Modular Tableaux Calculi for Bunched Logics and Separation Theories
BCTCS 2018

Simon Docherty
University College London
Tuesday 27th March 2018

Joint work with David Pym1

1S. Docherty and D. Pym. Modular Tableaux Calculi for Separation Theories. \textit{FoSSaCS ’18}
What is this work about?

- Micro Level: systematic definition of proof systems for the program verification formalism Separation Logic.
What is this work about?

- Micro Level: systematic definition of proof systems for the program verification formalism Separation Logic.
- Macro Level: technique for overcoming expressivity/definability trade-off in logic.
Bunched Logics
What Are Bunched Logics?

- Classical/intuitionistic propositional logic extended with substructural connectives lacking contraction\(^2\):
 \[\varphi * \varphi \not\equiv \varphi. \]

\(^3\)S. Ishtiaq and P. O’Hearn. BI As An Assertion Language for Mutable Data Structures. LICS ’01.
What Are Bunched Logics?

- Classical/intuitionistic propositional logic extended with substructural connectives lacking contraction\(^2\):

 \[\varphi \ast \varphi \not\equiv \varphi. \]

- Proof theory: contexts are trees (bunches), not lists.

\(^3\)S. Ishtiaq and P. O’Hearn. BI As An Assertion Language for Mutable Data Structures. LICS ’01.
What Are Bunched Logics?

- Classical/intuitionistic propositional logic extended with substructural connectives lacking contraction\(^2\):
 \[\varphi \cdot \varphi \not\equiv \varphi. \]

- Proof theory: contexts are trees (bunches), not lists.
- Formulae describe composable/comparable resources.

\(^3\)S. Ishtiaq and P. O’Hearn. BI As An Assertion Language for Mutable Data Structures. LICS ’01.
What Are Bunched Logics?

- Classical/intuitionistic propositional logic extended with substructural connectives lacking contraction\(^2\):
 \[\varphi \ast \varphi \not\equiv \varphi. \]

- Proof theory: contexts are trees (bunches), not lists.
- Formulae describe composable/comparable resources.
- Applications across computer science: program verification\(^3\), security modelling, resource reasoning.

\(^3\)S. Ishtiaq and P. O’Hearn. BI As An Assertion Language for Mutable Data Structures. LICS ’01.
The Logic of Bunched Implications

Let p range over set of propositional atoms Prop.

$$\varphi ::= p \mid \top \mid \bot \mid I \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \mid \varphi \ast \varphi \mid \varphi \astast \varphi$$

The Logic of Bunched Implications

Let p range over set of propositional atoms Prop.

$$\varphi ::= p \mid \top \mid \bot \mid I \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \mid \varphi^* \mid \varphi^*$$

- **BI**: standard connectives = intuitionistic logic; decidable

The Logic of Bunched Implications

Let \(p \) range over set of propositional atoms Prop.

\[
\varphi ::= p \mid \top \mid \bot \mid I \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \rightarrow \varphi \mid \varphi \ast \varphi \mid \varphi \ast \ast \varphi
\]

- **BI:** standard connectives = intuitionistic logic; decidable\(^4\)
- **Boolean BI (BBI):** standard connectives = classical logic; undecidable\(^5\)

The Logic of Bunched Implications

Let p range over set of propositional atoms $Prop$.

$$
\varphi ::= p \mid \top \mid \bot \mid I \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \varphi * \varphi \mid \varphi \dashv \varphi
$$

- BI: standard connectives $=$ intuitionistic logic; decidable4
- Boolean BI (BBI): standard connectives $=$ classical logic; undecidable5
- $*$ and \dashv adjoint: $(\varphi * \psi) \to \chi \equiv \varphi \to (\psi \dashv \chi)$;
- $*$ associative: $(\varphi * \psi) * \chi \equiv \varphi * (\psi * \chi)$;
- $*$ commutative: $\varphi * \psi \equiv \psi * \varphi$;
- I is unit for $*$: $\varphi * I \equiv \varphi$;

Resource Semantics

Definition (BI Model)

- Set of resources X;
Resource Semantics

Definition (**BI Model**)

- Set of resources X;
- Composition $\circ : X^2 \rightarrow \mathcal{P}(X)$, **commutative** and **associative**;
Resource Semantics

Definition (BI Model)

- Set of resources X;
- Composition $\circ : X^2 \rightarrow \mathcal{P}(X)$, commutative and associative;
- Set of unit resources E;
Resource Semantics

Definition (*BI Model*)

- Set of resources X;
- Composition $\circ : X^2 \rightarrow \mathcal{P}(X)$, commutative and associative;
- Set of *unit* resources E;
- Partial order \leq for comparing resources, compatible with \circ;
Resource Semantics

Definition (**BI Model**)

- Set of resources \(X \);
- Composition \(\circ : X^2 \to \mathcal{P}(X) \), **commutative** and **associative**;
- Set of **unit** resources \(E \);
- Partial order \(\leq \) for **comparing** resources, **compatible** with \(\circ \);
- **Monotonic** valuation \(\mathcal{V} : \text{Prop} \to \mathcal{P}(X) \).
Resource Semantics

Definition (BI Model)

- Set of resources X;
- Composition $\circ : X^2 \rightarrow \mathcal{P}(X)$, commutative and associative;
- Set of unit resources E;
- Partial order \leq for comparing resources, compatible with \circ;
- Monotonic valuation $\mathcal{V} : \text{Prop} \rightarrow \mathcal{P}(X)$.

