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Abstract 

Intermittent monitoring of environmental standards may induce strategic changes in polluting 

activities. This paper documents local strategic responses to a cyclical, once-every-six-day air 

quality monitoring schedule under the federal Clean Air Act. Using satellite data of monitored 

areas, I show that air quality is significantly worse on unmonitored days. This effect is explained 

by short-term suppression of pollution on monitored days, especially during high-pollution periods 

when the city’s noncompliance risk is high. Cities’ use of air quality warnings increases on 

monitored days, which suggests local governments’ role in coordinating emission reductions.  
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Enforcement of environmental regulation relies on accurate monitoring of compliance 

behavior. In practice, limited budgets often force monitoring to be conducted on an intermittent 

basis, creating opportunities for polluters to comply when they are monitored, but to increase 

polluting activities when they are not. The potential for such strategic responses grows when 

polluters can anticipate the regulator’s monitoring schedules, as demonstrated by the Volkswagen 

emissions scandal (Gates, Ewing, Russell, and Watkins, 2016). Nonetheless, strategic responses 

to intermittent monitoring are generally difficult to detect. There are two main challenges. First, 

independent measurement of polluting behavior during unmonitored times is usually unavailable. 

Second, the timing of monitoring is often non-random. Thus, a simple comparison of monitored 

and unmonitored polluting activities likely confounds strategic responses with latent factors (such 

as pollution leaks) that may have triggered monitoring or inspections in the first place.  

This paper documents strategic responses to a broadscale federal air pollution regulation. I 

explore a unique empirical context in which monitoring is based on a publicly available, quasi-

random schedule. Under the Clean Air Act, the U.S. Environmental Protection Agency (EPA) is 

charged with enforcing a national safety level for outdoor particulate matter air pollution 

(henceforth PM) that all counties are required to achieve. A network of monitoring sites tracks 

compliance with the standard. Due to high operating costs, the EPA grants permission for many 

sites to monitor pollution on an intermittent basis. To balance between the goal of obtaining 

representative monitoring results and the administrative costs that would be incurred by a random 

monitoring scheme, the EPA announces a cyclical, once-every-six-day (“1-in-6-day”) monitoring 

schedule that will be followed each year. I leverage this monitoring rule as a policy experiment to 

examine whether higher concentrations of pollution occur during days when monitoring is not 

scheduled. 

 I begin by constructing an indirect measure of particulate pollution using 13 years of satellite 

observations. This measure allows me to observe air quality both during monitors’ “on-days” and 

“off-days.” Because the incentive to avoid monitoring is plausibly the only factor that changes on 

a 1-in-6-day basis, differences in pollution levels during on-days and off-days provide evidence of 

strategic responses to the monitoring schedule. In the baseline analysis, I use the satellite measure 

to compare on-day and off-day pollution levels around monitoring sites that follow the 1-in-6-day 

schedule. The results suggest a significant pollution gap between on-days and off-days. The 

satellite detects 1.6 percent less particulate pollution during on-days than during off-days, while 

pollution levels during off-days do not differ significantly from each other. The effect size is 

comparable to the average difference in air quality observed between weekdays and weekends. At 

the same time, placebo tests show no detectable pollution gap in the absence of an incentive to 

avoid monitoring. For example, the effect disappears when a monitor retires; furthermore, no 

pollution gap surfaces around sites that monitor pollution every day. 
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I then explore underlying mechanisms in three ways. First, I examine when gaming occurs. I 

find that gaming most likely reflects short-term cutbacks of polluting activities during “critical” 

times – for example, when counties’ noncompliance risk is high. I show that the average pollution 

gap masks substantial heterogeneity, featuring large (over 7 percent) pollution gaps when a 

county’s recent PM levels had approached the regulatory standard, and almost zero pollution gaps 

when the same county had experienced recent good air quality. In addition, I leverage the 

retirement of 1-in-6-day monitors, finding evidence that a decline of on-day pollution, rather than 

a substitution between on- and off-days, drives the pollution gap. In a way, this pattern resembles 

the key feature seen in the case of vehicle emission cheating, with monitored pollution levels lower 

than otherwise “normal” pollution levels when unmonitored. This pattern suggests occasional 

short-term suppression of polluting activities, rather than planned, routine substitution of pollution 

across all days. 

Second, I examine the question of who is gaming. The EPA uses monitoring results to 

determine if counties (rather than any particular factories) are complying with the air quality 

standards. State and local governments are thus subject to the regulatory penalties, and they often 

exhibit strong aversion to noncompliance risks. To examine the possibility of local governments’ 

strategic responses to intermittent monitoring, I analyze local governments’ issuance of public air 

quality advisories (“Action Days”). Often issued during high pollution periods, these advisories 

call for citizens to reduce polluting activities. Analyzing the history of Action Day advisories in 

346 cities and metro areas, I find a significant, 10 percent higher likelihood that an advisory is 

issued on PM monitoring days. The strategic use of Action Day advisories provides yet another 

example of gaming during critical times. More importantly, this analysis points to a role of 

coordination: although gaming of air quality monitoring is unlikely to arise solely from cooperative 

polluting activities, local government coordination may play a role.   

Third, I use a cross-sectional analysis to characterize regulatory and industrial properties of 

counties that exhibit large (top 10 percent) pollution gaps. Data suggest that incentives matter: 

areas with large pollution gaps have higher pollution levels, a history of receiving penalties for 

violations, and the presence of intermittent monitoring sites. Moreover, areas with large pollution 

gaps also tend to be those in which the composition of local industry allows for strategic responses. 

For example, having a high concentration of wood product manufacturers – a highly polluting 

industry that often operates at partial production capacity – stands out as a strong and robust 

predictor of large pollution gaps. Together, evidence suggests that the regulatory incentive to avoid 

monitoring underlies strategic responses, and a capacity to respond also matters. 

This paper is the first to introduce the idea of “space-truthing” into the context of intermittent 

monitoring. While in situ monitoring data are often considered as the “ground truth” in remote 

sensing science (e.g., Liu, Franklin, Kahn, and Koutrakis, 2007), satellite data can conversely 

provide validation of the integrity of ground monitoring data, especially when there are concerns 
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about biases in how ground monitoring is carried out. A few economics papers have found, in 

various regulation contexts, discrepancies between satellite and ground monitoring results 

(Karplus, Zhang, and Almond, 2018; Fowlie, Rubin, and Walker, 2019; Sullivan and Krupnick, 

2019). My paper highlights satellites’ unique ability to directly detect strategic responses that are 

otherwise difficult to observe.1 

This paper is among the first to report evidence on local governments’ strategic actions in 

response to federal environmental regulations. A misalignment of regulatory objectives can 

motivate local governments to achieve hyper-localized pollution reductions within noncompliant 

jurisdictions (Auffhammer, Bento, and Lowe, 2009; Bento, Freedman, and Lang, 2015), or even 

to obscure true pollution levels from the federal regulator (Greenstone, He, Jia, and Liu, 2020). 

