Firm Entry and Exit and Growth

Jose Asturias (Georgetown University, Qatar)
Sewon Hur (University of Pittsburgh)
Timothy Kehoe (UMN, Mpls Fed, NBER)
Kim Ruhl (NYU Stern)

Minnesota Workshop in Macroeconomic Theory

August 2015
What drives aggregate productivity growth?

- Is productivity growth due to
 - continuing firms?
 - entry and exit of firms?

- Foster, Haltiwanger, and Krizan (2001) net entry accounts for 25% of U.S. productivity growth
- Brandt, Van Biesebroeck, and Zhang (2012) net entry accounts for 72% of Chinese productivity growth

These studies are widely cited to justify assumptions that net entry (creative destruction) is unimportant/important.
What drives aggregate productivity growth?

- Is productivity growth due to
 - continuing firms?
 - entry and exit of firms?
- Foster, Haltiwanger, and Krizan (2001)
 - net entry accounts for 25% of U.S. productivity growth
What drives aggregate productivity growth?

- Is productivity growth due to
 - continuing firms?
 - entry and exit of firms?
- Foster, Haltiwanger, and Krizan (2001)
 - net entry accounts for 25% of U.S. productivity growth
- Brandt, Van Biesbroeck, and Zhang (2012)
 - net entry accounts for 72% of Chinese productivity growth
What drives aggregate productivity growth?

- Is productivity growth due to
 - continuing firms?
 - entry and exit of firms?
- Foster, Haltiwanger, and Krizan (2001)
 - net entry accounts for 25% of U.S. productivity growth
- Brandt, Van Biesbroeck, and Zhang (2012)
 - net entry accounts for 72% of Chinese productivity growth
- These studies are widely cited to justify assumptions that net entry (creative destruction) is unimportant/important.
Firm entry and aggregate growth: empirics

- How does firm entry and exit contribute to aggregate productivity growth?
 - During periods of rapid GDP growth
 - During periods of slow GDP growth
Firm entry and aggregate growth: empirics

- How does firm entry and exit contribute to aggregate productivity growth?
 - During periods of rapid GDP growth
 - During periods of slow GDP growth
- Plant-level data from Chile and Korea
- Review literature that uses identical decomposition
- Net entry is more important in periods of rapid growth
 - Average contribution, rapid growth: 54 percent
 - Average contribution, slow growth: 26 percent
Firm entry and aggregate growth: model

- Construct a model of firm entry and exit
 - Calibrate to the United States

- Quantitatively accounts for Chile and Korea data

- Entry and exit are crucial to understanding reform
Firm entry and aggregate growth: model

- Construct a model of firm entry and exit
 - Calibrate to the United States
- Use the calibrated model for policy analysis
 - Reduce entry barriers
 - Reduce barriers to technology adoption
- Quantitatively accounts for Chile and Korea data
- Entry and exit are crucial to understanding reform
data
Plan

- Decompose aggregate productivity growth
 - Terms related to entry and exit of firms
 - Terms related to growth in continuing firms
 - Follow Foster, Haltiwanger, and Krizan (2001)
- Use manufacturing plant data from Chile and Korea
 - Periods of rapid growth
 - Periods of slow growth
- Review comparable studies in the literature
Defining industry productivity

- Productivity of industry i:

$$\log Z_{it} = \sum_{e \in E_{it}} s_{et} \log z_{et}$$

- s_{et}: gross output share of plant e in time t in industry i
- z_{et}: TFP of plant e in time t in industry i

- Change in productivity (window defined by $t - 1, t$):

$$\Delta \log Z_{it} = \log Z_{it} - \log Z_{i,t-1}$$
Estimating plant productivity

- Plant e in industry i production function

$$\log y_{eit} = \log z_{eit} + \beta_k^i \log k_{eit} + \beta_\ell^i \log \ell_{eit} + \beta_m^i \log m_{eit}$$

- Following Foster et al. (2001)
 - β^i_j: average cost shares of input j in industry i

- Consider alternative methods to estimate z
 - Woolridge-Levinsohn-Petrin methods (Chile)
 - Generate similar productivity decompositions
Productivity decomposition of industry growth

\[\Delta \log Z_{it} = \Delta \log Z_{it}^{NE} + \Delta \log Z_{it}^{C} \]

