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Abstract— Humans make recognition-based decisions by
assessing stimuli familiarity while considering strategic biases.
For example, in the legal system, people balance eyewitness
memory against the consequences of mistakenly identifying the
wrong suspect. Under uncertain memory, individuals can
flexibly shift criteria to optimize decisions based on the
situation. Prior single-neuron research has characterized
memory-selective (MS) neurons that accurately distinguish
new and familiar stimuli, but it remains unclear whether these
neurons respond differently under various decision biases.
Here, we recorded extracellular action potentials of single
neurons across frontal and temporal cortices while subjects
performed an image recognition task with criterion
manipulations. Firing rate patterns of MS neurons were
decoded using a Support Vector Machine (SVM) classifier to
identify selectivity during pre-stimulus and stimulus periods.
In all recorded brain regions, we identified MS,
visually-selective, and criterion-selective neurons.
Furthermore, MS neurons encoded criterion shifts and image
categories, suggesting that memory is integrated in parallel
with other stimuli within the single neurons. These findings
reveal that MS neurons are influenced by decision biases and
other stimulus features that encompass the nuances of
memory-based decision-making.

I. INTRODUCTION

Recognition memory allows us to identify familiar
objects, individuals, and events. It is an important
component of declarative memory, or memory that is
selectively and consciously retrieved. Recognition memory
is often impaired in individuals with amnesic or
neurodegenerative conditions like Alzheimer’s disease, so
recognition tasks are routinely used for assessments of
human cognition [1]. Under uncertainty, memory-related
decisions rely on integrating information from two aspects:
(1) strength of familiarity with the stimulus and (2) the
external context in which the stimulus is presented [2]. In
other words, memory recall is often integrated with
metacognitive decision processes when people decide
whether to report or withhold uncertain evidence of
familiarity. Hence, decision-making requires the interplay of
memory strength and context.

Signal detection theory, a mathematical model, provides a
framework to quantify the distinction between the retrieval
and the decisional components of recognition memory. In
this model, a human indicates a “remember” response by
making a high-confidence “old” judgment. Adaptive
decision-making involves setting a decision criterion along
the familiarity continuum, a threshold above which a human
will classify an item as a prior encounter [4]. In an old-new
recognition memory task, a liberal criterion accepts items as
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old despite little memory evidence, while a conservative
criterion accepts fewer items as old and requires more
memory evidence. Shifting criteria allows an agent to make
optimal decisions in different scenarios.

The neuroscience of recognition memory has remained
elusive. Neuroimaging studies of recognition memory have
long overlooked the role of criterion-shifting, a flexible and
highly individualistic characteristic that introduces response
bias during evaluation [5]. In fact, participants engage in
decision biases during tasks even in the absence of
instruction. To better disentangle memory and decisional
processes, it is necessary to control for decision biases in
our experimental design through deliberate manipulations.

Variation in criterion-shifting between individuals
suggests the existence of a biological basis encoding
criterion. Some individuals will consistently maintain either
a liberal or conservative criterion, while others are more
flexible in adapting their criterion to optimally adhere to
shifting priorities. Using a behavioral task to deliberately
encourage criterion shifts, we have identified
criterion-sensitive regions across widespread fronto-parietal
regions by using functional magnetic resonance imaging
(fMRI) [6]. Neuroimaging like fMRI uses hemodynamics,
or changes in blood flow measured with
blood-oxygen-level dependent (BOLD). Hemodynamics
serves as a useful proxy because neuron activity increases
with greater blood perfusion of the brain. However,
neuroimaging displays the activity of populations of
neurons, so improved techniques are needed to understand
the dynamics of specific single neurons.

