Hierarchical Matrices

Jon Cockayne
April 18, 2017
Sources

- “Introduction to Hierarchical Matrices with Applications” [Börm et al., 2003]
Sources

- “Introduction to Hierarchical Matrices with Applications” [Börm et al., 2003]
- “Fast Random Field Generation with \mathcal{H}-Matrices” [Feischl et al., 2017]
Introduction to Hierarchical Matrices
Consider sampling from the Gaussian process

\[u \sim \mathcal{GP}(0, k) \]

\[k(x, x') = \sigma^2 \exp \left(-\frac{|x - x'|}{\ell} \right) \]

This can be achieved by sampling \(\xi \sim \mathcal{N}(0, I) \) and computing \(K^{\frac{1}{2}} \xi \).
Consider sampling from the Gaussian process

\[u \sim \mathcal{GP}(0, k) \]

\[k(x, x') = \sigma^2 \exp \left(-\frac{|x - x'|}{\ell} \right) \]

This can be achieved by sampling \(\xi \sim \mathcal{N}(0, I) \) and computing \(K^{1/2} \xi \).

The kernel is non-smooth at \(x = x' \) and globally supported...
Motivation

Consider sampling from the Gaussian process

\[u \sim \mathcal{GP}(0, k) \]

\[k(x, x') = \sigma^2 \exp \left(-\frac{|x - x'|}{\ell} \right) \]

This can be achieved by sampling \(\xi \sim N(0, I) \) and computing \(K^{\frac{1}{2}} \xi \).

The kernel is non-smooth at \(x = x' \) and globally supported...but it is smooth elsewhere.
Hierarchical matrices seek to exploit local smoothness to provide:

- An approximation to the matrix with low storage requirements...
Hierarchical matrices seek to exploit local smoothness to provide:

- An approximation to the matrix with low storage requirements...
- ...with which linear algebra can be performed more efficiently.
Motivation
To generalize a more structured strategy is required...
1. Define a **cluster tree**, which hierarchically splits the points into clusters.
2. Define an **admissibility condition** to decide how to break the matrix into a **block tree**.
3. Construct a low-rank approximation to each block.
Cluster trees describe how we divide the points into clusters, which we later block together.
Cluster Trees

Cluster trees describe how we divide the points into clusters, which we later block together.

Let T_I be a tree, and T_I its node set. Let I denote a set of particles. T_I is a cluster tree if:

- Each $\tau \in T_I$ is associated with a subset of I.
- The root node contains all particles.
- Each non-leaf node has two children.
- If a node τ has children τ_1 and τ_2, then $\tau = \tau_1 \cup \tau_2$ and τ_1, τ_2 are disjoint.

Also denote by \mathcal{L}_I the leaf nodes of the tree.
Cluster Trees

Cluster trees describe how we divide the points into clusters, which we later block together.

Let T_I be a tree, and T_I its node set. Let I denote a set of particles. T_I is a cluster tree if:

- Each $\tau \in T_I$ is associated with a subset of I.
- The root node contains all particles.
- Each non-leaf node has two children.
- If a node τ has children τ_1 and τ_2, then $\tau = \tau_1 \cup \tau_2$ and τ_1, τ_2 are disjoint.

Also denote by L_I the leaf nodes of the tree.
Cluster Trees
Cluster Trees

![Cluster Trees Diagram]

A tree structure with nodes at various levels, connected by branches, illustrating the concept of cluster trees.
Admissibility conditions give a “rule of thumb” for whether a particular pair \((\tau, \sigma) \in T_I \times T_I\) has a suitably low-rank approximation.
Admissibility conditions give a “rule of thumb” for whether a particular pair \((\tau, \sigma) \in T_I \times T_I\) has a suitably low-rank approximation.

If we have some concept of the “domain” of \(\tau, \Omega_{\tau}\), use:

\[
\min(\text{diam}(\Omega_{\tau}), \text{diam}(\Omega_{\sigma})) \leq \eta \text{ dist}(\Omega_{\tau}, \Omega_{\sigma})
\]

where \(\eta\) controls the tradeoff between complexity and approximation quality.
Admissibility Conditions

diam(\(\Omega_\tau\)) = 0.176

diam(\(\Omega_\sigma\)) = 0.707

dist(\(\Omega_\tau\), \(\Omega_\sigma\)) = 1.25
Admissibility Conditions

\[\text{diam}(\Omega_\tau) = \text{diam}(\Omega_\sigma) = 0.176 \]
\[\text{dist}(\Omega_\tau, \Omega_\sigma) = 0.707 \]
In practise, bounding boxes of points are used to construct Ω_τ.
A **Block Tree** is a tree $T_{I \times I}$ constructed recursively.
A **Block Tree** is a tree $T_{i \times i}$ constructed recursively.

```python
def build_block_tree(tau_times_sigma):
    if admissible(tau_times_sigma):
        tau_times_sigma.children = []
    else:
        tau_times_sigma.children = potential_children(tau_times_sigma)
        for child in tau_times_sigma.children:
            build_block_tree(child)
```

i.e. for each submatrix, it has a leaf at the largest block size which is admissible.
A **Block Tree** is a tree $T_{i \times i}$ constructed recursively.

```python
def build_block_tree(tau_times_sigma):
    if admissible(tau_times_sigma):
        tau_times_sigma.children = []
    else:
        tau_times_sigma.children = potential_children(tau_times_sigma)
        for child in tau_times_sigma.children:
            build_block_tree(child)
```

i.e. for each submatrix, it has a leaf at the largest block size which is **admissible**.
Low-Rank Approximation

In the admissible leaf nodes we replace $k(x, y)$ by an approximation $\tilde{k}(x, y)$.
In the admissible leaf nodes we replace \(k(x, y) \) by an approximation \(\tilde{k}(x, y) \).