Eg: $(\mathbb{N}, +, \leq, \{0\})$.
Resource Semantics

Definition (BI Model)

- Set of resources \(X \);
- Composition \(\circ : X^2 \to \mathcal{P}(X) \), commutative and associative;
- Set of unit resources \(E \);
- Partial order \(\leq \) for comparing resources, compatible with \(\circ \);
- Monotonic valuation \(\mathcal{V} : \text{Prop} \to \mathcal{P}(X) \).

Eg: \((\mathbb{N}, +, \leq, \{0\})\).

- \(x \vDash I \) iff \(x \in E \).
- \(x \vDash \varphi \ast \psi \) iff there exist \(\exists x', y, z \) s.t. \(x \geq x' \in y \circ z \), \(y \vDash \varphi \), \(z \vDash \psi \);
Resource Semantics

Definition (BI Model)

- Set of resources X;
- Composition $\circ : X^2 \to \mathcal{P}(X)$, commutative and associative;
- Set of unit resources E;
- Partial order \leq for comparing resources, compatible with \circ;
- Monotonic valuation $V : \text{Prop} \to \mathcal{P}(X)$.

Eg: $(\mathbb{N}, +, \leq, \{0\})$.

- $x \not\in I$ iff $x \in E$.
- $x \in \varphi \ast \psi$ iff there exist $\exists x', y, z$ s.t. $x \geq x' \in y \circ z$, $y \vdash \varphi$, $z \vdash \psi$;

For BBI: \leq is $=$.
Separation Theories
Separation Logic

- Verification formalism for programs that mutate shared data structures\(^6\).

Separation Logic

- Verification formalism for programs that mutate shared data structures\(^6\).
- RAM model: heaps (memory allocations), \(\circ\) composes disjoint heaps, \(E\) is empty heap, \(\preceq\) is heap extension.

Separation Logic

- Verification formalism for programs that mutate shared data structures\(^6\).
- RAM model: heaps (memory allocations), \(\circ\) composes disjoint heaps, \(E\) is empty heap, \(\preceq\) is heap extension.
- Calculus of Hoare triples \(\{\varphi\}C\{\psi\}\): if memory in state \(\varphi\) and \(C\) executes, memory will be in state \(\psi\) afterwards.

Separation Logic

- Verification formalism for programs that mutate shared data structures\(^6\).
- RAM model: heaps (memory allocations), \(\circ\) composes disjoint heaps, \(E\) is empty heap, \(\leq\) is heap extension.
- Calculus of Hoare triples \(\{\varphi\}C\{\psi\}\): if memory in state \(\varphi\) and \(C\) executes, memory will be in state \(\psi\) afterwards.
- Frame rule \(\Rightarrow\) scalability:

\[
\frac{\{\varphi\}C\{\psi\}}{\{\varphi \ast \chi\}C\{\psi \ast \chi\}},
\]

where \(C\) doesn’t modify memory described by \(\chi\).

Separation Logic

- Verification formalism for programs that mutate shared data structures\(^6\).
- RAM model: heaps (memory allocations), \(\circ\) composes disjoint heaps, \(E\) is empty heap, \(\leq\) is heap extension.
- Calculus of Hoare triples \({\varphi}\{C\{\psi}\}:\) if memory in state \(\varphi\) and \(C\) executes, memory will be in state \(\psi\) afterwards.
- Frame rule \(\Rightarrow\) scalability:

 \[
 \frac{\{\varphi\} C \{\psi\}}{\{\varphi * \chi\} C \{\psi * \chi\}},
 \]

 where \(C\) doesn’t modify memory described by \(\chi\).
- Different memory models for different tasks \(\Rightarrow\) zoo of separation logics.

A Taxonomy of Separation Logics: Separation Theories

Abstraction of separation logics as Separation Algebras\(^7\)\(^8\)\(^9\):
(B)BI models in which ≤, ○, E satisfy additional first-order Separation Theories.

\(^7\) C. Calcagno et al. Local Action and Abstract Separation Logic. *LICS 2007.*

\(^8\) R. Dockins et al. A Fresh Look at Separation Algebras... *APLAS 2009.*

A Taxonomy of Separation Logics: Separation Theories

Abstraction of separation logics as **Separation Algebras**\(^7\) \(^8\) \(^9\): (B)BI models in which \(\leq, \circ, E\) satisfy additional first-order **Separation Theories**. For e.g.:

- **Partial Determinism**
 \[\forall x, y, z, z'(z \in x \circ y \land z' \in x \circ y \rightarrow z = z') \]

- **Total**
 \[\forall x, y(\exists z(z \in x \circ y)) \]
A Taxonomy of Separation Logics: Separation Theories

Abstraction of separation logics as **Separation Algebras**\(^7\ 8\ 9\): (B)BI models in which \(\leq, \circ, E\) satisfy additional first-order Separation Theories. For e.g.:

- **Partial Determinism** \(\forall x, y, z, z'(z \in x \circ y \land z' \in x \circ y \rightarrow z = z')\)
- **Total** \(\forall x, y(\exists z(z \in x \circ y))\)
- **Single Unit** \(\forall x, x'(x \in E \land x' \in E \rightarrow x = x')\)
- **Disjointness** \(\forall x, y(x \in y \circ y \rightarrow y \in E)\)
- **Unit Self-joining** \(\forall x(x \in E \rightarrow x \in x \circ x)\)
A Taxonomy of Separation Logics: Separation Theories

Abstraction of separation logics as **Separation Algebras**\(^7\) \(^8\) \(^9\): (B)BI models in which \(\leq, \circ, E\) satisfy additional first-order *Separation Theories*. For e.g.:

- **Partial Determinism** \(\forall x, y, z, z'(z \in x \circ y \land z' \in x \circ y \rightarrow z = z')\)
- **Total** \(\forall x, y(\exists z(z \in x \circ y))\)
- **Single Unit** \(\forall x, x'(x \in E \land x' \in E \rightarrow x = x')\)
- **Disjointness** \(\forall x, y(x \in y \circ y \rightarrow y \in E)\)
- **Unit Self-joining** \(\forall x(x \in E \rightarrow x \in x \circ x)\)
- **Non-branching** \(\forall x, y, y'(x \leq y \land x \leq y' \rightarrow y \leq y' \lor y' \leq y)\)
- **Increasing** \(\forall x, y, z(z \in x \circ y \rightarrow y \leq z)\)

\(^7\)C. Calcagno et al. Local Action and Abstract Separation Logic. *LICS 2007.*
\(^8\)R. Dockins et al. A Fresh Look at Separation Algebras... *APLAS 2009.*
Some Separation Theories Are Undefinable in (B)BI

Given logic \mathcal{L}, a model property P is \mathcal{L}-definable if there exists an \mathcal{L} – formula φ such that

$$\varphi \text{ valid in } M \text{ iff } M \text{ is a } P\text{-model.}$$

\footnote{J. Brotherston and J. Villard. Parametric Completeness for Separation Theories. \textit{POPL 2014}.}
Some Separation Theories Are Undefinable in (B)BI

Given logic \mathcal{L}, a model property P is \mathcal{L}-definable if there exists an \mathcal{L} – formula φ such that

$$\varphi \text{ valid in } M \text{ iff } M \text{ is a } P\text{-model.}$$

Theorem (Brotherston and Villard)

Partial Determinism, Cancellativity, Single Unit and Disjointness are not BBI-definable\(^{10}\).

Some Separation Theories Are Undefinable in (B)BI

Given logic \(L \), a model property \(P \) is \(L \)-definable if there exists an \(L \) – formula \(\varphi \) such that

\[
\varphi \text{ valid in } M \text{ iff } M \text{ is a } P\text{-model.}
\]

Theorem (Brotherston and Villard)

Partial Determinism, Cancellativity, Single Unit and Disjointness are not BBI-definable\(^{10}\).

Some Separation Theories Determine Distinct Logics

Theorem (Larchey-Wendling & Galmiche)

BBI models, BBI + Partial Determinism models and BBI + Total models all determine distinct sets of valid formulae\(^{11}\).

\(^{11}\)D. Larchey-Wendling and D. Galmiche. The Undecidability of Boolean BI Through Phase Semantics. *LICS 2010.*
Some Separation Theories Determine Distinct Logics

Theorem (Larchey-Wendling & Galmiche)

BBI models, BBI + Partial Determinism models and BBI + Total models all determine distinct sets of valid formulae11.

Proof Sketch.

\((\neg I \to \bot) \to I\) is valid for all Total models, but there exists a Partial model for which it is not. \(\square\)

11D. Larchey-Wendling and D. Galmiche. The Undecidability of Boolean BI Through Phase Semantics. \textit{LICS 2010}.
Some Separation Theories Determine Distinct Logics

Theorem (Larchey-Wendling & Galmiche)

BBI models, *BBI + Partial Determinism models* and *BBI + Total models* all determine distinct sets of valid formulae\(^{11}\).

Proof Sketch.

\((\neg I \multimap \bot) \rightarrow I\) is valid for all Total models, but there exists a Partial model for which it is not.

\[\square\]

Note: \((\neg I \multimap \bot) \rightarrow I\) valid in some Partial models so this does not define Total.

\(^{11}\)D. Larchey-Wendling and D. Galmiche. The Undecidability of Boolean BI Through Phase Semantics. *LICS 2010.*
The Problem

- Separation logics are determined by separation theories with distinct sets of valid formulae.

The Problem

- Separation logics are determined by separation theories with distinct sets of valid formulae.
- Undefinability \Rightarrow can’t just add (B)BI axioms to standard proof systems to capture separation theories.

The Problem

- Separation logics are determined by separation theories with distinct sets of valid formulae.
- Undefinability \Rightarrow can’t just add (B)BI axioms to standard proof systems to capture separation theories.
- Existing solutions change underlying logic12 and/or restricted in application13.

12 J. Brotherston and J. Villard. Parametric Completeness for Separation Theories. \textit{POPL ’14}.

13 Z. Hoú, R. Clouston, A. Tiu and R. Goré. Proof Search for Propositional Abstract Separation Logic with Labelled Sequents. \textit{POPL ’14}.
The Problem

- Separation logics are determined by separation theories with distinct sets of valid formulae.
- Undefinability \Rightarrow can’t just add (B)BI axioms to standard proof systems to capture separation theories.
- Existing solutions change underlying logic\(^\text{12}\) and/or restricted in application\(^\text{13}\).
- **We give a modular tableaux system capturing validity in all (B)BI + Σ models, for any separation theory Σ.**

\(^{13}\) Z. Hoú, R. Clouston, A. Tiu and R. Goré. Proof Search for Propositional Abstract Separation Logic with Labelled Sequents. *POPL ’14.*
Tableaux Calculi for Separation Theories
Basic Units: Labelled Formulae and Constraints

Two basic syntactic entities:
Basic Units: Labelled Formulae and Constraints

Two basic syntactic entities:
1. **Labelled formulae** encoding satisfaction
Basic Units: Labelled Formulae and Constraints

Two basic syntactic entities:

1. **Labelled formulae** encoding satisfaction
 - Sign: $S \in \{T, F\}$ (true/false);
Basic Units: Labelled Formulae and Constraints

