Tissue injury can initiate bidirectional signaling between neurons, glia, and immune cells that creates and amplifies pain. While the ability for neurotransmitters, neuropeptides, and cytokines to initiate and maintain pain has been extensively studied, recent work has identified a key role for reactive oxygen and nitrogen species (ROS/RNS; nitroxidative species), including superoxide, peroxynitrite, and hydrogen peroxide. In this review we describe how nitroxidative species are generated after tissue injury and the mechanisms by which they enhance neuroexcitability in pain pathways. Finally, we discuss potential therapeutic strategies for normalizing nitroxidative signaling, which may also enhance opioid analgesia, to help to alleviate the enormous burden of pathological pain.
(CIPN), diabetic neuropathy (DN), spinal cord injury (SCI), experimental autoimmune encephalomyelitis (EAE), which have recently been reviewed elsewhere [12]. There are numerous endogenous sources of ROS and nitric oxide (NO) that are engaged during pain processing [13]. NADPH oxidases, NO synthases, and mitochondrial respiration are among the best characterized ROS/NO producers, and will be discussed here (Figures 1 and 2).

NADPH Oxidases

NADPH oxidases (NOX) are membrane-bound enzyme complexes. They transport electrons donated from cytosolic NADPH to generate extracellular or luminal superoxide anions or hydrogen peroxide that can be transported into the cytosol via aquaporin channels [13,14]. In contrast to other sources of ROS that are generated as a byproduct of catabolism, ROS generation is the primary function of NOX. There are seven members in the NOX family; NOX1, 2, and 4 have been implicated in pathological inflammatory and neuropathic pain models [13,15,16]. NOX1 and 2 are expressed at the cellular membrane, and produce superoxide anions following phosphorylation of cytosolic subunits [17]. NOX4 is expressed on organelles, such as the endoplasmic reticulum, and constitutively produces hydrogen peroxide [17].

NOX1 is inducibly expressed by microglia, neurons, astrocytes, and macrophages in the dorsal root ganglion (DRG) and CNS [17–19]. Noxious hypersensitivity induced by the inflammatory stimuli formalin and carrageenan is attenuated in Nox1-deficient mice [18]. NOX1-derived ROS induce translocation of PKCs to the membrane to enhance transient receptor potential (TRP) V1 activity in DRG neurons [18], a change consistent with pain amplification (Figure 2). By contrast, another study showed that NOX1 mRNA failed to upregulate in the DRG following peripheral nerve injury (PNI) [20]. These results indicate that DRG NOX1 may have a preferential role in inflammatory versus neuropathic pain.

NOX2 is predominantly expressed by phagocytic cells – peripheral macrophages and CNS microglia [13]. PNI induces a rapid upregulation of NOX2 mRNA by DRG macrophages and spinal microglia, which is correlated with increased intracellular superoxide [20,21]. PNI-induced nociceptive hypersensitivity was attenuated in Nox2-deficient mice [20,21]. Nox2 deficiency attenuated TNF, but not IL-1β, mRNA expression, as well as expression of the neuronal injury marker ATF3 in DRG (Figure 2) [20]. However, Nox2 deficiency did not influence macrophage recruitment to the injured DRG, suggesting a role for NOX2 in macrophage function rather than in

Glossary

Neuroimmune signaling: bidirectional communication between leukocytes, glia, and neurons.

Pathological pain: maladaptive pain that serves no useful purpose.

Figure 1. Induction of Nitroxidative Species after Tissue Injury.
Nitroxidative species can induce post-translational modifications of proteins and lipids, which subsequently drive pathological pain by modulating nociceptive neurotransmission, activating TRP channels, and inducing mitochondrial dysfunction, and thereby induce inflammatory signaling. In healthy cells, endogenous antioxidant systems prevent nitroxidative damage. Cell damage/pathology can perturb this balance, driving the accumulation of potentially damaging nitroxidative species. Abbreviations: CAT, catalase; Gpx, glutathione; H₂O₂, hydrogen peroxide; HO, heme oxygenase; mETC, mitochondrial electron transport chain; NO, nitric oxide; NOS, nitric oxide synthase; NOX, NADPH oxidase; O₂•−, superoxide; •OH, hydroxyl radical; ONOO⁻, peroxynitrite; SOD, superoxide dismutase.
chemotaxis [20]. Nox2 deficiency attenuated PNI-induced Iba1 expression and the attendant expression of proinflammatory cytokines TNF and IL-1β in the spinal dorsal horn [21]. Because these studies were performed in global knockouts, it is still unclear whether alterations in the DRG and dorsal horn are subject to NOX-dependent changes in macrophage function at the injury site. In contrast to NOX1, NOX2 activity in monocytes appears to play no role in inflammatory pain [22].

NOX4 is expressed by DRG neurons – both myelinated (A-fibers) and unmyelinated (C-fibers) DRG neurons – as well as by microglia, astrocytes, and macrophages [13,23,24]. Nociceptive hypersensitivity following PNI is attenuated in Nox4-deficient mice, with attenuation of hydrogen peroxide at the sciatic nerve injury site [23]. These results are supported by the absence of NOX4 upregulation in the DRG after PNI [20]. The myelin proteins MPZ and PMP22 are decreased at