My paper is most related to Grainger, Schreiber, and Chang (2017) who use satellite data to 

investigate state governments’ strategic location choices in placing air quality monitors. I focus on 

gaming in time, and propose specific channels – such as strategic Action Day advisories – through 

which the local governments can game intermittent monitoring. The enforcement challenge 

highlighted in my paper echoes prior literature on medium- and long-term regional or sectoral 

substitution of polluting activities in the face of incomplete regulations (e.g., Becker and 

Henderson, 2000; Hanna, 2010; Fowlie, Reguant, and Ryan, 2016). By introducing short-term 

responses, my paper contributes to the nascent yet developing understanding of environmental 

regulation monitoring and enforcement (Gray and Shimshack, 2011; Shimshack, 2014).2 

On the policy front, this paper provides the first retrospective evaluation of the long-standing 

practice of intermittent air quality monitoring (Akland, 1972; Gilbert, 1987). While the monitoring 

network is shifting toward advanced, continuous technologies, the transition has been surprisingly 

slow.3 Though my analysis does not touch on political complexities that regulators might face in 

designing the monitoring system, my results demonstrate an observable and significant margin 

along which a continuous system could improve the enforcement of national air quality standards.  

The rest of the paper is organized as follows. Section I provides a brief background on 

particulate pollution regulation and monitoring in the United States. Section II presents the main 

identification of the pollution gap between monitored and unmonitored days. Section III explores 

characteristics of the pollution gap that shed light on mechanisms. Section IV concludes.  

                                                           
1 In rare cases, researchers conduct independent environmental monitoring and compare directly with the regulatory 

monitoring results. See, for example, Duflo, Greenstone, Panle, and Ryan (2013), Thompson et al. (2014), and Duflo, 

Greenstone, Panle, and Ryan (2018).  
2 Increasingly, enforcement challenges have been revealed in various other contexts. Examples include the gaming of 

vehicle exhaust testing (Oliva, 2015; Reynaert and Sallee, 2016; Alexander and Schwandt, 2019), and emission ramp-

ups after sunset (Vollaard, 2017; Agarwal, Qin, and Zhu, 2020). Outside of the context of regulation, this paper is 

linked to the growing use of remote sensing data in economic and policy research in general (Donaldson and 

Storeygard, 2016). 
3 Appendix A reports that if the current trend continues, it will take until year 2035 before the entire PM2.5 monitoring 

system becomes continuous.   
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I. Background 

A. Particulate Matter Regulation 

Regulation of particulate matter pollution in the United States is coordinated under the Clean 

Air Act, which provides oversight of PM pollution at various industry levels. The regulation on 

ambient PM can be viewed as a policy lever to achieve the Act’s ultimate goal: to maintain outdoor 

pollution concentrations below the established safety levels, known as the National Ambient Air 

Quality Standards (NAAQS). Three effective PM NAAQS were in place during my study period: 

the three-year average of daily “fine” particulate matter (PM2.5) level had to be below 15 ug/m3; 

the three-year average of annual 98th percentile PM2.5 level had to be below 35 ug/m3; the 

maximum “coarse” particulate matter (PM10) level had to be below 150 ug/m3. Every year, the 

EPA categorizes counties into “attainment” and “nonattainment” groups based on monitoring 

results.4 

A nonattainment status results in substantial regulatory costs for state and local governments 

and factories. As a part of NAAQS provisions, state and local governments are required to develop 

State Implementation Plan (SIP) for maintaining or improving air quality in their jurisdictions. A 

SIP specifies how states design and enforce emission permitting programs to regulate existing and 

new polluting sources. Per NAAQS, plans for factories in nonattainment jurisdictions must be 

much more stringent, incorporating measures such as more frequent inspections and greater fines 

(e.g., Blundell, Gowrisankaran, and Langer, 2018). Factories planning new production capacity in 

nonattainment jurisdictions must adopt technologies that achieve the lowest possible emission 

rates, irrespective of the cost of doing so. Nonattainment penalties have been shown to cause 

significant losses in firm productivity. Greenstone, List, and Syverson (2012) find that a county’s 

nonattainment status is associated with significant reduction in manufacturing industry 

productivity, amounting to about $20 billion of revenue annually. Walker (2013) shows a labor 

displacement cost in the order of $8 billion for firms that locate in newly designated nonattainment 

counties. The stakes are high for state and local governments, too. In addition to fiscal losses from 

lower firm productivity, sustained nonattainment can give rise to direct penalties from the EPA. 

These penalties include financial sanctions that prohibit the approval of almost any highway 

project or grant in the nonattainment jurisdictions. A separate strand of literature finds evidence 

that local governments direct regulatory resources to areas in violation, and have been able to 

achieve localized air quality improvements near noncompliant monitors (e.g., Auffhammer, Bento, 

and Lowe, 2009; Bento, Freedman, and Lang, 2015).  

 

 

                                                           
4 From 2001 to 2013, roughly 30% of monitored counties had ever been assigned a nonattainment status. Among 

them, roughly 60% of county × years are associated with the violation of the PM2.5 annual standard. 
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B. Particulate Matter Monitoring 

A network of more than 1,200 sites across the country monitor ambient PM concentrations. 

These monitoring sites are usually placed in areas with high population density to ensure a 

reasonably representative measure of population exposure. During my study period, the PM 

monitoring network spanned more than 600 counties that included over 70 percent of U.S. 

population.  

Unlike monitoring of many gaseous air pollutants (such as ozone) that uses automated, laser-

based methods, PM monitoring mostly relies on filter-based methods involving substantial manual 

operation and maintenance tasks such as field sample collection and laboratory analysis.5 EPA data 

show that the annualized per-site cost of PM monitoring associated with monitor procurement, 

operation, and maintenance is roughly $21,000 with a 1-in-6-day schedule and $41,000 with every-

day (1-in-1-day) monitoring (U.S. EPA, 1993). With roughly 600 sites operating on a 1-in-6-day 

schedule, the cost savings from intermittent monitoring aggregates to about $12 million per year, 

vis-à-vis the status quo spending of $48 million per year on the entire PM monitoring network.  

The cyclical 1-in-6-day monitoring method was introduced by Akland (1972). During the 

1980s, the EPA introduced more frequent, 1-in-3 day and every-day sampling schedules. These 

more frequent schedules are often deployed in areas with higher levels of pollution (U.S. EPA, 

1985).6 Over time, the EPA has been tending toward more frequent monitoring. With the initiation 

of PM2.5 monitoring in the 1990s, the EPA began to stipulate that all PM2.5 monitors to operate 

on a minimum of 1-in-3-day basis (40 CFR 58.13, 1997; U.S. EPA, 1998a). However, in response 

to states’ concerns over cost burdens, the EPA allows exemptions for lower monitoring frequencies 

on a case-by-case basis (U.S. EPA, 1997a; U.S. EPA, 1998b). From 2001 to 2013, the vast majority 

of PM monitors followed either a 1-in-6-day (42 percent of monitors), 1-in-3-day (33 percent), or 

every-day (22 percent) schedule. While my main analysis focuses on the 1-in-6-day schedule in 

which gaming is most likely to occur, I test for a potential pollution gaps at all monitored sites 

(including the 1-in-3-day and the every-day monitoring sites). The sites that are monitored 

everyday serve as a “placebo” test where no strategic responses are expected.  

The monitoring schedule is public. The EPA publishes a monitoring calendar on its website 

at the end of each calendar year, informing states of the monitoring dates for all intermittent 

monitoring sites for the next calendar year. Figure 1 presents the calendar for 2001.  