Two basic syntactic entities:

1. **Labelled formulae** encoding satisfaction
 - **Sign**: $S \in \{T, F\}$ (true/false);
 - **Label**: $x \in \{c_i \mid i \in \mathbb{N}\}$ (representing resources);
Basic Units: Labelled Formulae and Constraints

Two basic syntactic entities:

1. **Labelled formulae** encoding satisfaction
 - **Sign:** $S \in \{T, F\}$ (true/false);
 - **Label:** $x \in \{c_i \mid i \in \mathbb{N}\}$ (representing resources);
 - $S\varphi : x \quad \Rightarrow \quad \text{“}\varphi\text{ is true/false at the resource } x\text{.”}$
Basic Units: Labelled Formulae and Constraints

Two basic syntactic entities:

1. **Labelled formulae** encoding satisfaction
 - **Sign**: $\mathcal{S} \in \{T, F\}$ (true/false);
 - **Label**: $x \in \{c_i \mid i \in \mathbb{N}\}$ (representing resources);
 - $\mathcal{S}\varphi : x \implies \text{“\varphi is true/false at the resource } x.\text{”}$

2. **Constraints** on labels encoding a (partial) model
Basic Units: Labelled Formulae and Constraints

Two basic syntactic entities:

1. **Labelled formulae** encoding satisfaction
 - Sign: $S \in \{T, F\}$ (true/false);
 - Label: $x \in \{c_i \mid i \in \mathbb{N}\}$ (representing resources);
 - $S\varphi : x \implies \text{“φ is true/false at the resource x.”}$

2. **Constraints** on labels encoding a (partial) model
 - $x \sim y$: resource $x \leq$ resource y;
Basic Units: Labelled Formulae and Constraints

Two basic syntactic entities:

1. **Labelled formulae** encoding satisfaction
 - **Sign:** $s \in \{T, F\}$ (true/false);
 - **Label:** $x \in \{c_i | i \in \mathbb{N}\}$ (representing resources);
 - $s\varphi : x \implies \text{“}φ\text{ is true/false at the resource } x.$$\text{“}$

2. **Constraints** on labels encoding a (partial) model
 - $x \sim y$: resource $x \leq$ resource y;
 - $R_* yzx$: resource $x \in$ resource y ◦ resource z;
Basic Units: Labelled Formulae and Constraints

Two basic syntactic entities:

1. **Labelled formulae** encoding satisfaction
 - **Sign**: $S \in \{T, F\}$ (true/false);
 - **Label**: $x \in \{c_i \mid i \in \mathbb{N}\}$ (representing resources);
 - $S \varphi : x \Rightarrow “\varphi \text{ is true/false at the resource } x.”$

2. **Constraints** on labels encoding a (partial) model
 - $x \sim y$: resource $x \leq$ resource y;
 - $R_\ast yzx$: resource $x \in$ resource $y \circ$ resource z;
 - Ex: resource x is a unit.
How Our Proof Systems Work: Rules, Tableaux, Proofs

- **Tableau** = tree with nodes given by finite sets of labelled formulae and constraints\(^\text{14} \ 15\)

How Our Proof Systems Work: Rules, Tableaux, Proofs

- **Tableau** = tree with nodes given by finite sets of labelled formulae and constraints\(^{14}\) \(^{15}\)
 - Root = \(\{F\varphi : c_0\}\) where \(\varphi\) is formula trying to prove.

How Our Proof Systems Work: Rules, Tableaux, Proofs

- **Tableau** = tree with nodes given by finite sets of labelled formulae and constraints\(^\text{14}\)\(^\text{15}\)

- Root = \(\{F\varphi : c_0\}\) where \(\varphi\) is formula trying to prove.

- Constructed by rules

\[
\frac{\$\psi : x \in F \text{ and } \gamma_1, \ldots, \gamma_n \in C}{\langle F_1, C_1 \rangle | \ldots | \langle F_k, C_k \rangle}
\]

How Our Proof Systems Work: Rules, Tableaux, Proofs

- **Tableau** = tree with nodes given by finite sets of labelled formulae and constraints\(^{14}\) \(^{15}\)
- **Root** = \(\{F\varphi : c_0\}\) where \(\varphi\) is formula trying to prove.
- **Constructed by rules**

\[
\begin{align*}
\text{If } S\psi : x &\in F \text{ and } \gamma_1, \ldots, \gamma_n \in C \\
\text{branch extends into } k \text{ branches through addition of formulae/constraints } \langle F_i, C_i \rangle
\end{align*}
\]

"If \(S\psi : x\) and constraints \(\gamma_i\) on branch, branch extends into \(k\) branches through addition of formulae/constraints \(\langle F_i, C_i \rangle\)."

How Our Proof Systems Work: Rules, Tableaux, Proofs

- **Tableau** = tree with nodes given by finite sets of labelled formulae and constraints\(^{14}\) \(^{15}\)
- **Root** = \(\{F\varphi : c_0\}\) where \(\varphi\) is formula trying to prove.
- Constructed by rules

\[
\frac{\exists \psi : x \in F \text{ and } \gamma_1, \ldots, \gamma_n \in C}{\langle F_1, C_1 \rangle \mid \ldots \mid \langle F_k, C_k \rangle}
\]

“If \(\exists \psi : x\) and constraints \(\gamma_i\) on branch, branch extends into \(k\) branches through addition of formulae/constraints \(\langle F_i, C_i \rangle\).”

- Closed branch: contains contradictory formulae/constraints.
 Proof: all branches closed.

Basic Tableaux Rules for Bunched Logic

- Each connective has T and F rules for decomposing formulae.
Basic Tableaux Rules for Bunched Logic

- Each connective has T and F rules for decomposing formulae.