- \(\Delta \log Z_{it}^{NE} \): change due to entering/exiting plants
- \(\Delta \log Z_{it}^{C} \): change due to continuing plants
Net entry

\[\Delta Z_{it}^{NE} = \sum_{e \in N_{it}} s_{et} \left(\log z_{et} - \log Z_{i,t-1} \right) - \sum_{e \in X_{it}} s_{e,t-1} \left(\log z_{e,t-1} - \log Z_{i,t-1} \right) \]

- "entering plants" is positive if entrants have high productivity (compared to initial aggregate productivity)
- "exiting plants" is negative if exiting plants have low productivity

\(N_{it} \) and \(X_{it} \) are sets of entering and exiting plants
Continuing plants

\[\Delta Z_{it}^C = \sum_{e \in C_{it}} s_{e,t-1} \Delta \log z_{et} + \sum_{e \in C_{it}} (\log z_{e,t-1} - \log Z_{i,t-1}) \Delta s_{et} \]

- within plant
- between plant
- covariance

\[+ \sum_{e \in C_{it}} \Delta \log z_{e,t} \Delta s_{et} \]

\(C_{it} \) is the set of continuing plants

- “within plant” is average within-plant productivity growth
- “between plant” is positive if relatively productive plants expand market share
- “covariance” is positive if plants that expand also increase their productivity
Productivity growth and aggregation

- At the industry-level we determine
 1. Productivity change
 2. Productivity change from entry/exit
 3. Productivity change from continuing plants

- To aggregate, weight each of these three components by gross output of industry (using average of beginning and end of window)
Decomposing productivity growth: Chile and Korea

- How does the net entry term change in Chile and Korea?
- Look within the same country at two windows
 - Avoids cross-country differences
 - Uses consistent datasets
Real GDP per working-age person

- **Chile**
 - Fast growth (6.8%) 1990-1995
 - Slow growth (2.4%) 2001-2006

- **Korea**
 - Fast growth (5.9%) 1992-1997
 - Slow growth (4.0%) 2002-2007

Index (1985=100)

- 1985
- 1990
- 1995
- 2000
- 2005
- 2010
Plant-level manufacturing data

- Chile
 - Encuesta Nacional Industrial Anual
 - Collected by the Chilean national statistical agency
 - Covers all plants with more than 10 employees
 - 127 industries and 5,500 plants (2005)

- Korea
 - Survey of Mining and Manufacturing
 - Collected by the Korean national statistical agency
 - Covers all plants with more than 10 employees
 - 104 industries and 8,300 plants
The relative importance of net entry

<table>
<thead>
<tr>
<th>Country</th>
<th>Period</th>
<th>GDP growth (percent)</th>
<th>Window</th>
<th>Effect of net entry (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chile</td>
<td>1990-1995</td>
<td>6.8</td>
<td>5 years</td>
<td>85</td>
</tr>
<tr>
<td>Chile</td>
<td>2001-2006</td>
<td>2.4</td>
<td>5 years</td>
<td>35</td>
</tr>
<tr>
<td>Korea</td>
<td>1992-1997</td>
<td>5.9</td>
<td>5 years</td>
<td>44</td>
</tr>
<tr>
<td>Korea</td>
<td>2002-2007</td>
<td>4.0</td>
<td>5 years</td>
<td>39</td>
</tr>
</tbody>
</table>
Other empirical studies

- Existing studies with identical methodology
 - Slow growth: Portugal, U.K., U.S.
 - Rapid growth: China, Korea, Chile

- Problem: Studies use different length time windows
 - Makes comparisons difficult

- Solution: Use calibrated model to make adjustments
Other empirical studies

- Existing studies with identical methodology
 - Slow growth: Portugal, U.K., U.S.
 - Rapid growth: China, Korea, Chile
- Problem: Studies use different length time windows
 - Makes comparisons difficult
- Solution: Use calibrated model to make adjustments
Use model to make window adjustments

- Solve the baseline equilibrium for the U.S.
- Decompose model output using 5, 10, 15 year windows
- Fit a quadratic to contribution of net entry to productivity growth for the 3 windows
Net entry under various windows in the model

Contribution of net entry to aggregate productivity

Window length (years)
Use model to make window adjustments

- Portugal: 3-year window, 15 percent net entry contribution
- In the calibrated model
 - 5 year window generates 25 percent contribution
 - 3 year window generates 20 percent contribution
- Adjust proportionally
- Adjustment: $15 \times \frac{25}{20} = 19$ (5-year window equivalent)
Contribution of net entry