 

                                                           
5 In Appendix A, I document a growing availability of continuous PM monitoring technologies since mid-2000s. 

These continuous technologies typically rely on laser and microbalance techniques to infer PM concentration, and 

they have been commonly used in states’ public informational program (such as AirNow). Continuous monitors are 

not deployed in NAAQS nonattainment designation until 2009, when a growing number of technologies were 

classified by the EPA as “equivalent” to manual methods. In my analysis, I treat continuous monitors as every-day (1-

in-1-day) monitors. Continuous monitors that are not considered in NAAQS regulation are not included in my analysis.  
6 Appendix A provides more details on determinants of schedule assignment.  
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II. The 1-in-6-Day Pollution Gap 

A. Data and Summary Statistics 

Monitor Data. I obtain PM monitor characteristics from the EPA's Air Quality System (AQS) 

for the years 2001 to 2013. The annual summary data files of the AQS are the source of monitor-

level information on scheduled number of monitored days, actual monitored days, latitude and 

longitude location, and annual PM concentration statistics, such as the mean and the maximum. I 

identify 1-in-6-day (1-in-3 day, 1-in-1 day) monitors by finding monitors that are required by the 

EPA to sample 60 or 61 (121 or 122, 365 or 366) days a year.   

Satellite Data. I construct a measure for atmospheric particle pollution (“aerosol”) using 

satellite data from the National Aeronautics and Space Administration (NASA) Moderate 

Resolution Imaging Spectroradiometer (MODIS) algorithm (Kaufman, et al., 1997; Remer et al., 

2005). Equipped with a flexible set of spectral radiance instruments, MODIS retrieves atmospheric 

aerosol concentrations by measuring the extinction of sunlight, based on knowledge of aerosol’s 

ability to scatter and absorb light at different spectral wavelengths. MODIS summarizes aerosols 

in a dimensionless index called aerosol optical depth, which has a theoretical range of -0.05 to 5, 

with a smaller value corresponding to lower level of aerosol concentration. In the United States, 

the index’s value mostly falls within the range of 0 to 1, with a mean of roughly 0.12.7 To simplify 

language, in subsequent sections I refer to this measure as “aerosol” or “aerosol concentration.” 

Two distinctions are worth noting between the satellite-based aerosol measure and the 

traditional ground monitor-based PM measure. First, while PM monitors measure pollution 

concentration at a specific point on the ground, the satellite measure captures aerosol conditions 

for the entire “column” of air from its viewpoint 700 km above the ground. Also, the satellite 

measures pollution at a spatial resolution of 10km×10km (about half size of the average U.S. ZIP 

Code), rather than pollution at any exact point. Second, most ground-monitoring data provide the 

average pollution concentration within a given time frame, usually a 24-hour period. By contrast, 

the satellite data come from a polar-orbiting satellite (Terra), providing snapshots of pollution in a 

given area at approximately 10:30 am local time every day. 

Despite the difference in measurement approaches, these ground and satellite checks have a 

similar target of measurement. PM monitors retrieve the concentration of small air particles (e.g., 

nitrates, sulfates and black carbons) by measuring the amount of particles deposited when air is 

passed through a size-discriminating filter media; when in the atmosphere, these particles interact 

with sunlight, and therefore, they are picked up by the satellite measure. Such an overlap in the 

                                                           
7 I use the “MOD04_L2” product which provides the simplest cloud-screened, quality-controlled product developed 

out of the raw imageries. MODIS provides more processed versions of the aerosol data that involve interpolation and 

smoothing in time and/or in space, such as the “L3” gridded files. Because my research design exploits monitoring 

frequency variations in time and/or in space, I use the least-processed data to minimize the impact of ex-post modeling 

on my findings. 
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measurement target has been the foundation of a large body of atmospheric science literature that 

documents a strong correlation between the satellite-based and ground-monitoring data (e.g., Liu, 

Franklin, Kahn, and Koutrakis, 2007).   

The key dataset I construct is a daily panel of aerosol concentration linking each 10km×10km 

grid cell from 2001 to 2013. The geographic unit of my analysis is a monitoring site, and the 

aerosol level around a site is defined as the aerosol level within the 10km×10km grid cell that 

corresponds to the site’s location. The analysis is done at the site level (rather than at the monitor 

level) because there is no effective difference in the locations of different monitors within the site. 

To be conservative in aggregating monitor-level schedules to the site level, I define a site to be a 

1-in-6-day site if any monitor in that site follows the 1-in-6-day schedule. Defining the sample this 

way is expected to work against finding evidence of strategic responses. For example, some 

monitoring sites may have an every-day monitor and a 1-in-6-day monitor, where the less frequent 

monitor is used to provide quality assurance data.8        

Summary Statistics. Table 1 presents summary statistics by calendar year and by monitoring 

frequency. Columns 1 to 3 show average aerosol levels around monitoring sites. Over the period 

of study, the aerosol level stayed relatively stable, declining by an average of 1.5 percent per year. 

Columns 4 to 6 show average number of days during the year that exceeded any NAAQS 

standards.9 Columns 7 to 9 report number of monitoring sites. The number of 1-in-6-day sites 

decreased over time due to a NAAQS revision in 1997 that initiated PM2.5 monitoring and 

redirected sources from monitoring of PM10, which are often operated on a 1-in-6-day basis (U.S. 

EPA, 1997b). In the analysis, I exploit monitor retirement events to show that the pollution gap 

between off- and on-days closes as monitors retire. Columns 10 to 12 calculates population of 

counties with 1-in-6-day, 1-in-3-day, and every-day monitoring. On average, about 200 million 

people live in counties with any form of PM monitoring. Among this population, 67 percent live 

in counties with at least one 1-in-6-day monitoring site.  

 

B. Empirical Framework 

Estimation Equation. The strictly 1-in-6-day design of the monitoring schedule motivates a 

straightforward identification strategy that estimates the causal effect of the schedule on pollution 

by simply comparing levels of air pollution across days of a 1-in-6-day monitoring cycle. The 

primary estimation equation is 

                                                           
8 In Appendix Table D.1, I confirm that strategic response is stronger if I restrict to sites with a standalone 1-in-6-day 

monitor. I find no evidence of strategic response when a 1-in-6-day monitor is co-located with an every-day monitor.  
9 Appendix Table D.2 reports the odds of any exceedance over the course of a year in my sample (50.9% for 1-in-1-

day sites, 33.4% for 1-in-3-day sites, and 29.5% for 1-in-6-day sites), among other related statistics. 
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Aerosolst = β ⋅ 1(Off-dayst) + Timet + αs + Xstγ + εst   (1) 

where Aerosolst  is the logged satellite aerosol concentration at monitoring site s at time t. 

1(Off-dayst) is a dummy variable that indicates days when monitoring is scheduled off (five out 

of six days of the monitoring cycle). The key coefficient of interest is β which represents the gap 

in pollution levels between an average off-day and an average on-day. The strictly 1-in-6-day 

cyclicality in the 1(Off-dayst) variable implies that very few confounders may bias the OLS 

estimate β̂ from identifying the causal effect of the monitoring schedule. To confirm this point, I 

report results from two types of specifications. In the first, I report regressions conditional on no 

covariates, so that β̂ is simply the raw difference between off-days and on-days. Second, I report 

regressions that include a rich array of controls including time fixed effects Timet (year, month-

of-year, and day-of-week fixed effects), monitoring site fixed effects (αs), as well as weather 

controls (Xst) including daily temperature categorized into ten 10-degree bins, daily wind speed 

quartiles, and quadratic daily precipitation. Because pollution observed at a site is likely driven by 

emissions elsewhere that also affect nearby sites, all inferences allow for correlations in errors 

across different monitoring sites within the same county, clustering standard errors at the county 

level. The results are robust to a range of specification changes (discussed in detail in Section IID). 

