Follobanen
New Double track Oslo – Ski

Anne Kathrine Kalager
Project director
Norwegian Rail Administration
Railroad development projects in the Oslo region

Agenda

1. Follobanen
 Background and project overview

2. Detailed view about:
 - Tunell
 - TBM or drill & blast?
 - Slab track or ballasted track

3. The road ahead
«The Norwegian Rail Administration works systematically for continuous improvement of safety to avoid injury to people and the environment»

Yes! I am responsible

JEG TAR ANSVAR
Follobanen will be built to meet the increased demand for rail capacity south of Oslo

- 1,1 million residents in the Oslo region
- 30 % population increase by 2025
- 150 000 passengers every day
- Road traffic is increasing
- Currently no spare capacity on neither rail nor road.
- Great potential for increased freight traffic
- High speed train line towards Sweden and Europe are currently under evaluation
The largest railway project in Norway - 22 km of new double-track railway line between Oslo S and Ski

The longest railway tunnel in Norway - approximately 19.5 km

Designed for at least 200 km/h or higher

Two separate tubes with cross-passage every 500 meters

No stop between Oslo and Ski

Both Drill and Blast and TBM are considered

Freight connection to Alnabru is considered, but not a part of the project
Concept 1
One double-track tunnel with exit to the surface every 1000 meter

Concept 2
A double track tunnel with a parallel service tunnel and escape connections to service tunnel every 1000 meter

Concept 3a
Two single track tunnels with escape connections every 500 meter

Concept 3b
Two single track tunnels with escape connections every 500 meter

Conclusion

Concept 1 and 2: Only drill and blast are suitable

Concept 3: Both drill and blast and TBM are suitable

Decisions about two separate tubes and both methods are to be considered
Tunnel with two separate tubes

Cross-connections every 500 meter

app 25 m
- Gneiss with fractured zones and intrusions
- Borability, DRI: 27 - 52 and CLI: 4 - 14
- Degree of fracturing: 1 - 2
- Stability of the rock mass is considered to be good, except for some faults and fractured zones
- Hydrogeology: water leaking is expected in some areas mainly in fractured zones and intrusions
Why TBM at Follobanen?

- TBM is considered to be competitive regarding both price and time
- The circular profile of TBM is suitable for railway
- Full lining might be an advantage on railways designed for high speed and heavy traffic
- A bored tunnel can give less disturbance to the external environment (access tunnels and ground vibration) during the excavation phase
Types of TBM

Open machine

- "Simple" machine
- Relatively low price
- Good progress in hard rock formations
- Sensitive to soft rock and fault zones
- Open front, pregrouting and water/frost protection is needed
- Rock support and water/frost protection behind the machine

Double shield machine

- Good performance and more independent of ground conditions
- Boring and simultaneous segment installation
- Permanent rock support trough segment lining
- Traditional ground support, pregrouting and water/frost protection is limited
- Water protection by either "Single shell" or "Double shell" lining
Recommended type of TBM

Double shield, a predictable solution
Solutions for water and frost protection

Drill and blast
- Drained solution with cast in place concrete lining – Pregrouting is required in sensitive areas

TBM
Single or double shell lining?
- Single shell lining: Concrete segments with gaskets is water tight
- Double shell lining is usually drained

Requirements
- Water / frost protection
- Rock support
- Progress

Conclusion
Single shell lining is recommended
9 access tunnels using drill & blast
TBM

Rig areas / access tunnels

Map showing routes and locations in and around Oslo, including Østfoldbanen, Langhus, Kolbotn, Åeland, and Moss.
Rig area with 4 TBM machines

Size of area: App 130 000 m²
TBM:
- 15 m/day - 90 m/week
- App. 300 working days (144 h/week) pr. year

Drill & blast (incl. frontinjeksjon)
- 4-5 m/day - 15-28.5 m/week (depending on level of frontinjeksjon)
- 101 t/week and 46 weeks/year
The differences between TBM (three variables) and drill & blast are, relatively speaking, small.

Choise of methods are depending on the criterea that are chosen.
Possible conflicts with existing facilities

Existing tunnels

New tunnels
TBM muck (rock chips)

App 4.5 million m3 total volume rock
= App 7.2 million m3 excavated muck

The volume of the Cheops Pyramid
= 2.6 mill. m3

1.7 / 2.8 Cheops pyramids that goes to disposal site....
Transport

Closed convey or belt:
- No conflicts with road traffic
- Environmentally friendly
- Temporary construction - vulnerable nature resources is a challenge

With car:
- Heavy traffic
- Dust
- Noise

With train:
- Environmentally friendly solution
- Lack of spare capacity on railroad is challenging
Suitable land fillings for masses is being considered. Depending of method and production facilities, some of the mass may be re-used.

Conventional driven tunnel:
- Some of the material can be re-used for base filling and balasted track
- Need for transportation of mass from several locations to production area/storage

TBM:
- Mass used for production of concrete
- Reduced need for transport
Comparison to other projects

Two separate tubes on Follobanen

- Main reason for differences to other comparable projects.
- May lead to possible lack of space with 52m² diameter tubes

The following points are to be evaluated:

- Track system – Slab track or balasted track?
- Catenary system – S25 are used today
- Signaling system – Conventional or ERMTS?
- Technical installations
4 possible solutions:
1. Drill and blast
2. TBM
3. Combination - drill and blast and TBM
4. Both alternative methods will be prepared for tender

- Based on preliminary results both methods are still to be considered.
- A decision will be reached within the next 6 months
Follobanen – made for the future

Criteria:
- Cost
- Time
- LCC
- Environmental conditions

Regardless of the choice of methods, this will be a great challenge for the Norwegian Rail Administration, external consultants and contractors taking part in the project 😊
Design plan
- Documentation of lifetime impacts regarding material use, construction work, material transport and operation

Construction plan
- Eco procurement, buying green
- Improvement through better environmental solutions and products

Construction
- Demanding “Environmental product declaration” EPD of the most important materials
- Environmental accounting

Result: - More environmental friendly railroads
Follobanen must satisfy tomorrow’s requirements for:

- Safety
- Reliability
- Maintainability

Solutions must last for a lifetime

Rail as environmentally friendly transportation:
- An environmental account will document the environmental effect of the construction phase
Time schedule

<table>
<thead>
<tr>
<th>Year</th>
<th>Activity</th>
</tr>
</thead>
</table>
| 2011 | Main planning
Impact assessment - Approved |
| 2012 | Area development plan for public scrutiny
Detail planning
Permission from the Ministry of Transportation and Communications to start the constructions work |
| 2013 | Ski station: Carry out the first construction phase in 2012 and 2013
The rest of the project: Most of the contracts will probably be agreed on between 2013 and 2016 |

Our target: Finalized in 2018 - 19
Thank you for the attention...