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Abstract

The sources of evidence contributing to metacognitive assessments of confidence in deci-
sion-making remain unclear. Previous research has shown that pupil dilation is related to
the signaling of uncertainty in a variety of decision tasks. Here we ask whether pupil dilation
is also related to metacognitive estimates of confidence. Specifically, we measure the rela-
tionship between pupil dilation and confidence during an auditory decision task using a gen-
eral linear model approach to take into account delays in the pupillary response. We found
that pupil dilation responses track the inverse of confidence before but not after a decision
is made, even when controlling for stimulus difficulty. In support of an additional post-
decisional contribution to the accuracy of confidence judgments, we found that participants
with better metacognitive ability —that is, more accurate appraisal of their own decisions —
showed a tighter relationship between post-decisional pupil dilation and confidence. To-
gether our findings show that a physiological index of uncertainty, pupil dilation, predicts
both confidence and metacognitive accuracy for auditory decisions.

Introduction

The majority of decisions we make are accompanied by a sense of confidence. Whether we are
making choices based on value (e.g., choosing a new TV set) or on perception (e.g., hailing an
oncoming taxi on a foggy day), we possess metacognitive awareness of how good our decisions
are, even in the absence of explicit feedback. Impaired awareness of uncertainty may underpin
characteristics of neuropsychiatric conditions such as anxiety and obsessive-compulsive disor-
der [1, 2]. For example, decreased confidence in one’s own memory can lead to pathological
“checking” behavior [3]. The ability to accurately appraise one’s uncertainty, known as “meta-
cognitive” accuracy, is thus crucial for guiding adaptive behavior, particularly when direct feed-
back from the environment is unavailable.

People vary in their ability to construct these metacognitive estimates [4]. Despite the ubiq-
uity of confidence in decision-making, how metacognitive evaluations are constructed is poorly
understood. According to one view, uncertainty is an inherent property of the neural code un-
derpinning perception, decision and action [5, 6] and may be tracked by neuromodulatory
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systems such as the locus coeruleus-norepinehrine (LC-NE) system [7]. However, the encoding
of uncertainty is not itself metacognitive; instead, metacognition requires access to uncertainty
signals to guide adaptive behavior such as explicit confidence reports [8, 9] or contingent deci-
sions [10, 11]. Pupil dilation has previously been established as a physiological marker of deci-
sion uncertainty [12, 13], and is continuously elevated during the decision process [14]. Here
we ask whether pupil dilation is also related to metacognitive estimates of confidence.

Participants carried out an auditory decision task in which objective difficulty was con-
trolled, in order to isolate a relationship between metacognitive confidence and the pupil dila-
tion signal. We additionally harnessed pupil dilation as a latent marker of the timing of
confidence-related information in the brain. Specifically, it is unknown whether metacognitive
estimates are based on information available at the time of decision (decisional locus), and/or
on information available after the decision has been made (post-decisional locus). In decisional
locus models, confidence ratings are based on the same evidence that is used to make the judg-
ment [11, 15-18], with choices and confidence ratings tapping the same latent process. While
this theory is intuitively attractive, there is evidence that a post-decisional component may also
contribute to confidence ratings. For instance, we occasionally “change our mind” even after a
motor program has been initiated [19], and confidence judgments change significantly when
we are given less time to make them ([20]; see [21] for review). In post-decisional locus models
(e.g., two-stage dynamic signal detection theory; [22]), confidence ratings depend on continued
processing of evidence post-decision; that is, while cues used for making a perceptual decision
may be incorporated into the confidence judgment, there may also be additional processing
that contributes to confidence after the initial judgment has been made.

Although behavioral evidence for post-decisional locus models exists, there is a lack of phys-
iological or neural evidence demonstrating a post-decision contribution to confidence in hu-
mans. We hypothesized that the presence of a correlation between pupil dilation and
confidence at different time points in the decision process would shed light on the processing
locus for judgments of confidence. Furthermore, this locus may vary depending on the accura-
cy of people’s metacognitive judgments. For example, subjects with more accurate metacogni-
tion may continue to reflect on uncertainty-related signals after a decision is made;
alternatively, post-decision noise may corrupt confidence estimates and lead to poorer meta-
cognitive assessments [8, 21].

