Reexamination of the Folding of BPTI: Predominance of Native Intermediates

JOHNATHAN S. WEISSMAN AND PETER S. KIM

Bovine pancreatic trypsin inhibitor (BPTI) continues to be the only protein for which a detailed pathway of folding has been described. Previous studies led to the conclusion that nonnative states are well populated in the oxidative folding of BPTI. This conclusion has broadly influenced efforts to understand protein folding. The population of intermediates present during the folding of BPTI has been reexamined by modern separation techniques. It was found that all well-populated folding intermediates contain only native disulfide bonds. These data emphasize the importance of native protein structure for understanding protein folding.

ENEFORTS TO UNDERSTAND PROTEIN FOLDING ARE HAMPED by the transient nature of kinetic folding intermediates. In a series of pioneering studies (1, 2) begun in the mid-1970s, this difficulty was circumvented by trapping disulfide-bonded folding intermediates, and the folding pathway of bovine pancreatic trypsin inhibitor (BPTI) was described in terms of the intermediates that accumulate substantially during folding. Native BPTI (N) contains three disulfide bonds (Fig. 1), indicated by the cysteines involved (3) as [30-51; 5-55; 14-38]. The protein unfolds on reduction of these disulfide bonds, even in the absence of denaturants. Although there are 75 possible species of BPTI con

The authors are in the Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142. In addition, J. S. Weissman is in the Department of Physics and P. S. Kim is in the Department of Biology, Massachusetts Institute of Technology, Cambridge, MA.
taining one or more disulfide bonds, only eight (including native BPTI) appeared to accumulate significantly during folding. These studies provided important experimental evidence indicating that the number of states sampled in protein folding reactions is restricted before folding is complete.

The striking and counter-intuitive result in those studies, however, was that three of the well-populated species contain disulfide bonds not present in the native protein. Moreover, in the kinetically preferred route for folding deduced from those studies (1, 4), folding proceeds through either of two well-populated intermediates that contain nonnative disulfide bonds, [30-51; 5-14] and [30-51; 5-38]. The finding that nonnative interactions appear to stabilize substantially some folding intermediates complicates significant efforts to understand the folding process.

We have taken advantage of improvements that have been made in separation technologies since the original BPTI folding experiments (5) to reexamine the spectrum and population of intermediates present during the oxidative folding of BPTI. Six species accumulate to significant levels: [5-55], [30-51], [30-51; 14-38], [30-51; 5-55], [5-55; 14-38] and native (N). All of these species contain only disulfide bonds that are present in native BPTI.

As in earlier studies (4), the folding of BPTI is found to occur via disulfide bond rearrangement as opposed to direct oxidation. The rearrangement, however, is a relatively random process and does not appear to be directed by specific nonnative intermediates. Rather, the rate-limiting step in the rearrangement involves the loss of native structure.

Identification of disulfide intermediates. In the earlier studies, folding of reduced BPTI (R) was initiated by the addition of an oxidizing agent. At various time points, folding was stopped by addition of iodoacetate, a reagent that alkylates free thiols and thereby prevents further oxidation or thiol-disulfide exchange. After separation of the trapped intermediates by ion-exchange chromatography (IEC), the disulfide linkages of the intermediates were determined by two-dimensional paper electrophoresis (6).

In our studies, a rapid and sensitive method for identifying disulfide bonds in an intermediate was developed. Starting with a purified intermediate, in which the thiols of cysteine residues that were not disulfide-bonded had been blocked previously with iodoacetate, we used the following method (7). (i) The disulfide bonds in the intermediate were reduced; (ii) the resultant thiols were labeled with a fluorescent iodoacetate derivative, IAEDANS; (iii) the protein was digested with thermolysin; (iv) labeled fragments (indicating Cys residues that were originally involved in disulfide bonds) were identified by reversed-phase high-performance liquid chromatography (HPLC) (Fig. 2).

In the above identification scheme, digestion with thermolysin was always carried out on a fully reduced species. Consequently, cleavage proceeds to a similar extent for all intermediates. This provides a sensitive check for purity (Fig. 2). One limitation of this method that can be overcome by straightforward modifications (8) is that the pairwise linkages of disulfide bonds are not identified. For example, the intermediates [30-51; 5-55], [30-55; 5-51] and [30-5; 51-55] are not distinguished. Almost all of the two-disulfide intermediates that were identified in our study, however, had also been identified by paper electrophoresis (9), which does give pairwise linkages. Our disulfide bond assignments are based on these pairwise linkages.

