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John Maynard Keynes allegedly said, “When the facts change, I 
change my mind.” Updating beliefs on the receipt of new evi-
dence is a hallmark of cognitive flexibility. Previous work has 

focused on how newly arriving evidence for each choice option is 
evaluated to guide ongoing motor actions in the coordinate frame of 
a perceptual discrimination decision (for example, left vs. right)1–4. 
However, revising one’s confidence about an already-made choice 
imposes a different coordinate frame on the evidence and requires 
weighting the evidence comparatively with respect to the choice5–7. 
Here, we devised an extension of a classic motion discrimination 
task to investigate the computational signatures of such assessment 
and to investigate how new evidence leads to changes in decision 
confidence (Fig. 1) while recording markers of neural activity in 
the human brain using functional magnetic resonance imaging 
(fMRI). We confirmed behaviorally that post-decision motion led 
to systematic changes in confidence about the accuracy of a pre-
vious decision. This design allowed us to study the underpinnings 
of changes of mind by analyzing how new evidence impacts con-
fidence bidirectionally, in a graded fashion, rather than only on a 
subset of trials on which discrete choice reversals are observed.

We hypothesized that brain regions in the human frontal lobe 
implicated in performance monitoring (posterior medial frontal 
cortex (pMFC), encompassing dorsal anterior cingulate cortex8,9 
and pre-supplementary motor area10) and metacognition (anterior 
prefrontal cortex; aPFC11–14) would play a central role in updating 
beliefs about previous choice accuracy. Tracking evidence in the 
coordinate frame of choice accuracy rests on computing a probabil-
ity that a previous choice was correct or incorrect given the new 
evidence available, or a change in log-odds correct5. When this 
quantity (which we refer to as ‘post-decision evidence’ or PDE) is 
sufficiently low the alternative option becomes more favorable3. A 
Bayesian observer predicts a qualitative signature of PDE in both 
behavior and neural activity. Specifically, we expect a positive 
relationship between PDE and motion strength on correct trials 
(because new evidence serves to a confirm a previous choice) and a 
negative relationship on error trials (because new evidence discon-
firms a previous choice; Fig. 1c, middle).

A further step in the computational chain is to use PDE to 
update one’s final (subjective) confidence in a choice (Fig. 1c, right). 
For an ideal observer, there is a systematic and direct relationship 
between PDE and subsequent changes in confidence. However it 
is known that subjective confidence estimates do not always track 
objective changes in performance15,16, and previous studies suggest 
the prefrontal cortex as a key determinant of such metacognitive 
fidelity11,13. Moreover, a key challenge when interpreting confi-
dence-related neural activity is dissociating distinct variables that 
may be correlated as a result of a particular task manipulation17. For 
instance, changes in confidence are often correlated with both evi-
dence strength and the expected value of a choice (although see refs. 
18,19). Here we carefully separated these quantities through use of an 
incentive scheme in which subjects were rewarded for being either 
highly confident and right or highly unconfident and wrong, ensur-
ing changes in final confidence were decoupled from subjective 
value (Fig. 1c, right). We also used mediation analyses to formally 
identify brain activity capturing the impact of model PDE on sub-
jective confidence reports, which were obtained at the end of every 
trial20. This approach has proven fruitful in studying the neural basis 
of other subjective states, such as pain, while controlling for lower-
level effects of sensory stimulation21, but has not previously been 
applied to studies of decision-making. Together our findings reveal 
a division of labor in which pMFC activity tracks post-decision 
evidence, whereas lateral aPFC also mediates the impact of post-
decision evidence on confidence, independently of decision value.

Results
Participants carried out the perceptual decision task outlined in Fig. 1a,  
first in a behavioral session (N =​ 25 subjects) and subsequently 
while undergoing fMRI (N =​ 22 subjects). The subject’s goal was to 
make accurate decisions about the direction of random dot motion 
and then to estimate confidence in the initial choice. A new sample 
of dot motion in the same (correct) direction was displayed after 
the subject’s choice but before their confidence rating. Subjects were 
rewarded for the accuracy of their confidence judgments, and thus 
the value of a trial increased both when they became more accurate 
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about being right and when they became more accurate about being 
wrong (see Fig. 1c and Methods). A fully factorial design crossed 
three pre-decision coherence levels with three post-decision coher-
ence levels, yielding nine experimental conditions. Together these 
features of the task design allowed us to dissociate motion strength 
and decision value from changes of mind (Fig. 1c). To equate evi-
dence strength across individuals, before the main task each partici-
pant performed a calibration procedure to identify a set of motion 
coherences that led to approximately 60%, 75% and 90% accuracy 
(Supplementary Fig. 1). Examination of the empirical cross-corre-
lation between task features and behavior (motion strength, confi-
dence, value and response times) confirmed a limited correlation 
between predictors (maximum absolute mean r =​ 0.38 for fMRI ses-
sion; Supplementary Fig. 2).

Choice, confidence and changes of mind. As expected, stronger 
pre-decision motion led to increases in response accuracy (behav-
ioral session: hierarchical logistic regression, β =​ 9.21 (standard 
error: 0.74), z =​ 12.4, P <​ 2 ×​ 10−16; fMRI session: β =​ 7.00 (0.70), 

z =​ 10.0, P <​ 2.0 ×​ 10−16; Fig. 2a,c and Supplementary Table 1). We 
observed robust changes of confidence in response to post-decision 
motion (Fig. 2b,d). Specifically, we found that after an erroneous 
decision, stronger post-decision motion led to progressively lower 
confidence (behavioral session: hierarchical linear regression, 
β =​ –1.15 (0.14), χ​2(1) =​ 71.8, P <​ 2.2 ×​ 10−16; fMRI session: β =​ –1.05 
(0.11), χ​2(1) =​ 88.0, P <​ 2.2 ×​ 10−16; Supplementary Table 2) whereas 
after a correct decision, confidence was increased as a result of the 
confirmatory influence of new evidence (behavioral session: β =​ 0.41 
(0.08), χ​2(1) =​ 26.3, P =​ 3.0 ×​ 10−7; fMRI session: β =​ 0.54 (0.08),  
χ​2(1) =​ 44.7, P =​ 2.3 ×​ 10−11). Binary changes of mind are revealed 
by confidence levels lower than 0.5 (i.e., greater confidence in the 
alternative response), with strong post-decision motion accordingly 
leading to more frequent binary changes of mind (behavioral ses-
sion, mean =​ 11.7% of trials; fMRI session, mean =​ 18.4% of trials) 
than weak post-decision motion (behavioral session, mean =​ 10.4% 
of trials; fMRI session, mean =​ 14.8% of trials). Subjects were well 
calibrated, with final confidence approximately tracking aggregate 
performance (Supplementary Fig. 3).
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Fig. 1 | Post-decision evidence task and computational framework. a, Task design. Participants made an initial left/right motion discrimination judgment, 
after which they saw more post-decision motion of variable coherence moving in the same direction as the pre-decision motion. They were asked to rate 
their confidence in their initial choice on a scale from 0% (certainly wrong) to 100% (certainly correct). Confidence scale steps were further labeled with 
the words “certainly wrong,” “probably wrong,” “maybe wrong,” “maybe correct,” “probably correct” and “certainly correct” (not shown). b, Bayesian 
graphical model indicating how pre- and post-decision motion samples are combined with the chosen action to update an estimate of decision confidence. 
c, Simulated decision variables from the model in b showing a distinction between updating evidence in the coordinate frame of motion direction (left) 
and choice accuracy (middle) as a function of post-decision motion strength and choice. A change in log-odds correct (‘post-decision evidence’; PDE) is 
revealed by a qualitative interaction between post-decision motion strength and choice accuracy (middle). The right panel indicates the expected mapping 
between log-odds correct and both final confidence and decision value. Confidence and value are dissociated on change-of-mind trials (confidence <​ 0.5) 
through use of a quadratic scoring rule that rewards subjects for being either confident and right or unconfident and wrong.
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Computational model of post-decisional change in confi-
dence. We compared a set of alternative computational models 
of how confidence is affected by post-decision motion strength 
(see Methods for details). All models generalize signal detection 
theory, with a single free parameter k mapping pre- and post-
decision motion strength (coherence) onto an internal decision 
variable (Fig. 1b). Extensions to an ideal observer model explored 
the impact of asymmetric weighting parameters on pre- and post-
decision motion6,7, asymmetric weighting of confirmatory and 
disconfirmatory evidence6, flexible mappings between probabil-
ity correct and reported confidence22, and the influence of initial 
response time (RT)23 (see Methods and Supplementary Fig. 4). 
We assessed model fit by examining generalization across testing 
sessions to avoid overfitting; the best-fitting Bayesian +​ RT model 
was able to capture both the relationship between pre-decision 
motion strength and choice accuracy, and the impact of post-deci-
sion motion on changes in confidence (Fig. 2 and Supplementary 
Fig. 5) (difference in median log-likelihood relative to next best 
model: behavioral→​fMRI, 1,932; fMRI→​behavioral, 1,298; 
Supplementary Fig. 4). The βRT parameter of this model was nega-
tive in both cases (behavioral session: βRT =​ –0.73 (0.26); fMRI ses-
sion: βRT =​ –0.37 (0.22); Supplementary Table 3), indicating that 
faster initial decisions boosted final confidence. We note that a 
qualitative signature of PDE in Fig. 1c is common to all model 
variants and makes clear predictions for interrogation of brain 
imaging data, to which we turn next.