         For β̂  to be the causal estimate of the monitoring schedule’s impact, the identification 

assumption must hold that no pollution gap would have been observed in the absence of the 

monitoring schedule. While this assumption is not directly testable, in Section IID I implement 

placebo tests based on the idea that a strategic response is not expected to occur in areas that lack 

incentives to reduce pollution on monitored days, such as in regions in which monitors sample air 

quality every day. 

The “Strategic Response” Interpretation. A reduction in polluting activities when 

enforcement is stronger does not necessarily indicate strategic responses. For example, a 

permanent reduction in pollution levels after the initiation of monitoring can arise from compliance 

behavior. However, the fact that pollution levels differ across monitored and unmonitored days in 

places that do have a monitoring system in place indicates that the nature of the response is 

strategic. In this paper, I interpret β̂ as an estimate of strategic behavior, or “gaming” of the 

monitoring schedule. 

A related point is that, β  represents the causal effect of intermittent monitoring on the 

differences in pollution levels on off-days relative to on-days. The empirical framework, however, 

does not identify the effect of intermittent monitoring on the levels of pollution. Section IIIA 

analyzes changes in pollution levels, which could be important when thinking about policy 

counterfactuals and mechanisms. 
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C. Main Results 

I begin by estimating an event study version of equation (1), replacing the 1(Off-dayst) 

indicator variable with five event-day indicator variables running from three days before to two 

days after the on-day. The on-day, marked as day 0, is the omitted category in the regression.10 

Therefore, the coefficients are interpreted as percentage changes in air pollution during the off-

days relative to the on-days. I estimate the event study using all monitoring sites containing at least 

one 1-in-6-day PM monitor during the year. The sample includes 1,193 monitoring sites that span 

563 counties in the lower 48 states from 2001 to 2013. Figure 2 reports the results. I do not 

condition the regression on any covariates; the solid line thus simply represents the time path of 

air pollution in a 1-in-6-day monitoring cycle, averaged across all cycles. The results reveal a 

striking pattern of air quality differences: Within a monitoring cycle, air pollution on average 

exhibits a flat path, except for a sharp drop-off during the on-day. Table 2 reports the average 1-

in-6-day off-/on-day pollution gap using equation (1). Results in column 1 correspond to Figure 2 

and show that air pollution is on average 1.6 percent higher on an off-day relative to an on-day. 

Column 2 reports that adding the full set of controls does not change the estimates.  

Columns 3 to 4 of Table 2 perform the same analysis for 1-in-3-day sites. Note in this case 

1(Off-dayst) indicates unmonitored days in a 3-day monitoring cycle. I find that for 1-in-3-day 

PM sites, the pollution gap is less than 0.3 percent and not statistically significant. The estimates 

have enough precision to reject an effect size that is a half of that observed around 1-in-6-day site. 

The null effect at 1-in-3-day carries a potentially important policy implication: doubling the 

monitoring frequency may be a feasible policy option to substantially reduce strategic responses. 

One caveat to this conclusion is that, while strategic responses near 1-in-3-day sites appear smaller 

in magnitude, there is evidence that a 1-in-3-day monitoring frequency is still “gameable.” For 

example, in unreported analysis, I find a significant response can be detected around sites that are 

far away from every-day monitors.  

 

D. Placebo Tests and Robustness Checks 

The identification assumption states that no pollution gap would have been observed in the 

absence of the 1-in-6-day monitoring schedule. To assess this assumption, I consider two types of 

placebo tests in situations where gaming is not expected. 

                                                           
10 Due to the cyclical nature of monitoring, the choice of the omitted category is inconsequential for estimation. For 

example, using “day -3” as the omitted category would simply cause a parallel downward shift on all event days, with 

no effect on the pollution gap estimate.  
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In the first test, I estimate the 1-in-6-day pollution gap near every-day sites (1-in-1-day sites 

without co-location of intermittent monitors). Columns 5 and 6 of Table 2 documents the 

“pollution gap” at these sites. Reassuringly, I find no evidence of differential levels of pollution 

across off-days and on-days. In Appendix Table D.3, I further examine over 800 hazardous air 

pollutants (HAPs) monitoring sites that mostly follow the 1-in-6-day schedule, but are not subject 

to any regulatory standards. Again, I find no evidence of pollution gaps around these “unregulated” 

monitors. 

The second placebo test explores the retirement of 1-in-6-day monitoring sites. If gaming is 

indeed targeting the 1-in-6-day schedule, then one should expect the pollution gap to “close” after 

sites are removed. I begin by identifying 490 cases of 1-in-6-day monitoring site retirement events. 

Using the satellite measure to track air quality in the areas where these sites are located, I compare 

the “off-days” an “on-day” pollution gap before and after sites’ retirement. Note that I can estimate 

the pollution gap even after a site retires because the monitoring calendar applies universally; 

hence, even in the absence of a working monitoring site, I know what the monitoring dates would 

have been. Figure 3 reports the results, showing the pollution gap as a function of years relative to 

sites’ retirement. The gap is about 2.1 percent for the time frame in which the site operated. For 

the exact same area, the gap closes after monitor retires.  

Appendix Table D.4 reports additional robustness checks. I show that the results are robust to 

the inclusion of more flexible fixed effects controls, such as monitoring site-specific time controls, 

as well as a difference-in-differences design that uses every-day sites as the control group. 

 

III. Characteristics of the Pollution Gap 

A. Changes in Levels of Pollution 

Section II focuses on differences in pollution on off-days relative to on-days. It is also be of 

interest to understand the effect of intermittent monitoring on the levels of pollution. The pollution 

gap could be explained by a pure reduction of pollution on the on-days, a pure substitution of 

polluting activities between off-days and on-days, or somewhere in between. Such distinctions are 

important for two reasons. First, it is relevant for the regulator to know the counterfactual levels 

of pollution in the absence of intermittent monitoring. Second, information on level changes may 

shed light on the underlying nature of strategic behavior, as discussed further below.  

The key empirical challenge in estimating level changes is that one cannot observe the same 

monitor under counterfactual monitoring frequencies. Instead, I exploit the monitoring retirement 

events (Section IID) again. I examine changes in local-area pollution levels overall, as well as 

separately for on- and off-days, before and after the 1-in-6-day monitor retirements.  To allow for 

trends in pollution that might correlate with monitor retirement (for example, unobserved factors 
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that might drive monitor retirement in the first place), I use pollution levels around non-retiring 1-

in-6-day sites in the same state as the control group. For each 1-in-6-day site that retires in year t, 

I match the site with all 1-in-6-day monitors in the same state that are not retiring in year t. An 

average retiring site is matched to 31 non-retiring sites in the same state.  

 Figure 4 provides an initial look at the raw trends. In panel A, the solid (dashed) lines with 

markers show pollution levels on off-days (on-days) around 1-in-6-day sites by years relative to 

retirement. In panel B, the solid (dashed) lines without markers show pollution levels on off-days 

(on-days) around non-retiring 1-in-6-day sites. Three sets of difference-in-differences-style 

evidence emerge. First, pollution levels around retiring sites rise during the pre-treatment period 

(event years -4 to -1), suggesting that the timing of retirement is not exogeneous. However, non-

retiring sites exhibit a similar trend in pollution and a similar gap in pollution across off-days and 

on-days. The parallel trends, for both on-days and off-days, make the non-retiring sites a 

reasonable control group. Second, starting at the retirement year and throughout the post-treatment 

period (event years 0 to 4), the pollution gap at the retiring sites closes, while the gap at the non-

retiring sites remains open. This evidence provides further support that monitor retirement removes 

strategic response only at the treated sites (Section IID). Third, throughout the entire study window 

(event years -4 to 4), all four lines – indicating on-day and off-day pollution level at retiring and 

non-retiring sites – move in fairly parallel manner; the lone exception is the permanent jump that 

occurs at event year 0, showing the surge of pollution levels at retired sites on what were previously 

on-days. Altogether, evidence suggests that the retirement of intermittent monitoring is associated 

with a rise of pollution on what had previously been on-days, and little effect on levels of pollution 

on what had previously been off-days.  

