
An Advanced Meta-meta Model for
Visual Language Design and Tooling

Targeting a Property Graph Implementation

Graham McLeod

Contribution to Models at Work
Hendon, UK

November 2022

Duisburg-Essen University

inspired.org

Captu
re Issue

Stock Deliver to Client

Order
from

Advise
Delivery

Date

Outline

Research Context

Requirements

Contributory Products, Works and
Ideas

Design Choices

Resultant Model

Status and Reflection

References

Situating Research
Enterprise Transformation

Enterprise Modelling

Graphical Modelling

Analysis, Discovery &
Decision Making

Visual and
Cognitive

Effectiveness

Visual
Language

Design and
Modification

Design Tim
e

U
sage Tim

e

Define Domain
Define Visual Languages
Define Artefacts
Manage Users and Tool

Meta Model

Meta
Meta
Model

Goals

G1: Support rich meta modelling / ontology definition which allows fully expressing concepts of the domain accurately

G2: Support definition of notations which are appropriate to the domain concept, the stakeholders who will work with
 them and the purpose of the modelling

G3: Support rapid/iterative evolution of the meta model and visual language to continually improve effectiveness

G4: Support run time tailoring of models, meta model, visual language and tool user interface to support unique
 requirements ("moldable tools", in the spirit of: [Chiş et al. 2015])

G5: Permit multiple representations for the same semantic models, addressing the needs of different stakeholders and
 catering for multiple visual languages / methods

G6: As far as possible, achieve an economical implementation of the above capabilities to facilitate implementation of
 supporting tooling at reasonable effort / cost.

Stakeholders and Concerns
What is their
orientation?

What are they
familiar with?

What is their level of
literacy wrt models /
notation format?

What are their
concerns?

What models and
representation will be
effective and efficient?

Accountant

DBA

Sales Manager

Reposit

Programme Manager

Language

Language

Modelling
Language

Graphical
Modelling
Language

A way to communicate between parties

A way to communicate precisely between parties
using an agreed vocabulary and grammar

A way to communicate precisely between parties
using visual symbols, connectors, containers and
their arrangement following an agreed notation,
representation and (potentially) layout

Layers of Models

Meta
Model

Process Application Data Collection Technology

P1
P2
P3

A1
A2
A3
A4

D1
D2

T1
T2
T3

Process Application Application Data Collection

Logical
Model Type

Representation
Model

Process Application Process Application

Polymetric
Specs

Technical
Model

Executive
Model

Instances in
Repository

Innovation to support
multiple

representations of
same semantic model
including renderings

Meta meta model
to define / host these
elements

Requirements
R1: Multi-level modelling must be accommodated to support advanced

modelling and to economise on tool size by allowing similar tools
to be used on multiple levels as well as support the runtime
extension of the domain model/ontology. See [Lara et al. 2014] for
a discussion of why and how to use multi-level approach

R2: High level of abstraction to achieve efficiency in model type
definitions and agility in changing them when required. This implies
a declarative versus procedural solution and prefers configuration
over code. [Däcker and Williams 1997, Hartmann and Both 2009]
provide evidence for power of abstraction in software and
modelling

R3: Support for n-ary relationships and relationship properties. These
are necessary to support some types of modelling e.g. [Chen
1976]

R4: Cater for rich data types, provided by the implementation
environment, tool classes developed in the implementation
language and structures created by users themselves through
model definition. We have found this invaluable in our earlier work
in the imple- mentation of the EVA Toolset [Inspired.org 2022]

R5: Allow extension of the meta model and notation at run time

R6: Support a rich variety of diagram types and notations as well as
facilitate other types of output (e.g. lists, reports, composed docu-
ments, matrices, graphs, visualisations)

R7: Support modelling the sequence and grouping required of items

R8: Support definition of validation, constraints, derivation through
configurable rules/methods

R9: Provide for documentation of modelling language and evolution/
versioning

R10: Support management of collections of things for retrieval in
queries, reports and tooling

Meta Meta Model and Technology Adaptation

Meta Model Components

Stakeholder and Requirements

Semantic Model

Representation Model

Instance Semantic Models

Instance Visual Models

Model
Management

Influences and Inspirations

Enterprise Value Architect - inspired.org

MetaEdit+ - MetaEdit

XModeler - Tony Clark

Memo Meta Modelling Language - Ulrich Frank

Semantic Technologies, RDF, Triple Stores and Graph Databases

http://inspired.org

©inspired!

