A Stone-Type Duality Theorem for Separation Logic via its Underlying Bunched Logics

MFPS 2017

Simon Docherty

University College London

Monday 12th June 2017

Joint work with David Pym
What is Duality?
A Really Informal Description of Duality
A formal definition of duality

A **dual equivalence of categories** is

- a pair of functors $F : C \to D^\text{op}$ and $G : D^\text{op} \to C$
A formal definition of duality

A dual equivalence of categories is

- a pair of functors \(F : C \to \mathcal{D}^{\text{op}} \) and \(G : \mathcal{D}^{\text{op}} \to C \)
- together with natural isomorphisms \(\epsilon : \text{Id}_{\mathcal{D}^{\text{op}}} \to FG \) and \(\eta : \text{Id}_C \to GF \)
Stone Duality

Theorem (Representation Theorem for Boolean Algebras)

Every Boolean algebra embeds into the power set algebra of its ultrafilters by \(h(a) = \{ F \mid a \in F \} \).

- Add topology to the set of ultrafilters and this strengthens to a duality.

Stone Duality

Theorem (Representation Theorem for Boolean Algebras)

1. Every Boolean algebra embeds into the power set algebra of its ultrafilters by \(h(a) = \{ F \mid a \in F \} \).

- Add topology to the set of ultrafilters and this strengthens to a duality.
- Application to logic 1:
 1. Algebra generalizes syntax
 2. Topology generalizes semantics
 3. Stone Duality generalizes soundness and completeness.

Stone Duality

Theorem (Representation Theorem for Boolean Algebras)

1. Every Boolean algebra embeds into the power set algebra of its ultrafilters by \(h(a) = \{ F \mid a \in F \} \).

- Add topology to the set of ultrafilters and this strengthens to a duality.
- Application to logic 1:
 1. Algebra generalizes syntax
 2. Topology generalizes semantics
 3. Stone Duality generalizes soundness and completeness.
- Application to logic 2:
 Prove metatheory algebraically/topologically.

What Is Separation Logic?
Separation Logic

- Tool used in static analysis of programs that access and mutate data23
- Hoare triples $\{\varphi\} C \{\psi\}$ where φ, ψ formulae of an assertion language extending first-order logic with separating connectives \ast, I and $\neg\ast$ and the points-to predicate \mapsto.
- Interpreted on memory states comprised of a store s (stack-allocated memory) and a heap h (dynamically-allocated memory).

2J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures, LICS 2002
3S. Ishtiaq and P. O’Hearn. BI as an Assertion Language for Mutable Data Structures, POPL 2001
Separation Logic

- Tool used in static analysis of programs that access and mutate data\(^2\).
- Hoare triples \(\{\varphi\}C\{\psi\}\) where \(\varphi, \psi\) formulae of an assertion language extending first-order logic with separating connectives \(\ast, \bot\) and the points-to predicate \(\equiv\).
- Interpreted on memory states comprised of a store \(s\) (stack-allocated memory) and a heap \(h\) (dynamically-allocated memory).

\(^2\) J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures, LICS 2002

\(^3\) S. Ishtiaq and P. O’Hearn. BI as an Assertion Language for Mutable Data Structures, POPL 2001
Store-Heap Semantics of Separation Logic

- Store s gives evaluation of terms $[e]s$ built out of variables, integers, arithmetic functions.
- $s, h \models e \iff e'$ iff $\text{dom}(h) = \{[e]s\}$ and $h([e]s) = [e']s$.
What is Duality? What Is Separation Logic? Duality for Propositional Separation Logic Duality for Separation Logic Conclusions

Store-Heap Semantics of Separation Logic

- Store s gives evaluation of terms $[e]s$ built out of variables, integers, arithmetic functions.
- $s, h ⊨ e \mapsto e'$ iff $\text{dom}(h) = \{[e]s\}$ and $h([e]s) = [e']s$.
- $s, h ⊨ \varphi * \psi$ iff h can be separated into disjoint h', h'' s.t. $s, h' ⊨ \varphi$ and $s, h'' ⊨ \psi$.
Store-Heap Semantics of Separation Logic

- Store s gives evaluation of terms $[e]s$ built out of variables, integers, arithemetic functions.
- $s, h \models e \leftrightarrow e'$ iff $\text{dom}(h) = \{[e]s\}$ and $h([e]s) = [e']s$.
- $s, h \models \varphi \ast \psi$ iff h can be separated into disjoint h', h'' s.t. $s, h' \models \varphi$ and $s, h'' \models \psi$.
- $s, h \models \exists x \varphi$ iff there exists a such that $s[x \leftarrow a], h \models \varphi$.
Duality for Propositional Separation Logic
Boolean Bunched Logic

BBI is a **bunched logic**\(^4\): the free combination of CPL and MILL.