The graphical analysis motivates a difference-in-differences strategy to identify the effect of 

intermittent monitoring on pollution levels. I fit the following estimation equation: 

 Aerosolst = β ⋅ 1(treats) ⋅ 1(aftery) 

          + δ ⋅ 1(treats) + θ ⋅ 1(aftery) + ηgroup + Timet + αs + Xstγ + εst      (2) 

where 1(treats) indicates retiring sites, 1(aftery) indicates post-retirement years. Note a non-

retiring site can serve as the control to multiple retiring sites, thus it may appear multiple times in 

the estimation sample. I include group fixed effects (ηgroup) to conduct comparison between 

retiring site and its matched non-retiring sites. The rest of the specifications are the same with 

equation (1). For each site, I apply weights derived using the synthetic control method so that the 

weighted average control site closely tracks the trends in retiring sites’ pre-treatment pollution 

levels (Abadie, Diamond, and Hainmueller, 2010).11 

                                                           
11 Appendix C.1 documents full details on the synthetic control diagnosis statistics. In particular, I compute synthetic 

weights based on data in periods t=-4 and t=-3 only, leaving t=-2 and t=-1 out to serve as a validation sample of the 

method’s performance.  
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Table 3 presents the difference-in-differences estimates. Beginning with column 1, note that 

the coefficient suggests that the level of aerosol pollution around retiring sites increases by 0.137 

unit (relative to synthetic controls) from a baseline aerosol of 15.7 units, thus representing a 0.87% 

increase. The point estimate is not statistically significant at the conventional level. Perhaps not 

surprisingly, it is difficult to capture an overall increase in pollution driven by an increase in 

pollution on the on-days, which represent only 1/6th of the sample. Column 2 decomposes this 

increase into on-days and off-days, and finds a significant increase on the on-days. Columns 3 and 

4 repeat the same analysis, adding control variables of the preferred specification: county, year, 

month-of-year, day-of-week fixed effects, and weather controls. In columns 4 to 5, I estimate a 

“trend break” model in which I include a flexible set of event-time trends for treatment and control 

sites, before and after treatment year. In the spirit of a parametric regression discontinuity design, 

the trend break model allows for flexible time trends but detects changes from a break in the trends 

that occur exactly at the retirement year. Overall, results are more precise with models with simpler 

controls, but the qualitative findings remain robust. 

Evidence suggests that the pollution gap is likely driven by a fall of pollution levels on the on-

days. This finding has two potential implications on the characteristics of strategic responses. First, 

it suggests that, in the absence of strategic behavior, the counterfactual levels of pollution are likely 

close to those of off-days. Second, to the extent that there is little evidence of pollution substitution 

across on-days and off-days, the evidence indicates that short-term responses occur only 

occasionally – for example, taking place during periods when a suppression of polluting activities 

can alleviate risk of noncompliance – rather than through planned, routine responses that occur 

often. In the next subsections, I present examples of such “critical” periods when strategic 

responses might be occurring. 

 

B. High Pollution Periods 

A natural example of a “critical” time is when the county’s nonattainment hazard is raised. I 

begin with a simple heterogeneity analysis that examines whether the pollution gap is larger when 

high levels of PM2.5 have been recorded in the county’s recent past. I augment equation (1) by 

interacting the 1(Off-dayst) dummy variable with average PM2.5 in the past six months (i.e., six 

lags of monthly PM2.5 in the county). As a placebo-style exercise, I also include interaction terms 

with six leads of monthly PM2.5. The estimation equation is:  

 

 Aerosolst = ∑ βmm∈[−6,6]
m≠0

⋅ 1(Off-dayst) ⋅ PM2.5cm 

  + ∑ δmm∈[−6,6]
m≠0

⋅ PM2.5cm + θ ⋅ 1(Off-dayst) + Timet + αs + Xstγ + εst       (3) 
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where c indicates county that contains the monitoring site s. The key coefficients βm ’s 

represent changes in the magnitude of pollution gap per unit increase of PM2.5 in relative month 

m. More intuitively, βm’s capture the correlation between pollution gap today and realized PM2.5 

in month m relative to today. 

Figure 5 plots the β̂m’s estimates. The chart features a strong correlation between the pollution 

gap and realized PM2.5 in the previous month. This correlation is not detected in earlier or later 

periods – either just one month earlier or in any future months.12  In Appendix Figure D.1, I report 

additional evidence that the correlation between strategic response and previous-month PM2.5 is 

mainly driven by months in which the PM2.5 level is above 10 ug/m3. I find that the pollution gap 

exceeds 7 percent when the previous month’s PM2.5 exceeded the annual regulatory standard 

value of 15 ug/m3. In contrast, no pollution gap is detected at times when the pollution level is far 

below the standard.   

The heterogeneity analysis leads to several expected and unexpected implications. Consistent 

with prior literature, evidence suggests that resources are allocated to achieve localized air quality 

improvements – in my setting, reduced pollution on monitored days – that would help 

jurisdiction’s NAAQS compliance. At the same time, however, the short-term nature of the 

strategic response indicates that the magnitude of the pollution gap depends on recorded pollution 

in the immediate past, which in itself reveals the existence of the capacity to game the schedule. 

The evidence casts some initial light on the question of who is gaming. Gaming is unlikely to arise 

from factories’ self-coordinated, cooperative emission behavior, especially in regions with many 

polluters. Factories also typically do not have ready access to air monitoring results from the 

previous month. From a plausibility perspective, local government agencies, who monitor, analyze, 

and forecast air quality on a day-to-day basis, are better informed about when “critical” air quality 

periods surface the local areas. In the next subsection, I examine the potential role of local 

governments in strategic responses. 

 

C. Air Pollution “Action Day” Advisories 

I assess a rare situation that provides an opportunity to directly observe local government 

coordination actions. I examine the pattern of issuances of air pollution “Action Day” advisories, 

which many local air pollution control agencies use to provide warnings to the public when air 

pollution is expected to reach unhealthy levels. On an Action Day, governments urge citizens to 

help improve air quality by “taking actions,” such as reducing energy and automobile use.  

                                                           
12 Note that this is different from mean-reverting, as the result indicates a larger percentage difference in off-day vs. 

on-day pollution levels following a high level of pollution realization.  
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Two features make the Action Day program an opportunity to study local government 

coordination. First, Action Day advisories significantly affect outdoor activities and transportation 

decisions, as shown by previous research (Cutter and Neidell, 2009; Graff Zivin and Neidell, 2009; 

Neidell, 2009). For example, Cutter and Neidell (2009) find that San Francisco Bay Area’s “Spare 

the Air” warning causes 3-3.5 percent reduction in daily traffic.13 Second, local agencies have 

discretion about when to issue warnings. Warnings are based on real-time air quality forecasts. As 

shown in Appendix Figure D.2, many warnings occurred when forecasted air quality index (AQI) 

crosses the “yellow-to-orange” line (forecasted AQI = 100) or the “orange-to-red” line (forecasted 

AQI = 150). However, warnings are also observed across a wide range of AQIs, which suggests 

that the issuance decision is not formulaic, or determination made by a matter-of-fact calculation. 