Incomplete chromatographic resolution of intermediates. The IEC chromatogram for a 3-minute BPTI folding time point (10) is shown in Fig. 3A. Individual IEC peaks were collected and

![Fig. 1. A schematic diagram of native BPTI with its three disulfide bonds. [Adapted from (9)]](image1)

![Fig. 2. Identification of disulfide-bonded protein folding intermediates. Proteolytic fragments of IAEDANS-labeled intermediates are separated by HPLC. Numbers above the peaks denote the labeled cysteines contained in the fragments. In order to illustrate how the method provides a sensitive check for purity, contaminants (about 30 percent) were added to a pure sample of [30-51]. These impurities are indicated by the small amounts of labeled Cys58, Cys20, and Cys9 in the "Native Standard" chromatogram, the sequences of the labeled peaks, from left to right, are labeled cysteine residue numbers are given in parentheses): AEDC(51), TC(55)CGA, TGPC(14)K, LC(30)QT, FC(5), AEDC(51)MR + MRTC(55)CGA, VYGGC(38)R, AEDC(51)MRTC(55)CGA, RPDC(5), LC(30)QTF, and LEPPYTGPC(14)K. The fragment containing Cys51 and Cys55 elutes earlier in the gradient in the identification of [30-51] than does the fragment with the same amino acid sequence in the native standard and in the identification of [30-51; 5-55]. This is due to the presence of only one IAEDANS molecule (at Cys51) in this fragment as compared to two (at Cys51 and Cys55) in the native standard and in [30-51; 5-55]. Two numbers separated by a comma indicate that two fragments elute at that position. The peak denoted 51 + 55 contains a fragment with both Cys51 and Cys55. IAEDANS is N'-iodoacetyl-N-[(5-sulfo-1-naphthyl)ethyl]enediamine. Abbreviations for the amino acid residues are: A, Ala; Ç, Cys; D, Asp; E, Asp; G, Gln; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.)
analyzed further by HPLC. Several of the HPLC peaks were identified by the IAEDANS method, and are so marked (Fig. 3B). Both of the one-disulfide IEC peaks, assigned previously as (30-51) and (5-30), contained substantial impurities as determined by HPLC (Fig. 3B). Significantly, [5-55] was one of the contaminating species in the (30-51) peak (3). The native intermediate [5-55] had not been detected previously although its existence had been inferred from kinetic folding experiments (2), and from studies of peptide (11) and recombinant (12, 13) models.

The two-disulfide IEC peaks assigned in earlier studies as (30-51; 5-55), also known as NSH1 (14), and (30-51; 14-38) were relatively pure as indicated by HPLC. The IEC peak known to contain both native BPTI (N) and a quasi-native species [5-55; 14-38], denoted N* (15), was also virtually free of impurities (Fig. 3B). These species all contained only native disulfide bonds. Furthermore, two of these intermediates (NSH and N*) are known to be completely folded in a native conformation (14, 15).

In contrast, the IEC peak identified as containing the nonnative, two-disulfide intermediates, (30-51; 5-14) and (30-51; 5-38), was contaminated with several other species (Fig. 3B). This finding is noteworthy since (30-51; 5-14) and (30-51; 5-38) are the nonnative, two-disulfide intermediates thought to play an important role in the folding pathway for BPTI (1).

Disulfide rearrangements during quenching with iodoacetate. Alkylation of thiols by iodoacetate can distort the spectrum of intermediates present. This is demonstrated by the observation that there is an increase in the relative abundance of the native intermediate [30-51; 14-38] as the concentration of alkyllating reagent is increased (Fig. 4A).

The fidelity of the iodoacetate quench was tested previously by alkylation with a different reagent (iodoacetamide) and by quenching with acid (16). The three quenching procedures gave a qualitatively similar distribution of single disulfides, as judged by polyacrylamide gel electrophoresis (PAGE). The initial two-disulfide intermediates, however, were not detected when acid quenching was used. The absence of these intermediates was attributed to intramolecular disulfide rearrangements, during the PAGE separation, to the native intermediate NSH1 (17). At the pH used in the PAGE separation, however, at least one of the missing intermediates, [30-51; 14-38], is stable for days (18). One possible alternative explanation is that [30-51; 14-38] coelutes with N by PAGE. This explanation is supported by the observation that [30-51; 14-38] coelutes with N by capillary zone electrophoresis (CZE) under similar conditions (18).