Examples for BBI:

\[
\begin{align*}
\langle T^* \rangle & \quad T\varphi \ast \psi : x \in F \\
\{T\varphi : c_i, T\psi : c_j\}, \{R^* c_i c_j x\} & \\
\langle F^* \rangle & \quad F\varphi \ast \psi : x \in F \text{ and } R^* yzx \in C \\
\{F\varphi : y\}, \emptyset & \quad | \quad \{F\psi : z\}, \emptyset
\end{align*}
\]
Basic Tableaux Rules for Bunched Logic

- Each connective has \mathbb{T} and \mathbb{F} rules for decomposing formulae. Examples for BBI:

\[
\begin{align*}
\langle \mathbb{T}^* \rangle & \quad \frac{\mathbb{T} \varphi \ast \psi : x \in \mathcal{F}}{\langle \{ \mathbb{T} \varphi : c_i, \mathbb{T} \psi : c_j \}, \{ R^* c_i c_j x \} \rangle} \\
\langle \mathbb{F}^* \rangle & \quad \frac{\mathbb{F} \varphi \ast \psi : x \in \mathcal{F} \text{ and } R^* yzx \in \mathcal{C}}{\langle \{ \mathbb{F} \varphi : y \}, \emptyset \rangle \mid \langle \{ \mathbb{F} \psi : z \}, \emptyset \rangle}
\end{align*}
\]

- Rules acting on constraints.
Basic Tableaux Rules for Bunched Logic

- Each connective has T and F rules for decomposing formulae.
 Examples for BBI:

 $$\langle T^* \rangle \quad \frac{T \varphi \star \psi : x \in \mathcal{F}}{\langle \{T \varphi : c_i, T \psi : c_j\}, \{R^* c_i c_j x\} \rangle} \quad \langle F^* \rangle \quad \frac{F \varphi \star \psi : x \in \mathcal{F} \text{ and } R^* yzx \in C}{\langle \{F \varphi : y\}, \emptyset \rangle \mid \langle \{F \psi : z\}, \emptyset \rangle}$$

- Rules acting on constraints.
 Examples for BBI:

 $$\langle \text{Comm} \rangle \quad \frac{R^* xyz \in C}{\langle \emptyset, \{R^* yzx\} \rangle} \quad \langle \text{Sym} \rangle \quad \frac{x \sim y \in C}{\langle \emptyset, \{y \sim x\} \rangle}$$
A Useful Property of Separation Theories

Definition

A coherent formula is a first-order formula of the form

$$\forall \bar{x}(A_1(\bar{x}) \land \cdots \land A_n(\bar{x}) \rightarrow \exists \bar{y} B_1(\bar{x}, \bar{y}) \lor \cdots \lor \exists \bar{y} B_m(\bar{x}, \bar{y}))$$

such that

- Each A_i is an atomic first-order formula, e.g., $Rxyz$, $y = z$, Ea, $x \leq y$.
- Each B_i is a finite conjunction of atomic first-order formulae, e.g., $Rxyz \land y = z \land Rxyz \land Ryzw \land Rzwv$.

Why important? All separation properties found in the literature are coherent formulae!

Simpson, Braüner, Negri: coherent formulae generate natural deduction/sequent rules...
A Useful Property of Separation Theories

Definition
A coherent formula is a first-order formula of the form

\[\forall \bar{x}(A_1(\bar{x}) \land \cdots \land A_n(\bar{x}) \rightarrow \exists \bar{y} B_1(\bar{x}, \bar{y}) \lor \cdots \lor \exists \bar{y} B_m(\bar{x}, \bar{y})) \]

such that

- Each \(A_i \) an atomic first-order formula
A Useful Property of Separation Theories

Definition

A **coherent formula** is a first-order formula of the form

\[\forall \vec{x}(A_1(\vec{x}) \land \cdots \land A_n(\vec{x}) \rightarrow \exists \vec{y}_1 B_1(\vec{x}, \vec{y}_1) \lor \cdots \lor \exists \vec{y}_m B_m(\vec{x}, \vec{y}_m)) \]

such that

- Each \(A_i \) an atomic first-order formula
 - E.g. \(Rxyz, y = z, Ea, x \leq y. \)
A Useful Property of Separation Theories

Definition

A coherent formula is a first-order formula of the form

\[\forall \bar{x}(A_1(\bar{x}) \land \cdots \land A_n(\bar{x}) \rightarrow \exists \bar{y}_1 B_1(\bar{x}, \bar{y}_1) \lor \cdots \lor \exists \bar{y}_m B_m(\bar{x}, \bar{y}_m)) \]

such that

- Each \(A_i \) an atomic first-order formula
 - E.g. \(Rxyz, y = z, Ea, x \leq y \).
- Each \(B_i \) a finite conjunction of atomic first-order formulae
A Useful Property of Separation Theories

Definition

A **coherent formula** is a first-order formula of the form

$$\forall \bar{x}(A_1(\bar{x}) \land \cdots \land A_n(\bar{x}) \rightarrow \exists \bar{y} \land B_1(\bar{x}, \bar{y}) \lor \cdots \lor \exists \bar{y} \land B_m(\bar{x}, \bar{y}))$$

such that

- Each A_i an atomic first-order formula
 E.g. $R_{xyz}, y = z, E_a, x \leq y$.
- Each B_i a finite conjunction of atomic first-order formulae
 Eg. $R_{xyz} \land y = z, R_{xyz} \land R_{yzw} \land R_{zwv}$.

Why important? All* separation properties found in the literature are coherent formulae!