Single neuron recording provides much better temporal
and spatial resolution than non-invasive neuroimaging or
electroencephalograms. Prior single-neuron studies have
suggested that single cells, or neurons in this case, can
encode stimulus identity (visually-selective) and familiarity
(memory-selective) with abstract concepts.
Memory-selective neurons, which fire differently in
response to previously seen concepts, are in the
hippocampus and amygdala [7]. However, it remains
unknown how neurons selectively integrate memory
retrieval and decision biases, and whether both signals are
engaged dynamically when required.

Here, we aimed to uncover the existence of
criterion-selective neurons, which are cells that respond
differently under liberal and conservative criteria. Then, we
sought to understand how visually-selective and
memory-selective neurons respond under controlled
criterion-shifts to determine if memory and decisional
aspects of recognition are processed in parallel.

II. METHODS

A. Behavioral Task Design
Patients with drug-resistant epilepsy received electrodes

for intracranial monitoring based on clinical criteria. Each
macro-electrode contained eight 40 μm diameter
microwires, from which broadband 0.1 to 9000 Hz
extracellular signals were recorded at a 32 kHz sampling
rate (ATLAS system, Neuralynx Inc.). Subjects (ages 24–65
(M=40); 5 female, 1 male, 1 non-binary) were 7 epilepsy
patients from Cedars-Sinai Medical Center. The institutional
review boards of Cedars-Sinai Medical Center and the
California Institute of Technology approved all protocols.
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Participants performed a recognition memory task with
criterion manipulations (Appendix 1A, B). Each subject
viewed 256 images per session, which had 16 test blocks of
16 images retrieved from the LaMem database [8].

Each block began with a study phase. Subjects
memorized a series of 32 images, shown once (16 images)
or twice (16 images). Discriminability or difficulty of
memory recall was considered “easy” for images displayed
twice and “hard” for images displayed once.

In the test phase, subjects decided whether the image had
been present in the study phase and how confident they
were. Correct responses for old or new items are “hits” or
“correct rejections,” while incorrect responses for an old or
new item are “false alarms” or “miss” respectively.

Two error schemes were implemented to alternatively
encourage liberal or conservative criteria shifts. While
implementing a liberal criteria, one minimizes misses, while
under a conservative criteria, one minimizes false alarm.
Subjects’ performance were evaluated based on two
parameters: (1) difficulty of the task, assessed by
discriminability (da), and (2) strategy of the subject,
assessed by criterion placement (c) and criterion shift (C).

A normal, equal-variance signal detection theory model
evaluated task performance per individual (Appendix 1.C.).
Discriminability (da), differences in discriminability across
conditions (Δda), criterion placement (ca), and criterion
shifting (C) is computed across all conditions. Hit rate (HR)
and false alarm rate (FAR) were computed from summation
of the total hit (H), miss (M), correct rejection (CR), and
false alarm (FA) rates within each trial:
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where z is the density of standard normal distribution and s
is the standard deviation ratio between old item and new
item distributions. We set s = 0.8, which is the mean ratio
computed for recognition memory tests [9].

B. Spike Sorting
Extracellular action potentials from neurons were

recorded in subjects during the task. Raw signals were
bandpass filtered 300–3,000 Hz. Spikes were detected and
sorted offline using OSort (v4.1), a semi-automatic,
template-matching algorithm [10]. OSort used an adaptive
threshold to rudimentarily filter putative neurons, but spikes
could be interrupted by electrical noise or neurons firing in
synchrony. Thus, manual offline sorting remained necessary
with a qualitative rubric (Appendix 2.A). We recorded 955
single neurons in five brain regions: medial temporal lobe
(MTL; n=334), medial frontal cortex (MFC; n=288),
posterior temporal cortex (PTC; n=158), orbitofrontal cortex
(OFC; n=104), and insular cortex centromedian thalamic
nucleus (INS, CM; n=71) (Appendix 2.B).

C. Statistical and Decoding Analysis
Neuron selectivity was determined by comparing firing

rates between two 1s windows: (1) pre-stimulus phase
defined -1000–0 ms before image onset and (2) stimulus
phase from 200–1200 ms after image onset (t=0 ms).
Recorded stimulus period is offset by 200 ms from image
onset to compensate for the time neurons need to encounter
and process visual stimuli [11].