We examined the relationship between pupil dilation signals at different time points during
the decision process and the generation and accuracy of metacognitive confidence judgments
in an auditory decision task. A general linear model (GLM) analysis allowed the disentangling
of different temporal components of the neural input to the sluggish system controlling pupil
dilation, in an analogous manner to an analysis of the blood oxygen level-dependent (BOLD)
signal in functional magnetic resonance imaging (fMRI) data [14]. By presenting auditory sti-
muli, we ensured that pupil responses were unconfounded by changes in visual stimulation.
Furthermore, by adjusting task difficulty online we were also able to quantify each individual’s
metacognitive judgments unconfounded by differences in task performance [23].

Materials and Methods
Participants

Forty-two individuals completed an auditory perceptual decision task while their pupil dilation
response was monitored. Thirty-five subjects were included in final analyses (23 F, 12 M; mean
age = 22.94; SD = 3.46; n = 2 were excluded for insufficient stabilization of psychophysical per-
formance; n = 5 were excluded for unreliable eye tracking). Past studies of pupil dilation have
drawn conclusions from approximately 20-30 participants (e.g., [12, 24]). We used a staircase
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procedure to equate performance among subjects (see Analyses below) resulting in approxi-
mately the same performance level for all participants (between 69 and 75% correct).

Ethics Statement

Approval was obtained from The University Committee on Activities Involving Human Sub-
jects at New York University (HS#13-9582), and all participants signed a printed consent form
before the experiment.

Task

The task was a two-alternative forced choice auditory version [25] of the random-dot motion
task [26], presented using the Matlab Psychophysics Toolbox (MathWorks, Natick, MA). At
the beginning of the experiment, participants put on headphones and rested their chin on a
chin rest so that pupillometric data could be collected using EyeLink 1000 equipment (SR Re-
search, Ontario, Canada). Subjects were seated 55 cm from the computer screen, and pupil di-
ameter was sampled at 250 Hz. At the onset of each trial, participants heard a series of clicks
played binaurally through headphones for 1 second. They were then required to decide wheth-
er they heard more clicks in the left or right ear. They indicated their judgment by pressing the
left or right arrow key on a standard QWERTY keyboard. Participants were asked to keep their
eyes on a fixation cross in the center of the screen during stimulus presentation and decision.
3.5 seconds after stimulus onset the confidence scale appeared (if response times were longer
than 3.5 seconds, the confidence scale appeared immediately after the response; these trials
comprised ~5% of all trials). The scale ranged from 1 on the left (low relative confidence) to 6
on the right (high relative confidence). Participants were asked to use the left and right arrow
keys to move the cursor along the scale until they reached a value on the scale that corre-
sponded to how confident they felt about their judgment on that trial. After 3 seconds had
elapsed, the participant’s response was recorded. The cursor remained on the recorded confi-
dence response for 0.5 seconds; then the confidence scale disappeared from the screen. The
initial placement of the cursor along the scale was random so that responses were not biased to-
ward any part of the scale. In addition, participants were encouraged to treat the confidence
scale as a relative scale, and to use the whole scale throughout the experiment. After a
1.5-second inter-trial interval, the next trial began (see Fig 1 for task layout).

The auditory stimuli consisted of Poisson-distributed click trains. Each click was a 23 ms
burst of white noise sampled at a rate of 44 kHz. The overall click rate was set to 200 Hz. On
each trial, the number of clicks played to each ear varied depending on the ratio of click rates
for the correct and incorrect response. The ratio was adjusted on each trial using a 1-up
2-down staircase procedure [27], which at the limit converges on 71% accuracy. Our aim in
using this staircase procedure was to equate objective perceptual performance across individu-
als, leaving quantification of metacognitive ability unconfounded by differences in perfor-
mance. We used the ratio of clicks for the correct response to clicks for the incorrect response
as our measure of difficulty for each trial. When this ratio is greater, the trial is easier. There
were 180 trials total, divided into 3 blocks. Participants were allowed to take a break between
blocks, and the eye tracker was re-calibrated in between each block.

Analyses

Pupil dilation preprocessing. Pupil diameter data were analyzed using Matlab 7.11
(MathWorks, Natick, MA). Eye-blinks were categorized as pupil dilation changes that tran-
spired too quickly to represent actual pupil dilation; they were removed using linear interpola-
tion. We baseline-corrected the pupil data by dividing each pupil diameter measurement by
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Fig 1. Auditory decision task layout.On each trial, participants heard a series of clicks presented binaurally for 1 second while pupil diameter was
measured. Participants made a button press to indicate in which ear they had heard more clicks, followed by a confidence rating, before proceeding to the
next trial.

doi:10.1371/journal.pone.0126588.g001

the average pupil diameter 1 second prior to each trial, as done previously [14, 28, 29]. All anal-
yses were performed on the preprocessed pupil diameter data.

GLM analysis. In order to best determine the timing of confidence-related activity in the
pupil data, we constructed a general linear model (GLM), with the following predictors (as in-
dividual 1s in a series of 0s): 1) stimulus onset, 2) a sustained component (boxcar) during the
decision period (from the onset of the stimulus to the time of response), 3) response onset, and
4) a sustained component during the post-decision period (from the response time to the onset
of the confidence rating screen). By constructing regressors in this way, we allow for temporally
extended pupil responses when decision time is greater. We omitted the post-decision period
regressor on the small fraction (~5%) of trials on which participants took longer than 3.5 sec-
onds from stimulus onset to respond, since on these trials, participants saw the confidence
screen immediately after they made their response. We normalized the boxcar regressors by di-
viding the height of the boxcar by its length such that these regressors had the same norm as
the stick regressors. In addition, we included each of these regressors in the model parametri-
cally modulated by 1) difficulty (i.e., the ratio of correct to incorrect clicks on each trial) and 2)
the confidence rating on each trial. We z-scored all confidence ratings to account for individual
differences in use of the confidence scale. Therefore, our final model contained twelve predic-
tors: the four temporal components, the four temporal components modulated by difficulty,
and the four temporal components modulated by confidence. Each regressor was then con-
volved with a canonical pupil response function (described in [14]):

h(t) — s* twe(*f*W/tmax)

where w is the width and t,,,, is the time-to-peak (in milliseconds) of the impulse response
function. We used canonical values of these two parameters (see [14, 30]): w = 10.1; to = 930
ms. We scaled the function by a factor s = 1/ 10%” (as in [31]), and resampled the predicted re-
sponse to match the sample rate of the data (250 Hz). The convolved regressors were horizon-
tally concatenated into a design matrix. Multiple regression yielded the best-fitting beta
weights for each regressor, separately for each subject. Statistical inference at the population
level was carried out by comparing these values to the null hypothesis that average beta weights
are zero using one-sample t-tests.
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Regression model (performance). To check for stabilization of performance, data were
divided into five blocks. The first block of trials was excluded for each participant to permit
staircase stabilization. A one-way ANOV A on click rate ratio revealed no significant differ-
ences in stimulus difficulty over the remaining four blocks (F3 ;35 = 0.114; p = 0.95).

To quantify the link between confidence and task performance we set up a multiple logistic
regression model predicting accuracy (1 = correct; 0 = incorrect) from z-scored confidence rat-
ings and difficulty (click rate ratio), with standard errors clustered by subject.

Metacognitive accuracy. To quantify metacognitive accuracy for each individual, we con-
structed type II receiver operating characteristic (ROC) curves as described previously (see [23,
32] for further details). The area between the major diagonal and an individual’s type Il ROC
curve is a measure of the ability to link confidence to performance on the perceptual decision-
making task (A,.c). To construct the ROC we binned each individual’s confidence ratings into
five quintiles. h; = p(confidence = i|correct) and f; = p(confidence = i|incorrect) were calculated
for all 4, transformed into cumulative probabilities and plotted against each other. ROC curves
were anchored at [0,0]. The intuition behind this analysis comes from signal detection theory
(SDT). Conventional applications of SDT assess detection performance by comparing the pro-
portion of “hits” and “false alarms” in a stimulus detection task. By applying the logic of SDT
to metacognition (“Type II” SDT), a “hit” becomes a high confidence response after a correct
decision, and a “false alarm” is a high confidence response after an incorrect decision. An
ROC curve that bows sharply upwards indicates that the probability of being correct rises
rapidly with confidence; conversely, a flat ROC function indicates a weak link between confi-
dence and accuracy. We note that type Il ROC area is affected by type 1 d’and criterion [33,
34]. Here, use of a 2-alternative forced choice (2AFC) design and a continuous staircase per-
mitted tight control over these factors, dissociating metacognitive accuracy from task
performance.

Control for eye movements. It has recently been demonstrated that gaze direction and
eye movements may produce systematic errors in pupil diameter measurements [35]. To con-
trol for potential eye movement artifacts, we instructed participants to fixate on the center of
the screen throughout the decision period. In addition, we re-calibrated the eye tracker at the
beginning of each block and used a gaze-contingent display at the start of each block to ensure
that the fixation point did not shift between blocks. Nevertheless, participants did make some
minor eye movements. To control for these fluctuations, we calculated a “deviation index” for
each trial for each subject. First, we calculated the Euclidean distance of the eye from the fixa-
tion point for each recorded pupil diameter sample. Then, we normalized these distances by di-
viding each by the median distance (the median was used as the measure of central tendency
due to the skewed nature of these distributions). Finally, we averaged these values in order to
determine a “deviation index” for each trial. We constructed an additional general linear
model, in which each of the temporal regressors was parametrically modulated by the deviation
index on that trial (thereby adding an additional four regressors to our main model).

Results

Participants carried out a near-threshold auditory discrimination task while pupil dilation re-
sponses were measured. Following each auditory decision, participants were asked to provide
explicit judgments of confidence. Average performance ranged from 69-75% correct, and Fig 2
shows that post-decision confidence ratings increased with task performance. Accordingly, in a
logistic regression, confidence positively predicted accuracy (1 = correct; 0 = incorrect) even
when controlling for stimulus difficulty (8 = 0.432; Wald X° = 92.28; p = 0.0009). Thus on aver-
age participants have good metacognitive accuracy, monitoring fluctuations in task
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Fig 2. Proportion correct as a function of subject-specific confidence quintile. Confidence ratings
increase with performance in the task, demonstrating above-chance metacognitive accuracy (5 = highest fifth
of confidence ratings; 1 = lowest fifth of confidence ratings).

doi:10.1371/journal.pone.0126588.g002

performance in the absence of feedback. Median average response time from stimulus onset
was 1860 ms (range: 1405-3185 ms).

To visualize the time course of the pupil response, we binned the pupil response into 20 ms
bins and plotted both the stimulus-locked and response-locked responses (Fig 3a and 3c).
These traces show, first, that there was an increase in pupil diameter at the time of stimulus
onset, which remained elevated throughout the decision period. Second, there was an increase
in pupil dilation around the time of the motor response. Separating the pupil response into low
and high confidence trials, we observed a greater increase in pupil dilation for low confidence
trials that persisted until the response (Fig 3b and 3d).

To further quantify these effects, we modeled the time course as a linear superposition of
four temporal components: two transients (one at stimulus onset and one at response onset),
and two boxcar regressors (one pre-decision and one post-decision), convolved by a canonical
pupil response function (see Materials and Methods). Regressors for each of these components
modulated by difficulty and confidence rating were also included.

Average beta weights for each of our twelve predictors are plotted in Fig 4a. First, we found
a significant positive main effect of the pre-decision period boxcar regressor (¢34 = 3.39;

p =0.002), but no significant effect of the stimulus onset regressor (¢;, = -0.26; p = 0.80), the re-
sponse onset regressor (t34 = -0.62; p = 0.54) or the post-decision boxcar regressor (¢34 = -0.26;
p = 0.80). This pattern replicates previous findings of a sustained increase in pupil dilation dur-
ing decision-making [14]. Crucially, we found that confidence negatively predicted the pupil
dilation response in the pre-decision period (t;4 = -4.18; p < 0.001). In other words, lower con-
fidence is associated with greater pupil dilation during the decision period, after controlling for
objective stimulus difficulty. This result also held when we controlled for eye movements dur-
ing the trial (35 = -3.95; p < 0.001). Confidence did not predict pupil dilation at any other
point during the time course of the trial (at stimulus onset: t;, =-1.37, p = 0.18; at response
onset: 3, = 1.13, p = 0.27; in the post-decision period: 3, = 1.23, p = 0.23).

We considered that the negative relationship between confidence and pupil dilation pre-
decision may be driven by signals on error trials, as pupil dilation responses have previously
been associated with errors in a variety of tasks (e.g., [36]). We therefore carried out a regres-
sion analysis separately for correct and error trials (Fig 4b and 4c). Consistent with the previous
analysis, on correct trials (~70% of all trials) we found a significant positive main effect of the
pre-decision boxcar regressor on pupil dilation (¢34 = 2.55; p = 0.015) as well as a significant
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Fig 3. Stimulus-locked and response-locked pupil dilation response. (A, B) Time course of pupil diameter averaged over all subjects (n = 35), aligned to
stimulus onset for (A) all trials and (B) low and high confidence trials (median split). (C, D) Time course of pupil diameter aligned to response onset for (C) all
trials and (D) low and high confidence trials (median split). Dashed lines represent standard error of the mean. Black vertical lines indicate timings of stimulus
onset (A and B) and response onset (C and D).

doi:10.1371/journal.pone.0126588.9003

negative effect of confidence (¢34 = -3.96; p < 0.001). On error trials, which comprised a smaller
subset of all trials, we observed a similar pattern of results which did not reach statistical signif-
icance, possibly due to lack of power (pre-decision boxcar main effect: 3, = 1.00; p = 0.32; pre-
decision boxcar modulated by confidence: t3, = -1.85; p = 0.07).

We next turned to the functional consequences of the link between pupil dilation and confi-
dence by quantifying each subject’s metacognitive accuracy. Metacognitive accuracy reflects
the link between objective performance—the trial-by-trial likelihood of giving a correct re-
sponse—and confidence. There was considerable variation across individuals in metacognitive
accuracy (Ao = 0.48 to 0.76), despite underlying task performance being held approximately
constant (percent correct: 69 to 75%); furthermore, these measures were uncorrelated (r = 0.32,
p =0.07). To establish whether the relationship between pupil dilation and confidence was as-
sociated with metacognitive accuracy, we conducted a Pearson correlation between each of the
four confidence-related beta weights and the metacognitive accuracy score (A,.) for each sub-
ject, separately for correct and error trials. Bonferroni correction was applied to control for
multiple comparisons. Decomposing the data in this way ensured that any non-specific pupil
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doi:10.1371/journal.pone.0126588.9004

dilation response to errors would not induce a spurious correlation with metacognitive
accuracy.

On correct trials, we found that metacognitive accuracy moderated the relationship between
confidence and pupil dilation responses during the post-decision period (correlation with
post-decision boxcar beta: r = 0.46; p = 0.005; Fig 5a). This effect remained when controlling
for eye movements (r = 0.46; p = 0.005). No relationship was found between metacognitive ac-
curacy and confidence-related pupil dilation pre-decision (correlation with pre-decision box-
car beta: r = 0.13, p = 0.45; controlling for eye movements: r = 0.17, p = 0.34). However, caution
is warranted when interpreting the difference between pre- and post-decision effects on meta-
cognitive accuracy as the difference between these correlation coefficients was not significant
(Fisher’s r-to-z transformation: z = -1.45; p = 0.15). The correlation between A,,. and confi-
dence-related pupil dilation was not significant for either of the onset regressors (stimulus
onset: 7 = 0.08; p = 0.63; response onset: r = -0.12; p = 0.47). Finally, no relationship was found
at any time point for incorrect trials (stimulus onset: » = -0.14; p = 0.43; pre-decision boxcar:
r=0.008; p = 0.96; response onset: r = 0.03; p = 0.85; post-decision boxcar: r = -0.14; p = 0.44;
Fig 5b).
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doi:10.1371/journal.pone.0126588.9005

These results suggest that metacognitive accuracy is specifically enhanced in subjects who
show a tight pupil-confidence relationship after a decision is made, and support an additional
post-decisional contribution to confidence judgments and metacognition.