Figure 2. Sources of Niteroxidative Species after Tissue Injury. Principal sources of niteroxidative species include NADPH oxidase (NOX), nitric oxide synthase (NOS), and electron leakage from the mitochondrial electron transport chain (mETC). The NOX1, 2, and 4 isoforms are differentially expressed across cell types and tissues after injury. NOX1-derived reactive oxygen species (ROS) induce enhance transient receptor potential (TRP) V1 activity in dorsal root ganglia (DRG) neurons. NOX2 activity in macrophages and microglia drives proinflammatory cytokine (PIC) gene expression in DRG of the spinal dorsal horn. NOX4 expression at the site of peripheral nerve injury decreases the expression of myelin proteins (MP). The three NOS isoforms – NOS1 (neuronal), 2 (inducible), and 3 (endothelial) – are also differentially expressed by cell type. In abnormal pain states, N-methyl-D-aspartate receptors (NMDARs) are activated, resulting in calcium influx and activation of NOS1. Transcription of NOS2 is initiated by Toll-like receptors (TLRs). These enzymes and processes have a well-established role in pathological pain.
the sciatic nerve injury site over time in a NOX4-dependent fashion, suggesting that myelin degeneration by hydrogen peroxide may maintain neuropathic pain (Figure 2). However, attenuated damage at the injury site did not alter expression of the nitrooxidative stress and neuroinflammation indices at the spinal dorsal horn or DRG (microglia proliferation, hydrogen peroxide levels) [23]. This contrasts with other studies showing that such processes are dependent on manipulations at the sciatic nerve [25–27]. Finally, a role for NOX4 may be limited to neuropathic rather than inflammatory pain [23].

Together, these data suggest that NOX1, 2, and 4 isoforms contribute to pathological pain. Future studies could expand the role of various NOX isoforms to other sites in the neuraxis and well as identifying a role for other NOX isoforms in pain. These data may help to guide the development of therapeutics that target the activity of specific NOX isoforms to reduce nitrooxidative stress and pain.

Nitric Oxide Synthases

NO is a diffusible gas mediator that is synthesized from L-arginine by one of three nitric oxide synthase (NOS) isoforms: NOS1 (neuronal), 2 (inducible), and 3 (endothelial). NO and all three NOS isoforms have a well-established role in nociception (Figure 2) [28]. It easily passes through membranes to directly impact on nearby cells.

NOS1 is constitutively expressed in the cytosolic compartment of postsynaptic terminals of neurons, and of stressed Schwann cells, and requires calcium for its activation [29–31]. In abnormal pain states, N-methyl-D-aspartate (NMDA) receptors are activated, resulting in calcium influx and activation of NOS1 [28]. Nociceptive hypersensitivity induced by PNI and CIPN is attenuated by genetic ablation and pharmacological inhibition of NOS1 [32–35].

NOS2 is a cytosolic isoform that is widely expressed in many immune cells and in glia. Transcription of NOS2 is initiated by Toll-like receptors (TLRs) and, once translated, is constitutively active — that is, unlike NOS1 and 3, its activity is independent of calcium [28]. NOS2 inhibition attenuates nociceptive hypersensitivity associated with inflammatory and neuropathic pain models [15,36,37].

NOS3 is best known for its expression in the cardiovascular system as a regulator of vascular tone. NOS3 is a membrane-bound enzyme that is constitutively expressed; however, it requires the interaction of calcium and calmodulin for its activation [28]. NOS3 expression is increased in the DRG after subcutaneous administration of CFA, and is correlated with allodynia, suggestive of increased NOS3 activity [38]. CFA-induced inflammatory pain is attenuated by NOS3 inhibition [38].

Cellular Respiration

One crucial function of mitochondria is in energy metabolism. The mitochondrial electron transport chain (mETC) is a series of five molecular complexes through which electrons are transported to synthesize ATP from ADP. Premature electron leakage can occur during cellular respiration, particularly at complexes I and III, resulting in superoxide production (Figure 2) [39].

Mitochondrial ROS levels are elevated in spinal neurons, microglia, and astrocytes in neuropathic pain models [21,40,41]. Furthermore, blocking the mETC attenuates hyperalgesia associated with a range of inflammatory and neuropathic pain models [42–45]. However, a direct link between mETC-dependent pain and mitochondrial ROS has yet to be shown. These results suggest that cellular respiration is increased, but is inefficient owing to enhanced ROS-generating electron leakage from the mETC because ATP production by sciatic nerves is impaired during CIPN [46].
Mechanisms of Nitroxidative Signaling in Neuronal Hyperexcitability

Injury or disease can provoke intense, repeated, and sustained activity of primary afferent (sensory) neurons. This activity, together with the release of mediators from reactive glia and immune cells, elicits well-characterized changes in neuronal and biochemical processing at peripheral terminals and central synapses \([5,47–50]\). This is termed ‘sensitization’, and results in nociceptive hypersensitivity. We discuss here how nitroxidative signaling engages neurons in pain pathways, leading to peripheral and central sensitization (Figures 1 and 3).

Nitroxidative Species as Neuromodulators in Pain Pathways

Nitroxidative species can directly increase the excitability of nociceptive neurons. Intraplantar administration of superoxide or peroxynitrite, or intrathecal delivery of the ROS donor \(\text{tert-buty}l \text{ hydroperoxide (tBOOH)},\) is sufficient to induce nociceptive hypersensitivity in naïve rats \([51–54]\). These studies demonstrated that ROS activates calcium/calmodulin-dependent protein kinase II (CaMKII) in glutamatergic spinal neurons, and induced presynaptic inhibition of GABAergic interneurons (disinhibition). Furthermore, hydrogen peroxide enhanced the frequency and amplitude of action potentials of DRG neurons from neuropathic rats \([55]\).