Neural representations of post-decision evidence. We sought 
to identify fMRI activity patterns consistent with tracking PDE in 
the coordinate frame of choice accuracy (changes in log-odds cor-
rect due to post-decision motion). Such patterns are characterized 
by a change in the sign of the relationship between post-decision 
motion strength and brain activity on correct vs. error trials (Fig. 1c,  
middle). This change in sign is qualitative, and we remain agnos-
tic about its direction at the level of the fMRI signal: it is plausible 
that a particular neural population encodes increasing rather than 
decreasing likelihood of change of mind, in which case we would 
observe a positive relationship on error trials and a negative rela-
tionship on correct trials.

We first computed interaction contrasts (positive or negative) 
between post-decision motion strength and choice accuracy, to iden-
tify patterns of activity that mirror a signature of PDE. Interaction 
effects were observed whole-brain corrected at both the voxel and 
cluster level in pMFC (Fig. 3a; peak Montreal Neurological Institute 
(MNI) coordinates [6 18 50], PvoxelFWE =​ 0.002; PclusterFWE <​ 0.001) and 
at the cluster level in right insula (peak [44 14 –6], PclusterFWE =​ 0.009; 
Supplementary Table 4). Accordingly, in an independently defined 
pMFC region of interest (ROI), we obtained a significant interac-
tion between post-decision motion strength and initial decision 
accuracy in single-trial activity estimates aligned to the onset of 
post-decision motion (Fig. 3b and Supplementary Table 5; β =​ –0.11 
(0.037), χ​2(1) =​ 9.35, P =​ 0.0022). This interaction effect was driven 
by an increase on error trials and decrease on correct trials (Fig. 3b).
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Fig. 2 | Behavioral results. Top, data collected in an initial behavioral session (900 trials per subject, N =​ 25 subjects); bottom, behavioral data collected 
during the fMRI session (360 trials per subject, N =​ 22 subjects). In each panel data are separated by pre- and post-decision motion coherence (L, low; 
M, medium; H, high). a,c, Performance (% correct). b,d, Aggregate confidence ratings separated according to whether the decision was correct (blue) 
or incorrect (orange). Lines show data simulated from the best-fitting Bayesian +​ RT model parameters. Data are plotted as box plots for each condition 
in which horizontal lines indicate median values, boxes indicate 25–75% interquartile range and whiskers indicate minimum and maximum values; data 
points outside of 1.5 ×​ the interquartile range are shown separately as circles. For model simulations, error bars reflect 95% confidence intervals for the 
mean. See also Supplementary Fig. 5.
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Finally, to corroborate our model-free analysis, we extracted 
the predicted PDE (LOcorrect

post , where LO is the log posterior odds) 
on each trial from the Bayesian +​ RT model fitted to each subject’s 
in-scanner behavioral data. As expected from the model-free pat-
tern, a negative linear relationship was observed between model 
PDE and pMFC activity (Fig. 3c; β =​ –0.052 (0.0085), χ​2(1) =​ 37.4, 
P =​ 9.54 ×​ 10−10). No relationship was observed between pre-deci-
sion evidence (LOcorrect

pre ) and pMFC activity (β =​ –0.013 (0.013),  
χ​2(1) =​ 1.06, P =​ 0.30), indicating specific engagement during 
post-decisional changes of confidence. To establish the anatomical 
specificity of the effect of PDE on brain activity, we interrogated pre-
frontal and striatal ROIs also implicated in decision confidence and 
metacognition (ventral striatum, ventromedial prefrontal cortex 
(vmPFC) and bilateral aPFC areas 46, FPl and FPm from the atlas 
of Neubert et al.24; Supplementary Figs. 6 and 7 and Supplementary 
Table 5). None of these ROIs showed an interaction between post-
decision motion strength and choice (P >​ 0.05), and contrasts of 
regression coefficients revealed greater interaction effects in pMFC 
compared to aPFC subregions (area 46: χ​2(1) =​ 3.7, P =​ 0.054; FPl:  
χ​2(1) =​ 5.0, P =​ 0.026; FPm: χ​2(1) =​ 10.9, P =​ 0.00095).

Neural mediators of final confidence. Having identified a putative 
neural signature of PDE in pMFC, we next searched for brain areas 
tracking subjects’ final confidence in a decision. One computation-
ally plausible hypothesis is that such updates of final confidence are 
mediated by anatomically distinct networks involved in metacogni-
tion25,26. aPFC is a leading candidate, as this region is implicated in 
metacognitive assessment of both perceptual and economic deci-
sions12,14,18. In a whole-brain analysis, we found widespread activity 
showing both positive and negative relationships with final con-
fidence (Fig. 4a and Supplementary Table 6) in regions including 

pMFC (negative relationship), medial aPFC (positive relationship) 
and lateral aPFC (negative relationship), consistent with previous 
studies12,14,18,27.

We further sought to establish whether aPFC activation continues 
to track confidence shifts on trials in which discrete changes of mind 
were recorded (confidence <​ 0.5). Activity that tracks such changes 
of mind should show a consistent positive or negative slope across 
both change and no-change trials; in contrast, activity tracking deci-
sion value should reverse its relationship with confidence on change 
trials (owing to the greater reward available for betting against one’s 
choice; Fig. 4b). In a split regression analysis, we found that regres-
sion coefficients in lateral aPFC ROIs were significantly negative 
on both change and no-change trials (Fig. 4b and Supplementary 
Table 7; area 46: change trials β =​ –0.36 (0.15), χ​2(1) =​ 5.9, P =​ 0.015; 
no-change trials β =​ –0.25 (0.05), χ​2(1) =​ 20.6, P =​ 5.6 ×​ 10−6; FPl: 
change trials β =​ –0.41 (0.17), χ​2(1) =​ 6.1, P =​ 0.013; no-change trials 
β =​ –0.12 (0.06), χ​2(1) =​ 4.1, P =​ 0.044). In contrast, regression coeffi-
cients in FPm flipped in sign on change vs. no-change trials (Fig. 4b).  
Accordingly, when regressing regional time series against both 
confidence and value in the same general linear model (GLM), we 
found that confidence but not value covaried with a late signal in 
area 46 and FPl (Fig. 4c). Conversely, and consistent with previous 
reports18,19, FPm (and also pMFC, vmPFC and ventral striatal ROIs; 
see Supplementary Fig. 7) showed simultaneous correlates of both 
confidence and value. These results support a conclusion that lat-
eral aPFC subregions are specifically engaged when subjects change 
their minds about a previous decision on the basis of new evidence.