I examine whether Action Day advisories are more likely to be issued on days when PM 

monitoring is scheduled, with the presumption that warnings help pollution fall.14 

I obtain a comprehensive database of Action Day records from 346 reporting areas from 2004 

to 2013.  This database is maintained by the EPA’s AirNow program (airnow.gov). The reporting 

areas are a mix of cities, counties, metro areas, and states that together cover roughly 50 percent 

of the U.S. population. To avoid double counting jurisdictions, I aggregate the data to the core-

based metro area (CBSA) level. Action Day warnings often span multiple days (an average episode 

lasts 2.4 days). Thus, to better target issuance timing I focus on the first day of warning for any 

period with consecutive Action Day warnings. The final estimation sample includes 6,232 Action 

Days at the CBSA × daily level. I test whether Action Day warnings are more likely to occur on 

monitored days again using equation (1), but changing the outcome variable to an indicator of 

whether an Action Day advisory is issued on the CBSA × day.  

Figure 6 summarizes the main result. The graphical pattern provides evidence of a significant 

excess of advisories on pollution sampling days. On average, an Action Day is 0.108 percentage 

points more likely to be issued on an on-day than on an off-day. Given an average daily issuance 

probability of roughly 1 percent, this effect represents a 10 percent difference in the odds of 

issuance. Put differently, out of the 6,232 warnings in the data, monitoring avoidance influences 

about 100 warning issuances. Appendix C.2 presents a state-level heterogeneity analysis, showing 

that strategic Action Day warnings more often surface in states with specific political 

characteristics, such as a history of receiving and contesting the EPA’s previous nonattainment 

designation decisions. Overall, evidence points to the role of “administrative capacity” underlying 

states’ strategic Action Day warnings, in addition to their bureaucratic incentives to avoid NAAQS 

violation.  

                                                           
13 In unreported analysis, I have extended the Cutter and Neidell (2009) findings, linking daily traffic volume to Action 

Day warnings using all CBSAs with available data. I find that an Action Day warning is associated with a robust and 

statistically significant 1.5-3% reduction in daily traffic.  
14 Appendix Table D.5 reports that monitoring cycles that contain Action Day warnings feature a pollution gap of 5 

percent to 7 percent, compared to the average pollution gap of 1.6 percent. 
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The Action Day provides another example of gaming in critical, high-pollution periods. The 

analysis also suggests that gaming need not arise from factories’ individual behavior. The Action 

Day analysis raises the possibility that local government coordination might occur in industrial 

settings as well. While it is difficult to directly measure coordination through industrial activities, 

in the next subsection, I leverage rich geographic variations in the observed effect sizes to 

document industrial characteristics of areas with large pollution gaps.  

 

D. Industrial Correlates 

County-Level Estimates of Pollution Gaps. I begin by estimating off-day and on-day 

pollution gaps separately for each county. For a county c, the following estimation equation is 

fitted:   

Aerosolict = βc ⋅ 1(Off-dayst) + Timect + εict   (4) 

 

where Aerosolict denotes logged aerosol level in grid i inside county c on date t. Seasonality 

controls Timect include year, month-of-year, and day-of-week dummies. The average county-

level regression contains 35,236 observations (median = 21,086 observations) at the 10km×10km-

by-daily level. To account for sampling variation, especially for small counties that contain fewer 

grid cell observations, I adjust the β̂c estimates using an Empirical Bayes-style procedure (Chetty 

and Hendren, 2018; Finkelstein, Gentzkow, and Williams, 2019). This procedure generates an 

MSE-minimizing prediction of the true βc  through a combination of the (unbiased but high 

variance) raw pollution gap estimate β̂c and a (biased but low-variance) “regionwide” estimate that 

uses data from all grid cells within 150 miles of the county of interest.15 Appendix C.3 provides 

full details on the estimation. 

Figure 7 plots the county-level Empirical Bayes-adjusted estimates of the pollution gap. The 

map is drawn so that warmer colors indicate areas with larger pollution gaps. The map exhibits 

two features. First, large pollution gaps surface in several area clusters, such as parts of California, 

Montana, Southern Texas, and a group of states in the Midwest. In the following analysis, I define 

pollution gap “hotspot” counties as those with a top-decile pollution gap estimate. Conclusions are 

not sensitive to alternative definitions of hot spots, such as defining hot spots as counties with 

pollution gaps in the top quintile. Second, some counties exhibit a negative pollution gap, which 

indicates that aerosol levels are lower during off-days in comparison to on-days. In Appendix C.3, 

I provide an analysis that suggests that the spatial pattern of the positive and negative pollution 

gap is consistent with wind transport dynamics. In the analysis below, I focus primarily on 

                                                           
15 The 150-mile radius is chosen to approximate the size of an average state. I do not use actual state boundaries to 

avoid substantial difference in the size of states. The average region-level pollution gap estimation contains 2.2 million 

observations. 
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characteristics of hot spots, and set aside the variation in the magnitude of the pollution gap, 

because a gap’s magnitude is more likely to reflect a complex mix of local strategic responses and 

a blown-in pollution pattern from neighboring areas. 

Correlates of the Pollution Gap Hot Spots. I estimate a cross-sectional regression of the 

indicator variable for a hotspot county to a host of county-level characteristics. A natural beginning 

point is a county’s regulatory and monitoring status. I include an indicator for the presence of 1-

in-6-day monitoring sites, whether the county has ever been assigned a PM-related nonattainment 

status, and a continuous variable of the county’s average aerosol level. I then include a series of 

dummy variables for whether a county has a high (top 10 percent) employment share of each of 

the 34 polluting industries.16 I then estimate both multivariate OLS and post-LASSO regressions 

that link pollution hotspot counties to the regulatory and industrial characteristics.17 

Figure 8 summarizes the coefficient estimates. The top panel shows that large pollution gaps 

tend to emerge in counties that have high levels of aerosol levels, have experienced nonattainment, 

and are subject to 1-in-6-day monitoring. These characteristics turn out to be the strongest 

correlates – both in terms of magnitude and precision – of large pollution gaps. Going down the 

panel, I organize polluting industries into sector blocks, ranked from sectors that emitted the 

highest share of PM (Utilities) to the lowest (Administrative Services, and Waste Management, 

and Remediation Services). Two specific polluting industries – wood product manufacturing and 

mining – emerge as significant and positive correlates of large pollution gaps. The post-LASSO 

estimation results largely agree with the OLS findings. Industries with low emission contributions 

tend not to be selected as relevant predictors; on the other hand, coefficient estimates remain 

largely unchanged for industries that are recognized by the OLS as consistent and significant 

correlates. In unreported analysis, I find that the correlation of wood product manufacturing is 

particularly robust across a wide range of specifications.  