In neuropathic pain models, administration of the non-selective ROS scavenger phenyl-\(N\)-tert-butyl-nitrone (PBN), selective small-molecule superoxide and peroxynitrite decomposition catalysts such as M40403, FeTMPyP5 \(+\), and MnTE-2-PyP5 \(+\), or selective peroxynitrite decomposition catalysts such as SR16 and SR110, attenuated nociceptive hypersensitivity \([15,51,53,54,56–58]\). Accordingly, PBN attenuated injury-induced hyperexcitability of spinal dorsal (sensory) horn ‘pain’-responsive neurons and phosphorylation of CaMKII \([51,57]\), an effect consistent with pain normalization. Several mechanisms of enhanced excitatory signaling have been identified. Hydrogen peroxide can activate cGKI, resulting in increased neurotransmitter release from the terminals of primary afferent neurons in the dorsal horn \([59,60]\). Peroxynitrite and ROS disrupt glutamate homeostasis, leading to potentiation of synaptic currents and calcium influx, and ultimately excitotoxicity \([56,61]\). Mechanisms include nitration and phosphorylation of several NMDA receptor subunits, as well as inhibition of glutamine synthetase and the glutamate transporter GLT-1 that limit the synaptic half-life of glutamate \([15,56,62,63]\). Nitroxidative products also induce disinhibition after PNI because PBN normalized the decrease in GAD-67 \(^+\) GABAergic dorsal horn neurons, and increased GABA release (Figure 3) \([53,64]\). Together, these data suggest that nitroxidative species directly enhance neuroexcitability in pain pathways.

Nitroxidative Species Activate TRP Channels

The TRP family of nonselective cation channels play a vital role in the molecular integration of multiple endogenous and exogenous sensory stimuli \([65]\). Several of these channels, expressed at the peripheral and central terminals and cells bodies of primary afferent neurons, are activated by nitroxidative species and products. TRP channel activation by nitroxidative species can also initiate neurogenic inflammation – recruitment and activation of immune cells following release of neuropeptides by neurons – which is a key process underlying pathological pain (Figure 3) \([5,66]\). We focus here on the known roles of TRPA1, TRPM2, and TRPV1.

TRPA1 is a chemoreceptor expressed exclusively by peptidergic C-fibers \([65]\). Nitroxidative species induce protein carbonylation, and membrane phospholipid peroxidation and nitration, as well as subsequent production of reactive aldehydes such as acrolein (Figure 1). These products all share the ability to induce nociceptive hypersensitivity by directly activating TRPA1 \([67–72]\). Acrolein is elevated in the DRG and spinal cord after SCI, and blockade with hydralazine or phenelzine partially attenuated alldynia \([73,74]\). Moreover, nociceptive hypersensitivity induced by CIPN was abolished in \(\text{Trpa}1\)-deficient mice or by a TRPA1 antagonist \([75]\). In this
Nitroxidative Mechanisms of Neuroexcitability after Tissue Injury. Reactive nitroxidative species, such as hydrogen peroxide and peroxynitrite, and modified proteins and lipids, including carbonylated proteins, peroxidated and nitrated lipids, and reactive aldehydes, all contribute to peripheral and central sensitization after tissue injury. These processes drive pathological pain. Several of the transient receptor potential (TRP) family of nonselective cation channels are activated by nitroxidative species and by modified proteins and lipids (see Nitroxidative Species Activate TRP Channels). TRPA1 is expressed by peptidergic C-fibers, and is activated by modified proteins and lipids. TRPM2, which is expressed by neurons, monocytes/macrophages, microglia, and T cells, is directly activated by nitroxidative species. TRPM2 also activates intracellular signaling pathways, including mitogen-activated protein kinase (MAPK) pathways and nuclear translocation of nuclear factor-κ-light-chain enhancer of activated B cells (NF-κB). TRPV1 is found on C-fibers and is directly activated by some modified proteins and lipids, as well as being a target of oxidation and nitration events by nitroxidative species that increase the responsiveness of the channel. Reactive nitroxidative species can directly modulate neuroexcitability in central synapses by promoting glutamate release from primary afferent terminals, by activating calcium/calmodulin-dependent protein kinase II (CaMKII) in glutamatergic spinal neurons, and by inhibiting GABAergic interneurons (see Nitroxidative Species Induce Mitochondrial Dysfunction). Nitroxidative species can also trigger release of proapoptotic factors from mitochondria by disrupting organelle dynamics. Nitroxidative species induce the production of proinflammatory mediators, and can activate NF-κB and MAPK intracellular signaling pathways (see Nitroxidative Species Induce Neuroinflammatory Signaling). Toll-like receptors (TLRs) bind to a variety of endogenous danger signals, including those released from nitroxidative-damaged mitochondria, to activate NF-κB and MAPKs. NOX-derived ROS are second...
TRPA1, suggesting that ROS may act as an intermediate [75].

TRPM2 is expressed by neurons, and abundantly by immune cells including monocytes/macrophages, neutrophils, T cells, and microglia. This channel is directly activated by hydrogen peroxide and by cytosolic ADP-ribose that is generated after nitroxidative damage to mitochondria [76–81]. Furthermore, TRPM2 activation is crucial for activation of spinal microglia and for macrophage infiltration into the spinal cord after PNI [82]. TRPM2 also activates the ERK/MAPK pathway and induces nuclear translocation of NF-κB, resulting in the production of proinflammatory cytokines and chemokines [76,77,81,83,84]. Consequently, pharmacological and genetic studies have demonstrated that TRPM2 contributes to inflammatory and neuropathic nociceptive hypersensitivity [77–79,82,85].

TRPV1 is found on unmyelinated, slowly-conducting neuronal C-fibers, and is an essential component underlying injury-elicited thermal hyperalgesia and nociceptive hypersensitivity [65]. TRPV1 expression is upregulated by an exogenous ROS donor (tBOOH), and is a target of oxidation and nitration events that increase the responsiveness of the channel [18,86–88]. Moreover, linoleic acid metabolites, created during the production of eicosanoids, are endogenous TRPV1 agonists when oxidized, and contribute to nociceptive signaling [89,90].