A key question is how PDE, encoded in pMFC, leads to subse-
quent shifts in final confidence in a previous decision. To test this 
hypothesis, we used multi-level mediation analysis21,28 to jointly test 
for effects of PDE (from subject-specific fits of the Bayesian +​ RT 
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computational model) on brain activity (path a), brain activity on 
final confidence (path b) and mediation (a ×​ b) effects (Fig. 5), while 
controlling for both response time and pre-decision evidence. A 
mediator can be interpreted as an indirect pathway through a brain 
area that links PDE with changes in subjective confidence, suggest-
ing that if such a region were disrupted, this relationship would also 
be disrupted or abolished. We examined mediation both in ana-
tomically defined aPFC subregions and at the voxel level across the 
whole brain.

In line with our hypothesis, activity in area 46 and FPl was found 
to mediate the impact of PDE on final confidence (Fig. 5a and 
Supplementary Table 8; a ×​ b effect, bootstrapped P-values: area 46, 
P =​ 0.0027; FPl, P =​ 0.0056). While mediation modeling is correla-
tional, precluding a direct inference as to directionality, we note that 
control models in which PDE and confidence were reversed did not 
result in a significant mediation effect in either area 46 (P =​ 0.54) or 
FPl (P =​ 0.46). Mediation may be driven either by consistent effects 
of paths a and b across the group or by covariance between stimu-
lus- and report-related responses21. In area 46 there was evidence for 
consistent main effects of path a and b in the group as a whole. In 
contrast, in FPl, mediation was driven by the covariance of a and b  
paths across subjects. Finally, in a voxel-based mediation analysis, 
we observed a significant cluster in left lateral aPFC (Fig. 5b), cor-
roborating our ROI analysis.

In an exploratory whole-brain analysis we also observed clus-
ters in pMFC and bilateral parietal cortex that, together with 
aPFC, met whole-brain corrected statistical criteria for mediation 

(Supplementary Fig. 8). This result is consistent with pMFC activity 
both tracking PDE (Fig. 3c) and covarying with final confidence 
(Fig. 4a). Taken together, our findings indicate complementary roles 
for frontal subregions in changes of mind: pMFC (but not aPFC) 
activity tracks PDE, whereas lateral aPFC also mediates changes in 
final confidence estimates, independently of decision value.

Discussion
Changing one’s mind on the basis of new evidence is a hallmark of 
cognitive flexibility. Such reversals are supported computationally 
by sensitivity to post-decision evidence: if I have made an error 
and the new evidence is compelling, I should change my mind. 
Here we devised a manipulation of post-decisional information 
in perceptual decision-making to study this process. Participants 
appropriately increased their confidence when new evidence was 
supportive of an initial decision and decreased their confidence 
when it was contradictory. A signature of post-decision evidence 
encoding, a change in log-odds correct, was identified in the activ-
ity of pMFC. We further observed that distinct activity profiles in 
lateral aPFC mediated the impact of post-decision evidence on 
subjective confidence.

Previous work has focused on how stimulus evidence may reverse 
the accumulation of evidence in circuits coding for one or the other 
choice option (for example, left or right). To update one’s confi-
dence in a previous choice, new evidence in the coordinate frame 
of stimulus/response may be further transformed into the coordi-
nate frame of choice accuracy5. These schemes are not mutually  
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c, Multiple regressions of confidence and value on activity time course in ROIs. Points below time course indicate significant excursions of t-statistics 
assessed using two-tailed permutation tests. Error bars indicate standard errors of the coefficient mean. N =​ 22 subjects.
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exclusive: to update an ongoing action plan, it may be sufficient to 
continue accumulating evidence in a ‘pipeline’ directly guiding the 
movement toward one or the other target2,3 while in parallel revis-
ing one’s belief in the accuracy of a previous choice25,26. In an elegant 
behavioral study, van den Berg and colleagues demonstrated that 
a single stream of evidence may continue to accumulate during 
action initiation and, via a comparison to thresholds specified in 
stimulus/response space (e.g., log-odds rightward), be used to guide 
changes of both decision and (response-specific) confidence3. Here, 
by introducing a manipulation of post-decisional information, we 
reveal a circumscribed activity pattern in pMFC consistent with 
tracking PDE in the frame of choice accuracy. Examining mutual 
interactions between evidence coded in the frame of stimulus/
response identity or choice accuracy is beyond the design of the 
current study, but may be profitably investigated by tracking each of 
these coordinate frames using techniques with high temporal reso-
lution such as magnetoencephalography.

Even in the absence of a direct manipulation of post-decision 
evidence, signal detection models of decision confidence predict 
an interaction between stimulus strength and choice accuracy16,29. 
We also observed such a pattern in our behavioral data: confi-
dence decreased on error trials and increased on correct trials, 
when pre-decision motion was stronger (Supplementary Table 
2; this effect was tempered by the influence of response times on 
error-trial confidence, as shown by the fits of the Bayesian +​ RT 
model in Fig. 2). However, we note that the interaction effect in 
pMFC was primarily driven by post- and not pre-decision evi-
dence (Supplementary Table 5), indicating a distinct role in post-
decisional changes of mind. An interaction between stimulus 
strength and choice accuracy has also been observed in the activ-
ity of rodent orbitofrontal cortex in the absence of a post-decision 
evidence manipulation29, and inactivation of this region impairs 
confidence-guided behaviors30. Searching for signatures of PDE in 
other species may therefore shed light on mechanisms supporting 
changes of mind that are conserved (for example, in homologs of 
pMFC31) and those that may be unique to humans (for example, 
those supported by granular aPFC).

The function of pMFC in human cognition has been the subject 
of extended scrutiny and debate. A well-established finding is that a 
paracingulate region activates to error commission, consistent with 
its role as a cortical generator of the error-related negativity8–10. More 
recently, studies have linked dorsal anterior cingulate activity to a 
broader role in behavioral switching away from a default option32. 
Our findings complement these lines of work by characterizing a 
computation related to changes of mind. Specifically, our analysis 
indicates that pMFC activity tracks whether an initial choice should 
be revised in light of newly acquired information. The peak acti-
vation in this contrast was obtained in pre-supplementary motor 
area, dorsal to the rostral cingulate zone33. While previous studies of 
error detection have focused on all-or-nothing, endogenous error 
responses in pMFC, our findings suggest a more computationally 
sophisticated picture: pMFC activity tracked graded changes in log-
odds correct34,35 (Fig. 3c). Together our results indicate that error 
monitoring, confidence and changes of mind may represent differ-
ent behavioral manifestations of a common computation supported 
by inputs to pMFC25,36,37.