Enterprise Value Architect

Realtime and
Batch

CSV, XML, JSON, REST

Industry &
Reference
Models
e.g.
Frame-
WorX

Zachman
TOGAF
Archimate
COBIT
Inspired
Meta Models

Web Interfaces Graphical Modeler Visualisation & Reports Live & Static Portals

SaaS

Repository &
Knowledge Base

Custom
Portal

Pharo

VA Smalltalk

Pharo/Seaside

REST

HTTP

D3

SQL92

XML

Public or Private
Cloud

HTML/CSS/JS

Native
File
Formats

inspired!

MetaEdit+ GOPPR
Graph, Object, Property,
Port, Role, Relationship

A graphical DSL for
implementing DSLs

Multi-Level Model in XModeler

Software and Systems Modeling
Published by Springer Nature
Online ISSN: 1619-1374

Also used to
implement the MEMO
Meta Model from
Frank

RDF vs Property Graph

Source: w3.ORG

http://w3.ORG

Generic Fragment
This caters for generic requirements across the meta meta
model

NamedThing provides standard way of managing identity of
anything which must have a unique id

Alias caters for multiple names (e.g. Human language nouns;
Technical vs Business Expert Terminology) for the same
thing

Natural Language identifies the Human language used

Scope is used to prevent name clashes for data, information
and models from different sources as well as to provide a
packaging mechanism

Rule provides a generic mechanism for dynamic behaviour

Stakeholder
Fragment

This relates Stakeholders to Concerns,
Domains, Goals and Visual Languages that
are appropriate

Stakeholder is a person or role which we
hope to serve with relevant models and
representations

Concern captures their focus areas that
require relevant models and information.
They relate to LogicalModelTypes in the
Semantic fragment that provide support to
address them

Domains relate to areas of expertise or
industry and connect us to Concepts in the
Semantic fragment

Goals connect Modelling Languages to
Stakeholders

Semantic Fragment
This holds the domain meta model and instance models. It is
concerned with meaning, not representation

Concept is any concept of relevance to a stakeholder (or the
tool)

Concepts are defined by legal properties and relationships. A
concept can also act as a complex property type

LogicalModelType groups concepts relevant to concerns or kind
of model, independently of representation

LogicalModel groups items relevant to an instance model
independent of representation

We will elaborate on Properties, Relationships, Nodes and
Edges etc. in following slides

Rich Data Types

We have found these very powerful in the
current EVA Netmodeler tooling

Essentially we implement a base environment
(Smalltalk Class) with a predefined protocol
and associated interface widgets for composing
user interfaces

Defaults and Typing of Properties

Every concept defined has an associated default instance

This should be initialised with validly typed default property values (and
relationships)

New instances are created with default values and relationships. These
persist until altered by user inputs, imports or system functions

The valid value can specify a literal or a type

‘Unknown’ should be a valid value for all property types

Typed Relationships
Relationships are semantic and bi-directional

They are defined independently of concepts/types

They are used as legal relationships in meta models

They are typed, with the types implying behaviour

They can represent domain semantics or modelling semantics

e.g. Domain: Employee works in Department; Person speaks Language

Modelling: Employee is role of Person
 Photograph property of Person
 Profession taxonomy for Person

They can span layers: John instance of Employee
 University is a kind of Tertiary Education Provider

Clabjects?

Well, sort of, at the Graph implementation level

We allow intermingling of definitions and instances with
relationships between them and between each other

Concept — Concept [Defining Domain]

Instance — Instance [Defining Model]

Concept — Instance [Defining Multi-Level]

We also allow an object to act as both a definition and
an instance. In the latter role, it will have properties and
values. In the former it will be treated as definitional
and appear in navigation tools etc. Objects could appear
as concepts in one layer of modelling, but instances in
another.

