
DIY: Secure Embedded
Projects using Trust

Teddy Reed && David Anthony

1Sunday, February 17, 13

Why

• Fascination with embedded systems and devices

• Popularity of Secure Boot, UEFI, and Trusted Computing

• Lack of TPM availability

• There are great Linux drivers in tpmdd, unfortunately
the devices cannot be purchased without an NDA or
cannot interface easily with embedded systems

• Hope to inspire community

2Sunday, February 17, 13

What

• Short introduction to Trusted Computing focusing on
features appealing to embedded developers

• Compare criticisms to creativity

• UEFI, Linux, and U-Boot drivers for your TPM

• Secure Boot example using a TPM for U-Boot

• More examples, configuration tutorials, documentation and
getting-started “kits”

3Sunday, February 17, 13

Part 1: TPM
Trusted Platform Module

“A facial recognition system which doesn’t recognize you
if you change your shirt” - Ariel Segall

4Sunday, February 17, 13

Secure, Trusted, Verified Boot

Software Integrity
(Local and Remote)

Your Imagination

5Sunday, February 17, 13

Protected
Storage

Non-Removable
Private Keys

Measurement
Registers

Hashing, RNG,
Key Generation

Apply access control to storage
based on logical or physical
machine state

Allow portable-encrypted
private keys, constrain use to a
unique platform

Track platform execution and
apply access control to
execution measurement

Common crypto functions
available to commodity
hardware in memory-absent
environments

Building Blocks

6Sunday, February 17, 13

Measurement
Registers

Track platform execution and
apply access control to
execution measurement

Building Blocks

A measurement register, or Platform Configuration
Register (PCR), each 160-bit wide, can ONLY be

extended, read, or reset

7Sunday, February 17, 13

Measurement
Registers

Track platform execution and
apply access control to
execution measurement

Building Blocks

A measurement register, or Platform Configuration
Register (PCR), each 160-bit wide, can ONLY be

extended, read, or reset

PCR_Extend(n, hash):
PCR(n) := SHA1(PCR(n) + hash)

7Sunday, February 17, 13

Asymmetric Key
Cryptography

Software Support

Building Blocks

8Sunday, February 17, 13

Trusted Computing
Terminology

• Ownership

• Key types

• Binding, Sealing

• Attestation
Appraisal

• Measurement

9Sunday, February 17, 13

Trusted Computing
Terminology

“Take Ownership” -
Assigns an owner to the TPM,
setting the owner password and
creating a “Storage Root
Key” (SRK)

Clearable, Repeatable

• Ownership

• Key types

• Binding, Sealing

• Attestation
Appraisal

• Measurement

10Sunday, February 17, 13

Trusted Computing
Terminology

Endorsement (TPM Identity)

SRK - Root of key hierarchy

transitive parent key

Attestation Identity

Signing Keys

...more!

• Ownership

• Key types

• Binding, Sealing

• Attestation
Appraisal

• Measurement

11Sunday, February 17, 13

Trusted Computing
Terminology

• Ownership

• Key types

• Binding, Sealing

• Attestation
Appraisal

• Measurement

Binding - Data encryption
with the TPM Endorsement Key

Sealing - Data encryption with
the additional property of PCR
values at the time of encryption

Quoting - Like sealing, but
produces a signature

12Sunday, February 17, 13

Trusted Computing
Terminology

Attestation - Vouching for
the accuracy of information

Appraisal - Assessing the
information using a previously
defined state

• Ownership

• Key types

• Binding, Sealing

• Attestation
Appraisal

• Measurement

13Sunday, February 17, 13

Trusted Computing
Terminology

Static Root of Trust

Dynamic Root of Trust

Cumulative hashes of
executables, libraries, scripts, etc.