Beyond pMFC, we found a widespread network of regions where 
activity tracks final confidence, including negative correlations in 
lateral PFC, parietal cortex and pMFC, and positive correlations in 
vmPFC and precuneus, consistent with previous findings12,14,18,19,27. 
Building on an analogous body of work on the neural substrates 
of subjective pain21,38, we used mediation analysis to formally dis-
entangle the inter-relationships among post-decision evidence, 
brain activity and the final confidence subjects held in their deci-
sion. Lateral aPFC (areas 46 and FPl) activity mediated the impact 
of post-decision evidence on subjective confidence. Lateral aPFC 
has previously been implicated in self-evaluation of decision perfor-
mance12,14,18, and it receives an anatomical projection from pMFC39. 
It is notable that in the current study the activity profile of lateral 
aPFC covaried with final confidence in both mediation and regres-
sion analyses, but did not track post-decision evidence or decision 
value per se. It is therefore plausible that lateral aPFC supports a 
representation of choice quality that contributes to metacognitive 
control of future behavior40–42. Together with aPFC, posterior pari-
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Fig. 5 | Neural mediation of PDE on final confidence. a, Multi-level mediation analysis assessing whether the effect of PDE on final confidence is mediated 
by activity in anatomically defined aPFC ROIs. For each ROI, the upper row of models indicates forward mediation and the lower row indicates reverse 
mediation (of confidence onto PDE). Mediation was observed only for forward models in areas 46 and FPl (red arrows). Arrow thickness reflects two-
tailed bootstrapped P-values; see Supplementary Table 8 for statistics. N =​ 22 subjects. b, The model used in a was fit to each voxel independently to 
create a map of P-values for the mediation (a ×​ b) effect in aPFC. Thresholded at P <​ 0.05 FWE-corrected at the cluster level using Monte Carlo simulation, 
cluster-defining threshold P <​ 0.001. N =​ 22 subjects. See also Supplementary Fig. 8.
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etal cortex was also implicated by exploratory whole-brain analyses 
as a mediator of the impact of PDE on confidence, consistent with 
a role for a broader frontoparietal network in metacognition and 
confidence formation43,44.

In previous research it has proven difficult to isolate changes in 
decision confidence from other confounding variables. The prob-
ability of a previous decision remaining correct is often correlated 
with expected value. In other words, if subjects are motivated to be 
accurate, decision confidence usually scales with decision value. 
Here we separated expected value from confidence by allowing sub-
jects to gain rewards by betting against their original decision using 
the quadratic scoring rule. This rule returns maximum reward both 
when a correct trial is rated with high confidence and when an 
incorrect trial is rated with low confidence (Fig. 1c). In medial PFC 
we found a U-shaped pattern of activity in relation to reported con-
fidence, consistent with previous findings that both confidence and 
value are multiplexed on the medial surface18,19. In contrast, lateral 
aPFC activity covaried with final confidence reports but not value, 
indicating a specific role in changes of mind.

In conclusion, by integrating computational modeling with 
human fMRI, we reveal a neural signature of how new evidence is 
integrated to support graded changes of mind. Multiple coordinate 
frames are in play when new evidence leads to shifts in beliefs—
from coding evidence in support of one or the other decision option, 
to updating the accuracy of a choice, to communicating changes 
in confidence. Neuroimaging revealed complementary roles for 
frontal subregions in changes of mind: post-decision evidence was 
tracked by pMFC while aPFC also mediated final confidence in 
choice. Failure of such updating processes may lead to impairments 
to cognitive flexibility and/or an inability to discard previously held 
beliefs45,46. Together our findings shed light on the building blocks 
of changes of mind in the human brain and indicate possible targets 
for amelioration of such deficits.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-018-0104-6.
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Methods
Participants. Twenty-five participants gave written informed consent to take 
part in a study conducted across two separate days. No statistical tests were used 
to predetermine the sample size, which is similar to those reported in previous 
publications14,32,40. A behavioral experiment was administered on the first day and 
an fMRI experiment on the second day. Twenty-five participants were included in 
the analysis of behavioral data (14 females, mean age 24.0, s.d. =​ 3.6). In the fMRI 
experiment, one participant was excluded because of excess head motion and 
one participant was excluded because of lack of variability in confidence ratings 
(308/360 trials were rated as 100% confident). A further participant attended only 
the first behavioral session. Twenty-two participants were included in the analysis 
of fMRI data (12 females, mean age 24.1, s.d. =​ 3.4). The study was approved by 
NYU’s University Committee on Activities Involving Human Subjects, all relevant 
ethical regulations were followed, and participants provided written consent before 
the experiment.

Stimuli. The experiment was programmed in Matlab 2014b (MathWorks) using 
Psychtoolbox (version 3.0.12)47,48. In the behavioral session, stimuli were presented 
on an iMac desktop monitor viewed at a distance of approximately 45 cm. In the 
scanner, stimuli were presented via a projector at an approximate viewing distance 
of 58 cm. Stimuli consisted of random-dot kinematograms (RDKs). Each RDK 
consisted of a field of random dots (0.12° diameter) contained in a 7° circular white 
aperture. Each set of dots lasted for one video frame and was replotted three frames 
later49. Each time the same set of dots was replotted, a subset determined by the 
percent coherence was offset from their original location in the direction of motion 
and the remaining dots were replotted randomly. Motion direction was either to 
the left or right along the horizontal meridian. Coherently moving dots moved 
at a speed of 5° s–1 and the number of dots in each frame was specified to create a 
density of 30 dots deg–2 s–1. Each RDK lasted for 300 ms.

Task and procedure. Participants attended the laboratory on two different days. 
On the first day they completed a calibration session to obtain their psychometric 
function for motion discrimination, followed by 900 trials of the main experiment 
shown in Fig. 1a. On the second day participants completed the fMRI scan. 
Data collection and analysis were not performed blind to the conditions of the 
experiments.

Behavioral session. Calibration phase. Before performing the main task, each 
participant performed 240 trials of motion direction estimation without confidence 
ratings or further post-decision motion. These trials were equally distributed across 
six coherence levels: 3%, 8%, 12%, 24%, 48% and 100%. Motion direction (left 
or right) was randomized and independent of coherence. Judgments were made 
using the left or right arrow keys on a standard computer keyboard after the offset 
of each stimulus, and the response was without time limit. During the calibration 
phase (but not the experiment phase), auditory feedback was delivered to indicate 
whether the judgment was correct (high-pitched tone) or incorrect (low-pitched 
tone). The intertrial interval was 1 s. The three coherence levels that resulted in 
60%, 75% and 90% correct choices were individually determined for each subject 
using probit regression. These coherence levels were then stored for use in the 
experiment phase.

Experiment phase. In the main experiment, subjects completed 900 trials of the 
task shown in Fig. 1a. Each trial consisted of the following events in sequence. A 
central fixation point (0.2° diameter) and empty aperture were presented, followed 
by an RDK of low, medium or high coherence. Following the offset of the RDK, 
participants were asked to make a judgment as to whether the movement of the 
dots was to the left or the right. Their response triggered a second post-decision 
RDK that was shown after a delay of 100 ms. The second post-decision RDK 
was always in the same (correct) direction as the first pre-decision RDK, but of a 
variable coherence. Subjects were instructed that this was “bonus” motion that they 
could use to inform their confidence in their initial response. They were told that 
the bonus motion was always in the same direction as the regular motion, but were 
not informed that it may have varied in strength. A fully factorial design crossed 
3 pre-decision coherence levels with 3 post-decision coherence levels, yielding 9 
experimental conditions, each with 100 trials. Trial order was fully randomized for 
each subject.

After the bonus motion was displayed, an empty aperture was presented for 
200 ms and then participants were asked to indicate their confidence in their initial 
judgment on a horizontal scale (length =​ 14°) ranging from 0 to 100%. Confidence 
responses were made with a mouse click controlled by the right hand and could 
be made anywhere along the scale. Half of subjects saw the scale labeled with 0% 
on the left and 100% on the right and half saw the reverse orientation, with scale 
orientation fixed across both the behavioral and fMRI sessions. A vertical red 
cursor provided feedback as to the selected rating. In the behavioral session there 
was no time limit for either the response or the confidence rating, and no feedback 
was given as to whether the response was correct or incorrect.

fMRI session. During the structural scan at the start of the fMRI experiment, 
participants carried out a ‘top-up’ calibration session consisting of 120 trials of  

left/right motion judgments without confidence ratings. Three randomly 
interleaved QUEST adaptive staircases were used to estimate coherence levels 
associated  
with 60%, 75% and 90% correct performance. The prior for each staircase was 
centered on the corresponding coherence estimate derived from the behavioral 
calibration session.

Before entering the scanner, participants were refamiliarized with the task and 
confidence rating scale. The task was identical to that described above except for 
the following changes. Response deadlines of 1.5 s and 3 s were imposed for the 
initial decision and confidence rating, respectively. Both motion judgments and 
confidence ratings were made via an fMRI button box held in the right hand. To 
rate confidence, participants used their index and middle fingers to move a cursor 
in steps of 10% to the left or right of the scale. The initial cursor location on each 
trial was randomized. The rating was confirmed by pressing a third button with the 
ring finger, after which the cursor changed from white to red for 500 ms. During 
each of the 4 scanner runs participants completed 90 trials.

After the main experiment, we carried out a localizer scan for motion-related 
activity. During this scan participants passively viewed 20 alternating displays 
of moving and stationary dots, each lasting 12 s. Equal numbers of leftward and 
rightward moving dot displays were included at a constant coherence of 50%.

Scoring rule for confidence ratings. Confidence ratings were incentivized using the 
quadratic scoring rule (QSR)50:

= − −points 100[1 (correct conf ) ]i i
2

where correcti is equal to 1 on trial i if the choice was correct and 0 otherwise, and 
confi is the subject’s confidence rating on trial i entered as a probability between 0 
and 1. The QSR is a proper scoring rule in that maximum earnings are obtained 
by jointly maximizing the accuracy of choices and confidence ratings51. For 
every 5,000 points, subjects received an extra $1. This scoring rule ensures that 
confidence is orthogonal to the reward the subject expects to receive for each trial. 
Maximal reward is obtained both when one is maximally confident and right and 
when one is minimally confident and wrong (Fig. 1c).

The confidence scale was labeled both with scale steps of 0%, 20%, 40%, 60%, 
80% and 100% (positioned above the line) and, following Boldt and Yeung34, verbal 
confidence labels of “certainly wrong,” “probably wrong,” “maybe wrong,” “maybe 
correct,” “probably correct” and “certainly correct” (positioned below the line). 
The scale midpoint was marked with a vertical tick halfway between the 40% and 
60% labels. Before taking part in the main experiment, participants underwent 
a training session to instruct them in the use of the confidence scale. Following 
Moore and Healy52, participants were first instructed:“You can win points by 
matching your confidence to your performance. Specifically, the number of points 
you earn is based on a rule that calculates how closely your confidence tracks your 
performance: = − −points accuracy confidence100*[1 ( ) ]2 .

This formula may appear complicated, but what it means for you is very 
simple: You will get paid the most if you honestly report your best guess about the 
likelihood of being correct. You can earn between 0 and 100 points for each trial.”

Participants were then asked where they should click on the scale if they were 
sure they responded either correctly or incorrectly. They were then informed:“The 
correct answers were: If you are sure you responded correctly, you should respond 
100% confidence/certainly correct. If you are sure you picked the wrong direction, 
you should respond 0% confidence/certainly wrong. If you are not 100% sure 
about being correct or incorrect you should select a location in between according 
to the following descriptions on the confidence scale: probably incorrect =​ 20% 
confidence; maybe incorrect =​ 40% confidence; maybe correct =​ 60% confidence; 
probably correct =​ 80% confidence. You can also click anywhere in between these 
percentages.”

Statistics. Effects of condition on confidence ratings and accuracy were assessed 
using hierarchical mixed-effects regression using the lme4 package in R (version 
3.3.3)53. For confidence ratings, we constructed linear models separately for correct 
and incorrect trials. Pre- and post-decision coherence values and their interaction 
were entered as separate predictors of confidence. Log response times were also 
included in the model. We obtained P-values for regression coefficients using the 
car package for R54. Mixed-effects logistic regression was used to quantify the effect 
of condition on response accuracy. In all regressions we modeled subject-level 
slopes and intercepts, and report coefficients and statistics at the population level. 
The distribution of residuals in regression models was assumed to be normal, but 
this was not formally tested.

Bayesian model. We developed a Bayesian model of choice and confidence that 
is grounded in signal detection theory. Subjects receive two internal samples, Xpre 
generated from pre-decision motion and Xpost from post-decision motion. Motion 
direction ∈ −d [ 1, 1]  determines the sample means with Gaussian signal-to-noise 
depending linearly on coherence θpre or θpost via sensitivity parameter k (where ~ 
indicates "is distributed as"):

θ~X N dk( , 1)pre pre
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θ~X N dk( , 1)post post

We assume that subjects do not know the coherence levels on a particular trial, 
θpre and θpost, which are nuisance parameters that do not carry any information 
about the correct choice. We therefore approximate the likelihood of Xpre and Xpost 
as a Gaussian with mean μ and variance σ​2 determined by a mixture of Gaussians 
across each of the three possible coherence levels. Starting with Xpre:

∑ θ θ∣ = =
θ

P X d p N k( 1) ( ) ( , 1)pre pre pre

pre

As each of the three coherence levels are equally likely by design 
θ = .p( ( ) 0 33)pre , we can define the mean as

∑
μ

θ
=

k
3

pre

The aggregate variance σ​2 can be decomposed into both between- and within-
condition variance. From the law of total variance:

∑ ∑σ θ θ μ θ θ= ∣ − + ∣
θ θ

p E X k p X k( ) [ [ ] ] ( )Var( )2
pre pre pre

2
pre pre pre

pre pre

∑σ θ θ μ= − +
θ

p k( ) [ ] 12
pre pre

2

pre

Because the possible values of θ are the same pre- and post-decision, μ and  
σ​2 are the same for both Xpre and Xpost. Actions a are made by comparing Xpre to  
a criterion parameter m that accommodates any stimulus-independent biases 
toward the leftward or rightward response, = −a X msign( )pre .

Each sample, Xpre and Xpost, updates the log posterior odds of motion direction 
(rightward or leftward), LOdir, which under flat priors is equal to the log-likelihood:

=
= ∣

= − ∣
=

∣ =
∣ = −

log
P d X

P d X
log

P X d
P X d

LO
( 1 )

( 1 )
( 1)

( 1)dir
pre pre

pre

pre

pre

=
= ∣

= − ∣
=

∣ =
∣ = −

log
P d X

P d X
log

P X d
P X d

LO
( 1 )

( 1 )
( 1)

( 1)dir
post post

post

post

post

where, as a result of the Gaussian generative model for X, LOdir is as follows:

=
μ σ

μ σ

+ ∕

− ∕
logLO e

e

X

Xdir

( ) 2

( ) 2

2 2

2 2

μ
σ

= XLO 2
dir 2

The total accumulated evidence for rightward vs. leftward motion at the end of 
the trial is

= +LO LO LOdir
total

dir
pre

dir
post

Positive values indicate greater belief in rightward motion; negative values, 
greater belief in leftward motion.

To update confidence in one’s choice, the belief in motion direction (LOdir) 
is transformed into a belief about decision accuracy (LOcorrect) conditional on the 
chosen action:
If =a 1:

=LO LOcorrect dir

Otherwise:

= −LO LOcorrect dir

As with LOdir, LOcorrect can be decomposed into pre- and post-decisional 
components:

= +LO LO LOcorrect
total

correct
pre

correct
post

The final log odds correct is then transformed to a probability to generate a 
confidence rating on a 0–1 scale:

=
+ −

Confidence 1
1 exp( LO )correct

total

Extensions of the Bayesian model. Temporal weighting. We considered the 
possibility that subjects may apply differential weights to pre- and post-decision 
motion when computing confidence6,7. To capture this possibility, we introduced 
free parameters wpre and wpost that controlled the relative weights applied to pre- 
and post-decision evidence:

= +w wLO LO LOcorrect
total

pre correct
pre

post correct
post

Choice weighting. We considered that subjects might pay selective attention to 
post-decision evidence dependent on whether it is consistent/inconsistent with 
their initial choice (a form of commitment bias; this is similar to the “selective 
reduced-gain” model of Bronfman et al.6). To capture such effects, we introduced 
two weighting parameters wcon and wincon that differentially weight confirmatory 
and disconfirmatory post-decision evidence:
If = asign(LO ) sign( )dir

post :

= + wLO LO LOcorrect
total

correct
pre

con correct
post

Otherwise:

= + wLO LO LOcorrect
total

correct
pre

incon correct
post

Choice bias. A second variant of commitment bias operates to boost confidence 
in the chosen response without altering sensitivity to post-decision evidence (the 
choice acts as a prior on subsequent confidence formation25; this is similar to 
Bronfman et al.’s “value-shift” model6). To capture such effects, we introduced a 
parameter b that modulated final confidence dependent on the choice:

= ×
−







a b

b
LO sign( ) log

1dir
bias

= + +LO LO LO LOdir
total

dir
pre

dir
post

dir
bias

If =a 1:

=LO LOcorrect
total

dir
total

Otherwise:

= −LO LOcorrect
total

dir
total

Nonlinear confidence mapping. The ideal-observer model assumes that subjects 
faithfully report probability correct, which maximizes the quadratic scoring rule 
(QSR). We also considered the possibility that subjects may misperceive the scoring 
rule (or, equivalently, apply a nonlinear mapping between probability correct and 
reported confidence), with consequences for how particular confidence ratings 
were selected. For instance, subjects may overweight the extremes of the scale 
because they perceive these extremes as returning greater reward.

Such misperceptions can be captured by allowing a flexible mapping between 
the model’s confidence and reported confidence. We implemented a one-parameter 
scaling of log-odds22 that is able to capture both under- and overweighting of 
extreme confidence ratings:

π γ=
−







c log c

c
LO( ( ))

1

π
=

+ − c
Confidence 1

1 exp( LO( ( )))

where c denotes the interim output of the model’s estimate of probability correct.
When γ = 1, π =c c( ) , and there is no distortion. When γ > 1, the curve relating 

model confidence to reported confidence is S-shaped, whereas when γ< <0 1, an 
inverted-S-shaped curve is obtained.

Informing confidence with decision time. Finally, we considered the possibility that 
in all models subjects may use decision time from the initial decision as a cue to 
confidence23. To capture this possibility, we modulated the final LOcorrect

total  of both 
the Bayesian and extended models by response time via a free parameter βRT:

Nature Neuroscience | www.nature.com/natureneuroscience

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/natureneuroscience


ArticlesNATuRe NeuRosCIenCe

β← + logLO LO (RT)correct
total

correct
total

RT

In the case of the mapping model the modulation by decision time was applied 
before passing LOcorrect

total  through the nonlinear mapping function.
This set of model extensions led to a factorial combination of 5 model variants 

(ideal Bayesian, temporal weighting, choice weighting, choice bias, mapping) ×​ 2 
(non-response-time dependent, response-time dependent) =​ 10 models, which 
were fitted to each subject and dataset as described below.

Model fitting. We used Markov chain Monte Carlo methods implemented in 
STAN55 to sample from posterior distributions of parameters given motion 
directions d, motion coherences θpre and θpost, subjects’ choices a and confidence 
ratings r.

Pseudo-code for the Bayesian model is given below (following the STAN 
convention, scale parameters are written as s.d.):
Priors:

~m N (0, 10)

~k N (0, 10)

Model:

θ~X N dk( , 1)pre pre

θ~X N dk( , 1)post post

~ _ −a X mBernoulli logit(100( ))pre

~ .r N (conf, 0 025)

Here “conf ” is the output of the confidence computation detailed above. The 
logit function implements a steep softmax relating Xpre to a and is applied for 
computational stability. The mapping between model confidence and observed 
confidence allowed a small degree of imprecision (σ​ =​ 0.025) in subjects’ ratings, 
roughly equivalent to grouping continuous ratings made on a 0–1 scale into ten 
bins.

We placed weakly informative priors over coefficients in the extended models 
for computational stability. In the weighted models, w parameters were drawn from 
N (1, 1)  distributions bounded below by 0 and above by 5. In the bias model, b was 
drawn from a uniform [0 1] distribution. In the nonlinear mapping model, γ was 
drawn from a positively constrained N (1, 1)  distribution. In the RT models, βRT 
was drawn from an N (0, 10)  distribution.

We fitted each model with 12,000 samples divided across 3 chains separately 
for each subject’s fMRI and behavioral datasets. We discarded 1,000 samples 
per chain for burn-in, resulting in 9,000 stored samples. Chains were visually 
checked for convergence and Gelman and Rubin’s potential scale reduction factor 
R  was calculated for all parameters[63]. For most models and subjects (469 
out of 470), R  values were all <​ 1.1, indicating good convergence. The fit of the 
choice-weighted +​ RT model to the behavioral session data failed to converge for 
one subject; this log-likelihood value was omitted from the model comparison 
calculations detailed below.

Model comparison. To compare models, we assessed the ability of a model fit to 
behavioral data to capture the data of the same subject in the fMRI session, and 
vice-versa. For each subject and model, we drew 1,000 samples from posterior 
distributions of fitted parameters and generated synthetic choice and confidence 
data. The trialwise log-likelihood (itself a sum of choice and confidence rating 
log-likelihoods) was summed across trials and stored for each parameter draw, and 
then averaged across draws to return a subject- and model-specific cross-validated 
log-likelihood. Fitted parameter values from the best-fitting Bayesian +​ RT model 
for behavioral and fMRI sessions are listed in Supplementary Table 3.

Model simulations. To visualize qualitative features of the Bayesian model (Fig. 1b),  
we simulated 10,000 trials from each condition of the factorial design with k =​ 4 
and m =​ 0. Pre- and post-decision motion coherences were crossed in a fully 
factorial design and drawn from the set 0%, 25% or 50%. True motion direction d 
was selected randomly on each trial.

To determine the ability of the best-fitting Bayesian +​ RT model to account for 
subjects’ choices and confidence ratings (a posterior predictive check), we drew 
1,000 samples from posterior distributions of fitted parameters and for each draw 
simulated one trial sequence with these parameter settings and averaged over 
simulations. To obtain regressors for fMRI and mediation analyses, we also stored 
values of pre-decision evidence (LOcorrect

pre ) and post-decision evidence (LOcorrect
post ) 

averaged over 5,000 trials per condition (3 pre-decision coherence levels ×​ 3 post-
decision coherence levels ×​ 2 choice accuracies).

fMRI acquisition and preprocessing. Whole-brain fMRI images were acquired 
using a 3 T Allegra scanner (Siemens) with an NM011 head transmit coil (Nova 
Medical, Wakefield, MA) at New York University’s Center for Brain Imaging. 
BOLD-sensitive echo-planar images (EPI) were acquired using a Siemens epi2d 
BOLD sequence (42 transverse slices, TR =​ 2.34 s; echo time =​ 30 ms; 3 ×​ 3 ×​ 3 mm 
resolution voxels; flip angle =​ 90 degrees; 64 ×​ 64 matrix; slice tilt –30 deg T >​ C; 
interleaved acquisition). The main experiment consisted of 4 runs of 315 volumes, 
and the localizer scan consisted of a single run of 211 volumes. A high-resolution 
T1-weighted anatomical scan (MPRAGE, 1 ×​ 1 ×​ 1 mm voxels, 176 slices) and local 
field maps were also acquired.

All preprocessing was carried out using SPM12 v6225 (Statistical Parametric 
Mapping; http://www.fil.ion.ucl.ac.uk/spm). The first five volumes of each run 
were discarded to allow for T1 equilibration. Functional images were slice-time 
corrected, realigned and unwarped using the collected field maps56. Structural 
T1-weighted images were coregistered to the mean functional image of each 
subject using the iterative mutual information-based algorithm. Each participant’s 
structural image was segmented into gray matter, white matter and cerebral 
spinal fluid images using a nonlinear deformation field to map it onto a template 
tissue probability map57. These deformations were applied to both structural and 
functional images to create new images spatially normalized to MNI space and 
interpolated to 2 ×​ 2 ×​ 2 mm voxels. Normalized images were spatially smoothed 
using a Gaussian kernel with a full-width half-maximum of 6 mm.

fMRI analysis. We employed a combination of region-of-interest (ROI) analyses 
on trial-by-trial activity estimates, multilevel mediation models and standard 
whole-brain general linear model (GLM) approaches.

Whole-brain univariate analysis. We used SPM12 for first-level analyses. In all 
GLMs, regressors were convolved with a canonical hemodynamic response 
function. Motion correction parameters estimated from the realignment procedure 
and their first temporal derivatives were entered as nuisance covariates, and low-
frequency drifts were removed using a high-pass filter (128-s cutoff).

GLM1. GLM1 was constructed to examine activity associated with changes in 
post-decision motion strength. Correct and incorrect trials were modeled as 
separate stick functions time-locked to the onset of the post-decision motion plus 
parametric modulations by post-decision motion strength (low =​ –1, medium =​ 0, 
high =​ 1). Additional regressors were also included at the onset of pre-decision 
motion (parametrically modulated by pre-decision motion strength and log 
response times) and confidence rating period.

GLM2. GLM2 was constructed to examine activity associated with changes in 
reported confidence. A stick function time-locked to confidence rating onset was 
parametrically modulated by reported confidence. Regressors were also included at 
the onset of pre-decision motion (parametrically modulated by log response times) 
and post-decision motion.

ROI analysis. A priori regions of interest were specified as follows. The pMFC ROI 
was an 8-mm sphere around peak coordinates (MNI coordinates [x y z] =​ [0 17 
46]) obtained from our previous study of decision confidence12. Anterior prefrontal 
ROIs were obtained from the right-hemisphere atlas developed by Neubert et al.24 
(area 46, FPl and FPm) and mirrored to the left hemisphere to create bilateral 
masks. The vmPFC ROI was an 8-mm sphere around peak coordinates [–1 46 –7]  
obtained from a meta-analysis of value-related activity58. The ventral striatum 
ROI was specified anatomically from the Oxford-Imanova Striatal Structural Atlas 
included with FSL (http://fsl.fmrib.ox.ac.uk). Within each ROI we averaged single-
trial β estimates over voxels, scaled the time series to have zero mean and unit s.d., 
and computed the mean activity per condition.

Quantification of single-trial response magnitudes. To facilitate both ROI and 
mediation analyses, we estimated single-trial BOLD responses as a β time series. 
This was achieved by specifying a GLM design matrix with separate regressors 
(stick functions) for each trial, each aligned to either the onset of the post-decision 
motion stimulus (for PDE analyses in Fig. 3) or the confidence rating period (for 
mediation models and regressions on confidence; Figs. 4 and 5). Each regressor 
was convolved with a canonical hemodynamic response function. Motion-
correction parameters estimated from the realignment procedure and their first 
temporal derivatives were entered as nuisance covariates, and low-frequency drifts 
were removed using a high-pass filter (128 s cutoff). One important consideration 
in using single-trial estimates is that the β for a given trial can be strongly affected 
by acquisition artifacts that cooccur with that trial (for example, motion or scanner 
pulse artifacts). For each subject we therefore computed the grand mean β estimate 
across both voxels and trials, and excluded any trial whose mean β estimate across 
voxels exceeded 3 s.d. from this grand mean38. An average of 3.6 trials per subject 
(1.0%; maximum =​ 9 trials) were excluded.
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To visualize the relationship between activity and task variables over time, 
we also extracted the preprocessed BOLD data per TR. Low-frequency drifts 
(estimated using a cosine basis set, 128 s cutoff) and motion parameters plus 
their first temporal derivatives were regressed out of the signal, and the residual 
activity was oversampled at 10 Hz. Time courses were extracted from 12-s windows 
time-locked to the onset of pre-decision motion. To construct Fig. 4c, we applied 
a GLM (see below) to each time point, resulting in a time course of β weights for 
each regressor. Nonparametric permutation tests were used to assess group-level 
significance of β weights. For each permutation, we randomized the assignment 
between BOLD time series and trial labels and recalculated the group-level 
t-statistic comparing β weights against zero (10,000 permutations). Individual 
time points were labeled as significant if the true t-statistic fell outside the 2.5th or 
97.5th percentiles of the null distribution.

ROI GLMs. As in our regression analyses of behavior, we modeled subject-level 
slopes and intercepts, and report coefficients and statistics at the population level. 
To test for an interaction between response accuracy and post-decision evidence, 
we fitted the following model to each ROI β series:

~ + _ _ + _ _
+ × _ _ + ×

_ _ +

BOLD accuracy pre decision coherence post decision
coherence accuracy pre decision coherence accuracy
post decision coherence log(RT)

Accuracy was specified as error =​ –1, correct =​ 1; pre- and post-decision 
coherence were specified as low =​ –1, medium =​ 0, high =​ 1.

To estimate relationships between ROI activity and pre- and post-decision 
evidence from the fitted computational model (i.e., log-odds correct) we fitted the 
following model:

~ + +BOLD LO LO log(RT)correct
pre

correct
post

To assess relationships between confidence and activity on both change-
of-mind and no-change-of-mind trials, we conducted a segmented regression 
analysis. This method partitions the independent variable into discrete intervals, 
and a separate slope is fit to each interval. Here, we separated the effect of 
confidence on change (confidence ≤​ 0.5) and no-change (confidence >​ 0.5) trials, 
and fit the following model:

~ _ + _ _ + logBOLD change confidence no change confidence (RT)

Multilevel mediation analysis. We performed multilevel mediation analysis of a 
standard three-variable model20 using the Mediation Toolbox (http://wagerlab.
colorado.edu/tools). Mediation analysis assesses whether covariance between two 
variables (X and Y) is explained by a third variable (the mediator, M). Significant 
mediation is obtained when inclusion of M in a path model of the effects of X on Y 
significantly alters the slope of the X–Y relationship. When applied to fMRI data, 
mediation analysis thus extends the standard univariate model by incorporating an 
additional outcome variable (in this case, confidence reports) and jointly testing 
three effects of interest: the impact of X (post-decision evidence, LOcorrect

post ) on brain 
activity (path a); the impact of brain activity on Y (confidence reports), controlling 
for X (path b); and formal mediation of X on Y by brain activity M. In all models 
we included log reaction times and pre-decision evidence (LOcorrect

pre ) as covariates 
of no interest.

The Mediation Toolbox permits a multilevel implementation of the standard 
mediation model, treating participant as a random effect59. Significance estimates 
for paths a, b and a ×​ b are computed through bootstrapping. We estimated 
distributions of subject-level path coefficients by drawing 10,000 random samples 
with replacement. Two-tailed P-values were calculated at each voxel/ROI from the 
bootstrap confidence interval60.

Whole-brain statistical inference. Single-subject contrast images were entered into a 
second-level random effects analysis using one-sample t-tests against zero to assess 
group-level significance. To correct for multiple comparisons, we used Gaussian 
random field theory as implemented in SPM12 to obtain clusters satisfying 
P <​ 0.05, family-wise error (FWE)-corrected at a cluster-defining threshold of 
P <​ 0.001. Numerical simulations and tests of empirical data collected under the 

null hypothesis show that this combination of cluster-defining threshold and 
random field theory produces appropriate control of false positives61,62.