Nitroxidative Species Induce Mitochondrial Dysfunction

Mitochondria have pivotal roles in a variety of cellular functions, including energy metabolism, calcium homeostasis, lipid synthesis, and apoptosis. As noted above, cellular respiration can be elevated under neuropathic pain conditions, with an attendant elevation of ROS derived from neuronal and microglial mitochondria [21,40,41]. Together with nitroxidative species derived from NOX and NOS enzymes, these species disrupt mitochondrial homeostasis via several mechanisms, leading to bioenergetic crisis (due to impaired mETC efficiency) and degeneration of primary afferents (Figure 3) [91].

Mitochondrial DNA is a target of oxidation and nitration, while peroxidated lipid end-products, such as reactive aldehydes, can form covalent modifications (adducts) with an array of mitochondrial proteins, including antioxidants [92,93]. Together, these changes impair the structural integrity and function of mitochondria. Nitroxidative species can also trigger release of proapoptotic factors from mitochondria. For example, NO can disrupt mitochondrial dynamics (fission and fusion; responsible for maintaining metabolic homeostasis), resulting in translocation of Bcl-2-associated X protein from the cytosol to the organelle membrane, where it activates apoptosis pathways [94–96]. Activation of apoptosis pathways contributes to neuropathic pain because inhibition of several caspase enzymes attenuates vincristine- and dideoxycytidine-induced nociceptive hypersensitivity [97]. Neuropathic pain is associated with impaired mitochondrial function, and nociceptive hypersensitivity is accordingly attenuated by pharmacologically normalizing mitochondrial dynamics or preventing mitotoxicity [46,98–100].

Nitroxidative Species Induce Neuroinflammatory Signaling

Proinflammatory mediators released by glial and immune cells increase neuroexcitability in pain pathways after injury (e.g., TNF, IL-1β, BDNF) [5,50,101–103]. Several mechanisms include enhanced glutamate release, increased AMPA receptor expression, phosphorylated NMDA receptor subunits, and downregulated astrocyte glutamate transporters [5]. These
proinflammatory mediators can also induce disinhibition of neuronal excitability by attenuating GABA and glycine release from interneurons and inhibitory descending projections, and by downregulating KCC2 on postsynaptic terminals [5].

Nitroxidative species regulate the production of proinflammatory mediators during pathological pain. For example, NF-κB and p38 MAPK are responsible for the production of a wide array of proinflammatory mediators in immune cells. Nitroxidative products degrade/inhibit IκB and MAPK phosphatases, resulting in activation of NF-κB and p38 that both mediate inflammatory and neuropathic pain [52,104–107]. Furthermore, nitroxidative species may promote the release of neuron-to-glial signals such as matrix metalloproteases (MMPs) (Figure 3) [108].

Nitroxidative species also elicit proinflammatory responses via TLR signaling. TLRs bind a variety of endogenous ligands (danger-associated molecular patterns, DAMPs), including DNA and N-formyl peptides from nitroxidatively damaged mitochondria, to trigger innate immune responses that contribute to pathological pain [5,109]. ROS serve a vital role as second messengers for TLR signaling. A rapid (minutes) respiratory burst occurs upon activation of TLR2 and 4, which is mediated by a direct interaction with the intracellular domains of NOX1, 2, and 4 enzymes. This NOX activity is essential for downstream NF-κB- and p38 MAPK-dependent cytokine production [110–114]. Furthermore, activation of NOX enzymes by TLR signaling induces transcription of TLRs, and promotes membrane expression in lipid rafts, which is necessary for efficient signaling [111,115,116]. In concert with disruption of blood–brain barrier tight junctions by nitroxidative species, the TLR2–NOX1 interaction also upregulates adhesion molecules via CCL3 to facilitate transendothelial cell migration, which contributes to nociceptive hypersensitivity after PNI (Figure 3) [102,110,117].

ROS have been implicated in the activation of NLRP3 inflammasomes [118]– protein complexes responsible for the proteolytic activation of IL-1β, a proinflammatory cytokine with a well-established role in pathological pain [5,101,119]. Among the various sensor molecules that trigger the formation of inflammasomes, NLRP3 has been most widely investigated and has a recently described role in neuropathic pain [120]. The relative contributions of ROS to the activation versus priming of NLRP3 inflammasomes remains to be elucidated [119]. Mitochondria are key participants in the activation of NLRP3 inflammasomes: they are a source of ROS that can directly activate NLRP3, as well as of oxidized mitochondrial DNA that can also activate NLRP3 (Figure 3) [118,121–123]. Furthermore, TRPM2 activation by nitroxidative species induces a calcium flux that activates the NLRP3 inflammasome [124].

Finally, there is a reciprocal relationship between nitroxidative species and inflammatory signaling. For example, the transcription of NOX and NOS enzymes is upregulated by TLR4 and 9 signaling, as well as by NF-κB and p38 activation [19,125–129]. The purinergic receptor P2X7, which has a documented role in pathological pain, also induces ROS production [5,120,130]. ATP signaling through P2X7R activates NOX2 in a calcium and p38-dependent fashion [131–133].

Endogenous Regulators of Nitroxidative Signaling

Under healthy conditions, nitroxidative species and antioxidants exist in a balanced state because nitroxidative products play a vital physiological role in cellular processes (e.g., signal transduction, pathogen defense [134–136]). In response to increased production of nitroxidative species during injury or infection, antioxidant and regulatory systems are activated in an attempt to recover homeostasis (Figure 1) [14].