• Ownership

• Key types

• Binding, Sealing

• Attestation
Appraisal

• Measurement

14Sunday, February 17, 13

Trusted Computing
Terminology

http://goo.gl/oh21v

Ariel Segall’s - Intro to Trusted Computing 101

15Sunday, February 17, 13

http://goo.gl/oh21v
http://goo.gl/oh21v

Trusted Computing
Terminology

http://goo.gl/oh21v

Trust us

Ariel Segall’s - Intro to Trusted Computing 101

15Sunday, February 17, 13

http://goo.gl/oh21v
http://goo.gl/oh21v

Criticisms
Critique Creativity

Remote Attestation Abuse
and Service Constraints

Manufacturer Trust

Privacy

Distributed Attestation
Services

Key-use Awareness and
DAA

Ignorance, EK-less

16Sunday, February 17, 13

Criticisms
Critique Creativity

Remote Attestation Abuse
and Service Constraints

Manufacturer Trust

Privacy

Distributed
Attestation Services

Key-use Awareness and
DAA

EK-less TPM

17Sunday, February 17, 13

Criticisms
Critique Creativity

Remote Attestation Abuse
and Service Constraints

Manufacturer Trust

Privacy

Distributed Attestation
Services

Key-use Awareness and
DAA

EK-less TPM

18Sunday, February 17, 13

Criticisms
Critique Creativity

Remote Attestation Abuse
and Service Constraints

Manufacturer Trust

Privacy

Distributed Attestation
Services

Key-use Awareness
and DAA

EK-less TPM

19Sunday, February 17, 13

Booting securely in the
non-embedded world

20Sunday, February 17, 13

Booting securely in the
non-embedded world

20Sunday, February 17, 13

OEM Custom UEFI
Use ROM or pre-BIOS code
to verify firmware signatures

(using known or custom
signature verification

algorithms

Check UEFI application, driver,
and bootloader signatures

against a user or OEM-
controlled certificate store

Check kernel, ram disk, and
additional OS boot data

signatures within the boot
loader

Trusted Grub
TBOOT

TXT: DRTM
Anti-EM

21Sunday, February 17, 13

OEM Custom UEFI
Use ROM or pre-BIOS code
to verify firmware signatures

(using known or custom
signature verification

algorithms

Check UEFI application, driver,
and bootloader signatures

against a user or OEM-
controlled certificate store

Check kernel, ram disk, and
additional OS boot data

signatures within the boot
loader

Trusted Grub
TBOOT

TXT: DRTM
Anti-EM

#
22Sunday, February 17, 13

OEM Custom UEFI
Use ROM or pre-BIOS code
to verify firmware signatures

(using known or custom
signature verification

algorithms

Check UEFI application, driver,
and bootloader signatures

against a user or OEM-
controlled certificate store

Check kernel, ram disk, and
additional OS boot data

signatures within the boot
loader

Trusted Grub
TBOOT

TXT: DRTM
Anti-EM

üüü
22Sunday, February 17, 13

OEM Custom UEFI
Use ROM or pre-BIOS code
to verify firmware signatures

(using known or custom
signature verification

algorithms

Check UEFI application, driver,
and bootloader signatures

against a user or OEM-
controlled certificate store

Check kernel, ram disk, and
additional OS boot data

signatures within the boot
loader

Trusted Grub
TBOOT

TXT: DRTM
Anti-EM

üüü
22Sunday, February 17, 13

OEM Custom UEFI
Use ROM or pre-BIOS code
to verify firmware signatures

(using known or custom
signature verification

algorithms

Check UEFI application, driver,
and bootloader signatures

against a user or OEM-
controlled certificate store

Check kernel, ram disk, and
additional OS boot data

signatures within the boot
loader

Trusted Grub
TBOOT

TXT: DRTM
Anti-EM

üü
22Sunday, February 17, 13

OEM Custom UEFI
Use ROM or pre-BIOS code
to verify firmware signatures

(using known or custom
signature verification

algorithms

Check UEFI application, driver,
and bootloader signatures

against a user or OEM-
controlled certificate store

Check kernel, ram disk, and
additional OS boot data

signatures within the boot
loader

Trusted Grub
TBOOT

TXT: DRTM
Anti-EM

üü
22Sunday, February 17, 13

OEM Custom UEFI
Use ROM or pre-BIOS code
to verify firmware signatures

(using known or custom
signature verification

algorithms

Check UEFI application, driver,
and bootloader signatures

against a user or OEM-
controlled certificate store

Check kernel, ram disk, and
additional OS boot data

signatures within the boot
loader

Trusted Grub
TBOOT

TXT: DRTM
Anti-EM

üü
#

22Sunday, February 17, 13

Recap: Measurement

• Fancy word for secured-logging

• Systems and designers can implement a “static” or
“dynamic” root ...of trust measurement

• Struggle to add support for measurement

• We missed some implementations, please don’t be
mad :’(

23Sunday, February 17, 13

Part 2: TPM on your
embedded device

24Sunday, February 17, 13

BeagleBone Revision A5, A6

JTAG Emulator (XDS100v2), USB
Power, USB Ethernet, UART0 (Serial)

Using 1 Micro USB!

25Sunday, February 17, 13

}
BeagleBone Revision A5, A6

JTAG Emulator (XDS100v2), USB
Power, USB Ethernet, UART0 (Serial)

Using 1 Micro USB!

Out of the 96 pins (most
with 7 configuration modes)

almost every interface on
the board is easily exposed

to your creativity

25Sunday, February 17, 13

} {
BeagleBone Revision A5, A6

JTAG Emulator (XDS100v2), USB
Power, USB Ethernet, UART0 (Serial)

Using 1 Micro USB!

