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Abstract 
Political partisans see the world through an ideologically biased lens. What drives political 

polarization? It has been posited that polarization arises because holding extreme political views 
satisfies a need for certain and stable beliefs about the world. We examined the relationship 
between uncertainty tolerance and political polarization using a novel combination of brain-to-brain 

synchrony and inter-subject representational similarity analysis, which measured committed liberals 
and conservatives' (N=44) subjective interpretation of a continuous political narrative. Shared 

ideology between participants increased neural synchrony throughout the brain. Neural synchrony 
was modulated by uncertainty aversion: Uncertainty-intolerant individuals experienced greater brain-

to-brain synchrony with politically like-minded peers and lower synchrony with political opponents. 
This effect was observed for liberals and conservatives alike. Moreover, neural synchrony between 

committed partisans predicted similarity in subsequent polarized attitude formation. These results 
suggest that uncertainty attitudes gate the shared neural processing of political narratives, thereby 

fueling polarized attitude formation about hot-button issues. 
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Introduction 
Countries around the world are experiencing the growing strain of political polarization. Opposing 

partisans see the world through different eyes. Where one sees the freedom to choose, another 
sees murder; where one sees the right to protest, another sees violent conduct (1–3). Such a 

polarized perception of reality hampers bipartisan cooperation and can even undermine the basic 
principles of democracy (3, 4). One theory posits that polarization arises because holding extreme 

political views satisfies a need for certain and stable beliefs about the world (5, 6). This suggests that 
intolerance to uncertainty (7, 8) may play an outsized role in shaping polarized perceptions. We 
examine the possibility that uncertainty attitudes shape how political information is processed in the 

human brain: Uncertainty-intolerant individuals interpret polarizing political information through an 
ideologically biased 'lens' that produces a clear-cut perception of the issue at hand. We further test 

whether the neural fingerprint of these uncertainty-driven polarized perceptions—that is, increased 
brain-to-brain synchrony between like-minded partisans—predicts the formation of polarized 

attitudes. 
We combine two novel techniques to measure polarized perceptions of political information. 

Brain-to-brain synchrony (BBS) provides a direct measure of the subjective interpretation of narrative 
information in groups of participants (9–11). To make this metric sensitive to more subtle differences 

along the ideological continuum, and to test for interactive effects between ideology and other 
individual differences, we combined BBS with inter-subject representational similarity analysis (IS-

RSA) (12–14). This versatile approach enabled us to leverage continuous (rather than group-based) 
individual differences to test whether uncertainty attitudes exacerbate the ideologically biased 
processing of political information in the brain, and whether this fuels polarized political attitude 

formation. 
 Using a combination of targeted online and field recruiting (N=360), we invited 22 liberals 

and 22 conservatives to participate in a study on political cognition (Figure 1A). While undergoing 
fMRI, participants viewed three types of videos: a neutrally-worded news segment on a politically 

charged topic (abortion; PBS News), an inflammatory debate segment (police brutality and 
immigration; taken from the 2016 CNN Vice-Presidential debate), and a non-political video (BBC 

Earth; Figure 1B). Data analysis consisted of time-locking the fMRI BOLD signal to the onset of the 
videos and computing voxel-wise time-course correlations between each possible pairing of subjects 

across the entire participant pool. The resulting brain-to-brain synchrony is an established metric of 
the shared subjective interpretation of dynamic, naturalistic stimuli such as video narratives (10, 15, 

16). We first ensured that all three videos elicited robust baseline neural synchrony between all 
participants, with the strongest time-course correlations occurring in sensory brain regions (Figure 

S1). We then analyzed variation in neural synchrony across participant dyads using IS-RSA (Figure 
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1D) to test three hypotheses: 1) shared ideology between subjects will predict similar neural 
encoding of political stimuli, 2) intolerance of uncertainty will modulate neural synchrony in 

committed partisans, and 3) increasing neural synchrony will predict similarity in subsequent 
expression of attitudes about the political stimuli. 