Car Range

RangeName String
DateOfRelease Date
FuelType Enumerated

Car Model

ModelName String
EngineCapacityCC Integer
PowerKW Decimal
TransmissionType Enumerated

Car

RegistrationNo String
DateSold Date
Owner Party
Colour Color

The Graph Mapping

Items in Models and
Concepts in Meta Models are
specialisations of Node

Nodes have Edges which can
represent a Relationship,
LegalRelationship or a
LegalProperty

An Edge points to a Target
which can be a Node or a
PropertyValue

Behaviour

Any named object can have associated behaviour via the Rule concept

This is exploited to support:

- Constraints

- Validation

- Computation

- Derivation

Visual Representation
Fragment

Maps semantic information to various
representations

Modelling Language related to one or more
PhysicalModelTypes

PhysicalModelTypes describe medium,
format, notation, syntax

Notations can include structured text,
vector symbols, raster symbols

It is intended that the model can cater for
graphical models, generated visualisations,
documents, import and export formats in
text, potentially also UI

PhysicalModel is a container for
ModelElements

Modification provides for polymathy

Status and Reflections
We have chosen a persistence environment based upon
Property Graph technology, viz DGraph

This supports GraphQL (natively) as well as JSON and RDF,
is very scalable and has good tools. It is open source, but
supported with subscription. Cloud hosted environment
available

We continue to use Smalltalk (VAST & Pharo) as
development language

We have built proof on concept implementations and results
are encouraging. Learnings have informed the model
presented

This is first version with multi-level modelling and we hope
to implement the “Multi Bicycle Challenge” as a
demonstration of capability

We conclude that graph technology is very suitable for
implementing meta models and supporting modelling tools
and repositories

Smalltalk provides a rich and very late bound environment
suitable to our needs. Easy translation is available to JSON/
STON

We can share tooling across meta modelling and instance
modelling

We will upgrade our visual modelling tools to work with the
new models, but this is awaiting resources

Communication or collaboration is welcome

References
Bertin J. (1983) Semiology of graphics. University of Wisconsin press

Besta M., Peter E., Gerstenberger R., Fischer M., Podstawski M., Barthels
C., Alonso G., Hoefler T. (2019) Demystifying graph databases: Anal- ysis
and taxonomy of data organization, system designs, and graph queries.
In: arXiv preprint arXiv:1910.09017

BIAN.org (2022) BIAN Banking Service Land- scape 10 https://bian.org/
servicelandscape-10-0- 0/views/view_51974.html Last Access: 2022-05- 02

Chen P. P.-S. (1976) The entity-relationship model—toward a unified view
of data. In: ACM transactions on database systems (TODS) 1(1), pp. 9–36

Chiş A., Nierstrasz O., Gırba T. (2015) Towards moldable development
tools. In: Proceedings of the 6th Workshop on Evaluation and Usability of
Programming Languages and Tools, pp. 25–26

Clark T. (2020) A Meta-Circular Basis for Model- Based Language
Engineering.. In: The Journal of Object Technology 19(3), 3:1

Clark T., Willans J. (2014) Software language engineering with XMF and
XModeler. In: Com- putational Linguistics: Concepts, Methodologies,
Tools, and Applications. IGI Global, pp. 866–896

Däcker B. O., Williams M. C. (1997) Break- through in software design
productivity through the use of declarative programming. In: Interna-
tional journal of production economics 52(1-2), pp. 227–231

Eclipse Foundation. https://www.eclipse.org. Last Access: Accessed:
2022Q3

Fernandes D., Bernardino J. (2018) Graph Databases Comparison:
AllegroGraph, ArangoDB, InfiniteGraph, Neo4J, and Ori- entDB.. In: Data,
pp. 373–380

Frank U. (2002) Multi-perspective enterprise mod- eling (memo)
conceptual framework and model- ing languages. In: Proceedings of the
35th Annual Hawaii International Conference on System Sci- ences. IEEE,
pp. 1258–1267

Frank U. (2011) The MEMO meta modelling language (MML) and
language architecture.. ICB- research report

Frank U. (2014) Multilevel modeling. In: Business & Information Systems
Engineering 6(6), pp. 319– 337

Goldberg A., Robson D. (1983) Smalltalk-80: the language and its
implementation. Addison-Wesley Longman Publishing Co., Inc.