Antioxidant Defense

Transcription of antioxidant genes is a crucial step in controlling nitroxidative signaling. One key transcription factor is nuclear factor E2-related factor 2 (Nrf2). Nrf2 is expressed in CNS and PNS
neurons, macrophages, Schwann cells, astrocytes, and microglia [137–139]. Under homeostatic conditions, cytosolic Nrf2 is sequestered by the protein Keap1 and ubiquitinated for degradation. However, in the presence of oxidants and electrophiles, Nrf2 is released from Keap1 and translocates to the nucleus [140]. Nrf2 binds to the antioxidant response element (ARE) promoter region to elicit expression of >200 antioxidant genes, including those encoding superoxide dismutases (SOD1, cytosolic; SOD2, mitochondrial), catalase, glutathione, and heme-oxygenases [140]. Another transcription factor, forkhead box class O (FoxO), is also responsible for the production of SOD2 and catalase [141]. Many of these antioxidants are ubiquitously expressed, and their catabolic function is summarized in Figure 1 [142].

These endogenous antioxidant systems collaborate to detoxify reactive nitroxidative species (Figure 1). The evidence is mixed whether neuroinflammatory or traumatic events increase nervous system antioxidant levels [143–152]. This likely reflects a temporally- and injury-specific antioxidant response, and the fact that injury-induced nitroxidative species can negatively regulate antioxidant production [15,76]. Antioxidant system activation can limit pathological pain: deletion of SOD1 exacerbates neuropathic pain, while exogenous antioxidants attenuate nociceptive hypersensitivity in a range of inflammatory and neuropathic pain models [37,108,153–155]. Similarly, heme-oxigenases, which elicit the expression of various antioxidants, protect cells and could improve inflammation and neuropathic pain [21]. Therefore, therapies that increase antioxidant systems could resolve neuroinflammation and pain symptoms.

Anti-Inflammatory Cytokine and Adenosine Signaling
Cytokines such as IL-10 and TGF-β counter-regulate proinflammatory signaling and contribute to the resolution of neuropathic pain hypersensitivity [5,156,157]. One mechanism of action is via the regulation of nitroxidative signaling. For example, IL-10 and TGF-β inhibit NOX2 activity and promote antioxidant production [158–160]. This is a reciprocal relationship because antioxidants can also drive the production of anti-inflammatory cytokines [161,162]. Adenosine signaling is also anti-nociceptive in pathological pain models [163–165]. Signaling through A2A and A3 receptors inhibits NOX activity, and drives the production of anti-inflammatory cytokines and antioxidants [163,166,167].

Opposition of Opioid Analgesia by Nitroxidative Species
Opioid analgesics remain the cornerstone of management of moderate-to-severe pain. However, the clinical utility of opioids is limited by tolerance, which is characterized by dose escalation as a result of reduced sensitivity to an opioid agonist, as well as by hyperalgesia, a paradoxical increase in pain sensitivity induced by opioid exposure [168,169]. Recent evidence has identified a role for nitroxidative signaling in these phenomena [6,170].

NOX activity is elevated by morphine, and genetic or pharmacological disruption of these enzymes attenuates tolerance and hyperalgesia [171–173]. Superoxide and peroxynitrite have been implicated as downstream mediators because decomposition catalysts also attenuate tolerance and hyperalgesia [174–176]. It remains unclear how morphine engages these enzymes, but it may be mediated by classical μ-opioid receptors and/or TLR4 [168]. The pronociceptive mechanisms of nitroxidative species, described above, may act as an opposing process of neuronally-mediated opioid analgesia to create tolerance, or may overshadow analgesia to induce hyperalgesia. Therefore, correcting nitroxidative imbalance may improve the clinical profile of opioids [170].

Nitroxidative signaling also disrupts endogenous opioid analgesia in supraspinal sites that are engaged to inhibit spinal nociception via descending projections. For example, upregulation of peroxynitrite during inflammatory pain results in nitration of met-enkephalin in the rostral
ventromedial medulla (RVM), and this reduces opioid receptor binding affinity [177]. This may be normalized by intra-RVM microinjections of FeTMPyP5+, which was antinociceptive in inflammatory and neuropathic pain models [177].

Nitroxidative Signaling as a Therapeutic Target for Pathological Pain

Under pathological conditions, endogenous antioxidant responses can be insufficient, leading to an accumulation of toxic nitroxidative species. As mentioned above, unchecked increases in nitroxidative species can promote cytotoxicity and inflammation via cascading pronociceptive signaling. Therefore, discovering therapeutic treatments that enhance cellular antioxidant capacity could help to achieve nitroxidative balance to recover homeostasis.

Initial efforts to combat increases in nitroxidative species in a wide range of neurological disorders used direct antioxidant compounds (e.g., vitamins C and E, coenzyme Q). The consensus view is that the possible beneficial effects are outweighed by unfavorable pharmacokinetic and pharmacodynamic profiles [13,178,179]. A variety of redox-active therapeutics are being developed to overcome these issues, and are effective in treating cancer-induced bone pain as well as inflammatory and neuropathic pain, and can also potentiate opioid analgesia [9,10,180].

Newer approaches have instead aimed to inhibit sources of nitroxidative species, stimulate endogenous antioxidants, and prevent nitroxidative damage [13,178]. To this end, inhibitors of specific NOX and NOS isoforms, and ROS toxifiers such as MPO, are being developed and may prove effective for pain treatment [13,181]. As noted above, A2A and A3 adenosine receptor agonists attenuate spinal NOX activity and promote antioxidant production, with a concomitant decrease in neuropathic pain [163–165]. Another promising approach is the development of small molecules that catalyze the clearance of reactive aldehydes [182].

Indirect antioxidants augment the redox response without being antioxidants themselves. For example, sulforaphane, resveratrol, and curcumin induce nuclear translocation of Nrf2, a transcription factor responsible for the production of a wide array of antioxidants, and attenuate nociceptive hypersensitivity in neuropathic pain models [21,183–186]. Non-pharmacological approaches may also function in this capacity. For example, exercise increases Nrf2 expression and promotes the expression of antioxidants in the CNS as well as peripherally [187–189]. Consequently, voluntary wheel running has been shown to both prevent and reverse neuropathic pain [187,190].