Out of the 96 pins (most
with 7 configuration modes)

almost every interface on
the board is easily exposed

to your creativity

Many supported Linux
distributions, great
documentation for

assembling your own, and
compiling your own kernel
(even community support

for 3.7/3.8)

25Sunday, February 17, 13

USB

Ethernet5/3.3/1.8V

MMC0

TPS6517B

256M DDR

AM3359

26Sunday, February 17, 13

USB

Ethernet5/3.3/1.8V

GPMC

I2C 1 I2C 2

SPI

MMC0

TPS6517B

256M DDR

AM3359

EEPROM

MMC1 MMC2

Battery Charger

Timer x4

CAN

UART x4

27Sunday, February 17, 13

USB

Ethernet5/3.3V, 1.8V

GPMC

I2C 1 I2C 3

SPI

MMC0

TPS6517B

256MB DDR

AM3359

EEPROM

MMC1 MMC2

Battery Charger

Timer x4

CAN

UART x4

USB

Ethernet5/3.3/1.8V

GPMC

I2C 2

SPI

MMC0

TPS6517B

256M DDR

AM3359

EEPROM

MMC2

Battery Charger

CAN

UART x4

28Sunday, February 17, 13

USB

Ethernet5/3.3V, 1.8V

GPMC

I2C 1 I2C 3

SPI

MMC0

TPS6517B

256MB DDR

AM3359

EEPROM

MMC1 MMC2

Battery Charger

Timer x4

CAN

UART x4

Testing Only!

USB

Ethernet5/3.3/1.8V

GPMC

I2C 2

SPI

MMC0

TPS6517B

256M DDR

AM3359

EEPROM

MMC2

Battery Charger

CAN

UART x4

29Sunday, February 17, 13

USB

Ethernet5/3.3V, 1.8V

GPMC

I2C 2 I2C 3

SPI

MMC0

TPS6517B

256MB DDR

AM3359

EEPROM

MMC1 MMC2

Battery Charger

Timer x4

CAN

UART x4

TPM

USB

Ethernet5/3.3V, 1.8V

GPMC

I2C 1 I2C 3

SPI

MMC0

TPS6517B

256MB DDR

AM3359

EEPROM

MMC1 MMC2

Battery Charger

Timer x4

CAN

UART x4

USB

Ethernet5/3.3/1.8V

GPMC

I2C 2

SPI

MMC0

TPS6517B

256M DDR

AM3359

EEPROM

MMC2

Battery Charger

CAN

UART x4

30Sunday, February 17, 13

I2C1_SDA

I2C1_SCLK

SYS_RESETn

CLK

Not so exciting here, we use
BeagleBone’s I2C1 bus because it is
reserved for non-cape components

SYS_RESETn is used by the CPU for a
soft or hard reset. The AM3359 will pull

this line during a soft reset (with a
variable frequency), and the hardware

will pull it to force a hard reset

An separate external clock assures no
software control by the system

31Sunday, February 17, 13

Configuration Schematic:

Software:

• U-Boot/Linux TPM driver (branches for each):
http://github.com/theopolis/tpm-i2c-atmel

• UEFI I2C TPM SecurityPkg:
http://github.com/theopolis/SecurityPkg

32Sunday, February 17, 13

https://github.com/theopolis/tpm-i2c-atmel
https://github.com/theopolis/tpm-i2c-atmel
http://github.com/theopolis/SecurityPkg
http://github.com/theopolis/SecurityPkg

Configuration Schematic:

Software:

• U-Boot/Linux TPM driver (branches for each):
http://github.com/theopolis/tpm-i2c-atmel

• UEFI I2C TPM SecurityPkg:
http://github.com/theopolis/SecurityPkg

What you
can’t read

that?

32Sunday, February 17, 13

https://github.com/theopolis/tpm-i2c-atmel
https://github.com/theopolis/tpm-i2c-atmel
http://github.com/theopolis/SecurityPkg
http://github.com/theopolis/SecurityPkg

TPM Manufacturers

• Atmel

• Broadcom

• Infineon

• Intel

• ITE

• Nuvoton (?)

• Sinosun

• STMicro

• Toshiba

• *Software

33Sunday, February 17, 13

Acquiring a TPM

• Atmel AT97SC3204[T]

• $6.30 - $6.50

• DigiKey, Mouser, AVNET Express

• Option for purchasing EK-less TPM

34Sunday, February 17, 13

()|

TPM

33MHz Clock

Board

Alternate Storage

35Sunday, February 17, 13

()|

TPM

33MHz Clock

Board

Alternate Storage

36Sunday, February 17, 13

Create a SRTM on the
BeagleBone

37Sunday, February 17, 13

Potential for Error
• A static root of trust measurement implies

a set of routines secured from any software
attack possible

MMC0’s write-protect pin (P8-42) is multiplexed
with others. An SRTM using MMC0 violates the
above statement as an attacker can change the

MUX setting for the pin, thus disabling the write
protecting and changing our initialization routines

38Sunday, February 17, 13

Options

• The BeagleBone exposes the AM3359 boot
configuration pins, configure them for a default
boot of MMC1, and control the WP pin
externally

• Similar, but use USB or SPI to retrieve the code

• Permanently disable writing to the SD card in
MMC0 using a PROGRAM_CSD command
CMD27 with bit 13 set

39Sunday, February 17, 13

 !

ROM Code reads a boot config from
pins pulled high or low to determine a
boot device then reads and executes a

loader from device

40Sunday, February 17, 13

 !