Hartmann U., von Both P. (2009) A declarative approach to cross-domain
model analysis. In: Man- aging It in Construction/Managing Construction
for Tomorrow 26, pp. 45–51

Inspired.org (2022) Enterprise Value Architect https://www.inspired.org/
eva-home Last Access: 2022-05-02

Kelly S., Tolvanen J.-P. (2021) Collaborative mod- elling and
metamodelling with MetaEdit+. In: 2021 ACM/IEEE International
Conference on Model Driven Engineering Languages and Sys- tems
Companion (MODELS-C). IEEE, pp. 27– 34

References
Lanza M. (2003) Object-Oriented Reverse Engi- neering Coarse-
grained, Fine-grained, and Evolu- tionary Software Visualization. In:

Lara J. D., Guerra E., Cuadrado J. S. (2014) When and how to use
multilevel modelling. In: ACM Transactions on Software Engineering
and Methodology (TOSEM) 24(2), pp. 1–46

Martin J., Odell J. J. (1997) Object-oriented meth- ods (UML ed.,) a
foundation. Prentice-Hall, Inc.

McGuinness D. L., Fikes R., Hendler J., Stein L. A. (2002) DAML+ OIL: an
ontology language for the Semantic Web. In: IEEE Intelligent Systems
17(5), pp. 72–80

McLeod G. (2001) PAMELA: A Proto-pattern for Rapidly Delivered,
Runtime Extensible Systems. In: Evaluation of Modeling Methods for
Systems Analysis and Design (EMMSAD) 1

Moody D. (2009) The “physics” of notations: toward a scientific basis
for constructing visual notations in software engineering. In: IEEE Trans-
actions on software engineering 35(6), pp. 756– 779

Motik B., Patel-Schneider P. F., Parsia B., Bock C., Fokoue A., Haase P.,
Hoekstra R., Horrocks I., Ruttenberg A., Sattler U., et al. (2009) OWL 2
web ontology language: Structural specification and functional-style
syntax. In: W3C recommendation 27(65), p. 159

Open_Source (2022) Drawing UML with Plan- tUML PlantUML
Language Reference Guide https://plantuml.com/guide Last Access:
2022- 05-02

Puhlmann F. (2019) BPMN 2.0 Wimmelbild Edi- tion http://frapu.de/
pdf/BPMN20-Wimmelbild.pdf Last Access: 2022-05-02

Rayner M., Hockey B. A., Chatzichrisafis N., Far- rell K. (2005) OMG
Unified Modeling Language Specification. In: Version 1.3, © 1999
Object Management Group, Inc

von Rosing M., White S., Cummins F., de Man H. (2015) Business
Process Model and Notation- BPMN.

Solomon C., Harvey B., Kahn K., Lieberman H., Miller M. L., Minsky M.,
Papert A., Silverman B. (2020) History of logo. In: Proceedings of the
ACM on Programming Languages 4(HOPL), pp. 1–66

Various (2019) Archimate 3.1 Specification. The Open Group Series.
Van Haren Publishing https: //books.google.co.za/books?
id=kibNywEACAAJ

W3C (2022) Resource Description Framework (RDF) https://
www.w3.org/RDF/ Last Access: 2022-05-02

Ward P. T. (1986) The transformation schema: An extension of the data
flow diagram to represent control and timing. In: IEEE Transactions on
Software Engineering (2), pp. 198–210

Ware C. (2010) Visual thinking for design. Else- vier

© Graham McLeod 2022

Researcher: Graham McLeod
 graham@inspired.org

 www.inspired.org (Blog there too)

	LinkedIn:	Graham	McLeod	

	Skype:	grahammcleod	

Academia:	Undergraduate	BSc	Comp	Sc	at	Unisa,	B	Comm	Hons	(IS)	at	
Univ.	Cape	Town,	PhD	(in	progress)	Univ	Duisburg-Essen.		

Faculty	of	Information	Systems	at	UCT	for	12	years	(1991	-	2003)	

Active	in	industry	from	1975	-	present.	Roles	of	developer,	designer,	
analyst,	project	manager,	product	manager,	instructor/lecturer,	
consultant,	architect,	entrepreneur,	general	manager,	director,	chairman,	
business	owner.	Currently	Chief	Architect	/	Owner	of	inspired.org		

Major	interests:	Modelling,	Meta	Modelling,	Methods	Engineering,	
Enterprise	and	Software	Architecture,	Business	Modelling,	Strategy,	Tools,	
Dynamic	Languages	(Smalltalk)

http://www.travelstart.co.za/blog/wp-content/uploads/2013/11/
Greg-Lumley.jpg

Based in Cape Town, South Africa

http://www.inspired.org
http://www.inspired.org
http://inspired.org