Finally, ROS have a role in normal physiological processes [134–136], and there is some evidence that ROS may have protective effects after injury. For example, inflammation induced by endotoxin is exacerbated in NADPH-impaired mice relative to their wild-type counterparts [191]. In another study, yeast survival to hydrogen peroxide stress was dependent on superoxide [192]. Further work will be necessary to determine whether ROS may also have a protective role after sterile nervous system injury. However, agents have been developed to spare superoxide (e.g., peroxynitrite decomposition catalysts SRI110 and SRI6 [15]), and such approaches may prove to be important for restoring homeostasis after nervous system injury.

Concluding Remarks

Nitroxidative species are generated by mitochondria and by NOX and NOS enzymes. They enhance neuroexcitability in pain pathways through direct neuronal interactions, and indirectly by impairing mitochondria and inducing neuroinflammation. Normalizing nitroxidative signaling may be an alternative strategy to help to alleviate the enormous burden of pathological pain, which affects ~20% of the population and is poorly treated [11,193,194]. There are several
areas of basic science research that may move us towards that goal (see Outstanding Questions).

Despite the extensive research implicating nitroxidative species in pathological pain states, no studies to date have quantified the crucial relationships between real-time local cellular creation of nitroxidative species, their concentration at the effect site, and the distribution of their direct effects. This challenge has not been overcome owing to the volatility of these nitroxidative species and hence their very short lifetimes in vivo and ex vivo. Several new technologies are being developed to address these issues and are discussed in Box 1 and Table 1.

Lessons from the failure of direct antioxidants to improve clinical disease need to be recognized within the pain field: the effects of direct antioxidants on preclinical pain models continue to be reported despite the strong probability that the results will not translate clinically. Several studies suggest that more-robustly engaging antioxidant systems after injury can help alleviate to pain: for instance, in animal pain models, increasing the action of master antioxidant transcription factors Nrf2 or FoxO, or activating the heme-oxygenase system, show promising pain-relieving effects. Future studies could explore whether combinatorial strategies – aimed at boosting multiple antioxidants or targeting both antioxidant and nitroxidative systems simultaneously – dampen inflammation and pain. Nitroxidative dysregulation clearly contributes to neuropathology; thus, discovering new targets and therapies that restore nitroxidative balance could help to relieve pathological pain.

Box 1. New and Emerging Tools To Study Nitroxidative Species

Colorimetric and fluorescent methods for detecting the ‘shadow’ of the presence of nitroxidative species production is well established by the quantification of attendant cellular events (e.g., oxidative stress such as lipid peroxidation: thiobarbituric acid reactive substances (TBARS) [195]; DNA damage (8-oxoguanine, 8-OxoG) [196,197]) or the quantification of more stable metabolites (e.g., nitrite/nitrate using the Griess reaction [198]). These methods are not only limited in their temporal and spatial resolution, but also because of their insufficient ability to define the concentrations and time-courses of specific nitroxidative species. Establishing differential regulation of distinct nitroxidative species would be useful because specific oxygen or nitrogen species have unique outcomes in the neuroinflammatory responses. A recent example demonstrated that specifically targeting peroxynitrite reduced inflammatory progression via NLRP3 inflammasome-dependent IL-1β/IL-18 release following intracerebral hemorrhage injury [199]. Thus, new biosensors will be necessary to improve our mechanistic understanding of how nitroxidative species affect the nervous system.

The chemistry of fluorescent probes for specific detection of both ex vivo and in vivo production of nitroxidative species has grown rapidly. A range of approaches and hence biosensors have been created that exploit platform sensing modalities, such as photoinduced electron transfer (PET) and Förster resonance energy transfer (FRET) signaling. In addition, composite biosensors that incorporate a sensor functionalized to a nanoparticle [gold particles, upconversion nanoparticles (UCNPs), and QDots] are being used to detect and/or measure ROS/RNS species (detailed in Table 1). Such ROS probes can quantify hypochlorite [200,201], hydroxyl [202,203], superoxide [204], hydrogen peroxide [205], and singlet oxygen [206]. Biosensors for nitric oxide [207,208], nitroxyl [209–211], peroxynitrite [212] are also being developed.

These probes detect targeted species in cell lines, in ex vivo tissue, or in in vivo models of inflammation. However, these biosensor tools require further optimization. Further refinement of biosensors will help to improve the stability of the probe, the brightness of the fluorescent molecule, the specificity to defined species, the sensitivity of detection, and the consumption of the probe in the sensing process. However, real-time visualization and/or quantification of nitroxidative species within the CNS of a behaving preclinical rodent model of pathological pain remains an elusive goal.

The ultimate nitroxidative species biosensor would have real-time sensing capacity, with signal brightness that can detect the subcellular localization of the nitroxidative species; ideally, this probe would not be consumed/bleached in the sensing process, thereby allowing repeated measurements in vivo. Next-generation probes will address some of these limitations. For instance, a redox-sensitive fluorescent protein (mRFP1), whose fluorescence intensity is positively related to the extent of oxidation of the probe, can detect varying amounts of oxidative stress within separate cellular compartments [213]. Further refining these tools will enable an improved understanding of how particular species contribute to oxidative or nitrosative stress, and will allow researchers to define how the spatiotemporal regulation of nitroxidative activity contributes to pathological pain.
Table 1. Probes Able To Detect Specific ROS and RNS Species In Vitro, Ex Vivo, or In Vivo*