ROM Code reads a boot config from
pins pulled high or low to determine a
boot device then reads and executes a

loader from device

The default boot device is
MMC1, using partition 1 and

a FAT a file called MLO
(x-loader) is executed

By pulling WP high, we prevent
SW modifications to this media*

40Sunday, February 17, 13

 !

ROM Code reads a boot config from
pins pulled high or low to determine a
boot device then reads and executes a

loader from device

The default boot device is
MMC1, using partition 1 and

a FAT a file called MLO
(x-loader) is executed

By pulling WP high, we prevent
SW modifications to this media*

The MLO is called a second-phase loader
(SPL), the first phase is the ROM code, and is

where we initialize the SRTM

40Sunday, February 17, 13

 !

ROM Code reads a boot config from
pins pulled high or low to determine a
boot device then reads and executes a

loader from device

The default boot device is
MMC1, using partition 1 and

a FAT a file called MLO
(x-loader) is executed

By pulling WP high, we prevent
SW modifications to this media*

The MLO is called a second-phase loader
(SPL), the first phase is the ROM code, and is

where we initialize the SRTM

The SPL reads and measures
U-Boot or UEFI from an

alternate device (e.g., MMC0)

The measurement chain continues
into R/W storage

40Sunday, February 17, 13

Use the SRTM for a
Secure Boot

Implemented with Hashing, Sealing, and Unsealing

41Sunday, February 17, 13

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

Execute

42Sunday, February 17, 13

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

SHA1(U-Boot)PCR_Extend()

Execute

42Sunday, February 17, 13

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

SHA1(U-Boot)PCR_Extend(

Sealed U-Boot state

)

TPM_Unseal()

Execute

42Sunday, February 17, 13

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

SHA1(U-Boot)PCR_Extend(

Sealed U-Boot state

)

HaltMLO

TPM_Unseal()
Success Failure

U-Boot

Execute

Execute

42Sunday, February 17, 13

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

SHA1(U-Boot)PCR_Extend(

Sealed U-Boot state

)

HaltMLO

TPM_Unseal()
Success Failure

U-Boot

Execute

Execute

43Sunday, February 17, 13

MLO
1. Initialize TPM: Startup, Selfcheck
2. Verify TPM Configuration

(libSboot, libTLCL, TPM driver)

3. Read U-Boot
4. Extend a PCR with U-Boot hash

Ok, so before we can secure boot, we
must Seal a blob for U-Boot

(Where U-Boot is what MLO will eventually execute)

5. Read Sealed U-Boot blob
6. Unseal U-Boot blob

44Sunday, February 17, 13

But one more thing...

During the Secure Boot: the second phase loader,
called MLO, our SRTM, is verifying that the U-Boot

it just read is the expected U-Boot by using the
Extended PCR to Seal

Remember, we enforce state by Sealing to PCRs

This means we must Seal while the PCR
is correctly Extended

45Sunday, February 17, 13

A-Priori Secure Boot

MLO
Read

U-Boot

OMG Problem!

SHA1(U-Boot)PCR_Extend()

MLO
Unseal

Blob

U-Boot
Write

Blob

MLO
Read

U-Boot

(Success || Failure)

SHA1(U-Boot)PCR_Extend()

MLO
Unseal

Blob

MLO
Execute

U-Boot

MLO
Act

46Sunday, February 17, 13

OMG Problem!

U-Boot
Write

Blob

MLO
Execute

U-Boot

Also: Prevent arbitrary writes using access
control on blob storage, in this example we use
Physical Presence to enable reading and writing

Compile MLO once to allow U-Boot to execute
without verification, then a second time with

verification enforced

47Sunday, February 17, 13

If MLO is enforcing a Secure Boot, changing
the U-Boot binary is not possible, even for

an expected patch

Aside: We use the TPM’s NVRAM to store
blobs for agnostic storage support and to

protect the blob from arbitrary writes

48Sunday, February 17, 13

Use the SRTM for a
Secure Boot

Implemented with Signatures

49Sunday, February 17, 13

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

Execute

50Sunday, February 17, 13

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

Execute

Signature,

50Sunday, February 17, 13

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

SHA1(U-Boot)PCR_Extend()

Execute

Signature,

50Sunday, February 17, 13

Sealed U-Boot stateTPM_Unseal()

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

SHA1(U-Boot)PCR_Extend()

Execute

Signature,

50Sunday, February 17, 13

Sealed U-Boot stateTPM_Unseal()

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

SHA1(U-Boot)PCR_Extend()

HaltMLO

Success Failure

U-Boot

Execute

Execute

Signature,

50Sunday, February 17, 13

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

SHA1(U-Boot)PCR_Extend()

HaltMLO

RSAVerify()
Success Failure

U-Boot

Execute

Execute

Signature

Signature

,

51Sunday, February 17, 13

MLO
As long as boot pins are
not changed, and device

is write-protected
MLO

Read

U-Boot

SHA1(U-Boot)PCR_Extend()