Simpson, Braüner, Negri: coherent formulae generate natural deduction/sequent rules...
A Useful Property of Separation Theories

Definition

A **coherent formula** is a first-order formula of the form

$$\forall \bar{x}(A_1(\bar{x}) \land \cdots \land A_n(\bar{x}) \rightarrow \exists \bar{y}_1 B_1(\bar{x}, \bar{y}_1) \lor \cdots \lor \exists \bar{y}_m B_m(\bar{x}, \bar{y}_m))$$

such that

- Each A_i an atomic first-order formula

 E.g. $Rxyz, y = z, Ea, x \leq y$.

- Each B_i a finite conjunction of atomic first-order formulae

 E.g. $Rxyz \land y = z, Rxyz \land Ryzw \land Rzwv$.

Why important? All* separation properties found in the literature are coherent formulae!
A Useful Property of Separation Theories

Definition

A **coherent formula** is a first-order formula of the form

\[\forall \bar{x}(A_1(\bar{x}) \land \cdots \land A_n(\bar{x}) \rightarrow \exists \bar{y} B_1(\bar{x}, \bar{y}_1) \lor \cdots \lor \exists \bar{y}_m B_m(\bar{x}, \bar{y}_m)) \]

such that

- Each \(A_i \) an atomic first-order formula

 E.g. \(Rxyz, y = z, Ea, x \leq y \).

- Each \(B_i \) a finite conjunction of atomic first-order formulae

 E.g. \(Rxyz \land y = z, Rxyz \land Ryzw \land Rzwv \).

Why important? All* separation properties found in the literature are coherent formulae!

Simpson, Braüner, Negri: coherent formulae generate natural deduction/sequent rules...
Coherent Formulae are Tableaux Rules!

Non-branching — \(\forall x, y, y' (x \leq y \land x \leq y' \rightarrow y \leq y' \lor y' \leq y) \)
Coherent Formulae are Tableaux Rules!

Non-branching — $\forall x, y, y'(x \leq y \land x \leq y' \rightarrow y \leq y' \lor y' \leq y)$

\[
\frac{x \sim y, x \sim y' \in C}{\langle \emptyset, \{y \sim y'\} \rangle | \langle \emptyset, \{y' \sim y\} \rangle}
\]
Coherent Formulae are Tableaux Rules!

Non-branching — \(\forall x, y, y'(x \leq y \land x \leq y' \rightarrow y \leq y' \lor y' \leq y) \)

\[
\frac{x \sim y, x \sim y' \in C}{\langle \emptyset, \{y \sim y'\} \rangle | \langle \emptyset, \{y' \sim y\} \rangle}
\]

Total — \(\forall x, y(\exists z(z \in x \circ y)) \)
Coherent Formulae are Tableaux Rules!

Non-branching — \(\forall x, y, y'(x \leq y \land x \leq y' \rightarrow y \leq y' \lor y' \leq y) \)

\[
\begin{align*}
\frac{x \sim y, x \sim y' \in C}{\langle \emptyset, \{y \sim y'\} \rangle \mid \langle \emptyset, \{y' \sim y\} \rangle}
\end{align*}
\]

Total — \(\forall x, y(\exists z(z \in x \circ y)) \)

\[
\frac{x, y \text{ occur on branch}}{\langle \emptyset, \{R_*xyc_i\} \rangle}
\]
Coherent Formulae are Tableaux Rules!

Non-branching — \(\forall x, y, y'(x \leq y \land x \leq y' \rightarrow y \leq y' \lor y' \leq y) \)

\[
\frac{x \sim y, x \sim y' \in C}{\langle \emptyset, \{y \sim y'\} \rangle | \langle \emptyset, \{y' \sim y\} \rangle}
\]

Total — \(\forall x, y(\exists z(z \in x \circ y)) \)

\[
\frac{x, y \text{ occur on branch}}{\langle \emptyset, \{R_*(xyc_i)\} \rangle}
\]

This translation can be done systematically.
A Tableau Proof of \((\neg I \star \bot) \rightarrow I \) in Total BBI Models

\((\neg I \star \bot) \rightarrow I\) is valid in Total BBI models
A Tableau Proof of \((\neg I \rightarrow^* \bot) \rightarrow I\) in Total BBI Models

\((\neg I \rightarrow^* \bot) \rightarrow I\) is valid in Total BBI models \((\forall x, y(\exists z(z \in x \circ y)))\).
A Tableau Proof of \((\neg I \ast \bot) \rightarrow I\) in Total BBI Models

\((\neg I \ast \bot) \rightarrow I\) is valid in Total BBI models \((\forall x, y(\exists z(z \in x \circ y)))\).

\[
\begin{align*}
(1) & \quad \langle \{F(\neg I \ast \bot) \rightarrow I : c_0\}, \emptyset \rangle & \text{Premiss} \\
(2) & \quad \langle \{T \neg I \ast \bot : c_0, FI : c_0\}, \emptyset \rangle & \langle F \rightarrow \rangle, \text{from (1)} \\
(3) & \quad \langle \emptyset, \{R_\ast c_0 c_0 c_1\} \rangle & \langle \text{Total}, \text{from (1)} \rangle \\
(4) & \quad \langle \{F \neg I : c_0\}, \emptyset \rangle & \langle \{T \bot : c_1\}, \emptyset \rangle & \langle T \ast \rangle, \text{from (2), (3)} \\
(5) & \quad \langle \{TI : c_0\}, \emptyset \rangle & \langle F \neg \rangle, \text{from (4)} \\
(6) & \quad \langle \emptyset, \{c_0 \sim c_0\} \rangle & \langle \text{Ref}, \text{from (5)} \rangle \\
\end{align*}
\]
A Tableau Proof of \((\neg I \Rightarrow \bot) \rightarrow I\) in Total BBI Models