Syntax

A resource algebra \(A\) is an algebra \((A, \land, \lor, \bot, \top, *, \#)\) such that

- \((A, \land, \lor, \bot, \top)\) is a Boolean algebra,
- \((A, *, I)\) is a commutative monoid,
- For all \(a, b, c \in A: a * b \leq c\) iff \(a \leq b \rightarrow^* c\).

Boolean Bunched Logic

BBI is a bunched logic⁴: the free combination of CPL and MILL.

Syntax

A resource algebra A is an algebra $(A, \land, \lor, \bot, \top, \ast, \ast, I)$ such that

- $(A, \land, \lor, \bot, \top)$ is a Boolean algebra,
- (A, \ast, I) is a commutative monoid,
- For all $a, b, c \in A$: $a \ast b \leq c$ iff $a \leq b \ast c$.

Semantics

A resource frame is a structure (X, \circ, E) such that

- $\circ : X^2 \to \mathcal{P}(X)$ is an associative & commutative operation,
- $E \subseteq X$ satisfies $\{r\} \circ E = \{r\}$ for all $r \in X$ (where \circ extended to an operation on sets).

Theorem (Representation Theorem for Resource Algebras)

Every resource algebra \mathbf{A} can be embedded into a resource algebra of sets generated by a resource frame.
Theorem (Representation Theorem for Resource Algebras)

Every resource algebra \(\mathbb{A} \) can be embedded into a resource algebra of sets generated by a resource frame.

Proof Sketch.

\[\circ_{Uf} : Uf(\mathbb{A})^2 \rightarrow \mathcal{P}(Uf(\mathbb{A})) \text{ given by} \]

\[F \circ_{Uf} F' = \{ F'' | \forall a \in F, \forall b \in F' : a \ast b \in F'' \} \]
Representation and Duality

Theorem (Representation Theorem for Resource Algebras)

Every resource algebra \mathbb{A} can be embedded into a resource algebra of sets generated by a resource frame.

Proof Sketch.

1. $\circ_{Uf} : Uf(\mathbb{A})^2 \rightarrow \mathcal{P}(Uf(\mathbb{A}))$ given by

 $$F \circ_{Uf} F' = \{F'' \mid \forall a \in F, \forall b \in F' : a * b \in F''\}$$

2. $E_{Uf} = \{F \in Uf(\mathbb{A}) \mid I \in F\}$.

Add topology and coherence conditions to resource frames to get resource spaces and a dual equivalence of categories.
Theorem (Representation Theorem for Resource Algebras)

Every resource algebra \mathbb{A} can be embedded into a resource algebra of sets generated by a resource frame.

Proof Sketch.

- $\circ_{Uf} : Uf(\mathbb{A})^2 \rightarrow \mathcal{P}(Uf(\mathbb{A}))$ given by
 $F \circ_{Uf} F' = \{ F'' | \forall a \in F, \forall b \in F' : a \ast b \in F'' \}$
- $E_{Uf} = \{ F \in Uf(\mathbb{A}) | I \in F \}$.
- $(Uf(\mathbb{A}), \circ_{Uf}, E_{Uf})$ generates power set resource algebra that \mathbb{A} embeds into with $h(a) = \{ F \in Uf | a \in F \}$.

Add topology and coherence conditions to resource frames to get resource spaces and a dual equivalence of categories.
Duality for Separation Logic
Separation Logic Algebraized

A **resource hyperdoctrine**\(^5\) is a functor \(P : C^{\text{op}} \to \text{ResAlg}\) such that

1. \(C\) is a category with **finite products**: for every \(C_1, \ldots, C_n\) in \(C\), \(C_1 \times \cdots \times C_n\) exists.

\(^5\)B. Biering, L. Birkedal, and N. Torp-Smith. BI Hyperdoctrines and Higher-order Separation Logic. ESOP 2005
Separation Logic Algebraized

A **resource hyperdoctrine** is a functor $\mathbb{P} : C^{\text{op}} \to \text{ResAlg}$ such that

1. C is a category with **finite products**: for every C_1, \ldots, C_n in C, $C_1 \times \cdots \times C_n$ exists.
2. For each X, Γ in C there exist monotone maps
 $\exists X_\Gamma, \forall X_\Gamma : \mathbb{P}(\Gamma \times X) \rightarrow \mathbb{P}(\Gamma)$ satisfying **adjointness**
 $$\exists X_\Gamma(a) \leq b \iff a \leq \mathbb{P}(\pi_{\Gamma,X})(b)$$
 and **naturality** properties.

