Multinationals and the Globalization of Production

Horizontal FDI: I

Penn State // Fall 2017

Administrative things

- ► Arkaive.com course code: 84ST
 - ► Please sign in
- ▶ Problem set #1: due Thursday September 7, end of class
 - ► Available this afternoon
 - ▶ Print out copy, hand in to folder (no e-submission)
 - ► Can discuss with classmates, but turn in your own work
 - ► Read "problem set guidelines"


August 2017 Employment Situation

- ▶ Released on Friday // Key data:
 - ► Change in payroll net number of jobs created
 - ► Unemployment statistics
- ▶ What happened?
 - ► Net change in payroll = 156,000 (expected 180,000 or so)
 - ► Unemployment rate about the same = 4.4%
 - ► Data collected pre-hurricane
- ► FOMC meeting September 19–20
 - 1. "Stable prices"
 - 2. "Full employment"
- ► How will this affect FOMC decisions?

CPI inflation

Nonfarm payroll

Roadmap

- ► Past: OLI framework
 - ► Identify MNE advantage
 - ► High-level analysis
- ► Past/present: MNE facts
 - ► Lays the foundation for model features
 - ► Way to asses model successes
- ▶ Present: Towards a model of horizontal FDI
 - ► Introduce a model of competition
 - ► The closed economy
 - ► Open economy with exporters and MNEs

Horizontal FDI

- ► Horizontal FDI: Use affiliates to serve foreign market
- ▶ Relevant facts
 - ▶ More multinational activity in bigger markets
 - ▶ More multinational activity (compared to exports) with distance
- ► Important model ingredients
 - ► Exporting requires additional costs
 - Building a foreign affiliate requires a fixed cost
- ► Key tradeoff in the model
 - ► Saving on transport costs vs. saving on production fixed costs
 - ► Called the "proximity-concentration tradeoff"

Model overview

- ► A firm would like to serve a foreign market. How?
 - ► Should it produce at home and export? (an exporter)
 - ► Should it produce abroad? (an MNE)
- ▶ The firm makes an either-or decision
 - ▶ We call these *discrete choice models*
- ► To solve a discrete choice model
 - ► Compute the profit from each choice (exporter, MNE)
 - ► Choose the one with the highest profit

Exporters

- ▶ Pay export fixed costs, pay trade cost τ
- ▶ How much profit does the firm earn from exporting?
- ▶ Choose prices p and p_e to maximize profit

$$\pi_1^e(\varphi) = \left(p - \frac{w_1}{\varphi}\right) E_1 p^{-\epsilon_1} + \left(p_e - \frac{w_1}{\varphi}(1+\tau)\right) E_2 p_e^{-\epsilon_2} - w_1 f^e - w_1 f^p$$

➤ The solution is a mark-up over marginal cost

$$p = \frac{w_1}{\varphi} \frac{\epsilon_1}{\epsilon_1 - 1}$$
 $p_e = \frac{w_1}{\varphi} \frac{\epsilon_2}{\epsilon_2 - 1} (1 + \tau)$

ightharpoonup Price rises to offset export costs (similar to having smaller φ)

Exporting firms

► Substitute prices back into profit function

$$\pi_1^e(\varphi) = \frac{1}{\epsilon_1} \left(\frac{\epsilon_1}{\epsilon_1 - 1} \frac{w_1}{\varphi} \right)^{1 - \epsilon_1} E_1 + \frac{1}{\epsilon_2} \left(\frac{\epsilon_2}{\epsilon_2 - 1} \frac{w_1}{\varphi} (1 + \tau) \right)^{1 - \epsilon_2} E_2 - w_1 f^p - w_1 f^e$$

- ► How do profits change with productivity?
- ▶ How does τ impact profit?