\((\neg I \Rightarrow \bot) \rightarrow I\) is valid in Total BBI models \((\forall x, y(\exists z(z \in x \circ y)))\).

\begin{align*}
(1) & \quad \langle \{F(\neg I \Rightarrow \bot) \rightarrow I : c_0\}, \emptyset \rangle \quad \text{Premiss} \\
(2) & \quad \langle \{T \neg I \Rightarrow \bot : c_0, FI : c_0\}, \emptyset \rangle \quad \langle F \rightarrow \rangle, \text{from (1)} \\
(3) & \quad \langle \emptyset, \{R_*c_0c_0c_1\} \rangle \quad \text{Total, from (1)}
\end{align*}

\begin{align*}
(4) & \quad \langle \{\neg F I : c_0\}, \emptyset \rangle \quad \langle \top \bot : c_1\}, \emptyset \rangle \quad \langle T_* \rangle, \text{from (2), (3)} \\
(5) & \quad \langle \top I : c_0\}, \emptyset \rangle \quad \otimes \quad \langle F \neg \rangle, \text{from (4)} \\
(6) & \quad \langle \emptyset, \{c_0 \sim c_0\} \rangle \quad \otimes \quad \langle \text{Ref} \rangle, \text{from (5)}
\end{align*}

Left branch closed: \(FI : c_0\) at (2), \(TI : c_0\) at (5) and \(c_0 \sim c_0\) at (6).
Right branch closed: \(T \bot : c_1\) at (4).
Metatheory
Tableaux Rules are Coherent Formulae!

Consider a first-order language with predicates $T\varphi, F\varphi$ (for every bunched logic formula φ), \circ, \leq and E.
Tableaux Rules are Coherent Formulae!

Consider a first-order language with predicates $T\varphi$, $F\varphi$ (for every bunched logic formula φ), \circ, \leq and E.

$$
T\varphi \ast \psi : x \in F
\begin{array}{c}
\langle \{T\varphi : c_i, T\psi : c_j\}, \{R_c c_i c_j x\}\rangle
\end{array}
$$
Consider a first-order language with predicates $T\varphi$, $F\varphi$ (for every bunched logic formula φ), \circ, \leq and E.

$$
\frac{T\varphi \ast \psi : x \in F}{\langle\{T\varphi : c_i, T\psi : c_j\}, \{R_\ast c_i c_j x\}\rangle} \\
\downarrow

\forall x (T(\varphi \ast \psi)(x) \rightarrow \exists y, z (T(\varphi)(y) \land T(\psi)(z) \land x \in y \circ z))$$
Tableaux Rules are Coherent Formulae!

Consider a first-order language with predicates \(T\varphi, F\varphi \) (for every bunched logic formula \(\varphi \)), \(\circ, \leq \) and \(E \).

\[
T\varphi \ast \psi : x \in F
\]

\[
\langle \{ T\varphi : c_i, T\psi : c_j \}, \{ R_* c_i c_j x \} \rangle
\]

\[
\downarrow
\]

\[
\forall x (T(\varphi \ast \psi)(x) \rightarrow \exists y, z (T(\varphi)(y) \land T(\psi)(z) \land x \in y \circ z))
\]

This translation can be done systematically.
Tableaux Systems as Coherent Theories

Given bunched logic formula φ, obtain coherent theory $\Phi_{\varphi}^{(B)BI+\Sigma}$ from
Given bunched logic formula φ, obtain coherent theory $\Phi_{\varphi}^{(B)BI+\Sigma}$ from

- translations of \mathbb{T}, \mathbb{F} rule instances for φ subformulæ;
Tableaux Systems as Coherent Theories

Given bunched logic formula \(\varphi \), obtain coherent theory \(\Phi^{(B)BI+\Sigma}_\varphi \) from

- translations of \(T,F \) rule instances for \(\varphi \) subformulae;
- translations of all constraint rules ((B)BI model rules + \(\Sigma \) rules);

Theorem

There exists a \((B)BI+\Sigma \)-countermodel to \(\varphi \) iff there exists a first-order model of \(\Phi^{(B)BI+\Sigma}_\varphi \).

(First-order model: carrier set with interpretation of all predicates in language making all \(\varphi \) true)
Tableaux Systems as Coherent Theories

Given bunched logic formula φ, obtain coherent theory $\Phi_{\varphi}^{(B)BI+\Sigma}$ from

- translations of T,F rule instances for φ subformulae;
- translations of all constraint rules ($(B)BI$ model rules + Σ rules);
- translations of all closure conditions.
Tableaux Systems as Coherent Theories

Given bunched logic formula φ, obtain coherent theory $\Phi^{(B)BI+\Sigma}_\varphi$ from

- translations of \top,\bot rule instances for φ subformulæ;
- translations of all constraint rules ($(B)BI$ model rules + Σ rules);
- translations of all closure conditions.

Theorem

There exists a $(B)BI + \Sigma$-countermodel to φ iff there exists a first-order model of $\Phi^{(B)BI+\Sigma}_\varphi \cup \{\exists x. F\varphi(x)\}$.

(First-order model: carrier set with interpretation of all predicates in language making all φ true)
Parametric Soundness and Completeness

Bezem/Coquand16: proof system deriving judgements $X[\bar{a}] \models \Phi ~ D$ for Φ a coherent theory, $\forall \bar{x}(\bigwedge X[\bar{x}] \rightarrow D)$ a coherent formula.