HaltMLO

RSAVerify()
Success Failure

U-Boot

Execute

Execute

Signature

Signature

Optional,

52Sunday, February 17, 13

A-Priori Secure Boot

Compile
MLO MLO

Read

U-Boot

(Success || Failure)

SHA1(U-Boot)PCR_Extend()

Sign

U-Boot

MLO
Act

+ K(pub)

MLO
Read

Signature

RSAVerify()Signature

53Sunday, February 17, 13

Note: A SRTM using signatures
(certificates) does not require a TPM

Well, it really is not a RTM is you are only verifying
signatures, it is missing the ‘secure-logging’ block

Expected updates to U-Boot will contain a
valid signature and not require any change in

Secure Boot enforcement

54Sunday, February 17, 13

Use the SRTM for a
Secure Boot

Implemented with Hashing, Sealing, Unsealing
and Signatures

55Sunday, February 17, 13

MLO

Success

U-Boot

Execute via
Signature

56Sunday, February 17, 13

MLO

Success

U-Boot

Execute

U-Boot #>

via
Signature

56Sunday, February 17, 13

MLO

Success

U-Boot

Execute

U-Boot #>

U-Boot #> fatload mmc 0 code.bin 80008000

via
Signature

*

56Sunday, February 17, 13

MLO

Success

U-Boot

Execute

U-Boot #>

U-Boot #> fatload mmc 0 code.bin 80008000
U-Boot #> envset bootargs root=/dev/nfs rw
 nfsroot=172.17.77.175:/export/rootfs

via
Signature

*

56Sunday, February 17, 13

MLO

Success

U-Boot

Execute

U-Boot #>

U-Boot #> fatload mmc 0 code.bin 80008000
U-Boot #> envset bootargs root=/dev/nfs rw
 nfsroot=172.17.77.175:/export/rootfs

SHA1(CMD, ENV)PCR_Extend()

via
Signature

*

56Sunday, February 17, 13

MLO

Success

U-Boot

Execute

U-Boot #>

U-Boot #> fatload mmc 0 code.bin 80008000
U-Boot #> envset bootargs root=/dev/nfs rw
 nfsroot=172.17.77.175:/export/rootfs

SHA1(CMD, ENV)PCR_Extend()

For every command, and again for env modifications

via
Signature

*

56Sunday, February 17, 13

Finally, repeat the process for the kernel,
ramdisk, and flattened device tree using a

separate sealed blob, or appropriate signatures

There are other ways to execute code in
U-Boot, we aim to protect any path leading

to execution of a kernel from U-Boot

Assure measurement before any possible JMP

57Sunday, February 17, 13

libSboot

• Simple example of a Secured Boot

• Implemented in U-Boot

• Modeled loosely after Chromium’s vboot

• Many more features coming
http://github.com/theopolis/u-boot-sboot

58Sunday, February 17, 13

http://github.com/theopolis/u-boot-sboot
http://github.com/theopolis/u-boot-sboot

Continuing Measurement

59Sunday, February 17, 13

Linux Integrity
Measurement Architecture

Reporting

Appraisal

Kernel

60Sunday, February 17, 13

Integrity Log

10 3772aaa767c90b2361cef5f56b2ef1bd4efbd349 ima 8b3f2772dec8248c25ef12ed130a7c52986f4a65 boot_aggregate
10 dc99efa590c706a43792618dde88c590a6942ec7 ima fe932380326d7c51d17bac45f5d1c9f576d19f6c /sbin/init
10 fcaa7505fae70096cb9b6a8ec06ec6400b756aa2 ima 0ddd922ae7f5a6dcf788438db1fe47e9a0641e6d ld-2.15.so
10 501975777299919e49aac14c262d6388eae38e79 ima 8d848950517879e0dd77dc9602cad294b454b05a ld.so.cache
10 195830b88844db79ff994c57022e94da416c486c ima 28c4c3a750f5679b9092b2bb2f98c5f745e422f7 libselinux.so.1
10 770cd9400624a5678da388545df1297e182ccd10 ima 03db374e3cedeaf987db096a034bccb5c5bcf3d0 libc-2.15.so
10 82d48ec5fc4344a18a9d17ec1bf1bd8511f99fe6 ima e801e50a5f3ce7acc6e39b1133bce04120c46c35 libpcre.so.1.0.1
10 81ee4b0bbf4f5b464135e3e3d79b2777bceaa236 ima 869231d2fe1afe45ab284adc0efe5a237509bc7f libdl-2.15.so
10 67f5923749dfa266721ee0d6ad038102297c1170 ima e5f8003967fd31f295a115e1d682dd0169b34592 config
10 24894f13a9def8dd2f18838f04fde4becc184fc3 ima 032663452ea268aa1528bd466dda3738bb59a8f2 libsepol.so.1