The observed rearrangements of intermediates during quenching with iodoacetate is not unreasonable since thiol-disulfide exchange is expected to occur on the same time scale as alkylation by iodoacetate. For example, alkylation of thiols with 100 mM iodoacetate occurs with a half-time of about 1 second at pH 8 (17). By comparison, given a second-order rate constant for thioldisulfide exchange of ~20 M−1 s−1 (2) and effective concentrations for cysteines in an unfolded protein of ~50 mM (2, 19, 20), thiol-disulfide rearrangements in unfolded BPTI are also expected to occur on the second time scale.

If all of the thiol s in all of the intermediates were equally reactive, then iodoacetate should still provide an effective quench. Although the six cysteines in BPTI are equally reactive in the reduced state (21), steric hindrance in partially structured intermediates (22) would retard the rate of alkylation of some thiols. An extreme example of slow alkylation by iodoacetate occurs with N*, which must be denatured before the thiols of Cys30 and Cys51 can be blocked, and even then substantial rearrangements occur (2). In addition to steric hindrance, the reactivity of a thiol can be altered substantially by changes in its local electrostatic environment (23). Finally, partially alkylated intermediates are likely to be destabilized and thus susceptible to rearrangement.

Regardless of the reason, the results (Fig. 3A) show that blocking with even a large excess of iodoacetate can lead to the preferential loss of a native intermediate. It is also likely that iodoacetate-induced rearrangements of native intermediates would contribute to the apparent abundance of nonnative disulfide species. Difficulty with iodoacetate quenching of an intermediate present during the reduction of ribonuclease A has also been observed (24).

Acid quenching. Because the thiolate anion is the reactive species in thioldisulfide exchange, it is possible to quench folding extremely rapidly by lowering the pH. Pronotation is reversible, however, so that acid-quenched intermediates must be separated rapidly (and at low pH) or they will rearrange or oxidize further. Reversed-phase HPLC at pH 2 is well suited to separate acid-quenched intermediates. A typical HPLC run takes less than 10s seconds. Therefore, as long as rearrangements occur on a time
scale slower than 10^4 seconds at pH 2 or, all else being equal, 10^{-2} second at pH 8, there will not be significant rearrangements during the separation. In contrast, blocking with 100 mM iodoacetate takes approximately 1 second at pH 8 (17). Thus, it is possible in theory, by using acid quenching and HPLC, to study intermediates that rearrange 100 times too rapidly to be trapped accurately with 100 mM iodoacetate.

A practical advantage of acid quenching is that it is reversible. As a result, it is possible to purify an acid-quenched intermediate and subsequently to allow further rearrangement or folding to occur. This advantage will facilitate detailed analyses of folding.

Four experiments demonstrate the validity of our acid quenching experiments. First, the distribution of intermediates observed does not depend on the concentration of acid used to quench folding (Fig. 4B). Second, all peaks that we checked, including all of the identified intermediates, elute as single peaks when they are rechromatographed by HPLC (25). Third, when a random distribution of intermediates, produced by allowing disulfide rearrangements to occur in the presence of high concentrations of denaturant, is subjected to HPLC separation, a large number of well-populated peaks is observed (Fig. 4C). This rules out the formal possibility that the small number of intermediates observed in folding experiments is the result of fast rearrangements that occur during the HPLC separation. Finally, when a sample of the same random mixture of intermediates was kept on an HPLC column for two or three times the period of a typical separation, the resultant chromatogram is similar to that observed when the material is eluted directly (Fig. 4C). This demonstrates that acid-quenched intermediates, including those that are inherently unstable, can be recovered quantitatively by HPLC.

Nature of BPTI folding intermediates. Although iodoacetate quenching should be used cautiously, it seems likely that higher concentrations of iodoacetate will provide a more accurate quench. When the folding of BPTI is studied with a more concentrated (500 mM) iodoacetate quench, and the intermediates are quantitated by HPLC, the most abundant intermediates, at both the one- and two-disulfide stages, contain only native disulfide bonds (Fig. 5A). When the folding of BPTI is followed by an acid quench, the results are even more striking; all well-populated intermediates contain only native disulfide bonds (Fig. 5B). The most populated nonnative species, [30-51; 5-14], is almost ten times less populated than the corresponding native species, [30-51; 14-38].

