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Electrocatalysis — the action of a heterogeneous catalyst under electrochemical conditions —is a surface-mediated process. Activity and selectivity are dependent upon the composition and
the crystallographic structure of the electrode surface, the nature of the reactant-catalyst interactions, and the applied electrode potential. The surface science approach to electrocatalysis
entails the scrutiny of surfaces with well-defined structure and composition before, during, and after the reaction of interest so that unambiguous correlations can be drawn. The merits of
the often slow and invariably rigorous electrochemical surface science protocols are showcased herein for CO, reduction studies. Systematic investigations are built upon copper, the sole
monometallic electrocatalyst for the production of a variety of energy-rich molecules. The development and the seriatim implementation of operando tools have led to the discovery of (i)
the potential-driven surface reconstruction of polycrystalline Cu into a (100)-terminated surface; (i) the relative stability of the low-index facets of Cu; (iii) the atomic details of the
chemisorption of CO on Cu(200) under different electrolytic environments; and (iv) the specific surface structure selective for the formation of ethanol, C,H.OH, in alkaline medium.
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This material is based upon work Generalizations, Implications, and Prospects
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* CO,R, inthe context of artificial photosynthesis, is an interfacial problem that can be compartmentalized, at first approximation, as an investigation of the electrical double-layer region.

* The nature of the catalytic surface dictates the extent of applicability of ex situ and in situ characterization methods as approximations of operando counterparts. Oxophilic surfaces like Cu are best
examined during, rather than before and/or after, the reaction. The possibility of surface reconstruction places a caveat on any structure-activity correlation from ex situ and in situ analyses.

the U.S epartment of Energy « Multihyphenated analytical techniques implemented in seriatim mode are powerful tools for the interrogation of electrode surfaces under authentic electrocatalytic conditions.

under  Award ~ Number  DE- * Progress in the mechanistic understanding of electrocatalytic reactions requires the development of operando methods that address both the short surface residence time and very low
5C0004993. submonolayer coverages of intermediates.
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