/sys/kernel/security/ima/ascii_runtime_measurements

PCR, SHA1(file + name), Subsystem, SHA1(content), hint

61Sunday, February 17, 13

Integrity Log

10 3772aaa767c90b2361cef5f56b2ef1bd4efbd349 ima 8b3f2772dec8248c25ef12ed130a7c52986f4a65 boot_aggregate
10 dc99efa590c706a43792618dde88c590a6942ec7 ima fe932380326d7c51d17bac45f5d1c9f576d19f6c /sbin/init
10 fcaa7505fae70096cb9b6a8ec06ec6400b756aa2 ima 0ddd922ae7f5a6dcf788438db1fe47e9a0641e6d ld-2.15.so
10 501975777299919e49aac14c262d6388eae38e79 ima 8d848950517879e0dd77dc9602cad294b454b05a ld.so.cache
10 195830b88844db79ff994c57022e94da416c486c ima 28c4c3a750f5679b9092b2bb2f98c5f745e422f7 libselinux.so.1
10 770cd9400624a5678da388545df1297e182ccd10 ima 03db374e3cedeaf987db096a034bccb5c5bcf3d0 libc-2.15.so
10 82d48ec5fc4344a18a9d17ec1bf1bd8511f99fe6 ima e801e50a5f3ce7acc6e39b1133bce04120c46c35 libpcre.so.1.0.1
10 81ee4b0bbf4f5b464135e3e3d79b2777bceaa236 ima 869231d2fe1afe45ab284adc0efe5a237509bc7f libdl-2.15.so
10 67f5923749dfa266721ee0d6ad038102297c1170 ima e5f8003967fd31f295a115e1d682dd0169b34592 config
10 24894f13a9def8dd2f18838f04fde4becc184fc3 ima 032663452ea268aa1528bd466dda3738bb59a8f2 libsepol.so.1

/sys/kernel/security/ima/ascii_runtime_measurements

 10 3772aaa767c90b2361cef5f56b2ef1bd4efbd349 ima
 8b3f2772dec8248c25ef12ed130a7c52986f4a65 boot_aggregate

62Sunday, February 17, 13

10 3772aaa767c90b2361cef5f56b2ef1bd4efbd349 ima 8b3f2772dec8248c25ef12ed130a7c52986f4a65 boot_aggregate
10 dc99efa590c706a43792618dde88c590a6942ec7 ima fe932380326d7c51d17bac45f5d1c9f576d19f6c /sbin/init
10 fcaa7505fae70096cb9b6a8ec06ec6400b756aa2 ima 0ddd922ae7f5a6dcf788438db1fe47e9a0641e6d ld-2.15.so
10 501975777299919e49aac14c262d6388eae38e79 ima 8d848950517879e0dd77dc9602cad294b454b05a ld.so.cache
10 195830b88844db79ff994c57022e94da416c486c ima 28c4c3a750f5679b9092b2bb2f98c5f745e422f7 libselinux.so.1
10 770cd9400624a5678da388545df1297e182ccd10 ima 03db374e3cedeaf987db096a034bccb5c5bcf3d0 libc-2.15.so
10 82d48ec5fc4344a18a9d17ec1bf1bd8511f99fe6 ima e801e50a5f3ce7acc6e39b1133bce04120c46c35 libpcre.so.1.0.1
10 81ee4b0bbf4f5b464135e3e3d79b2777bceaa236 ima 869231d2fe1afe45ab284adc0efe5a237509bc7f libdl-2.15.so
10 67f5923749dfa266721ee0d6ad038102297c1170 ima e5f8003967fd31f295a115e1d682dd0169b34592 config
10 24894f13a9def8dd2f18838f04fde4becc184fc3 ima 032663452ea268aa1528bd466dda3738bb59a8f2 libsepol.so.1

Log

63Sunday, February 17, 13

10 3772aaa767c90b2361cef5f56b2ef1bd4efbd349 ima 8b3f2772dec8248c25ef12ed130a7c52986f4a65 boot_aggregate
10 dc99efa590c706a43792618dde88c590a6942ec7 ima fe932380326d7c51d17bac45f5d1c9f576d19f6c /sbin/init
10 fcaa7505fae70096cb9b6a8ec06ec6400b756aa2 ima 0ddd922ae7f5a6dcf788438db1fe47e9a0641e6d ld-2.15.so
10 501975777299919e49aac14c262d6388eae38e79 ima 8d848950517879e0dd77dc9602cad294b454b05a ld.so.cache
10 195830b88844db79ff994c57022e94da416c486c ima 28c4c3a750f5679b9092b2bb2f98c5f745e422f7 libselinux.so.1
10 770cd9400624a5678da388545df1297e182ccd10 ima 03db374e3cedeaf987db096a034bccb5c5bcf3d0 libc-2.15.so
10 82d48ec5fc4344a18a9d17ec1bf1bd8511f99fe6 ima e801e50a5f3ce7acc6e39b1133bce04120c46c35 libpcre.so.1.0.1
10 81ee4b0bbf4f5b464135e3e3d79b2777bceaa236 ima 869231d2fe1afe45ab284adc0efe5a237509bc7f libdl-2.15.so
10 67f5923749dfa266721ee0d6ad038102297c1170 ima e5f8003967fd31f295a115e1d682dd0169b34592 config
10 24894f13a9def8dd2f18838f04fde4becc184fc3 ima 032663452ea268aa1528bd466dda3738bb59a8f2 libsepol.so.1