Net entry more important during periods of fast growth

<table>
<thead>
<tr>
<th>Country</th>
<th>Period</th>
<th>GDP growth 15–64</th>
<th>Window</th>
<th>Effect of net entry</th>
<th>5 year equiv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>1977–1992</td>
<td>1.9</td>
<td>5 years*</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>UK</td>
<td>1982–1987</td>
<td>3.3</td>
<td>5 years</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Portugal</td>
<td>1991–1997</td>
<td>1.4</td>
<td>3 years*</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>Chile</td>
<td>2001–2006</td>
<td>2.4</td>
<td>5 years</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Korea</td>
<td>2002–2007</td>
<td>4.0</td>
<td>5 years</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>2.6</td>
<td></td>
<td></td>
<td>26</td>
</tr>
<tr>
<td>China</td>
<td>1998–2007</td>
<td>8.3</td>
<td>9 years</td>
<td>72</td>
<td>54</td>
</tr>
<tr>
<td>Chile</td>
<td>1990–1997</td>
<td>6.4</td>
<td>7 years</td>
<td>49</td>
<td>42</td>
</tr>
<tr>
<td>Korea</td>
<td>1990–1998</td>
<td>4.3</td>
<td>8 years</td>
<td>57</td>
<td>45</td>
</tr>
<tr>
<td>Chile</td>
<td>1990–1995</td>
<td>6.8</td>
<td>5 years</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Korea</td>
<td>1992–1997</td>
<td>5.9</td>
<td>5 years</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>6.3</td>
<td></td>
<td></td>
<td>54</td>
</tr>
</tbody>
</table>

*Average over multiple windows
Net entry important for fast-growth economies

*adjusted to 5 year windows using elasticities generated by model
model
We develop a model in which

- Potential entrants draw from frontier efficiency distribution, which improves by growth factor g_e
- Efficiency of continuing firms grows, by $g_c < g_e$
- Endogenous entry/exit of firms

Easy to characterize balanced growth path
Model

- We develop a model in which
 - Potential entrants draw from frontier efficiency distribution, which improves by growth factor g_e
 - Efficiency of continuing firms grows, by $g_c < g_e$
 - Endogenous entry/exit of firms

- Easy to characterize balanced growth path

- Implications:
 - BGP growth factor g_e
 - Level is determined by barriers to entry, technology adoption

- Purpose of model: Investigate policy reforms
Household problem

- Representative household solves

\[
\max_{C_t, B_{t+1}} \sum_{t=0}^{\infty} \beta^t \log C_t
\]

subject to

\[
P_t C_t + q_{t+1} B_{t+1} = w_t + D_t + B_t
\]

\[
C_t \geq 0, \text{ No Ponzi condition, } B_0 \text{ given}
\]

\[D_t: \text{ aggregate dividends}\]

- Normalize \(P_t = 1, \ \forall t \)
Firm dynamics

- Based on Hopenhayn (1992)
- Continuum of perfectly competitive firms
 - A firm in the model is a plant in the data
- Heterogenous in efficiency \times
 - Productivity depends on efficiency
- Pay κ to draw initial efficiency, f to operate
- Exogenous exit probability δ and endogenous exit
Fixed costs paid by firms

- Potential entrants pay $\kappa_t = \kappa Y_t$ to draw efficiency x

$$\kappa = \kappa^T + \kappa^P$$

- Paid in consumption/investment good
- κ^T is the technological cost, common across countries
- κ^P is the policy induced cost
Fixed costs paid by firms

- Potential entrants pay $\kappa_t = \kappa Y_t$ to draw efficiency x

 $$\kappa = \kappa^T + \kappa^P$$

- Paid in consumption/investment good
- κ^T is the technological cost, common across countries
- κ^P is the policy induced cost

- Firms pay fixed cost of operating, $f_t = f Y_t$, or exit
- $\kappa_t + f_t$ is the capital of a firm in t
Firms face two decisions

1. Entry/exit decision
2. Conditional on operating: maximize profits
Firm’s static problem

- Conditional on operating, firm with efficiency x solves

$$\pi_t(x) = \max_{\ell_t(x)} x \ell_t(x)^\alpha - w_t \ell_t(x) - f_t$$

- Solution is

$$\ell_t(x) = \left(\frac{w_t}{\alpha x} \right)^{\frac{1}{\alpha-1}}$$

- More efficient firms are larger
Firm’s dynamic problem

- Firms with efficiency x choose to exit or continue to solve

$$V_t(x) = \max \left\{ \pi_t(x) + q_{t+1}(1 - \delta) V_{t+1}(g_{c,t+1}x), 0 \right\}$$