We assessed four types of neuron selectivity: image
category, criterion, memory, and confidence. A neuron was
considered visually-selective (VS) if the firing rate differed
across the four visual categories using a 1×4 analysis of
variance (ANOVA) test at p<0.05. A memory-selective
(MS) cell differentially fires when correctly classifying new
and old stimuli; confidence-selective neurons respond
differently in low and high confidence scenarios, as assessed
using paired t-tests. A criterion-selective (CS) neuron fires
distinctively in conservative and liberal criteria trials either
in pre-stimulus or stimulus test phases.

Single-trial population decoding was performed on
high-firing neural populations (>0.4 Hz) assembled across
sessions. Firing rates for each cell were first detrended and
then normalized. A 10-fold cross validation linear support
vector machine (SVM) classifier for neural decoding was
implemented in MATLAB (R2023a). The decoder randomly
selected 80% of the neural population to analyze, and
performance was tested on the remaining 20% to estimate
the variance of random decoding. Time-resolved decoding
was further performed on spike counts measured in a
200-ms moving window from -1000–1200 ms. The
decoder’s performance was evaluated against the 95th

percentile of a null distribution. Performance was defined as
average accuracy at selecting the correct category.

III. RESULTS AND DISCUSSION

A. Task Performance
We sought to understand neuron responses to stimuli and

behaviors. Discriminability manipulations successfully
altered task difficulty between hard and easy
discriminability conditions. Mean image discriminability
(da) across hard discriminability trials (Mean (M)=1.16,
Standard Deviation (SD) =0.943) remained significantly
lower compared to easy ones (M=1.68, SD=1.18) (M∆ =
-0.52, 95% CI [-0.66, -0.38]) confirming that viewing
stimuli once versus two times during the study phase
effectively modulated task difficulty for subjects.

Criterion (c) assesses the direction and magnitude of
decision biases. Mean c in the conservative condition
(M=0.066, SD=0.41) was significantly greater than the
mean c in the liberal condition (M =-0.25, SD = 0.49),
showing that the penalty system shifted criterion placement
(M∆ = 0.32, 95% CI [0.26, 0.38]).

A criterion shift (C) between conservative and liberal
sessions was more prominent across all subjects during
uncertain memory. Mean C in hard discriminability
conditions (M=0.40, SD=0.53) was significantly higher than
mean C in easy discriminability ones (M=0.24, SD=0.53)
(M∆ = 0.16, 95% CI [0.091, 0.23]). We conclude that
participants rely more heavily on memory strength during
easier tasks but use strategic criteria shifts when it is
difficult to discriminate images.



A. Neuron Selectivity
Electrodes recorded a total of 955 single neurons and

2,917,842 action potentials. This was assessed using a
standard analysis of variance (ANOVA) test that identified
787 (82%) selective neurons in the pre-stimulus (62%) and
stimulus (38%) phases. Selective neurons are defined as
neurons that exhibited statistically significant differences in
firing rate pattern in response to various stimuli, such as
image category, criterion placement, memory familiarity,
and recollection confidence. In total, neurons encoded
2,351 selectivities, suggesting that one neuron could encode
multiple selectivities.

Among stimulus-phase neurons, VS neurons (n=171),
shown in Figure 1B, constituted the largest proportion
(35%). Among VS cells, decoding analyses revealed that
neurons were selective to memory (p<0.001) during the
stimulus but not pre-stimulus phase. The concurrent
processing of memory in VS cells suggests that the
parameters of each image category are represented as a
memorized concept. These findings matched concept cells
that encode abstractions like the categories of our task [3].
As such, VS cells served as the control group on which
decoding accuracy was evaluated for MS and CS neurons.