5B. Biering, L. Birkedal, and N. Torp-Smith. BI Hyperdoctrines and Higher-order Separation Logic. ESOP 2005
Separation Logic Algebraized

A resource hyperdoctrine is a functor \(\mathbb{P} : C^{\text{op}} \to \text{ResAlg} \) such that

1. \(C \) is a category with finite products: for every \(C_1, \ldots, C_n \) in \(C \), \(C_1 \times \cdots \times C_n \) exists.
2. For each \(X, \Gamma \) in \(C \) there exist monotone maps
 \(\exists X_\Gamma, \forall X_\Gamma : \mathbb{P}(\Gamma \times X) \to \mathbb{P}(\Gamma) \) satisfying adjointness
 \[\exists X_\Gamma(a) \leq b \text{ iff } a \leq \mathbb{P}(\pi_{\Gamma,X})(b) \]
 and naturality properties.
3. For each \(X \) in \(C \) there exists an element \(=_X \in \mathbb{P}(X \times X) \) satisfying an adjointness property. Given diagonal map
 \(\Delta_X : X \to X \times X : \)
 \[\top \leq \mathbb{P}(\Delta_X)(a) \text{ iff } =_X \leq a \]

5 B. Biering, L. Birkedal, and N. Torp-Smith. BI Hyperdoctrines and Higher-order Separation Logic. ESOP 2005
Separation Logic Topologized

An **indexed resource frame** is a functor $\mathcal{R} : C \rightarrow \text{ResFr}$ such that:

- C is a category with finite products.
- For all objects Γ, Γ', X and morphisms $s : \Gamma \rightarrow \Gamma'$ the following commutative square satisfies the **quasi-pullback**\(^6\) property.

\[
\begin{array}{ccc}
\mathcal{R}(\Gamma \times X) & \xrightarrow{\mathcal{R}(\pi_{\Gamma,X})} & \mathcal{R}(\Gamma) \\
\mathcal{R}(s \times \text{id}_X) \downarrow & & \downarrow \mathcal{R}(s) \\
\mathcal{R}(\Gamma' \times X) & \xrightarrow{\mathcal{R}(\pi_{\Gamma',X})} & \mathcal{R}(\Gamma')
\end{array}
\]

Replace ResFr with ResSp and add coherence conditions = **indexed resource spaces**.

The Store-Heap Model is an Indexed Resource Frame

- The set of heaps forms a resource frame: \((\text{Heaps}, \cdot, \{[]\})\).
- Define \(\text{Store} : \text{Set} \rightarrow \text{ResFr}\) by

\[
\text{Store}(X) = (X \times \text{Heaps}, \cdot_X, X \times \{[]\})
\]

\[(x, h) \cdot_X (y, h') = \begin{cases}
\emptyset & \text{if } x \neq y \text{ or } \neg h \# h' \\
\{(x, h \cdot h')\} & \text{otherwise}.
\end{cases}
\]

- Each \(\text{Store}(X)\) is a resource frame.
The Store-Heap Model is an Indexed Resource Frame

- The set of heaps forms a resource frame: \((\text{Heaps}, \cdot, \{[]\})\).
- Define \(\text{Store} : \text{Set} \rightarrow \text{ResFr}\) by

\[
\text{Store}(X) = (X \times \text{Heaps}, \cdot_X, X \times \{[]\})
\]

\[
(x, h) \cdot_X (y, h') = \begin{cases}
\emptyset & \text{if } x \neq y \text{ or } \neg h \# h' \\
\{(x, h \cdot h')\} & \text{otherwise}.
\end{cases}
\]

- Each \(\text{Store}(X)\) is a resource frame.
- An \(n\)-ary store \(s = [x_1 \rightarrow a_1, \ldots, x_n \rightarrow a_n]\) with heap \(h\) is encoded as \(((a_1, \ldots, a_n), h) \in \text{Store}(\text{Val}^n)\).

Theorem

The Kripke semantics of the indexed resource frame \(\text{Store}\) coincides with the memory model semantics of Separation Logic.
Duality for BBI gives us

- a pair of functors $F : \text{ResAlg} \to \text{ResSp}^{\text{op}}$ and $G : \text{ResSp}^{\text{op}} \to \text{ResAlg}$

- together with natural isomorphisms $\epsilon : \text{Id}_{\text{ResSp}^{\text{op}}} \to FG$ and $\eta : \text{Id}_{\text{ResAlg}} \to GF$.
Putting it all together

- Take a resource hyperdoctrine $P : C^{op} \rightarrow \text{ResAlg}$.
Putting it all together

- Take a resource hyperdoctrine $\mathcal{P} : C^{op} \to \text{ResAlg}$.
- Composing with $F : \text{ResAlg} \to \text{ResSp}^{op}$ gives an indexed resource space $F \circ \mathcal{P} : C \to \text{ResSp}$.
Putting it all together

- Take a resource hyperdoctrine $\mathcal{P} : C^{\text{op}} \to \text{ResAlg}$.
- Composing with $F : \text{ResAlg} \to \text{ResSp}^{\text{op}}$ gives an indexed resource space $F \circ \mathcal{P} : C \to \text{ResSp}$.
- Take an indexed resource space $\mathcal{R} : C \to \text{ResSp}$.
Putting it all together