- Efficiency grows at g_c
Operating firm efficiency growth

- Efficiency of existing firms grow by

\[g_{ct} = \bar{g} g_t^\varepsilon \]

- \(\bar{g} \) is constant
- \(g_t \) is average efficiency growth
- \(\varepsilon \) measures the degree of spillovers

Further discussion in calibration
Operating firm efficiency growth

- Efficiency of existing firms grow by

\[g_{ct} = \bar{g}g_t^\varepsilon \]

- \(\bar{g} \) is constant
- \(g_t \) is average efficiency growth
- \(\varepsilon \) measures the degree of spillovers

- Quantitatively, but not qualitatively important
 - Further discussion in calibration
New entrant’s problem

- Potential entrants draw efficiency from

\[F_t(x) = 1 - \left(\frac{\varphi x}{g_e^t} \right)^{-\gamma}, \quad x \geq \frac{g_e^t}{\varphi} \]

- Mean grows by growth factor \(g_e \)

- Barrier to technology adoption, \(\varphi \) (Parente-Prescott 1994)

- Mass of potential entrants, \(\mu_t \), from costly entry condition:

\[E_x [V_t(x)] = \kappa_t \]

- Firm enters if and only if \(x \geq \hat{x}_t \)
Measure of firms

- Measure of firms of age j in operation

$$\eta_{jt} = \mu_{t-j+1}(1 - \delta)^{j-1} \left[1 - F_{t-j+1} \left(\frac{\hat{x}_t}{\prod_{s=1}^{j-1} g_{c,t-s+1}} \right) \right]$$

- Convert age-j efficiency to initial efficiency

$$\prod_{s=1}^{j-1} g_{c,t-s+1}$$

- Total measure of operating firms

$$\eta_t = \sum_{i=1}^{\infty} \eta_{it}$$
Equilibrium definition

Given initial conditions, an equilibrium is

- Household consumption and bond plans
- Allocations and entry/exit thresholds for firms
- Measure of potential entrants for firms
- Prices and aggregate dividends
Equilibrium definition

such that

- Household maximizes lifetime utility
- Firms maximize discounted dividends
- Costly entry condition binds
- Goods, labor, and bond markets clear
- Dividends satisfy

\[D_t = \Pi_t - \mu_t \kappa_t \]
Existence of balanced growth path

Economy converges to a balanced growth path in which

1. Entry and exit thresholds grow by g_e

2. Real consumption, output, wages, and dividends grow by g_e

3. Masses of potential entrants and operating firms are constant
Characterizing BGP: growth

\[\hat{x}_t = \frac{g_e^t}{\varphi} \left(\frac{\omega}{\mu} \right)^{\frac{1}{\gamma}} \]
\[w_t = \alpha \left(\frac{1 - \alpha}{f} \right)^{1-\alpha} \hat{x}_t \]
\[Y_t = \left(\frac{1 - \alpha}{f} \right)^{1-\alpha} \hat{x}_t \]
\[\mu = \frac{\xi}{\gamma \kappa \omega} \]
\[\eta = \frac{\gamma(1 - \alpha) - 1}{\gamma f} \]

Economy grows by \(g_e \)
Characterizing BGP: levels

\[
\begin{align*}
\mu &= \frac{\xi}{\gamma \kappa \omega} \\
\hat{x}_t &= \frac{g_e^t}{\varphi} \left(\frac{\omega}{\eta} \frac{\mu}{\mu} \right)^{\frac{1}{\gamma}} \\
w_t &= \alpha \left(\frac{1 - \alpha}{f} \right)^{1-\alpha} \hat{x}_t \\
Y_t &= \left(\frac{1 - \alpha}{f} \right)^{1-\alpha} \hat{x}_t \\
\eta &= \frac{\gamma(1 - \alpha) - 1}{\gamma f}
\end{align*}
\]

- As \(\kappa \) decreases
 - More potential entrants pay to draw efficiency
 - More-efficient firms enter and aggregate income increases
quantitative exercise
Entry cost reform

1. Calibrate model to U.S. (high BGP)
 ▶ No policy distortions in entry costs
 ▶ \(\kappa_{us} = \kappa^T \)

2. Model a distorted country on a lower balanced growth path
 ▶ Income level is 15 percent lower than U.S.
 ▶ \(\kappa_D = \kappa^T + \kappa^P \)
 ▶ \(\kappa_D = 5 \times \kappa_{us} \)

3. Reform entry costs in distorted country to U.S. level
 ▶ Solve for transition to higher balanced growth path
Measuring capital

- Fixed costs (κ, f) are investments (new approach)
- How are they accounted for
 - In the firm’s accounts?
 - In the national accounts?
Measuring capital

- Fixed costs \((\kappa, f)\) are investments (new approach)
- How are they accounted for
 - In the firm’s accounts?
 - In the national accounts?
- Aggregate investment \(\mu_t \kappa_t + \eta_t f_t\)
- Depreciation is the sum of
 - Capital of firms that die or exit
 - \(\kappa_t\) of potential entrants that do not enter
 - \(f_t\) minus costs of upgrading capital for continuing firms
Measuring capital

- Fixed costs (κ, f) are investments (new approach)
- How are they accounted for
 - In the firm’s accounts?
 - In the national accounts?
- Aggregate investment $= \mu_t \kappa_t + \eta_t f_t$
- Depreciation is the sum of
 - Capital of firms that die or exit
 - κ_t of potential entrants that do not enter
 - f_t minus costs of upgrading capital for continuing firms
- Aggregate capital stock $= \eta_t(\kappa_t + f_t)$
- Depreciation rate constant on BGP, not in transition
Measuring capital

- Alternatives we are considering
- In the model
 - κ_t, f_t scale with g_t rather than Y_t
 - Policy distortions are ad valorem, $\kappa^T + \kappa^P = \tau \kappa^T$
- In the accounting
 - Some parts of κ and f are intermediate inputs
 - Expensed, rather than counted as investment
Measuring productivity

- Need model measurement consistent with data measurement
- Productivity \(z \) of firm with efficiency \(x \)

\[
\log(z_t(x)) = \log(y_t(x)) - \alpha \log(l_t(x)) - \alpha_{kt} \log(k_t)
\]

\[
= \log(x) - \alpha_{kt} \log(k_t)
\]

- Capital share is given by

\[
\alpha_{kt} = \frac{R_t K_t}{Y_t}
\]

where \(R_t = \frac{1}{q_t} - 1 + \delta_{kt} \)
Calibration

Calibrate model to match size distribution of plants as well as effect of net entry on aggregate productivity growth.
Calibrated parameters

- Model period is 5 years
- Data from United States

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating cost f</td>
<td>0.32×5</td>
<td>average establishment size $= 16.0$</td>
</tr>
<tr>
<td>Entry cost κ</td>
<td>0.26</td>
<td>entry cost / fixed cost* $= 0.82$</td>
</tr>
<tr>
<td>Pareto parameter γ</td>
<td>10.08</td>
<td>establishment size s.d. $= 91.2$</td>
</tr>
<tr>
<td>Firm growth $\bar{g}^{1/(1-\varepsilon)}$</td>
<td>$(1.017)^5$</td>
<td>effect of net entry on growth† $= 25%$</td>
</tr>
<tr>
<td>Death rate δ</td>
<td>$1 - (0.97)^5$</td>
<td>exiting plant employment share‡ $= 17.7%$</td>
</tr>
<tr>
<td>Entrant productivity g_e</td>
<td>$(1.02)^5$</td>
<td>BGP growth factor $= 1.02$</td>
</tr>
<tr>
<td>Discount factor β</td>
<td>$(0.98)^5$</td>
<td>4 percent real interest rate</td>
</tr>
<tr>
<td>Returns to scale α</td>
<td>0.8</td>
<td>Atkeson and Kehoe (2005)</td>
</tr>
</tbody>
</table>

* Survey in Barseghyan and DiCecio (2011); † Foster et al. (2001); ‡ Dunne et al. (1989)
Technological spillovers

- Take logs of equation that characterizes spillovers

\[\log g_{ct} = \log \bar{g} + \varepsilon \log g_t \]

- We estimate this equation as follows

\[\log g_{ct,i} = \beta_0 + \varepsilon \log g_{it} + \nu_{it} \]

- \(g_{ct,i} \) is weighted productivity growth of continuing plants in \(i \)
- \(g_{it} \) is weighted productivity growth of entire industry \(i \)

- Estimate using Chile and Korea data (would like U.S. data)
- Average estimate: \(\varepsilon = 0.52 \)
Solving for transition path