MS neurons were identified during the stimulus phase of
test periods. Their firing rates differ between trials where an
accurate old or new response was given (Figure 1A). There
were 18% of stimulus-phase neurons significantly (p<0.05)
modulated by memory, similar to prior studies [12].
Memory-selectivity was decoded through a SVM classifier
(p<0.001) across all defined brain regions but most appeared
in the MTL (45%). This matches the current understanding
of the MTL as the main site for the encoding and integration
of memory. The decoding classifier revealed that MS
neurons were also selective to confidence (p = 0.0035;
Figure 2A), suggesting that memory may be encoded in
gradations by familiarity. Visually-selective MS neurons
constituted 30% of the MS population, and SVM decoding
in Figure 2B supports that memory recall relies on
simultaneous categorization (p < 0.001).

Figure 1. Example raster plots of mean firing rate of single neurons that are
selective (p<0.05) to (A) memory (new > old) or (B) image category
(plant > other categories) in stimulus period when image is shown, and (C)
criterion (conservative > liberal) in the response period before decision is
made.

Figure 2. Significantly improved decoding performance suggests MS
neurons encode confidence, visual category, and criterion. Decoding
analysis depicts the mean of 100 iterations compared to the 95th percentile
of a random (0.5) classifier (shaded). (A) Confidence selectivity in MS
neurons (8%) during stimulus phase (p=0.0035). (B) Visual selectivity in
MS neurons (30%) during stimulus phase (p<0.001). (C)
Criterion-selectivity in pre-stimulus MS neurons (p=0.018).

Criterion-selective neurons, in Figure 1C, fire differently
between liberal and conservative trials (p<0.001). They
constituted 25% (193/787) of the total neuron population.
During the pre-stimulus phase, criterion-selectivity within
17% of MS neurons was detected (Figure 2C), suggesting
decision biases implemented before image onset and
indicating the presence of anticipatory cells that filter
memory recall. VS neurons, however, do not encode
criterion, indicating a unique overlap of memory with
decision bias. In the stimulus phase, criterion-selectivity
was not significant among MS cells. While decision biases
are implemented in the absence of image, criteria are not
processed concurrently with memory in image presence.

IV. CONCLUSIONS

Single neuron actions and interactions are the building
blocks of brain activity, and the clinical sequelae of most
cognitive diseases stem from the dysfunction or failure of
individual neurons. In our study on recognition memory,
single neuron recording has helped elucidate how patients
make context-informed decisions and recall information. To
our knowledge, this paper is the first to characterize
criterion-selective (CS) neurons. We identify that CS
neurons influence memory recall when subjects set a
decision bias before an image is seen. The encoding of
criteria at the single-neuron resolution suggests a biological
basis of individualistic decision thresholds. This finding
supports the existence of criterion-related brain regions
identified through neuroimaging by identifying a
single-neuron basis of criterion-encoding [6]. As a result,
our results also support the application of single-neuron
recording to the monitoring of memory-related pathological
development. Developing neural maps of decision-making
pathways can support precision medicine, allowing for
personalized treatment for neurodegenerative diseases. To
this end, single unit recordings have been used to determine
the structure of basal ganglia in Parkinson’s patients,



creating a map of information flow throughout the brain and
allowing physicians to monitor disease progression [13].

Further, our research also reveals that an individual
neuron can encode multiple sources of information, defying
categorization as selective to only one category of stimuli.
We find that memory-selective neurons are influenced by
criterion, confidence, and category, suggesting that single
neurons are highly nuanced because they integrate various
sources of information when processing memory signals.
The potential of an individual neuron to harbor multiple
varieties of stimuli provides an exciting opportunity to
evaluate how such a synchronization of signals is affected
by pathology. Thus, our research supports using
single-neuron electrode recording to decipher the neural
code underlying human behavior, understanding how cells
respond to different stimuli.