The reversibility of acid quenching allowed us to examine part of the folding pathway of BPTI in detail. Acid-quenched [30-51; 14-38] was purified by HPLC. A rearrangement reaction was then initiated, in the absence of external oxidizing or reducing agents, by increasing the pH. Remarkably, populated intermediates are virtually absent during the rearrangement of [30-51; 14-38] to either of the other native two-disulfide intermediates, N$_{SH}$ or N* (Fig. 6A).

These results (Fig. 6A) suggest that the rate-limiting step (26) in the rearrangement is the loss of structure in [30-51; 14-38]. This conclusion contrasts with the suggestion that, as BPTI folds, structure is formed and broken rapidly in intermediates prior to the rate-limiting step, and that the rate-limiting step involves the formation of a distorted form of native-like conformation (27). Moreover, the extensive similarity to BPTI in patterns of two-dimensional nuclear magnetic resonance (2D-NMR) total correlation spectroscopy (TOCSY) cross-peaks (Fig. 7) suggests that [30-51; 14-38] is essentially completely folded (28). The extensive, native-like structure in [30-51; 14-38] is also almost certain to contribute to the difficulty observed in alkylation of this intermediate.

Thus, [30-51; 14-38] acts as a kinetic trap with native-like structure. This conclusion predicts that denaturants, by destabilizing native structure, will increase the rate of folding. As the concentration of urea is increased from 0 to 6 M, the rate of rearrangement of [30-51; 14-38] to N$_{SH}$ and N* becomes approximately eight times higher (Fig. 6B), even though urea has little effect on the intrinsic rate of thiol-disulfide exchange (29). This result has little precedent in protein folding (see, however, 30, 31), and earlier studies have shown that denaturants retard the overall rate of folding for BPTI.

![Fig. 4. Control experiments to evaluate iodoacetate and acid quenching (42). (A) HPLC elution profiles for a folding time point (5 min), quenched with the indicated concentrations of sodium iodoacetate. For clarity, only a portion of the chromatograms is shown. There is an increase in relative abundance of [30-51; 14-38] as the concentration of iodoacetate is increased. (B) Same experiment as in (A), but with formic acid as a quench reagent. (C) HPLC elution profiles for a randomized distribution of acid-quenched intermediates, chromatographed directly or after remaining on the column for a delay time. The random distribution was generated by allowing purified, acid-quenched [30-51; 14-38] to rearrange, in the absence of redox agents, for one minute in folding buffer containing 7 M guanidine-HCl at 40°C.](image)
Acid-quenched intermediates that disulfides species rearrange. The ability were material of did source contain is reversibility accelerated PaPI, integrating with folding. A synthetic peptide model (called PaP), the native intermediate [30-51] is thought to contain native-like secondary and tertiary structure (33). Studies of iodoacetate-trapped (30-51) also indicate that β-sheet structure is present. Unlike studies of PaP, however, studies of (30-51) did not detect α-helical structure, if did they indicate that there were significant native tertiary interactions (34). The most likely source for these differences is that iodoacetate-trapped (30-51) contains a bulky and charged modifying group at Cys55, whereas this cysteine is replaced by alanine in the peptide model. This residue is part of the α helix and is involved in tertiary interactions with the β sheet (33), so that the carboxymethyl group is expected to interfere with folding.

The native intermediate [5-55] is also present at equilibrium, but it is about seven times less populated than [30-51]. The remaining single disulfides appear to be spread over many other species. In contrast to earlier studies (1, 19), the nonnative intermediate [5-30] does not appear to have substantial stability.

Folding at neutral pH. Earlier studies of the folding of BPTI were performed at pH 8.7 in order to effect a rapid rate of thiol-disulfide exchange without significantly deprotonating the tyrosine residues (1). The pKₐ values for Cys thiols are near 8.7, however, so that there is a heterogeneous population of intermediates, with different ionization states at different cysteine residues, for a given disulfide linkage at pH 8.7. In addition, structure in intermediates can alter the pKₐ of the cysteines. Therefore, results obtained at neutral pH should simplify interpretation of the structural basis of the folding pathway.

For this reason, the folding of BPTI at pH 7.3, but otherwise identical conditions, was examined (Fig. 9). The relative abundance of [5-55] increases at neutral pH, so that it is the predominant one disulfide intermediate. The marked increase in the abundance of [5-55] as the pH is lowered results most likely from removing the destabilizing effect of burying deprotonated (that is, negatively charged) thiols at Cys⁵⁰ and Cys⁵¹ in this intermediate. Equilibrium experiments (Fig. 8B) demonstrate that the abundance of [5-55] at neutral pH reflects the thermodynamic stability of this intermediate.

Structural studies indicate that native structure contributes to the stability of [5-55]. A recombinant model of [5-55], with the remaining Cys residues changed to Ala and a Met residue added to the NH₂-terminus, has a melting temperature (T_m) of ~40°C and contains extensive native structure (13). In addition, a peptide model of [5-55] with Cys⁵⁰ and Cys⁵¹ changed to Ala has a T_m of ~28°C and contains native structure (11). A different recombinant model of [5-55], containing the amino acid substitution Met⁵² → Arg and the remaining Cys residues changed to Ser, contains native structure that is less stable, unfolding between 10° and 15°C (12). Thus, alanine appears to be a better model for protonated thiols than serine since folding experiments at neutral pH (Figs. 8B and 9) indicate that [5-55] is well populated at 25°C, although the Met⁵²
Arg substitution may also have a destabilizing effect in the Ser model.

Revision of the BPTI-folding pathway. The folding pathway of BPTI at pH 7.3 is summarized in Fig. 10. Nonnative intermediates are not populated significantly when folding occurs at pH 8.7 (Fig. 5), and are almost absent when folding is observed at neutral pH (Fig. 9). Whereas earlier studies led to the conclusion that eight different disulfide-bonded species were populated substantially in the folding of BPTI, three of them nonnative, only six well-populated disulfide species are seen here, and none of these contain nonnative disulfide bonds (Fig. 10).

Two native intermediates, [30-51] and [5-55], predominate at the single-disulfide stage. Initially, R is oxidized to a large number of mixed disulfide species and single-disulfide intermediates (19, 29), which then rearrange rapidly to either [30-51] or [5-55] (Figs. 8 and 9). Both of these intermediates are thought to contain substantial native-like structure (11–13, 33, 34). Because the thiols of Cys14 and Cys38 are solvent exposed in native BPTI (Fig. 1), they can form mixed disulfides in a native-like intermediate without significant loss in energy. Thus, the 14-38 disulfide bond forms readily in both [30-51] and [5-55] to give [30-51; 14-38] and [5-55; 14-38] (that is, N*) respectively.

This leads to a fork in the folding pathway (2, 11) (Fig. 10). Both of the resultant two-disulfide intermediates contain extensive native-like structure (15, 28). Both intermediates serve as kinetic traps for folding. Since it is very stable, N* does not rearrange further on the time scale of the experiment (Fig. 10).

The intermediate [30-51; 14-38] does rearrange, albeit slowly, to form either NSH or N* (Figs. 6A and 10). The prolonged abundance of [30-51; 14-38] together with the observation that urea accelerates the rate of rearrangement (Fig. 6B), suggests strongly that essentially complete native folding of this intermediate (Fig. 7) retards the rate of rearrangement. This retardation is apparent at pH 8.7 (Fig. 5B) but is enhanced substantially at pH 7.3 (Fig. 9), presumably because folded structure in the intermediate is more stable at neutral pH.

Native folding of [30-51; 14-38] would also bury the thiols of Cys5 and Cys55, thereby inhibiting the first step in direct oxidation to N (that is, formation of a mixed disulfide with the oxidizing agent). A similar phenomenon has been observed with N* (2) and with the constant fragment of the immunoglobulin light chain (22). Direct measurement, however, of the reactivity of thiols in [30-51; 14-38] have not yet been made. Other factors, such as the structure of the transition state (32), or of the stability of mixed disulfide species that are populated in strongly oxidizing conditions (or bond) could also influence the overall rate of direct oxidation; for example, the presence of a mixed disulfide with glutathione on Cys5 or Cys55 is likely to destabilize or partially unfold the intermediate [30-51; 14-38].

Since only one cysteine in a disulfide bond can be exchanged in a single step, the rearrangement of [30-51; 14-38] to NSH or N* must proceed through nonnative intermediates. Although not well populated, two of the nonnative intermediates found earlier, [30-51; 5-14] and [30-51; 5-38], can be detected in the rearrangement experiment (Fig. 6A). More work is needed to evaluate the kinetic importance of these nonnative intermediates. The striking observation, however, is that the rearrangement from [30-51; 14-38] to N* occurs almost as rapidly as the rearrangement to NSH (Figs. 6A, 10), even though the rearrangement to N* requires an intermediate that is distinct from [30-51; 5-14] or [30-51; 5-38].

Thus, the rearrangement process appears to be relatively random. There is no evidence that the nonnative intermediates [30-51; 5-14] and [30-51; 5-38] serve to "direct" folding toward NSH. Rather, it seems likely that before the third disulfide bond in BPTI can be formed, [30-51; 14-38], like N*, must unfold substantially in order to expose thiols that are buried as a result of native structure (22, 28).
The trapping of disulfide-bonded intermediates makes it possible to view folding intermediates without bias for native structure. Earlier studies, indicating that there are well-populated and persistent intermediates containing nonnative disulfide bonds in the oxidative folding of BPTI, have provided the strongest evidence indicating that nonnative protein interactions are relevant for protein folding.

Our conclusion that there are no well-populated, nonnative intermediates in the folding of BPTI removes a major unresolved problem in many diverse models for protein folding that invoke predominantly native interactions. It seems likely that the same interactions that stabilize the final folded structure also guide the protein in attaining this structure (41). To the extent that it is true, this simplifying principle should facilitate both experimental and theoretical efforts toward our understanding of protein folding.

REFERENCES AND NOTES

3. Intermediates are denoted in brackets by the disulfide linkage of the Cys residues.
4. Parentheses are used to denote the identity of IEC peaks as determined in (9).
7. Blocked intermediates were purified after HPLC equilibration and then reduced with 250 µl of 10 mM dithiothreitol (DTT) (Sigma) in 6 M guanidine-HCl, 100 mM tris-hydroxymethyl-amino methane hydrochloride (tris-HCl), pH 8.7, 1 mM EDTA. After 2 hours, an equal volume of 100 mM IAEDANS (Molecular Probes) in the same buffer was added to label the thiol groups. At 5 minutes, the mixture was desalted in 10 mM HCl (PD-10, Pharmacia). The tagged peak was then digested with thermolysin at 65°C for 1.25 hours (75 µg/ml in 100 mM tris-HCl, pH 8.7, 2 mM CaCl2). Digestion was quenched by the addition of EDTA to 5 mM and acetic acid to 5 percent. Peptide fragments were separated by HPLC on a Vydac C-18 analytical column; monitoring absorbance simultaneously at 340 nm, where only IAEDANS-labeled peptides are observed, and at 229 nm, where all peptides are detected. As with all other HPLC separations, an acetonitrile-H2O gradient is used to separate the peptides. (31).
8. In this paper, amino acid sequence values are given to two significant figures. Generally, the residues of 2D-NMR data. Significant identifications have been carried out on other proteins (for example, C. Carr, S. Aykent, N. M. Kimack, A. D. Levine, Biochemistry 30, 1539 (1991)).
10. BPTI (FBA pharmaceuticals) was purified in the reduced form on a Vydac C-18 preparative column. Reduced BPTI in 10 mM HCl (9) was diluted to a final concentration of 30 mM with a solution of 0.2 M NaOH (Sigma) to pH 7.3. The solution was mixed with a solution of 0.1 M dithiothreitol (DTT) to pH 8.7, 2 mM CaCl2, and N-ethylmaleimide was added to a final concentration of 25 mM. The solution was incubated for 30 minutes at 37°C. The final concentration was adjusted to 100 mM with HCl. After 1 hour, the solution was diluted 30-fold with 50 mM NaOH and quenched with a solution of 10 mM dithiothreitol (DTT) (Sigma) in 6 M guanidine-HCl, 100 mM tris-hydroxymethyl-amino methane hydrochloride (tris-HCl), pH 8.7, 1 mM EDTA. Digestion was quenched by the addition of EDTA to 5 mM and acetic acid to 5 percent. Peptide fragments were separated by HPLC on a Vydac C-18 analytical column; monitoring absorbance simultaneously at 340 nm, where only IAEDANS-labeled peptides are observed, and at 229 nm, where all peptides are detected. Acid-quenched intermediates were blocked by resuspending the dried intermediate in a buffer consisting of 500 mM sodium iodate, 100 mM tris-HCl, pH 8.7, 200 mM KCl and 1 mM EDTA for 30 seconds, followed by desalting on a PD-10 column equilibrated in 10 mM HCl and HPLC purification.}