Log AggregatePCR10=

64Sunday, February 17, 13

10 3772aaa767c90b2361cef5f56b2ef1bd4efbd349 ima 8b3f2772dec8248c25ef12ed130a7c52986f4a65 boot_aggregate
10 dc99efa590c706a43792618dde88c590a6942ec7 ima fe932380326d7c51d17bac45f5d1c9f576d19f6c /sbin/init
10 fcaa7505fae70096cb9b6a8ec06ec6400b756aa2 ima 0ddd922ae7f5a6dcf788438db1fe47e9a0641e6d ld-2.15.so
10 501975777299919e49aac14c262d6388eae38e79 ima 8d848950517879e0dd77dc9602cad294b454b05a ld.so.cache
10 195830b88844db79ff994c57022e94da416c486c ima 28c4c3a750f5679b9092b2bb2f98c5f745e422f7 libselinux.so.1
10 770cd9400624a5678da388545df1297e182ccd10 ima 03db374e3cedeaf987db096a034bccb5c5bcf3d0 libc-2.15.so
10 82d48ec5fc4344a18a9d17ec1bf1bd8511f99fe6 ima e801e50a5f3ce7acc6e39b1133bce04120c46c35 libpcre.so.1.0.1
10 81ee4b0bbf4f5b464135e3e3d79b2777bceaa236 ima 869231d2fe1afe45ab284adc0efe5a237509bc7f libdl-2.15.so
10 67f5923749dfa266721ee0d6ad038102297c1170 ima e5f8003967fd31f295a115e1d682dd0169b34592 config
10 24894f13a9def8dd2f18838f04fde4becc184fc3 ima 032663452ea268aa1528bd466dda3738bb59a8f2 libsepol.so.1

Log Aggregate

Quote(AIK) + Log

PCR10=

Aggregate

64Sunday, February 17, 13

10 3772aaa767c90b2361cef5f56b2ef1bd4efbd349 ima 8b3f2772dec8248c25ef12ed130a7c52986f4a65 boot_aggregate
10 dc99efa590c706a43792618dde88c590a6942ec7 ima fe932380326d7c51d17bac45f5d1c9f576d19f6c /sbin/init
10 fcaa7505fae70096cb9b6a8ec06ec6400b756aa2 ima 0ddd922ae7f5a6dcf788438db1fe47e9a0641e6d ld-2.15.so
10 501975777299919e49aac14c262d6388eae38e79 ima 8d848950517879e0dd77dc9602cad294b454b05a ld.so.cache
10 195830b88844db79ff994c57022e94da416c486c ima 28c4c3a750f5679b9092b2bb2f98c5f745e422f7 libselinux.so.1
10 770cd9400624a5678da388545df1297e182ccd10 ima 03db374e3cedeaf987db096a034bccb5c5bcf3d0 libc-2.15.so
10 82d48ec5fc4344a18a9d17ec1bf1bd8511f99fe6 ima e801e50a5f3ce7acc6e39b1133bce04120c46c35 libpcre.so.1.0.1
10 81ee4b0bbf4f5b464135e3e3d79b2777bceaa236 ima 869231d2fe1afe45ab284adc0efe5a237509bc7f libdl-2.15.so
10 67f5923749dfa266721ee0d6ad038102297c1170 ima e5f8003967fd31f295a115e1d682dd0169b34592 config
10 24894f13a9def8dd2f18838f04fde4becc184fc3 ima 032663452ea268aa1528bd466dda3738bb59a8f2 libsepol.so.1

Log Aggregate

Quote(AIK) + Log

(Success || Failure)

PCR10=

Aggregate

64Sunday, February 17, 13

10 3772aaa767c90b2361cef5f56b2ef1bd4efbd349 ima 8b3f2772dec8248c25ef12ed130a7c52986f4a65 boot_aggregate
10 dc99efa590c706a43792618dde88c590a6942ec7 ima fe932380326d7c51d17bac45f5d1c9f576d19f6c /sbin/init
10 fcaa7505fae70096cb9b6a8ec06ec6400b756aa2 ima 0ddd922ae7f5a6dcf788438db1fe47e9a0641e6d ld-2.15.so
10 501975777299919e49aac14c262d6388eae38e79 ima 8d848950517879e0dd77dc9602cad294b454b05a ld.so.cache
10 195830b88844db79ff994c57022e94da416c486c ima 28c4c3a750f5679b9092b2bb2f98c5f745e422f7 libselinux.so.1
10 770cd9400624a5678da388545df1297e182ccd10 ima 03db374e3cedeaf987db096a034bccb5c5bcf3d0 libc-2.15.so
10 82d48ec5fc4344a18a9d17ec1bf1bd8511f99fe6 ima e801e50a5f3ce7acc6e39b1133bce04120c46c35 libpcre.so.1.0.1
10 81ee4b0bbf4f5b464135e3e3d79b2777bceaa236 ima 869231d2fe1afe45ab284adc0efe5a237509bc7f libdl-2.15.so
10 67f5923749dfa266721ee0d6ad038102297c1170 ima e5f8003967fd31f295a115e1d682dd0169b34592 config
10 24894f13a9def8dd2f18838f04fde4becc184fc3 ima 032663452ea268aa1528bd466dda3738bb59a8f2 libsepol.so.1

