.com/Training/Running/Concrete_or_Asphalt__4793.html

Project planning

Project lifecycle

Maintenance (soft surface)

Maintenance (hard surface)

Site selection criterias

- Easily accessible for the community
- Land manager approval
- Sufficient area (2 tennis court min.)
- Flat or mellow grade
- Soil percolation & soil type
 - Contamined soil?
- Stormwater drainage requirements
- Public utility underneath?
- Shade and vegetation
- Water access (requirement)
- Equipment access
- Amenities
 - Parking
 - Restroom
 - Food & beverage
 - Bike station
 - Park lightning
 - Near a bike path

Project planning

Design phase

Source: MTBR forum | unkown

Construction documents: CAD, specs and budget

Source: Sentiers Boréals | BMXpert

Cost estimate – volunteer vs. pro

Volunteer	Professional
• Dirt (<5000\$)	 Dirt (20-40K+) Modular (30-125K) Asphalt (50-125K+) Concrete (80-250K+)
 Free labor Community involvment Hard to hold accountat Quality construction? Good option for mainter 	 Expensive Easy to hold accountable Quality construction Licensed & Insured Meet homologation requirements (UCI

• In somes cases, licensed contractor is required for public infrastructure

Equipment & material

Volunteer

- Shovels (square and spade)
- Rake (gravel rake works best)
- Hand tamper
- Wheelbarrow
- Watering cans & buckets
- Hose w/ water source
- *Skid steer
- *Compactor plate
- Tarp (in case it rains)
- Beer, BBQ, water, sun cream...

Professional

- Tracked skid-steer
- Mini-excavator (3.5ton)
- Laser level (or Total Station)
- 2 measuring tape (100ft) and rope
- Wood stake (surveyor posts)
- Spray paint (a LOT)
- Vibratory drum roller
- Compactor plate for dirt
- Compactor plate for asphalt
- Water sprayer system
- Veg mat & seeds
- Erosion control material
- Geotextile + zip ties
- Drainage material
- Camera

Common problems

Rollers	Berms	General
 Too peaky (abrupt) Too mellow Too short or tall Too close together Too far apart Flat spots between 	 Radius too tight Radius too mellow Height too short Inconsistent radius Bank instead of berm Improper profile (vertical angle) Top edge too weak Top edge weak 	 Drainage failing Wrong material selection Lack of maintenance Incorrect maintenance Improper maintenance Not enough maintenance Not enough maintenance

Current trends

- Hard surfacing
- One track per skills level (kids, beginner, advanced)
- Key feature of a complete bike park
- Incorporating jumps and transfer in the design maximize progression!
- Directionality of track

Source: Unknown

Thank you!

Contributors

Source: Elevated Trails Design

Source: Stride Bike Park - Strasbourg, France (Bike Solutions)

Source: Bike Solutions