There exists several limitations to our proposed
single-neuron model of memory-based decision making.
Electrode recording remains a solely clinical intervention,
and it is unknown if our observed structure of memory
pathways translates to a healthy population. Although we
took care to record neurons from healthy brain regions of
epileptic patients, it is possible that pathological tissue could
be found at undetected sites. To this end, we seek to expand
our sample from seven patients to a larger population. We
further aim to replace the manual aspects of pre-processing
data using OSort with machine-learning algorithms in
neuron classification. Although it remains standard for a
human evaluator to verify neurons using a qualitative rubric,
we seek to completely automate neuron classification,
allowing for single-neuron data to be quickly accessible
after collection.

We also note that our dataset includes a disproportionately
higher number of neurons across the frontoparietal lobe. In
these regions, we found memory-selective neurons that
responded when decision biases were implemented in
recognition-based judgments. Thus, future research can
explore increased electrode monitoring in the medial
temporal and frontal lobes, regions in the brain where
greater concentrations of neurons were identified. This may
aid in localizing subdomains of memory or criterion activity
and tracking memory-encoding pathways between neurons.

Already, single-neuron research has been used in humans
to treat psychiatric and neurologic diseases. Deep brain
stimulation (DBS), which uses electrodes targeting single
neurons, has shown promise in treating chronic pain, motor
disorders, Parkinson’s disease, Alzheimer’s disease, and
depression. For these patients, single-neuron research can
provide treatment tailored to an individual’s
criterion-shifting and memory networks. Thus, this study is
positioned at the forefront of a paradigmatic transition
towards a more highly-resolved and computationally-driven
approach to studying macroscopic behaviors in human
cognition.
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APPENDIX

1. Behavioral Tasks

A. Task Design
The task consisted of 4 study-test phase cycles. In each

cycle, our 2 (discriminability condition: low vs. high) x 2
(criterion condition: conservative vs. liberal) factorial design
created a total of 4 conditions, repeated 4 times for a total of
16 blocks.

Images were shown for 1000 ms, separated by a variable
period. This was to prevent anticipatory memory signals in
neurons in the case that we had used a predictable crosshair
period. Questions (8 questions/block) assessing image
category were interspersed between stimuli to ensure
subjects remained attentive throughout the task.
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B. Image Selection and Modification
Images retrieved from the LaMem database were

modified in two ways to ensure that memorability varied
solely on image content [11]. First, images were center
cropped to a consistent size (400x400 pixels) as dimensions
may affect memorability to an unknown, albeit small,
degree. Next, stimuli were selected if their memorability
score ranged from 0.60–0.91 out of a 0–1 scale, ensuring
that images displayed were memorable enough so
participant memory capabilities could be adequately
characterized.

Images were assigned a memorability score from 0–1
(M=0.755) labeled by a convolutional neural network
algorithm trained on human rankings. Memorability for
selected task images (0.60–0.91, M=0.759) were equally
stratified across four levels: 0.60–0.67, 0.68–0.75,
0.76–0.83, 0.84–0.91. We used non-overlapping image sets
for patients completing multiple sessions.

During all test blocks, displayed images belonged evenly
across subject category (4 images/category) within
memorability levels (4 images/level). Below are sample
images used in trials:

C. Behavioral Evaluation
Performance on a behavioral task can be evaluated with

several equations. A normally distributed, equal-variance
signal detection theory model, shown below, was used to
calculate hit rate (HR) and false alarm rate (FAR) per
subject to characterize task performance per individual.

2. Neuron Spike Data Processing

A. Manual Spike Sorting Criteria
Neurons were evaluated on various criteria, including

minimum firing rate, minimum amplitude, waveform
coherence, power spectrum corruption, regularity of spiking
rate, and firing frequency within a 3 ms interval. Here is a
representative neuron.

B. Brain Regions and Specific Recording Sites
We aggregated different brain regions where electrodes

were planted into five generalized brain domains. Electrodes
were recorded in left (L) and right (R) sides of the brain,
omitted below:


