Permeation through polymeric membranes far from steady state
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Solar fuels generators operate under non-steady state conditions, however the permeability of the membranes used in them is represented using solubility and diffusivities
AbStra Ct: obtained as fitting parameters from steady state measurements. Our work examines fundamental material properties and processes in order to build a model of membrane
permeation from physical chemistry that is realistic, valid at all times, and predictive for both steady state and non-steady state conditions. The multiscale reaction — diffusion
scheme is described, and we summarize selected results from 3 recent studies that investigate fundamental aspects of time-dependent permeation. The studies are of CO2 and N2 permeation through rubbery and
glassy polymers, which examines the influence of the rigidity of the matrix when the solutes only interact weakly, and of methanol through Nafion, which examines a system that characterized by strong interactions.
Permeation in all 3 systems is characterized by real-time polymeric matrix responses as the permeants are absorbed. This indicates that simple descriptions of membranes used in solar fuels generator models may not
be sufficiently detailed to predict performance during the diurnal cycle, and that new studies of time-dependent polymer-solute interactions would be valuable.
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