To apply multiple-comparisons correction to the multilevel mediation model 
output, we took a non-parametric approach because second-level images already 
comprise bootstrapped P-values. The cluster extent threshold for FWE correction 
was estimated on the basis of Monte Carlo simulation (100,000 iterations) using the 
3dClustSim routine in AFNI (version compiled September 2015; http://afni.nimh.
nih.gov) and SPM12’s estimate of the intrinsic smoothness of the residuals. Again, 
this method in conjunction with a cluster-defining threshold of P <​ 0.001 provides 
appropriate control over false positives61,62. Statistical maps were visualized using 
FSLview (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and Surf Ice (https://www.nitrc.org/
projects/surfice/).

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Code availability. MATLAB, STAN and R code for reproducing all analyses and 
computational model fits is available on GitHub (https://github.com/metacoglab/
FlemingVdPuttenDaw).

Data availability. Anonymized behavioral data are available on GitHub (https://
github.com/metacoglab/FlemingVdPuttenDaw). Unthresholded group-level 
statistical maps are available on NeuroVault (https://neurovault.org/collections/
VEJNEJRA/). Other data that support the findings of this study are available from 
the corresponding author upon reasonable request.
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    Experimental design
1.   Sample size

Describe how sample size was determined. No statistical tests were used to predetermine the sample size, but this sample size 
is within the standard range in the field.

2.   Data exclusions

Describe any data exclusions. Established exclusion criteria (Online Methods, section "Participants") were applied 
for excessive head motion (n=1) and lack of variability in confidence (n=1).

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

Computational and behavioural findings were reliably reproduced across 
behavioural and fMRI testing sessions. All attempts at replication were successful.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Participants were not grouped and hence no randomization was performed. Trial 
order was fully randomized for each subject.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Data collection and analysis were not performed blind to the conditions of the 
experiments

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The task was programmed in MATLAB 2014b using Psychtoolbox (version 3.0.12). 
 
Behavioural data and fMRI ROI data were analysed using hierarchical mixed-effects 
regression using lme4 in R (Version 3.3.3). P-values for linear regression 
coefficients were obtained using the car package in R (version 2.1) as Wald type III 
chi-squared tests. Computational models were implemented in STAN (rstan, 
Version 2.6.0).  
 
fMRI data were analysed using SPM 12 (v6225), AFNI (version compiled September 
2015) and custom scripts in MATLAB. Mediation analyses were carried out with the 
Mediation Toolbox in MATLAB (https://canlabweb.colorado.edu/wiki/doku.php/
help/mediation/m3_mediation_fmri_toolbox). MRI images were visualised using 
FSL (version 5.0.8) and SurfIce.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

All unique materials  are readily available from the authors or freely available 
online.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No cell lines were used

b.  Describe the method of cell line authentication used. No cell lines were used

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No cell lines were used

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No cell lines were used

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Twenty-five healthy participants were included in the analysis of behavioural data 
(14 females, mean age 24.0, SD = 3.6); of these, twenty-two healthy participants 
were included in the analysis of fMRI data (12 females, mean age 24.1, SD = 3.4).
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 Form fields will expand as needed. Please do not leave fields blank.

    Experimental design
1.   Describe the experimental design. Event-related, randomized trial sequence

2.   Specify the number of blocks, trials or experimental 
units per session and/or subject, and specify the 
length of each trial or block (if trials are blocked) 
and interval between trials.

4 blocks, 90 trials per block, 5.9s per trial, 2s inter-trial interval

3.   Describe how behavioral performance was 
measured.

Button press, response time, confidence rating. Performance was assessed 
via hierarchical mixed-effects regression of the effects of motion 
coherence on accuracy and confidence.

    Acquisition
4.   Imaging

a. Specify the type(s) of imaging. Functional and structural

b. Specify the field strength (in Tesla). 3 Tesla

c. Provide the essential sequence imaging parameters. BOLD-sensitive echo-planar images (EPI) were acquired using a Siemens 
epi2d BOLD sequence (42 transverse slices, TR = 2.34s; echo time = 30ms; 
3 x 3 x 3 mm resolution voxels; flip angle = 90 degrees; 64 x 64 matrix; slice 
tilt -30deg T > C; interleaved acquisition). 

d. For diffusion MRI, provide full details of imaging 
parameters.

N/A

5.   State area of acquisition. Whole-brain

    Preprocessing
6.   Describe the software used for preprocessing. SPM12 v6225 

7.   Normalization

a. If data were normalized/standardized, describe the 
approach(es).

Each participant’s structural image was segmented into gray matter, white 
matter and cerebral spinal fluid images using a nonlinear deformation field 
to map it onto a template tissue probability map. These deformations 
were applied to both structural and functional images to create new 
images spatially normalized to Montreal Neurological Institute space and 
interpolated to 2x2x2 mm voxels.

b. Describe the template used for normalization/
transformation.

SPM12's MNI template

8.   Describe your procedure for artifact and structured 
noise removal.

Motion correction parameters estimated from the realignment procedure 
and their first temporal derivatives were entered as nuisance covariates.

9.   Define your software and/or method and criteria 
for volume censoring, and state the extent of such 
censoring.

N/A
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    Statistical modeling & inference
10. Define your model type and settings. First-level mass univariate; second-level random effects

11. Specify the precise effect tested. Positive/negative interaction of post-decision motion strength x choice 
accuracy (GLM1); positive/negative parametric effects of confidence 
(GLM2).

12. Analysis

a. Specify whether analysis is whole brain or ROI-based. Whole-brain and ROI-based

b. If ROI-based, describe how anatomical locations were 
determined.

The pMFC ROI was an 8mm sphere around peak coordinates (MNI 
coordinates [x, y, z] = [0 17 46]) obtained from Fleming et al. (2012). 
Anterior prefrontal ROIs were obtained from the right-hemisphere atlas of 
Neubert et al. (2014) and mirrored to the left hemisphere to create 
bilateral masks (area 46, FPm, FPl). The vmPFC ROI was an 8mm sphere 
around peak coordinates [-1 46 -7] obtained from a meta-analysis of value-
related activity (Bartra et al. 2013). The ventral striatum ROI was specified 
anatomically from the Oxford-Imanova Striatal Structural atlas included 
with FSL.

13. State the statistic type for inference. 
(See Eklund et al. 2016.)

For all analyses except multilevel mediation, statistical inference was 
conducted using Gaussian random field theory as implemented in SPM12 
to obtain clusters satisfying P<0.05, family-wise error (FWE) corrected at a 
cluster-defining threshold of P<0.001 uncorrected. To apply multiple 
comparisons correction to the multilevel mediation model output we took 
a non-parametric approach due to second-level images already comprising 
bootstrapped P-values. The cluster extent threshold for FWE correction 
was estimated based on Monte Carlo simulation (100,000 iterations) using 
the 3dClustSim routine in AFNI (version compiled September 2015), 
cluster-defining threshold P<0.001 uncorrected. Numerical simulations 
and tests of empirical data collected under the null hypothesis show that 
both methods provide appropriate control over false positives (Eklund et 
al. 2016).

14. Describe the type of correction and how it is 
obtained for multiple comparisons.

FWE and Monte-Carlo

15. Connectivity

a. For functional and/or effective connectivity, report the 
measures of dependence used and the model details.

N/A

b. For graph analysis, report the dependent variable and 
functional connectivity measure.

N/A

16. For multivariate modeling and predictive analysis, 
specify independent variables, features extraction 
and dimension reduction, model, training and 
evaluation metrics.

N/A
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