<table>
<thead>
<tr>
<th>ROS species</th>
<th>Probe type</th>
<th>Imaging platform used</th>
<th>Tested in vitro</th>
<th>Tested ex vivo/ in vivo</th>
<th>ROS/RNS stimulation</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypochlorite</td>
<td>Iridium (III) complex-based two-photon phosphorescent probe</td>
<td>Two-photon laser scanning fluorescence microscope and confocal laser microscope</td>
<td>HeLa cells/RAW 264.7 cells</td>
<td>Zebrafish</td>
<td>10 mM NaOCl (HeLa) 1 mg/ml LPS (RAW 264.7 and zebrafish)</td>
<td>[201]</td>
</tr>
<tr>
<td>Hypochlorite</td>
<td>Rhodamine-based hydrazide protein fluorescent probe</td>
<td>Fluorescence microscope</td>
<td>HeLa cells</td>
<td>50 μM OCI−</td>
<td></td>
<td>[200]</td>
</tr>
<tr>
<td>Hydroxyl</td>
<td>Ratiometric fluorescence biosensor (gold particles conjugated with organic fluorophore)</td>
<td>Confocal laser microscope</td>
<td>HeLa cells</td>
<td>10 μg/ml LPS</td>
<td></td>
<td>[203]</td>
</tr>
<tr>
<td>Hydroxyl</td>
<td>Ratiometric fluorescence biosensor (upconversion nanoparticles conjugated with organic fluorophore)</td>
<td>Fluorescence microscope equipped with 980 nm laser</td>
<td>HeLa cells</td>
<td>Mouse liver</td>
<td>500 ng/ml PMA (in vitro) 1–4 mg LPS/100 g body weight (in vivo)</td>
<td>[202]</td>
</tr>
<tr>
<td>Superoxide</td>
<td>Fluorescein protein-based fluorescent probe</td>
<td>Confocal laser microscope</td>
<td>HCT116/ BV-2/RAW 264.7 cells</td>
<td>Zebrafish</td>
<td>500 ng/ml LPS and 50 ng/ml IFN-γ (in vitro) PMA 200 ng/ml or antimycin A 500 nM (in vivo)</td>
<td>[204]</td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>Chemoselective fluorescent naphthylimide peroxide probe</td>
<td>Two-photon laser scanning fluorescence microscope</td>
<td>RAW 264.7 cells</td>
<td>Mouse lung and skin</td>
<td>1 μg/ml LPS (in vitro) 20 μg LPS (in vivo)</td>
<td>[205]</td>
</tr>
<tr>
<td>Singlet oxygen</td>
<td>Far-red silicon–rhodamine-based chemical fluorescent probe</td>
<td>Fluorescence microscope with 640 nm laser</td>
<td>HeLa cells/ RAW 264.7 cells</td>
<td>Photosensitizers: 150 μg/ml 5-ALA and 5 μM TMPyP4</td>
<td></td>
<td>[206]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RNS species</th>
<th>Probe type</th>
<th>Imaging platform used</th>
<th>Tested in vitro</th>
<th>Tested ex vivo/ in vivo</th>
<th>ROS/RNS stimulation</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitric oxide</td>
<td>Chemoselective copper(II)-based fluorescence probe</td>
<td>Confocal laser microscope</td>
<td>HeLa cells/RAW 264.7 cells</td>
<td>Mouse liver</td>
<td>25 μM NOC–9 (HeLa) 20 μg/ml LPS, 200 U/ml IFN-γ and 0.5 mg/ml L- arginine (RAW 264.7) 1–4 mg/ml LPS (in vivo)</td>
<td>[207]</td>
</tr>
<tr>
<td>Nitric oxide</td>
<td>Far-red two-photon chemical fluorescent probe</td>
<td>Two-photon laser scanning fluorescence microscope</td>
<td>HeLa cells/RAW 264.7 cells</td>
<td>Mouse liver</td>
<td>50–200 μM DEA-NONOate (HeLa) 200 ng/ml LPS (RAW 264.7)</td>
<td>[208]</td>
</tr>
<tr>
<td>Nitroxyl</td>
<td>FRET-based ratiometric chemical fluorescent probe</td>
<td>Confocal laser microscope</td>
<td>HeLa cells</td>
<td>100 μM AS</td>
<td></td>
<td>[211]</td>
</tr>
</tbody>
</table>
Table 1. (continued)

<table>
<thead>
<tr>
<th>Probe type</th>
<th>Imaging platform used</th>
<th>Tested in vitro</th>
<th>Tested ex vivo/in vivo</th>
<th>ROS/RNS stimulation</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitroxyl</td>
<td>Near infrared chemical fluorescent probe</td>
<td>Confocal laser microscope and in vivo imaging system</td>
<td>RAW 264.7 cells</td>
<td>Mouse (in vivo)</td>
<td>100 µM AS (RAW 264.7) 500 µM AS (i.p. Mouse)</td>
</tr>
<tr>
<td>Nitroxyl</td>
<td>Lysosome-targetable near infrared chemical fluorescent probe</td>
<td>Confocal laser microscope and in vivo imaging system</td>
<td>RAW 264.7 cells</td>
<td>Mouse (in vivo)</td>
<td>200 µM AS (RAW 264.7) 1 mM AS (i.p. mouse)</td>
</tr>
<tr>
<td>Peroxynitrite</td>
<td>Boronate-based chemical fluorescent probe</td>
<td>Confocal laser microscope</td>
<td>HeLa cells/RAW 264.7 cells</td>
<td>5 and 20 µM peroxynitrite solution (HeLa) 1 µg/ml LPS, 50 ng/ml IFN-γ, 2.5 ng/ml PMA (RAW 264.7)</td>
<td>[212]</td>
</tr>
</tbody>
</table>