Multinational firms

- ▶ Pay export production fixed cost abroad; avoid τ and f^e
- ▶ How much profit does the firm earn from affiliate sales?
- ▶ Choose prices p and p_m to maximize profit

$$\pi_1^m(\varphi) = \left(p - \frac{w_1}{\varphi}\right) E_1 p_m^{-\epsilon_1} + \left(p_m - \frac{w_2}{\varphi}\right) E_2 p_m^{-\epsilon_2} - w_1 f^p - w_2 f^p$$

➤ The solution is a mark-up over marginal cost

$$p = \frac{w_1}{\varphi} \frac{\epsilon_1}{\epsilon_1 - 1}$$
 $p_m = \frac{w_2}{\varphi} \frac{\epsilon_2}{\epsilon_2 - 1}$

► Marginal cost now w_2/φ

Multinational firms

► Substitute price back into profit function

$$\pi_1^m(\varphi) = \frac{1}{\epsilon_1} \left(\frac{\epsilon_1}{\epsilon_1 - 1} \frac{w_1}{\varphi} \right)^{1 - \epsilon_1} E_1 + \frac{1}{\epsilon_2} \left(\frac{\epsilon_2}{\epsilon_2 - 1} \frac{w_2}{\varphi} \right)^{1 - \epsilon_2} E_2 - w_1 f^p - w_2 f^p$$

- ► How do profits change with productivity?
- ► How does this compare to export profit?

Exporting vs. multinational production

▶ Exporter

$$\pi_1^e(\varphi) = \frac{1}{\epsilon_1} \left(\frac{\epsilon_1}{\epsilon_1 - 1} \frac{w_1}{\varphi} \right)^{1 - \epsilon_1} E_1 + \frac{1}{\epsilon_2} \left(\frac{\epsilon_2}{\epsilon_2 - 1} \frac{w_1}{\varphi} (1 + \tau) \right)^{1 - \epsilon_2} E_2 - w_1 f^p - w_1 f^e$$

► MNE

$$\pi_1^m(\varphi) = \frac{1}{\epsilon_1} \left(\frac{\epsilon_1}{\epsilon_1 - 1} \frac{w_1}{\varphi} \right)^{1 - \epsilon_1} E_1 + \frac{1}{\epsilon_2} \left(\frac{\epsilon_2}{\epsilon_2 - 1} \frac{w_2}{\varphi} \right)^{1 - \epsilon_2} E_2 - w_1 f^p - w_2 f^p$$

- ▶ Which method delivers the greatest profit?
- ▶ Domestic profits are the same in each case, so we can ignore them

Exporting vs. multinational production

• Exporter: $p_e = \frac{w_1}{\varphi} \frac{\epsilon_2}{\epsilon_2 - 1} (1 + \tau)$

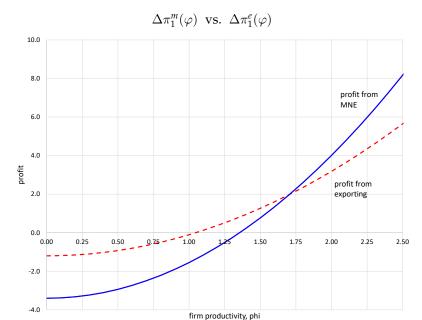
$$\Delta \pi_1^e(\varphi) = \frac{1}{\epsilon_2} \left(\frac{\epsilon_2}{\epsilon_2 - 1} \frac{w_1}{\varphi} (1 + \tau) \right)^{1 - \epsilon_2} E_2 - w_1 f^e$$

▶ MNE: $p_m = \frac{w_2}{\varphi} \frac{\epsilon_2}{\epsilon_2 - 1}$

$$\Delta \pi_1^m(\varphi) = \frac{1}{\epsilon_2} \left(\frac{\epsilon_2}{\epsilon_2 - 1} \frac{w_2}{\varphi} \right)^{1 - \epsilon_2} E_2 - w_2 f^p$$

In class problem: exporting vs. MNE

- ► 5-10 min, work with those around you
- $w_1 = w_2 = 2, E_2 = 50, \epsilon_2 = 3, f^p = 1.7, f^e = 0.6, \tau = 0.3$
- **1.** Should a firm with $\varphi = 1.5$ export to serve the foreign market or use a foreign affiliate?


2. Should a firm with $\varphi = 2.0$ export to serve the foreign market or use a foreign affiliate?

In class problem: exporting vs. MNE

- $w_1 = w_2 = 2, E_2 = 50, \epsilon_2 = 3, f^p = 1.7, f^e = 0.6, \tau = 0.3$
- 1. Should a firm with $\varphi=1.5$ export to serve the foreign market or use a foreign affiliate?

In class problem: exporting vs. MNE

- $w_1 = w_2 = 2, E_2 = 50, \epsilon_2 = 3, f^p = 1.7, f^e = 0.6, \tau = 0.3$
- **2.** Should a firm with $\varphi=2.0$ export to serve the foreign market or use a foreign affiliate?