Log Aggregate

Quote(AIK) + Log

(Success || Failure)

We can pre-computed possible valid logs

PCR10=

Aggregate

64Sunday, February 17, 13

IMA calculates boot aggregate

IMA measures each subsequent executable and mmap

OpenPTS quotes and sends run log to trusted third
party for appraisal

StrongSwan, Trusted Network Connect Standards, and
Network Endpoint Assessment protocols make
network access policy decisions based on appraisal

65Sunday, February 17, 13

Compare()Quote Policies

66Sunday, February 17, 13

Compare()
Success Failure

Quote Policies

Enterprise LAN Limited LAN

Device Device

67Sunday, February 17, 13

We can make local policy decisions too!

Compare()
Success Failure

Quote Policies

Enterprise LAN Limited LAN

Device Device

67Sunday, February 17, 13

IMA only measures by default

With Linux 3.7, IMA Appraisal extensions are included:

(a)IMA-Appraisal-Signature-Extension
(b)IMA-Appraisal-Directory-Extension

File{i}

For all Files:
Hash()security.ima :=

(a) Sign(File{i}Hash())

(b) HMAC(File{i}’s metadata++)
Wait, where
did you get
that key?

68Sunday, February 17, 13

So..., where did you
get that key?

We need an HMAC to protect metadata,
because we make expected changes

The HMAC is protecting against offline attacks

Linux Trusted and Encrypted Keys!

Use the TPM to seal symmetric keys to state*

69Sunday, February 17, 13

Linux Encryption Keys can be used without a TPM

Linux uses Trusted Keys and the TPM to allow
key use when an expected state is measured

Offline retrieval of the Trusted Key is not
possible unless the SRTM is bypassed

These keys can be used in other creative ways such
as device identity or network data encryption

70Sunday, February 17, 13

Part 3: Gaps, Ideas
and You

71Sunday, February 17, 13

Securing your Embedded
Devices: Booting

• A Secured Boot can be used to maintain expected
boot options (the embedded bootstrap does not
change often while in production)

•User programmable key stores allow the
device owner to decide what firmware/
kernel/etc they want to accept

72Sunday, February 17, 13

Securing your Embedded
Devices: Measurement

• Measurement may continue past booting, into the
Operating System execution. While measurement
will not protect against runtime attacks, it can
enforce expected state

• Expected OS executables and libraries
can be pre-processed, along with user-
defined update signatures

73Sunday, February 17, 13

Securing your Embedded
Devices: Attestation

• Anonymous, and Identity-based Attestation allows
remote services and protocols to enforce state
policy

•Distributed key infrastructures and
trusted parties allow users to attest
themselves remotely (remote services
can enforce user-defined policys)

74Sunday, February 17, 13

vTPM and XEN

I’m not sure...
I want to test

IBM Software TPM

75Sunday, February 17, 13

IBM Software TPM

TCP/IP

SW TPM0

SW TPM1

TCG Software Stack
(TrouSerS)

libtpm

IBM TCG Utilities SW TPM2
TCG TPM Test Suite

76Sunday, February 17, 13

IBM Software TPM

TCP/IP

SW TPM0

SW TPM1

TCG Software Stack
(TrouSerS)

libtpm

IBM TCG Utilities SW TPM2
TCG TPM Test Suite

77Sunday, February 17, 13

IBM Software TPM

TCP/IP

SW TPM0

SW TPM1

TCG Software Stack
(TrouSerS)

libtpm

IBM TCG Utilities SW TPM2
TCG TPM Test Suite

78Sunday, February 17, 13

Maybe TC/TPM is an
overkill

• Atmel ATSHA204 (newer version of AT88SA102S)
enables identification with protected memory

• Allows secure storage for private keys and
additional sensitive data

• Does not include crypto functions

79Sunday, February 17, 13

Presentation Recap

• Trust criticisms are real but we should be able to
offer creative advantages

• Trusted Computing hardware and concepts are
available for embedded development

• IMA, OpenPTS, StrongSwan’s NEA are already
available, we present an example Secure Boot for
U-Boot

• More OSS capabilities are needed

80Sunday, February 17, 13

TPM Kits

• An Atmel AT97SC3204T (I2C TPM)

• 28 Pin SSOP breakout

• Maxim DS1077LZ-66+ OSC

• 8 Pin SOIC breakout

81Sunday, February 17, 13

82Sunday, February 17, 13

Questions

???

83Sunday, February 17, 13