*Abbreviations: AS, Angel’s salt (nitroxyl donor); 5-ALA, 5-aminolevulinic acid (drug used in photodynamic therapy, known to produce singlet oxygen); antimycin A, produces endogenous ROS/RNS by driving apoptosis; DEA-NONOate, 2-(NN-diethylamino)-diazenolate 2-oxide (nitric oxide donor); IFN-γ, interferon γ (produces endogenous ROS/RNS); LPS, lipopolysaccharide (produces endogenous ROS/RNS); NOC-9, 6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine (nitric oxide donor); PMA, phorbol 12-myristate-13-acetate (activates protein kinase C in vivo and in vitro); TMPyP4, 5,10,15,20-tetra-(N-methyl-4-pyridyl)porphyrin (drug used in photodynamic therapy, known to produce singlet oxygen). |

Acknowledgments

This work was supported by an Australian Postgraduate Research scholarship (V.S.), an ARC Research Fellowship (DP110100297; M.R.H.), funding from the ARC Centre of Excellence for Nanoscale Biophotonics (CE140100003; M.R.H.), National Institutes of Health (NIH) grant DE021966 (L.R.W.), and a Wings for Life Project Grant (L.R.W./A.D.G.).

References

18. Kim, D. et al. (2013) NADPH oxidase 2-derived reactive oxygen species in spinal cord microglia contribute to peripheral nerve

Trends in Neurosciences

69. Bessac, B.F. et al. (2009) Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocya-
nates and tear gases. FASEB J. 23, 1102–1114

70. Taylor-Clark, T.E. and Unold, B.J. (2013) Oxidize activates air-
way nerves via the selective stimulation of TRPA1 ion channels. J. Physiol. 588, 423–433

75. Trevisan, G. et al. (2013) Novel therapeutic strategy to prevent chemotherapy-induced persistent sensory neuropathy by TRPA1 blockade. Cancer Res. 73, 3102–3113

77. Haraguchi, K. et al. (2012) TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronocicep-
tive inflammatory responses in mice. J. Neurosci. 32, 3931–3941

81. Yamamoto, S. et al. (2006) TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflamma-

82. Isami, K. et al. (2013) Involvement of TRPM2 in peripheral nerve injury-induced infiltration of peripheral immune cells into the spinal cord in mouse neuropathic pain model. PLOS ONE 8, e66410

83. Chung, M-K. et al. (2015) The role of TRPM2 in hydrogen peroxide-induced expression of inflammatory cytokine and che-
monkine in rat trigeminal ganglia. Neuroscience 297, 160–169

85. So, K. et al. (2015) Involvement of TRPM2 in a wide range of inflammatory and neuropathic pain mouse models. J. Pharma-
col. Sci. 127, 237–243

88. Westlund, K.N. et al. (2010) Impact of central and peripheral TRPV1 and ROS levels on proinflammatory mediators and nocicep-
tive behavior. Mol. Pain 6, 46

89. Patwardhan, A.M. et al. (2009) Activation of TRPV1 in the spinal cord by oxidized linoleic acid metabolites contributes to inflam-

ifications and inactivation of active site manganese superoxide dismutase mutant (Y345) by peroxynitrite. Arch. Biochem. Bio-
phys. 366, 82–88

93. Zarkovic, N. et al. (2013) Pathophysiological relevance of alde-
hydic protein modifcations. J. Proteomics 92, 239–247

94. Sinha, K. et al. (2013) Oxidative stress: the mitochondria-depend-
ent and mitochondria-independent pathways of apoptosis. Arch. Toxicol. 87, 1157–1180

96. Scheving, R. et al. (2012) Protein S-nitrosylation and denitrosy-
lation in the mouse spinal cord upon injury of the sciotic nerve. J. Proteomics 75, 3987–4004

98. Kumar, L. et al. (2011) Role of Drp1, a key mitochondrial fission fprote

100. Lim, T.K.Y. et al. (2015) Mitochondrial and bioenergetic dysfunc-
tion in trauma-induced painful peripheral neuropathy. Mol. Pain 11, 58

103. Gaudet, A.D. et al. (2011) Wallerian degeneration: gaining perspec-
tive on inflammatory events after peripheral nerve injury. J. Neuroinflammation 8, 110

104. Genovese, T. et al. (2009) Effects of a metalloporphyrinic per-

105. Kanata, H. et al. (2005) Reactive oxygen species promote Tnfalpha-induced death and sustained JNK activation by inhib-

106. Matata, B.M. and Gafitano, M. (2002) Peroxynitrite is an essen-
tial component of cytokines production mechanism in human monocytes through modulation of nuclear factor-kappa B DNA binding activity. J. Biol. Chem. 277, 2330–2335

107. Zhou, H. et al. (2013) CD11b/CD18 (Mac-1) is a novel surface

110. Lee, J.H. et al. (2013) Interaction of NADPH oxidase 1 with Toll-
like receptor 2 induces migration of smooth muscle cells. Car-
diovasc. Res. 99, 483–493

Trends in Neurosciences, Month Year, Vol. xx, No. yy

116. Wong, S.W. et al. (2009) Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J. Biol. Chem. 284, 27084–27092

139. Vincenti, A.M. et al. (2009) Sensory neurons and Schwann cells respond to oxidative stress by increasing antioxidant defense mechanisms. Antioxid. Redox Signal. 11, 425–438

151. Pathak, N.N. et al. (2014) Atorvastatin attenuates neuropathic pain in rat neuropathy model by down-regulating oxidative damage at peripheral, spinal and supraspinal levels. Neurochem. Int. 68, 1–9

160. Qian, L. et al. (2008) Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of...

183. Fattori, V. et al. (2015) Curcumin inhibits superoxide anion– induced pain-like behavior and leukocyte recruitment by increasing NOS2 expression and reducing NF-kB activation. Inflamm. Res. 64, 993–1003

186. Yang, Y. et al. (2016) Resveratrol suppresses glial activation and alleviates trigeminal neuropathic via activation of AMPK. J. Neuroinflammation 13, 84