11. For example, proteolytic fragments of an intermediate could be separated by HPLC in the reduced and oxidized form. Fragments that contain disulfide bonds appear on reduction. These fragments could then be identified by mass spectrometry or amino acid sequencing. Similar identifications have been carried out on other proteins (for example, C. Carr, S. Aykent, N. M. Kimack, A. D. Levine, Biochemistry 30, 1539 (1991)).
13. BPTI (FBA pharmaceuticals) was purified in the reduced form on a Vydac C-18 preparative column. Reduced BPTI in 10 mM HCl (9) was diluted to a final concentration of 30 mM with a solution of 0.2 M NaOH (Sigma) to pH 7.3. The solution was mixed with a solution of 0.1 M dithiothreitol (DTT) to pH 8.7, 2 mM CaCl2, and N-ethylmaleimide was added to a final concentration of 25 mM. The solution was incubated for 30 minutes at 37°C. The final concentration was adjusted to 100 mM with HCl. After 1 hour, the solution was diluted 30-fold with 50 mM NaOH and quenched with a solution of 10 mM dithiothreitol (DTT) (Sigma) in 6 M guanidine-HCl, 100 mM tris-hydroxymethyl-amino methane hydrochloride (tris-HCl), pH 8.7, 1 mM EDTA. Digestion was quenched by the addition of EDTA to 5 mM and acetic acid to 5 percent. Peptide fragments were separated by HPLC on a Vydac C-18 analytical column; monitoring absorbance simultaneously at 340 nm, where only IAEDANS-labeled peptides are observed, and at 229 nm, where all peptides are detected. Acid-quenched intermediates were blocked by resuspending the dried intermediate in a buffer consisting of 500 mM sodium iodate, 100 mM tris-HCl, pH 8.7, 200 mM KCl and 1 mM EDTA for 30 seconds, followed by desalting on a PD-10 column equilibrated in 10 mM HCl and HPLC purification. For example, proteolytic fragments of an intermediate could be separated by HPLC in the reduced and oxidized form. Fragments that contain disulfide bonds appear on reduction. These fragments could then be identified by mass spectrometry or amino acid sequencing. Similar identifications have been carried out on other proteins (for example, C. Carr, S. Aykent, N. M. Kimack, A. D. Levine, Biochemistry 30, 1539 (1991)).
between bases 60 and 70 were not well protected by TFIIA, a result consistent with finger 6 behaving differently compared to the other fingers. Hydroxyl radical footprinting of finger deletion mutants of TFIIA is consistent with the placement of fingers 1-2 and 8-9 as was shown (12).

The less regular mode of binding hypothesized for TFIIA relative to the Zif268 structure may arise from irregularities in some of the TFIIA zinc fingers. Fingers 3, 6, and 8 have His-X4-His spacings between the histidine ligands instead of the more prevalent His-X3-His spacing. The His-X3-His fingers have more conformational flexibility than the His-X4-His fingers (13, 14). Also, the linker length between fingers may influence the precise mode of binding (number of residues between the last His and first Cys in neighboring fingers).

In the proposed model, the three subsites are spanned by His-X3-His fingers with irregular linker lengths. These variations on the more regular His-X3-His domain may serve to increase and diversify the binding sites available to multifinger proteins.

How general, then, is the recognition pattern of a single protein-DNA complex? Structures of the helix-turn-helix motif suggest that if there is a pattern, it will be more complex than the scheme outlined here. However, a scheme for making predictions that can be tested experimentally, both by structural analysis and by site-directed mutagenesis, should yield some insights into the nature of this class of zinc finger–DNA recognition.

REFERENCES AND NOTES