- Take a resource hyperdoctrine $\mathcal{P} : C^{op} \rightarrow \text{ResAlg}$.
- Composing with $F : \text{ResAlg} \rightarrow \text{ResSp}^{op}$ gives an indexed resource space $F \circ \mathcal{P} : C \rightarrow \text{ResSp}$.
- Take an indexed resource space $\mathcal{R} : C \rightarrow \text{ResSp}$.
- Composing with $G : \text{ResSp}^{op} \rightarrow \text{ResAlg}$ gives a resource hyperdoctrine $G \circ \mathcal{R} : C^{op} \rightarrow \text{ResAlg}$.
Duality for **BBI** gives us

- a pair of functors $F : \text{ResAlg} \rightarrow \text{ResSp}^{\text{op}}$ and $G : \text{ResSp}^{\text{op}} \rightarrow \text{ResAlg}$
- together with **natural isomorphisms** $\epsilon : \text{Id}_{\text{ResSp}^{\text{op}}} \rightarrow FG$ and $\eta : \text{Id}_{\text{ResAlg}} \rightarrow GF$.
Putting it all together

- Take a resource hyperdoctrine $\mathcal{P} : C^{op} \rightarrow \text{ResAlg}$.
- Composing with $F : \text{ResAlg} \rightarrow \text{ResSp}^{op}$ gives an indexed resource space $F \circ \mathcal{P} : C \rightarrow \text{ResSp}$.
- Take an indexed resource space $\mathcal{R} : C \rightarrow \text{ResSp}$.
- Composing with $G : \text{ResSp}^{op} \rightarrow \text{ResAlg}$ gives a resource hyperdoctrine $G \circ \mathcal{R} : C^{op} \rightarrow \text{ResAlg}$.
- Proof by "abstract nonsense": \mathcal{P} isomorphic to $GF \circ \mathcal{P}$, \mathcal{R} isomorphic to $FG \circ \mathcal{R}$.
Putting it all together

- Take a resource hyperdoctrine $\mathcal{P} : C^{\text{op}} \to \text{ResAlg}$.
- Composing with $F : \text{ResAlg} \to \text{ResSp}^{\text{op}}$ gives an indexed resource space $F \circ \mathcal{P} : C \to \text{ResSp}$.
- Take an indexed resource space $\mathcal{R} : C \to \text{ResSp}$.
- Composing with $G : \text{ResSp}^{\text{op}} \to \text{ResAlg}$ gives a resource hyperdoctrine $G \circ \mathcal{R} : C^{\text{op}} \to \text{ResAlg}$.
- Proof by "abstract nonsense":
 \mathcal{P} isomorphic to $GF \circ \mathcal{P}$, \mathcal{R} isomorphic to $FG \circ \mathcal{R}$.
- Morphisms: slightly more complicated - see paper!
The Duality Theorem

Theorem

The categories of resource hyperdoctrines and indexed resource spaces are dually equivalent.
Conclusions
Conclusions

- Resource hyperdoctrines generalize the syntax of Separation Logic.
- Indexed resource spaces generalize the semantics of Separation Logic.
- This work gives a complete algebraic and topological foundation for the **assertion language** of Separation Logic.
- **Duality** strengthens soundness and completeness and allows transfer of results between the two perspectives.
- This analysis is fully general: the analogous results can be given for every other **bunched logic** in the literature, both propositional and predicate (to be presented elsewhere).
Further Work

- In process: algebraic and topological metatheory proofs (first result: interpolation fails for BBI).
Further Work

- In process: algebraic and topological metatheory proofs (first result: interpolation fails for BBI).
- Next: extension with structure to interpret the Hoare triples and proof rules of Separation Logic.
Further Work

- In process: algebraic and topological metatheory proofs (first result: interpolation fails for BBI).
- Next: extension with structure to interpret the Hoare triples and proof rules of Separation Logic.
- And then: interpretation of computationally important properties like the frame rule and bi-abduction in this framework.
Further Work

- In process: algebraic and topological metatheory proofs (first result: interpolation fails for BBI).
- Next: extension with structure to interpret the Hoare triples and proof rules of Separation Logic.
- And then: interpretation of computationally important properties like the frame rule and bi-abduction in this framework.
- And possibly: **Concurrent** Separation Logic?
Further Work

▶ In process: algebraic and topological metatheory proofs (first result: interpolation fails for BBI).
▶ Next: extension with structure to interpret the Hoare triples and proof rules of Separation Logic.
▶ And then: interpretation of computationally important properties like the frame rule and bi-abduction in this framework.
▶ And possibly: Concurrent Separation Logic?
▶ Thanks for listening!