- Unanticipated reform at $t = t_0$: $\kappa_D = \kappa_{us}$
- System of 2 T equations and 2 T unknowns for large T
 - Labor market clearing
 \[\hat{x}_t^\gamma = \frac{g_e^\gamma}{\eta} \sum_{i=1}^{N} \varphi_{t-i+1}^{-\gamma} \mu_{t-i+1} (1 - \delta)^{i-1} g_e^{\gamma(1-i)} \prod_{s=1}^{i-1} g_c^{\gamma}_{t-s+1} \]
 - Costly entry condition
 \[\kappa_t = \frac{g_e^\gamma}{\gamma \eta} \varphi_t^{-\gamma} \sum_{i=1}^{N} (1 - \delta)^{i-1} \left(\prod_{s=1}^{i-1} q_{t+s} g_c^{\gamma}_{t+s} \right) \frac{w_{t+i-1}}{\alpha} \hat{x}_{t+i-1} \]
Transition: more potential entrants

- More potential entrants increases efficiency thresholds

![Graph of Mass of potential entrants and Detrended efficiency thresholds over model periods](image-url)
Transition: more entry and exit

- Efficient firms enter, inefficient firms exit
- Total mass of firms is constant

![Graph of entering firms](image1)

![Graph of exiting firms](image2)
Transition: wages and output

- Higher wages increase efficiency thresholds
- More efficient firms increase output
Transition: consumption and interest rates

- More attractive investment opportunities
Productivity growth decompositions

<table>
<thead>
<tr>
<th>Model periods (5 years)</th>
<th>Entry Cost (%)</th>
<th>Output growth (% annualized)</th>
<th>Contribution of net entry (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>1.32</td>
<td>2.0</td>
<td>25.0</td>
</tr>
<tr>
<td>3 (reform)</td>
<td>0.26</td>
<td>5.0</td>
<td>78.3</td>
</tr>
<tr>
<td>4</td>
<td>0.26</td>
<td>2.3</td>
<td>33.5</td>
</tr>
<tr>
<td>5</td>
<td>0.26</td>
<td>2.0</td>
<td>26.3</td>
</tr>
<tr>
<td>6+</td>
<td>0.26</td>
<td>2.0</td>
<td>25.0</td>
</tr>
</tbody>
</table>
Net entry and productivity in model and data

- Model generates quantitatively reasonable numbers

<table>
<thead>
<tr>
<th></th>
<th>Model reform</th>
<th>Data rapid</th>
<th>Model BGP</th>
<th>Data slow</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP/WAP growth (%)</td>
<td>5.0</td>
<td>6.3</td>
<td>2.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Contribution of net entry (%)</td>
<td>78.3</td>
<td>54.0</td>
<td>25.0</td>
<td>26.0</td>
</tr>
</tbody>
</table>

- Calibration and experiment need further work
Reforming barriers to technology adoption

- A reform that does not involve entry costs
- Potential entrants draw efficiency from

\[F_t(x) = 1 - \left(\frac{\varphi x}{g_e t} \right)^{-\gamma}, \quad x \geq \frac{g_e t}{\varphi} \]

\(\varphi \geq 1 \): policy-induced barriers to technology adoption

- Set \(\varphi \) so that distorted BGP is 15 percent lower than U.S.
- Reform \(\varphi \) to generate a transition to higher BGP
Transition: more potential entrants

- More potential entrants only in the transition
- Efficiency thresholds increase
Transition: more entry and exit

» Efficient firms enter, inefficient firms exit
» Total mass of firms is constant
Transition: wages and output

- Higher wages increase efficiency thresholds
- More efficient firms increase output

![Detrended wage](image1)

![Detrended output](image2)
Transition: consumption and interest rates

- More attractive investment opportunities
Productivity growth decompositions

<table>
<thead>
<tr>
<th>Model periods (5 years)</th>
<th>Barrier to tech. adoption</th>
<th>Productivity growth (%, annualized)</th>
<th>Contribution of net entry (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>1.17</td>
<td>2.0</td>
<td>25.0</td>
</tr>
<tr>
<td>3 (reform)</td>
<td>1.00</td>
<td>5.0</td>
<td>78.2</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>2.3</td>
<td>33.5</td>
</tr>
<tr>
<td>5</td>
<td>1.00</td>
<td>2.0</td>
<td>26.2</td>
</tr>
<tr>
<td>6+</td>
<td>1.00</td>
<td>2.0</td>
<td>25.0</td>
</tr>
</tbody>
</table>

- Almost identical to reform in entry cost
Reform and growth

- Reforms that increase aggregate productivity
 - Increase entry and exit in the transition
 - Increase the contribution of net entry
- Need models of entry and exit to understand productivity