  

 
Figure 1. A. Participants underwent fMRI and behavioral testing as part of a larger study on political 

cognition. B. Participants viewed three videos in a fixed order while undergoing fMRI. C. Participants 

were clearly divided on political ideology. D. Analytical approach. We tested both for overall neural 

synchrony between participants, and for variation in neural synchrony as a function of ideology and 

intolerance of uncertainty (IUS). Statistical map slices taken from figures S1 and 2C. IS-RSA: inter-

subject representational similarity analysis. 
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Results 
 
Ideological similarity drives brain-to-brain synchrony 
To first test whether ideological similarity drives brain-to-brain synchrony, we asked participants to 
self-report their political ideology using a slider (17) ranging from 'extremely liberal' (0) to 'extremely 

conservative' (100; Figure 1C; see Methods for validation). Inter-subject ideological closeness 
served as a predictor of neural synchrony in an IS-RSA model accounting for inherent statistical 
dependencies between pairwise observations (12). This ideological-synchrony analysis revealed no 

active clusters for the BBC Earth video, right angular gyrus activity for the neutrally worded PBS 
News abortion segment, and many clusters for the political debate video, where shared ideology 

was predictive of a globally synchronized brain response (Figure 2A-C). Active clusters for the 
debate video included regions associated with valuation (ventral striatum, medial orbitofrontal cortex) 

(18), theory-of-mind (temporoparietal junction, precuneus) (19), and affect (anterior insula) (20). 
Even though abortion is a highly polarizing topic, the neutrally-worded news video yielded much less 

ideology-driven neural synchrony than the inflammatory debate video, which suggests that polarized 
perception is not just driven by ideological differences but also by the way polarizing issues are 

presented. 
Interestingly, the synchronization of the BOLD signal was greatest between like-minded 

individuals regardless of whether they were both liberal or conservative, which is illustrated by 
representative activity time-courses of two participant dyads in the medial orbitofrontal cortex 
(mOFC) during the debate segment (Figure 2D). In other words, similar neural synchrony was 

observed in a host of brain regions across the ideological divide, revealing that sharing partisan 
beliefs yields similar neural encoding of a political stimulus at the time of perception. 
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Figure 2. A-C. Ideology similarity drove brain-to-brain synchrony during an inflammatory political 

debate video. Thresholds: voxel-wise p(FDR) < 0.05, cluster size ≥ 5 voxels. Slice numbers indicate 

MNI x coordinate. D. Activity time-courses in medial orbitofrontal cortex were synchronized between 

like-minded individuals. The first two minutes of video 3 are shown, during which liberal Democrat 

Tim Kaine is speaking. BOLD is z-scored at the subject level; time-courses are smoothed using a 6s 

rolling window average to reveal trends at the intrinsic timescale of the BOLD response. 

 
Intolerance of uncertainty modulates ideology-driven neural synchrony 
To test whether uncertainty attitudes shape polarized information processing, we then linked neural 
synchrony to the well-validated 27-item intolerance of uncertainty scale (IUS) (21), which includes 

items like "The ambiguities in life stress me". IUS was not associated with political ideology (ideology 
versus overall IUS score: r(42) = -0.09, p = 0.56), nor with ideological extremity (distance from the 

ideology midpoint versus overall IUS: r(42) = -0.06, p = 0.69), which makes it possible to test for 
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independent effects of ideology and IUS on neural synchrony. We hypothesized that participant pairs 
with similar political views would have greater neural synchrony if they were also uncertainty-

intolerant. To test this, we defined a pairwise metric of 'joint IUS' as the product of both IUS scores 
for each participant pair. We then added this as a predictor to our ideology-based IS-RSA model of 

neural synchrony during the debate video, positing that joint IUS would positively interact with the 
ideological-similarity effect. 

 Confirming our prediction, the ideology-IUS interaction predicted neural synchrony over and 
above ideological similarity in a suite of regions including bilateral temporoparietal junction (TPJ), 

right anterior insula (rAI), and precuneus (Figure S2C-D; Table S1). To understand the directionality 
of these interaction effects, we plotted the neural synchrony predicted by the fitted regression 

models in three of the detected regions: left TPJ, right AI, and left precuneus (Figure 3A). For each 
of these ROIs, intolerance to uncertainty exacerbated neural polarization, such that two individuals 

who were both intolerant to uncertainty and like-minded committed partisans produced significantly 
more neural synchrony. 
 To illuminate whether intolerance to uncertainty affected ideological processing writ large or 

was restricted to one side of the political spectrum, we tested if the IUS-modulated increase in neural 
synchrony was present for both liberals and conservatives. We observed that the increase in neural 

synchrony was driven by both ends of the political spectrum: Ideological similarity predicted 
increased neural synchrony for uncertainty-intolerant liberal and conservative pairs alike (Figure 3C; 

Supplementary Results 1). Put simply, biased information processing was not unique to any 
particular political persuasion, but rather influenced uncertainty-intolerant partisans across the board. 

 
Neural synchrony predicts post-scan polarized attitude formation 
Finally, to probe whether brain-to-brain synchrony indexed the subjective interpretation of narrative 
information (10, 11) leading to politically relevant judgements, we examined whether synchronous 

brain activity between participants played an active role in polarized attitude formation about the 
political stimuli. We computed an inter-subject similarity score in attitude formation by measuring 
how much participants agreed with a set of statements made by the Vice-Presidential candidates in 

the debate video. We then used ideological similarity, joint IUS, their interaction, and the inter-
subject neural synchrony in the three ROIs to predict attitude similarity amongst our participants. We 

compared this to a model without any neural data. Adding brain-to-brain synchrony significantly 
improved predictions of post-scan attitude expression similarity (X2(3) = 8.27, p = 0.041). In this 

model, ideological similarity positively predicted attitude similarity (β = 0.014 ± 0.001 (S.E.), t(820.1) 
= 18.1, one-sided p < 0.001), as did neural synchrony in two out of three ROIs (AI: β = 0.44 ± 0.18, 

t(842.8) = 2.46, p = 0.007; precuneus: β = 0.20 ± 0.14, t(836.2) = 1.36, p = 0.087; TPJ: β = - -0.032 ± 
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0.15, t(833.1) = -0.22, p = 0.41). These results suggest that uncertainty-driven neural polarization 
plays a mechanistic role in the formation of polarized political attitudes. 

 

 
Figure 3. A. Neural synchrony in key socio-emotional brain regions was driven by the interaction 

between uncertainty-intolerance and ideology. Thresholds: voxel-wise p(FDR) < 0.05 and cluster 

size ≥ 5 voxels. B. Simulating neural synchrony from the regression model revealed that joint IUS 

modulated neural polarization: ideological similarity only predicted neural synchrony when 

participants were intolerant to uncertainty (high in joint IUS). C. Observed neural synchrony per ROI 

confirmed that ideological similarity only boosted synchrony in subject pairs with above-median joint 

intolerance of uncertainty. This effect was present for liberal (L) as well as conservative (C) ideology. 

*** p < 0.001; ** p < 0.01; *** p < 0.001 based on permutation tests. Shaded areas around lines in C. 

represent bootstrapped 95% confidence intervals. 

 

Discussion 
Our findings reveal that ideological similarities are associated with increased neural synchrony 

between political partisans, regardless of their ideological tilt. These effects are exacerbated by 
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increasing intolerance to uncertainty, which only enhances polarized attitude formation. Collectively, 
this provides neural evidence that uncertainty-intolerant individuals are more susceptible to holding 

rigid political beliefs (5–7), and that this uncertainty fuels how politicized information becomes 
polarized. In our experiment, uncertainty-intolerant individuals experienced greater brain-to-brain 

synchrony with politically like-minded peers, regardless of whether they were liberal or conservative, 
and lower synchrony with political opponents. This suggests that uncertainty-intolerant individuals 

see the political world through a stronger partisan lens, construing a more biased picture of the 
political reality (4, 22). Rather than ideology alone, cognitive traits such as intolerance to 

uncertainty—which interact with ideology to form a polarized perception of the world—may be the 
lynch pin of political polarization. 

 This work extends recent research on neural polarization (9) in several important ways. Our 
data indicates that neural polarization may only arise when political information is presented in a 

polarizing way (e.g. a debate as opposed to a neutrally-worded political news item). Moreover, we 
show that the effect of ideology on brain-to-brain synchrony is largely driven by participants who are 
highly averse to uncertainty. This implies that polarized perception is not irremediable but depends 

on additional factors that vary between stimuli, contexts, and individuals. The growing uncertainty 
caused by large-scale societal events in the past year (e.g. job loss and a global pandemic) may fuel 

political polarization by sowing rigidly partisan perceptions of the world. Conversely, interventions 
against polarization may be successful by addressing citizens' sources of worry (8, 23).  
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Methods 
 

Participants 
The data analyzed for this paper were collected as part of a larger study on political preferences. For 

this study, 360 potential participants completed a screening survey prompted by online 
advertisements, paper flyers, personal visits to political meetings throughout the state, or word-of-

mouth. The slider measure of ideology (17) was administered in the screening survey. Based on this 
measure, we invited 22 self-reported conservatives and 22 liberals for an in-lab session, all of whom 
were right-handed and eligible for MRI. One participant was excluded from the analysis because 

they indicated a different ideology on the screening survey versus the post-scan political survey 
battery (see below), leaving 21 conservatives (13 men and 8 women; age range 18-61, mean 36 y ± 

s.d. 15 y) and 22 liberals (13 men and 9 women; age range 18 to 60, mean age 28 ± 12 y) 
representing a range of ideological extremity (see Figure 1C). Age nor gender differed significantly 

between the two groups (all ps > 0.05), but to ensure that our effects were not driven by 
demographic differences we controlled for them in several control analyses (Supplementary Figures 

3 and 4). The two groups were matched on education level (number of years completed) and annual 
income (two-sample t-tests, two-sided: all ps > 0.4). All participants provided written informed 

consent and were paid for their participation in the study. The study procedures were approved by 
the local ethics committee. 

 
Procedure 
Participants came to the lab for one session of about 3 hours. A subset of the tasks completed in this 

time were analyzed for the current paper. The first half of the study session took place in the 
functional MRI laboratory. Upon arrival, participants read instructions about the experiment, 

answered comprehension questions, and confirmed or updated their MRI screening information. 
Participants then entered the MRI scanner for a scanning session of about 1.5 hours, with soft 

padding positioned around their head to minimize head motion. In the scanner, participants 
completed a cognitive task (not analyzed here), underwent a 5-minute anatomical scan, and 

completed the video watching task described in the Main Text. During the scans, participants wore 
two electrodes on their non-dominant (left) hand to measure skin conductance. They held a button 

response box in their right hand. In between each scanner run or task block, the experimenter 
verbally communicated with the participants to ensure that they were comfortable and attentive. The 

video watching task consisted of a fixed sequence of three videos, which can be viewed at the 
following web pages: a) BBC Earth, "Beaver Lodge Construction Squad": 

https://www.youtube.com/watch?v=iyNA62FrKCE; b) PBS News Hour, " State battles over abortion 
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policy anticipate a post-Roe world": https://www.pbs.org/newshour/show/state-battles-over-abortion-
policy-anticipate-a-post-roe-world; c) CNN, "Vice-Presidential Debate 2016" between liberal 

Democrat Tim Kaine and conservative Republican Mike Pence, clip from about 24:35 to 42:10: 
https://www.youtube.com/watch?v=ox8PTXwDYdc. 

 After participants were taken out of the scanner, the experimenter walked with them to a 
different building on campus for behavioral testing. During this session, participants first completed a 

survey of their comprehension and judgment of the videos. Judgment items measured attitudes 
about statements made in the debate video, such as Mike Pence's statement the immigration reform 

plan of Hillary Clinton and Tim Kaine amounts to "amnesty", with a seven-point Likert-type response 
scale ranging from "Strongly disagree" to "Strongly agree". Next, participants completed several 

cognitive tasks (not analyzed here) and an extensive survey battery of 5 political and 3 cognitive 
questionnaires. The political questionnaires were the updated social and economic conservatism 

scale (24) (SECS), the Schwartz short values survey (25) (SSVS), right-(26) and left-wing(27) 
authoritarianism surveys (RWA and LWA, respectively), and a short-form social dominance 
orientation survey (28) (SDO). A principal component analysis (PCA) on these five political survey 

measures revealed a first component that accounted for 37% of variance across all survey items and 
was very strongly correlated to the ideology scale measure from the screening survey (r(41) = 0.89, 

p < 0.001). This strong relationship across time and surveys validates the ideology scale used to 
recruit participants as a reliable metric of fundamental political orientation. The PCA also identified 

one participant as a strong outlier, as he had rated his ideology as strongly conservative on the 
screening slider measure but scored more than three standard deviations below the mean of the 

conservative group on the first component of the PCA (in fact scoring squarely among the liberals); 
this participant was therefore excluded from analysis. The cognitive questionnaires included the 

intolerance of uncertainty scale (21) (IUS; see Main Text), a short need for closure scale (29) (NFC), 
and the interpersonal reactivity index (30) (IRI). IUS item scores were averaged for each participant 

and normalized to a 0-1 range. Just as individual-level IUS was not associated with ideology (see 
Main Text), pairwise ideology similarity was not associated with joint IUS (r(859) = 0.035, p = 0.30) 
nor with pairwise cosine similarity in responses across the entire intolerance of uncertainty survey 

(r(859) = 0.023, p = 0.50). NFC and IRI were not analyzed for this paper. 
 

fMRI acquisition 
MR images were collected on a Siemens Prisma Fit 3-Tesla research-dedicated scanner. T2*-

weighted functional scans were acquired using a multi-slice sequence capturing three slices at once 
to ensure whole-brain coverage with short repetition time (TR = 1500 ms), which increases the 

number of time points and thus statistical power for brain-to-brain temporal synchrony analysis. 60 3-
mm transverse slices were acquired, each with 64x64 voxels of 3.0 mm isotropic, building up a field 
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of view (FOV) that covered the entire brain except part of the cerebellum. The FOV was tilted 
upward by 25 degrees at the front of the brain to minimize tissue gradient-related signal dropout in 

the orbitofrontal cortex. Contrast settings were optimized for cortical grey matter (TE = 30 ms, flip 
angle = 86°). T1-weighted anatomical scans were acquired using a standard MPRAGE sequence 

(160 sagittal slices with 256x256 voxels of 1.0 mm isotropic, TR = 1900 ms, TE = 3.02 ms, flip angle 
= 9°). 

 

fMRI preprocessing 
Results included in this manuscript come from preprocessing performed using fMRIPrep 1.5.1rc2 
(31, 32) (RRID:SCR_016216), which is based on Nipype 1.3.0-rc1 (33, 34) (RRID:SCR_002502). 

 
Anatomical data preprocessing 
The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with 
N4BiasFieldCorrection (35), distributed with ANTs 2.2.0(36) (RRID:SCR_004757), and used as T1w-
reference throughout the workflow. The T1w-reference was then skull-stripped with a Nipype 

implementation of the antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target 
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter 

(GM) was performed on the brain-extracted T1w using fast (37) (FSL 5.0.9, RRID:SCR_002823). 
Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) was 

performed through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted 
versions of both T1w reference and the T1w template. The following template was selected for 

spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c (38) 
[RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym]. 

 
Functional data preprocessing 
For each of the 9 BOLD runs found per subject (across all tasks and sessions), the following 
preprocessing was performed. First, a reference volume and its skull-stripped version were 
generated using a custom methodology of fMRIPrep. The BOLD reference was then co-registered to 

the T1w reference using flirt (39) (FSL 5.0.9) with the boundary-based registration (40) cost-function. 
Co-registration was configured with nine degrees of freedom to account for distortions remaining in 

the BOLD reference. Head-motion parameters with respect to the BOLD reference (transformation 
matrices, and six corresponding rotation and translation parameters) are estimated before any 

spatiotemporal filtering using mcflirt (41) (FSL 5.0.9). BOLD runs were slice-time corrected using 
3dTshift from AFNI 20160207 (42) (RRID:SCR_005927). The BOLD time-series (including slice-

timing correction when applied) were resampled onto their original, native space by applying a 
single, composite transform to correct for head-motion and susceptibility distortions. These 
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resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just 
preprocessed BOLD. The BOLD time-series were resampled into standard space, generating a 

preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference volume and its skull-
stripped version were generated using a custom methodology of fMRIPrep. Several confounding 

time-series were calculated based on the preprocessed BOLD: framewise displacement (FD), 
DVARS and three region-wise global signals. FD and DVARS are calculated for each functional run, 

both using their implementations in Nipype (following the definitions by Power et al. (43)). The three 
global signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set 

of physiological regressors were extracted to allow for component-based noise correction (CompCor 

(44)). Principal components are estimated after high-pass filtering the preprocessed BOLD time-

series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 
(tCompCor) and anatomical (aCompCor). tCompCor components are then calculated from the top 

5% variable voxels within a mask covering the subcortical regions. This subcortical mask is obtained 
by heavily eroding the brain mask, which ensures it does not include cortical GM regions. For 
aCompCor, components are calculated within the intersection of the aforementioned mask and the 

union of CSF and WM masks calculated in T1w space, after their projection to the native space of 
each functional run (using the inverse BOLD-to-T1w transformation). Components are also 

calculated separately within the WM and CSF masks. For each CompCor decomposition, the k 
components with the largest singular values are retained, such that the retained components’ time 

series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, 
combined, or temporal). The remaining components are dropped from consideration. The head-

motion estimates calculated in the correction step were also placed within the corresponding 
confounds file. The confound time series derived from head motion estimates and global signals 

were expanded with the inclusion of temporal derivatives and quadratic terms for each (45). Frames 
that exceeded a threshold of 1.0 mm FD or 100.0 standardised DVARS were annotated as motion 

outliers. All resamplings can be performed with a single interpolation step by composing all the 
pertinent transformations (i.e. head-motion transform matrices, susceptibility distortion correction 
when available, and co-registrations to anatomical and output spaces). Gridded (volumetric) 

resamplings were performed using antsApplyTransforms (ANTs), configured with Lanczos 
interpolation to minimize the smoothing effects of other kernels (46). Non-gridded (surface) 

resamplings were performed using mri_vol2surf (FreeSurfer). 
 

Video fMRI data cleaning 
For video 1, two participants' data were excluded from analysis, one due to falling asleep in the 

scanner and one due to excessive head motion. For video 3, one participants' data were excluded 
from analysis due to excessive head motion. All other functional fMRI data was further preprocessed 
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using nltools 0.3.14 (47) to remove signal components related to motion and other sources of noise. 
To this end, general linear models of each voxel's signal time series were constructed with the 

following regressors: average CSF signal; average white matter signal; the six realignment 
parameters, their derivatives, their squares, and their squared derivatives (48); zero-, first-, and 

second-order polynomials for removal of intercepts and linear/quadratic trends; and a regressor for 
each motion spike, which has value 1 at the TR where the spike was detected (FD > 1 mm) and 

zeros elsewhere. The residual time series of each voxel were then used for statistical analysis. 
 

Statistical fMRI analysis 
We first established that all three videos elicited robust baseline neural synchrony between all 

participants (known as inter-subject correlation; ISC (11)). To this end, we correlated each 
participant's signal time course in a voxel to the average time course of all other participants. The 

resulting distribution of r values was subjected to a sign-flip permutation test (5000 permutations) to 
see whether its average value was greater than would be expected by chance (9, 11). Voxel-wise p-
values were thresholded at a false-discovery rate of 0.001. ISC effects were significant throughout 

the brain, with the strongest time-course correlations occurring in sensory brain regions (Figure S1).  
 For the inter-subject representational similarity analyses (IS-RSA) (14), we wrote a custom 

implementation of the mixed-effects regression approach reported by Chen et al. (12) based on the 
packages lme4 1.1-23 and lmerTest 3.1-2 for R 3.5.2. In this analysis, we first computed the 

temporal synchrony of the BOLD signal time courses (Pearson correlation) between each pair of 
subjects for each voxel. At each voxel, this vector of pairwise synchrony values was then regressed 

onto a set of regressors that includes one or more fixed effects (for instance 'ideology similarity' or 
'joint IUS') and random participant intercepts. Since each observation in the mixed-effects regression 

corresponded to a unique pair of subjects, the model for each observation includes a random 
participant intercept for both participants involved in that participant pair (12). For the first IS-RSA, 

we regressed brain-to-brain synchrony onto ideology similarity, which was computed as 100 −

𝑎𝑏𝑠(𝑖𝑑𝑒𝑜𝑙𝑜𝑔𝑦/ −	𝑖𝑑𝑒𝑜𝑙𝑜𝑔𝑦1) where 1 and 2 refer to the two participants in the current participant pair 
and z-scored. The signal time courses in Figure 2D were generated from the mean BOLD time 

series in a spherical ROI with radius = 6 mm centered around the peak voxel for the ideology effect 
in OFC. For the second IS-RSA, we regressed neural synchrony onto ideology similarity and joint 

IUS, the latter of which is the product of both participants' total intolerance of uncertainty scores 
normalized to a 0-1 range. By also including the interaction effect between these two regressors, we 

could test whether IUS modulated the effect of ideology on brain response. Regressor beta maps 
were thresholded at false-discovery rate (FDR)-corrected p-values of 0.05 using the p.adjust function 

in R. Surviving clusters were reported if they contained five or more contiguous voxels. 
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 For the region-of-interest analyses in Figure 3B and 3C, we first extracted mean activity time-
courses in each ROI for each participant and recomputed the brain-to-brain synchrony in these 

mean signals ('ROI-level neural synchrony'). As ROIs, we used activation clusters from the whole-
brain ideology-IUS IS-RSA analysis. The precuneus and temporoparietal junction ROIs 

corresponded to our preregistered regions of interest ([URL]) and were previously found to process 
subjective interpretations of narrative content (10); the anterior insula ROI fits with what we know 

about intergroup social influence on emotion processing (49). For the estimated effect plots in Figure 
3B, we re-ran the inter-subject representational similarity analysis with ideology, IUS, and their 

interaction on ROI-level neural synchrony. We then used the effect estimates from the fitted mixed-
effects regression models to simulate the DV (neural synchrony) at a dense grid of ideology-

similarity and joint-IUS values, whose axis limits matched those observed in the dataset. For the 
scatter plots and correlation analyses in Figure 3C, we labeled all participant dyads as containing 

two conservatives (CC), two liberals (LL), or one conservative and one liberal (CL). To evaluate 
whether the ideology-IUS interaction effect on neural synchrony was present for both conservatives 
and liberals, we then tested whether there was a significant correlation between ideology and neural 

synchrony in high-IUS pairs (joint IUS > median), a) when leaving out LL pairs and b) when leaving 
out CC pairs. We established significance by re-running these correlations after randomly permuting 

the data labels 10,000 times and comparing the true correlation coefficient to the resulting null 
distribution. A reanalysis that treats joint IUS as continuous rather than dichotomous yielded the 

same result (Supplementary Note 1). 
 To test whether neural activity in the obtained activation clusters was predictive of attitude 

formation, we added ROI-level neural synchrony to a dyadic regression model of attitude formation, 
where the dependent variable is the inter-subject agreement on six statements made by Tim Kaine 

and Mike Pence during video 3 (e.g. "Law enforcement in this country is a force for good"). Inter-
subject agreement was computed as the cosine similarity between the 6-item response vectors of 

each pair of participants. This variable was then regressed on ideology similarity, joint IUS, and their 
interaction effect, as well as the regular random subject intercepts (model 1). We additionally 
regressed it onto a model that included the same regressors as model 1, but also ROI-level neural 

synchrony in each of the three ROIs (model 2). We compared the explained variance of model 2 
versus model 1 using the anova function in R. 

 
Control analyses 
It is well-established that similarities on demographic and social variables can increase inter-subject 
synchrony in brain responses to video stimuli (50). Although this potential confound cannot account 

for the ideology-IUS interaction effects that were observed in our key analyses, we nevertheless 
wanted to ensure that the effects reported here were specific to political polarization. To this end, we 
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re-ran the inter-subject RSA analyses with additional regressors, each controlling for a demographic 
or experimental factor that may impact neural synchrony: age, gender, undergraduate student 

status, sampling source (from the university or from the community), and scan day (participants were 
scanned across a ~6-month period). For the ideology model, no clusters survived this additional 

control for video 2, but nearly all of the many active clusters survived for video 3 (Figure S3). For the 
ideology-IUS interaction model, all clusters survived except the precuneus (Figure S4). 
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