Standard to use a degenerate approximation

\[
\tilde{k}(x, y) = \sum_{v=1}^{k} p_v^x q_v(y)
\]

\(p_v^x \) are coefficients, estimated for each block. \(q_v(y) \) are basis functions.
In the admissible leaf nodes we replace $k(x, y)$ by an approximation $\tilde{k}(x, y)$.

Standard to use a degenerate approximation

$$\tilde{k}(x, y) = \sum_{v=1}^{k} p_{v}^x q_{v}(y)$$

p_{v}^x are coefficients, estimated for each block. $q_{v}(y)$ are basis functions.
Low-Rank Approximation

Common choices:

- Taylor expansion
- Interpolating polynomials (e.g. Lagrange Polynomials)
Definition 1 (Hierarchical Matrix)

An **Hierarchical Matrix** with blockwise rank k is a Matrix L associated with a block tree $T_{l \times l}$ for which all admissible leaves $\tau \times \sigma \in T_{l \times l}$ have $\text{rank}(L|_{\tau \times \sigma}) \leq k$.
Introduction to Hierarchical Matrices

\mathcal{H}^2-matrices
Uniform \mathcal{H}-matrices

\mathcal{H}^2 matrices use a particular approximation \tilde{k} which gives improved efficiency:

$$\tilde{k}(x, y) = \sum_{i=1}^{k_t} \sum_{j=1}^{k_\sigma} k(x_i^T, x_j^\sigma) p_i^T(x)p_j^T(y)$$

i.e. we use an tensor approximation of k in both arguments.
Uniform \mathcal{H}-matrices

\mathcal{H}^2 matrices use a particular approximation \tilde{k} which gives improved efficiency:

$$
\tilde{k}(x, y) = \sum_{i=1}^{k_\tau} \sum_{j=1}^{k_\sigma} k(x_i^T, x_j^\sigma) p_i^T(x)p_j^T(y)
$$

i.e. we use an tensor approximation of k in both arguments.
The matrices \(\{V_\tau\} \) are called a **cluster basis**.

Definition 2 (Uniform \(\mathcal{H} \)-matrix)

Let \(L \in \mathbb{R}^I \times \mathbb{R}^I \) be an \(\mathcal{H} \)-matrix. Let \(V \) be a **cluster basis**. \(L \) is a **uniform \(\mathcal{H} \)-matrix** with respect to \(V \) and the coefficient family \(\{S_{\tau,\sigma} : \tau \times \sigma \in \mathcal{L}_{I \times I}\} \) if:

\[
L|_{\tau \times \sigma} = V_\tau S_{\tau,\sigma} V_\sigma^T
\]
The matrices \(\{V_\tau\} \) are called a cluster basis.

Definition 2 (Uniform \(H \)-matrix)

Let \(L \in \mathbb{R}^I \times \mathbb{R}^I \) be an \(H \)-matrix. Let \(V \) be a cluster basis. \(L \) is a uniform \(H \)-matrix with respect to \(V \) and the coefficient family \(\{S_{\tau,\sigma} : \tau \times \sigma \in \mathcal{L}_{I \times I}\} \) if:

\[
L|_{\tau \times \sigma} = V_\tau S_{\tau,\sigma} V_{\sigma}^T
\]

This has lower storage requirements:

- Storage per-cluster instead of per-block
- The matrices \(S_{\tau,\sigma} \) are small.
The matrices \(\{V_\tau\} \) are called a **cluster basis**.

Definition 2 (Uniform \(\mathcal{H} \)-matrix)

Let \(L \in \mathbb{R}^I \times \mathbb{R}^I \) be an \(\mathcal{H} \)-matrix. Let \(V \) be a cluster basis. \(L \) is a uniform \(\mathcal{H} \)-matrix with respect to \(V \) and the coefficient family \(\{S_{\tau,\sigma} : \tau \times \sigma \in \mathcal{L}_{I \times I}\} \) if:

\[
L|_{\tau \times \sigma} = V_\tau S_{\tau,\sigma} V_\sigma^T
\]

This has **lower** storage requirements:

- Storage **per-cluster** instead of **per-block**
- The matrices \(S_{\tau,\sigma} \) are small.
Suppose that the approximation order k_{τ} is fixed to k_0 for all τ.
Suppose that the approximation order k_{τ} is fixed to k_0 for all τ.

In this case we can express blocks of V_{τ} in terms of its children $V_{\tau'}$:

$$V_{\tau} = \begin{bmatrix} V_{\tau_1} B_{\tau_1,\tau} \\ V_{\tau_2} B_{\tau_2,\tau} \\ \vdots \\ V_{\tau_n} B_{\tau_n,\tau} \end{bmatrix}$$
Suppose that the approximation order k_τ is fixed to k_0 for all τ.

In this case we can express blocks of V_τ in terms of its children $V_{\tau'}$:

$$V_\tau = \begin{bmatrix}
V_{\tau_1} B_{\tau_1,\tau} \\
V_{\tau_2} B_{\tau_2,\tau} \\
\vdots \\
V_{\tau_n} B_{\tau_n,\tau}
\end{bmatrix}$$

This means that we only need to store the V_τ corresponding to leaf nodes and the transfer matrices $B_{\tau',\tau}$.
Definition 3 (\mathcal{H}^2-matrix)

A uniform \mathcal{H}–matrix is called an \mathcal{H}^2–matrix if the cluster basis V is nested.
References