A potential explanation of this heterogeneity relates to the capacity to respond. For example, 

while the utility sector is a major PM emitter, power plants, especially coal plants, often run around 

the clock; for them, ramping production up or down in response to a short-term monitoring 

schedule would be very costly. By contrast, wood product manufacturers also contribute to a 

significant portion (3 percent) of total PM emissions among point sources, but they usually run at 

low capacity. In fact, wood plants, which operate at roughly 60 percent of capacity, have the lowest 

capacity utilization rate among all polluting manufacturers examined in this study. The unused 

                                                           
16 I define the polluting sector as all two-digit NAICS industries that contribute to at least 1 percent of national total 

PM10 emissions in the EPA’s 2011 National Emissions Inventory. For each three-digit NAICS industry of the 

polluting sector, I use Census County Business Pattern to compute its employment share in each county, and flag 

counties in the top decile of the distribution. 
17 The post-LASSO regression is the same OLS regression where the right hand side variables are restricted to those 

selected by a first-step LASSO estimation.  
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capacity might enable these plants to shift production activities around in avoidance of the 

pollution monitoring schedule. 

 

IV. Conclusion 

Fiscal constraints often motivate environmental regulators to monitor polluting behavior on an 

intermittent basis. A largely overlooked issue with intermittent monitoring is its vulnerability to 

polluters’ strategic responses, as highlighted by recent evidence on the vehicle emission scandals. 

This paper reinforces these recent findings and extends the literature to a broader setting of ambient 

air quality regulations. I have presented evidence that a widely used once-every-six-day 

monitoring schedule for outdoor particulate pollution leads to significantly poorer air quality on 

unmonitored days than on the days that the regulator observes through the monitoring. The 

combined evidence, based on satellite measure of air quality, and analysis of various characteristics 

of regions with wider pollution gaps between monitored and unmonitored days, shows that gaming 

of the monitoring schedule can and does occur.  My results reveal the possibility that strategic 

responses may arise through coordination by local governments, which, under the federal 

regulations, share non-compliance costs with industries. As an illustration of this mechanism, I 

show that some local governments issue air quality advisories that are strategically timed in 

response to the monitoring schedule; such actions are likely intended to manipulate public behavior, 

such as transportation decisions that affect pollution emissions, to reduce pollution levels recorded 

on monitored days. The evidence shows that the intensity of strategic responses differs 

substantially across geographic regions, depending strongly on the characteristics of local area 

economies and industries. The results are consistent with the view that strategic responses are more 

likely to arise in regions with greater incentives and/or capacity to avoid monitoring. Thus, the 

likelihood of gaming behavior is greater in regions that risk non-compliance penalties, and in areas 

with high-emission industries that often operate below capacity, a feature that makes it possible 

for them to make adjustments timed with the monitoring schedule.   

The results raise several possible policy solutions. A natural possible fix would be to use a 

random monitoring schedule. Though a randomized schedule (with short notice to state and local 

governments) has conceptual appeal, such a monitoring system may be problematic in practice 

because filter-based PM methods require intensive field work involving sampling and subsequent 

laboratory analyses. One might instead consider using an ex ante-generated random schedule set, 

for example, at the beginning of a calendar year. In light of this paper’s findings on local 

government coordination, however, it is unclear whether the ex ante schedule would be strictly 

hidden from local polluters. However, randomization is not the only potential solution. My results 

suggest that increased monitoring frequency reduces gaming and improves air quality. In fact, 

evidence shows that strategic responses are much weaker in regions under schedules that impose 

monitoring once every third day, rather than once every sixth day. Though a comprehensive 
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evaluation comparing total health benefits with the administrative costs of increased monitoring 

frequency is beyond the scope of this paper, my findings do support two related, emerging themes 

in environmental policy making. First, advanced continuous monitoring technologies should be 

promoted to replace discrete, sampling-based monitoring of the environment (e.g., Giles, 2013). 

Second, retrospective and independent evaluations – in addition to ex ante cost-benefit calculations 

– are important to ensure the integrity and efficacy of regulation design (Greenstone, 2013; 

Auffhammer, 2015; Cropper, Fraas, and Morgenstern, 2017). 
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Figure 1. EPA’s Ambient Pollution Monitoring Schedule, 2001
2001 Monitoring Schedule

1/6-Day &1/3-Day Monitoring Schedule for TSP, Pb, PM-10, PM-2.5, and VOC = 1/6 schedule

    January    February      March

Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa
1 2 3 4 5 6 1 2 3 1 2 3

7 8 9 10 11 12 13 4 5 6 7 8 9 10 4 5 6 7 8 9 10
14 15 16 17 18 19 20 11 12 13 14 15 16 17 11 12 13 14 15 16 17
21 22 23 24 25 26 27 18 19 20 21 22 23 24 18 19 20 21 22 23 24
28 29 30 31 25 26 27 28 25 26 27 28 29 30 31

April May June

Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa
1 2 3 4 5 6 7 1 2 3 4 5 1 2
8 9 10 11 12 13 14 6 7 8 9 10 11 12 3 4 5 6 7 8 9

15 16 17 18 19 20 21 13 14 15 16 17 18 19 10 11 12 13 14 15 16
22 23 24 25 26 27 28 20 21 22 23 24 25 26 17 18 19 20 21 22 23
29 30 27 28 29 30 31 24 25 26 27 28 29 30

July      August  September

Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa
1 2 3 4 5 6 7 1 2 3 4 1
8 9 10 11 12 13 14 5 6 7 8 9 10 11 2 3 4 5 6 7 8

15 16 17 18 19 20 21 12 13 14 15 16 17 18 9 10 11 12 13 14 15
22 23 24 25 26 27 28 19 20 21 22 23 24 25 16 17 18 19 20 21 22
29 30 31 26 27 28 29 30 31 23 24 25 26 27 28 29

30

  October  November  December

Su M Tu W Th F Sa Su M Tu W Th F Sa Su M Tu W Th F Sa
1 2 3 4 5 6 1 2 3 1

7 8 9 10 11 12 13 4 5 6 7 8 9 10 2 3 4 5 6 7 8
14 15 16 17 18 19 20 11 12 13 14 15 16 17 9 10 11 12 13 14 15
21 22 23 24 25 26 27 18 19 20 21 22 23 24 16 17 18 19 20 21 22
28 29 30 31 25 26 27 28 29 30 23 24 25 26 27 28 29

30 31

Notes: This figure shows the EPA’s 2001 monitoring schedule calendar. Full archives of all calendars can be found here: <https:
//www3.epa.gov/ttn/amtic/calendar.html>.

Figure 2. The Pollution Gap: Off-days vs. On-days Pollution Differences
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Notes: This figure plots the path of pollution concentration by days of 1-in-6-day monitoring cycle. The sample includes all
sites that contain at least one 1-in-6-day PM monitor. Pollution is measured by satellite-based aerosol concentration within the
10km×10km area that contains the monitoring site. Day 0 corresponds to the scheduled monitoring day, which is normalized to
0. The regression is not conditional on any covariates. Dashed lines represent 95% confidence intervals constructed using standard
errors clustered at the county level.
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Figure 3. Pollution Gap by Years Relative to Monitoring Site Retirement
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Notes: This figure plots the pollution gap between monitored (on-days) and unmonitored days (off-days) as a function of years
relative to the retirement of a site that conducted monitoring every six days. Average estimates show off-days effect separately
estimated before and after the retirement of the monitoring site. The sample includes retirement of 490 sites from 2001 to 2013.
The regression is not conditional on any covariates. Dashed lines represent 95% confidence intervals constructed using standard
errors clustered at the county level.