16M. Bezem and T. Coquand. Automating Coherent Logic. \textit{LPAR ’05}.
Parametric Soundness and Completeness

Bezem/Coquand16: proof system deriving judgements $X[\bar{a}] \vdash \Phi D$ for Φ a coherent theory, $\forall \bar{x} (\land X[\bar{x}] \rightarrow D)$ a coherent formula.

Theorem

φ is $\text{(B)BI} + \Sigma$ tableaux provable.

φ valid in $\text{(B)BI} + \Sigma$ models.

16M. Bezem and T. Coquand. Automating Coherent Logic. LPAR ’05.
Parametric Soundness and Completeness

Bezem/Coquand16: proof system deriving judgements $X[\overline{a}] \vdash \Phi \ D$ for Φ a coherent theory, $\forall \overline{x}(\bigwedge \ X[\overline{x}] \rightarrow D)$ a coherent formula.

Theorem

\[\varphi \text{ is } (B)BI + \Sigma \text{ tableaux provable.} \]

\[\updownarrow \]

\[\{\mathcal{F}(\varphi)(a)\} \vdash \Phi_{\varphi}^{(B)BI+\Sigma} \perp \text{ derivable.} \]

\[\varphi \text{ valid in } (B)BI + \Sigma \text{ models.} \]

16M. Bezem and T. Coquand. Automating Coherent Logic. \textit{LPAR '05}.

Parametric Soundness and Completeness

Bezem/Coquand\(^{16}\): proof system deriving judgements \(X[\bar{a}] \vdash \Phi \Downarrow D\) for \(\Phi\) a coherent theory, \(\forall \bar{x} (\wedge X[\bar{x}] \rightarrow D)\) a coherent formula.

Theorem

\(\varphi\) is \((B)BI + \Sigma\) tableaux provable.

\[
\uparrow \Downarrow \quad \{ F(\varphi)(a) \} \vdash \Phi^\varphi_{(B)BI+\Sigma} \Downarrow \text{ derivable.}
\]

Exists no first-order model of \(\Phi^\varphi_{(B)BI+\Sigma} \cup \{ \exists x. F\varphi(x) \}\)

\(\varphi\) valid in \((B)BI + \Sigma\) models.

\(^{16}\)M. Bezem and T. Coquand. Automating Coherent Logic. *LPAR ’05.*
Parametric Soundness and Completeness

Bezem/Coquand16: proof system deriving judgements $X[\vec{a}] \vdash \Phi$ D for Φ a coherent theory, $\forall \vec{x}(\bigwedge X[\vec{x}] \rightarrow D)$ a coherent formula.

Theorem

φ is $(B)BI + \Sigma$ tableaux provable.

\[\upharpoonright \downharpoonleft \{\mathcal{F}(\varphi)(a)\} \vdash \Phi^{(B)BI+\Sigma}_\varphi \downarrow \text{ derivable.}\]

\[\upharpoonright \downharpoonleft \text{Exists no first-order model of } \Phi^{(B)BI+\Sigma}_\varphi \cup \{\exists x.\mathcal{F}\varphi(x)\}\]

\[\upharpoonright \downharpoonleft \varphi \text{ valid in } (B)BI + \Sigma \text{ models.}\]

16M. Bezem and T. Coquand. Automating Coherent Logic. LPAR ’05.
Conclusions
Conclusions

- Separation Logic = bunched logic verification formalism.
Conclusions

- Separation Logic = bunched logic verification formalism.
- **Expressivity gap** between bunched logic and the different models of separation logic — proof theory tricky.
Conclusions

- Separation Logic = bunched logic verification formalism.
- **Expressivity gap** between bunched logic and the different models of separation logic — proof theory tricky.
- Our solution: proof systems that can be **systematically** extended in a **modular** fashion.
Conclusions

- Separation Logic = bunched logic verification formalism.
- Expressivity gap between bunched logic and the different models of separation logic — proof theory tricky.
- Our solution: proof systems that can be systematically extended in a modular fashion.
- Sound/complete for (B)BI + any separation theory.
Conclusions

- Separation Logic = bunched logic verification formalism.
- **Expressivity gap** between bunched logic and the different models of separation logic — proof theory tricky.
- Our solution: proof systems that can be **systematically** extended in a **modular** fashion.
- Sound/complete for (B)BI + any separation theory.
- Tableaux systems \leftrightarrow coherent theories.
Conclusions

- Separation Logic = bunched logic verification formalism.
- Expressivity gap between bunched logic and the different models of separation logic — proof theory tricky.
- Our solution: proof systems that can be systematically extended in a modular fashion.
- Sound/complete for (B)BI + any separation theory.
- Tableaux systems ↔ coherent theories.
- Applicable to: existing bunched/separation logics, many more modal and substructural logics.
Further Work

- Implementation of the tableaux systems: directly or via coherent logic provers\(^\text{17}\).

\(^{17}\text{A. Polonksy. Proofs, Types and Lambda Calculus. Univ. Bergen, 2012.}\)
Further Work

- Implementation of the tableaux systems: directly or via coherent logic provers17.
- Proof-search strategies: blocking for BI, constraint limiting.

Further Work

- Implementation of the tableaux systems: directly or via coherent logic provers17.
- Proof-search strategies: blocking for BI, constraint limiting.
- Parametric Separation Logic implementations.

Further Work

- Implementation of the tableaux systems: directly or via coherent logic provers17.
- Proof-search strategies: blocking for BI, constraint limiting.
- Parametric Separation Logic implementations.
- Logical frameworks: generic logic with generic countermodel generation based on this approach.