Discussion

How individuals construct metacognitive estimates of confidence is poorly understood. Meta-
cognition requires access to uncertainty signals to guide adaptive behavior such as explicit con-
fidence reports or contingent decisions. Pupil dilation has previously been established as a
physiological marker of decision uncertainty [12, 13], and is continuously elevated during the
decision process [14]. Pupil dilation is affected by both noradrenergic (NE) and cholinergic
(ACh) neuromodulation [37, 38, 40], and activity in the locus coeruleus (LC), the major norad-
renergic nucleus in the brain, also reflects uncertainty during learning [39]. The current study
demonstrates that non-luminance mediated changes in pupil dilation during a pre-decision pe-
riod correlate with metacognitive confidence, even when objective stimulus difficulty is con-
trolled. Specifically, a greater pupil dilation response was associated with lower confidence,
consistent with findings linking pupil dilation and uncertainty [12, 13]. This relationship was
also observed when correct trials were analyzed separately, ensuring that effects of confidence
were not confounded by error-related pupil dilation responses [36].

We additionally harnessed pupil dilation as a latent marker of the timing of metacognitive
processes. In particular, it is unclear whether confidence judgments are computed in parallel to
the decision (decisional locus) or if confidence judgments are based on continued processing
after the decision (post-decisional locus). Our results shed light on this issue. Consistent with a
decisional locus account, pre-decision pupil dilation negatively predicted confidence. At the
group level, there was no significant relationship between confidence ratings and post-decision
pupil dilation. However, subjects with better metacognitive accuracy showed a stronger link be-
tween post-decision pupil dilation and confidence. This finding suggests that continued pro-
cessing after a choice is made also contributes to the accuracy of metacognitive judgments.

PLOS ONE | DOI:10.1371/journal.pone.0126588 May 7, 2015 9/12



@’PLOS ‘ ONE

Pupil Dilation and Metacognitive Confidence

This is consistent with theories proposing post-decision accumulation of evidence for confi-
dence [8, 22] and suggests that metacognitive accuracy may depend on a late-stage integration
of uncertainty-related neural responses. The stronger link between pupil dilation and confi-
dence in high-metacognition subjects is also consistent with interoception being an important
determinant of metacognitive ability [41]. Together our findings support a contribution of
both pre- and post-decision factors to the construction of metacognitive confidence.

Some limitations of the current study warrant mention. First, we did not manipulate deci-
sion time—participants could choose to respond whenever they wished. It is possible that some
participants constructed a confidence judgment before they made a perceptual decision under
these circumstances, thereby reducing their reliance on post-decisional information. Future
studies should manipulate or restrict decision time to determine if this influences the timing of
pupil dilation and its link to metacognitive processing. Second, by design, error trials were less
numerous, and therefore our power to detect confidence-related effects on error trials was
lower than on correct trials. It would be of interest to determine whether qualitatively distinct
characteristics of the pupil dilation response on error trials contribute to metacognition in
future work.

Uncertainty is a pervasive feature of our environment—neural processing is noisy and exter-
nal events are unpredictable. Therefore, the ability to accurately appraise one’s uncertainty is
integral to making good decisions. When uncertainty is high, for example, we should boost our
learning rates and direct our attention to gathering more information [42-44]. The sources of
evidence we use to make these judgments remain poorly understood. Here we show that a
physiological index of uncertainty (pupil dilation) predicts metacognitive confidence in audito-
ry decision-making. These findings have implications for models of decision-making and
metacognition, as well as for disorders such as anxiety or obsessive-compulsive disorder in
which awareness of uncertainty may be compromised.
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