Figure 4. Pollution Levels by Years Relative to Monitoring Site Retirement
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B. Control sites
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Notes: This figure plots the pollution levels on monitored (on-days) and unmonitored days (off-days). Trends are plotted for treated
sites (retired 1-in-6-day sites) in panel A and for control sites (non-retired 1-in-6-day site within the same state as the retired site)
in panel B. Event year 0 is the year when the corresponding treated site retires.
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Figure 5. Heterogeneous Pollution Gap by County’s Realized PM2.5 in the Past and Future
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Past PM2.5 levels
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Notes: This figure reports the regression coefficients on the interaction of 1-in-6-day pollution gap with six lags and six leads of the
county’s monthly average PM2.5 concentration. The underlying regressions include main effect terms, site, year, month-of-year,
and day-of-week fixed effects, and weather controls (Section IIB). Range bars represent 95% confidence intervals constructed using
standard errors clustered at the county level.
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Figure 6. Event Study: Pollution “Action Day” Warnings on Off-days vs. On-days
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Notes: This figure plots the probability of local governments’ issuance of pollution “Action Day” advisories by days of 1-in-6-day
monitoring cycle. The outcome variable is a core-based statistical area (CBSA) × daily dummy for whether any action day is issued.
In cases of issuances that span a consecutive number of days, only the first day of issuance is counted. The estimation sample
spans 2004-2013 and includes 14,945 issuances across 171 CBSAs. Day 0 corresponds to the scheduled monitoring day, which is
normalized to 0. The regression is not conditional any covariates. Dashed lines represent 95% confidence intervals constructed
using standard errors clustered at the CBSA level.
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Figure 7. County-Level 1-in-6-Day Pollution Gap Estimates

Notes: This map plots Empirical Bayes-adjusted county-level 1-in-6-day pollution gap estimates. Red (blue) areas correspond
to higher (lower) aerosol levels on off-days relative to on-days. For all counties, off-days and on-days are defined using EPA’s
monitoring schedule. Counties with outlines are those with the highest 10% pollution gap estimates (“hotspots”).
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Figure 8. Regulatory and Industrial Characteristics of Pollution Gap Hotspots
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Notes: This figure plots coefficients from two regressions: (1) a cross-section OLS regression of an indicator for pollution gap
hotspots (counties with highest 10% pollution gap estimates) on county-level regulatory (rows 1-3) and industrial characteristics
(row 4 onward), and (2) the post-LASSO version of the OLS regression in (1). Two-digit NAICS industry blocks are ordered by its
share of national total PM10 emissions according to EPA’s 2011 National Emissions Inventory. In the interest of space, the graph
only reports coefficients for polluting sectors that contribute at least 1% of total PM10. Solid dots indicate coefficients that are
individually significant at the 5% level. Range bars represent 95% confidence intervals from the OLS regression.
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Table 1. Summary Statistics

(1) (2) (3) (4) (5) (6)
AOD Exceedance per year

Year 1/1d 1/3d 1/6d 1/1d 1/3d 1/6d

2001 17.9 17.6 15.2 7.0 2.4 2.0
2002 21.6 22.2 18.9 6.3 2.2 1.9
2003 18.4 18.8 16.0 4.2 1.7 1.3
2004 15.8 16.3 14.0 3.7 1.4 1.1
2005 16.7 19.5 16.5 4.6 2.6 1.7
2006 16.0 18.5 16.3 3.5 1.1 1.5
2007 19.6 22.1 18.5 3.9 1.6 1.9
2008 16.8 18.5 17.0 2.8 0.9 1.3
2009 14.8 16.2 13.7 2.2 0.7 1.0
2010 14.0 15.6 13.7 1.8 0.7 0.7
2011 15.9 19.1 16.3 2.6 0.4 1.1
2012 15.9 17.9 16.1 1.8 0.3 0.8
2013 14.1 15.3 14.3 2.4 0.6 1.2

(7) (8) (9) (10) (11) (12)
Number of sites Population in million

Year 1/1d 1/3d 1/6d 1/1d 1/3d 1/6d

2001 250 593 776 94.2 145.2 142.6
2002 277 660 774 108.2 162.3 143.3
2003 263 576 725 100.7 144.4 142.4
2004 274 628 737 100.8 145.9 149.6
2005 279 611 679 89.8 146.4 141.2
2006 286 596 690 95.9 148.9 141.2
2007 311 559 600 109.4 145.4 138.8
2008 313 520 538 103.4 149.0 133.9
2009 347 543 537 116.2 154.1 132.2
2010 376 513 522 126.9 144.9 132.0
2011 394 441 458 112.7 128.9 124.8
2012 436 461 426 119.0 132.0 114.5
2013 489 471 406 132.7 136.8 112.9

Notes: Each row represents statistics for a calendar year. Columns 1 to 3 show grid-level mean aerosol levels around 1-in-1-day,
1-in-3-day, and 1-in-6-day sites. Columns 4 to 6 show monitor-level total number of days that any PM NAAQS standards were
exceeded in the year. Columns 6 to 9 count number of monitoring sites falling in each category. Columns 10 to 12 report population
(million) of counties with each type of monitoring.
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Table 2. Regression Estimates of the Pollution Gap

Dependent variable: Aerosol concentration (log)

(1) (2) (3) (4) (5) (6)
Monitoring frequency: 1-in-6-day 1-in-3-day 1-in-1-day

1(off-days) 0.0160*** 0.0162*** 0.0028 0.0029 -0.0013 0.0023
(0.0040) (0.0035) (0.0026) (0.0020) (0.0107) (0.0080)

Controls ✓ ✓ ✓
Sites 1,193 1,193 1,064 1,064 556 556
Observations 685,060 685,060 598,859 598,859 231,532 231,532

Notes: Each column reports a separate regression. Estimation samples are sites with any 1-in-6-day monitors (columns 1 to 2),
sites with any 1-in-3-day monitors (columns 3 to 4), and sites with any 1-in-1-day monitors and no collocated intermittent monitors
(columns 5 to 6). “1(off-days)” indicates days when PM monitoring is not scheduled. “Controls” include site, year, month-of-year,
and day-of-week fixed effects, and weather covariates (Section IIB). Standard errors are clusterd at the county level. *: p < 0.10;
**: p < 0.05; ***: p < 0.01.
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Table 3. The Effect of Monitoring Site Retirement on Pollution Levels
Dependent variable: Aerosol concentration (level×100)

(1) (2) (3) (4) (5) (6)

1(treat)×1(after) 0.137 0.178* 0.154
(0.096) (0.094) (0.173)

1(treat)×1(after)×1(on-days) 0.366** 0.374*** 0.350*
(0.144) (0.141) (0.199)

1(treat)×1(after)×1(off-days) 0.090 0.138 0.115
(0.097) (0.095) (0.174)

Group fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Controls ✓ ✓ ✓ ✓
Trend break model ✓ ✓
Mean dep. var. 15.7 15.7 15.7 15.7 15.7 15.7
Observations 9,854,996 9,854,996 9,854,996 9,854,996 9,854,996 9,854,996

Notes: Each column reports a separate regression. “1(treat)” indicates retired sites. “1(after)” indicates years after monitoring
retirement. “1(off-days)” indicates days when PM monitoring is not scheduled. “1(on-days)” indicates days when PM monitoring
is scheduled. “Group fixed effects” indicate a retired site with all its matched non-retired sites. “Controls” include site, year,
month-of-year, and day-of-week fixed effects, and weather covariates (Section IIB). “Trend break model” include additional terms
on linear event time trends interacted with the treatment dummy and the after dummy, separately. All regressions control for
lower-order interaction terms and main effect terms. Standard errors are clustered at the county level. *: p < 0.10; **: p < 0.05;
***: p < 0.01.
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