damage in some ADX animals was due to incomplete adrenalectomy or the presence of ectopic adrenal cells or other tissues that produce compounds with adrenal hormone activity.

Our finding that adrenalectomy selectively destroys granule cells is particularly unexpected because these cells are the hippocampal neurons most resistant to ischemic in-sult, hypoxia, or seizure activity (3, 13). The mechanism by which adrenalectomy causes the selective loss of hippocampal granule cells is unknown. The simplest explanation is that the granule cells need adrenal hormone receptor stimulation to remain viable. The possibility that granule cells die when their mineralocorticoid (Type I) or glucocorticoid (Type II) receptors (4) are not occupied by endogenous ligand is provocative. These cells may require a protein or other factor that is regulated by adrenal hormone receptor activation. Conversely, granule cell loss could be due to a process secondary to adrenalectomy, and the preservation of this loss by corticosterone may not be the result of a direct action of corticosterone within the brain.

Progress toward understanding the role of the hippocampus in normal learning and memory and in pathological conditions has been hampered by the difficulty in producing selective hippocampal lesions. Adrenalectomy may be a useful method to remove hippocampal granule cells selectively and then determine how learning, memory, and other functions are altered.

REFERENCES AND NOTES

8. Naive, ADX, and sham-operated male Long-Evans rats, weighing 150 to 174 g, were purchased from Harlan Sprague-Dawley. Animals were treated in accordance with the guidelines of the New York State Department of Health and the National Insti-

EVIDENCE THAT THE LEUCINE ZIPPER IS A COILED COIL

ERIN K. O’SHEA, RHEBA RUTKOWSKI, PETER S. KIM

Recently, a hypothetical structure called a leucine zipper was proposed that defines a new class of DNA binding proteins. The common feature of these proteins is a region spanning approximately 30 amino acids that contains a periodic repeat of leucines every seven residues. A peptide corresponding to the leucine zipper region of the yeast transcriptional activator GCN4 was synthesized and characterized. This peptide associates in the micromolar concentration range to form a very stable dimer of α helices with a parallel orientation. Although some features of the leucine zipper model are supported by our experimental data, the peptide has the characteristics of a coiled coil.

The essential features of the proposed leucine zipper (1) are that the region containing the leucine repeat has a helical structure, that the leucines align along one face of the helix, and that interdigation of the leucine side chains facilitates dimerization. The leucine repeat is found in several biologically interesting proteins (2) including two transcriptional regulators (yeast GCN4 and mammalian C/EBP) and three nuclear transforming proteins (Jun, Fos, and Myc). These DNA binding proteins do not contain recognizable helix-turn-helix (2) or zinc-finger (3) motifs. A 30-residue region immediately adjacent to the leucine repeat is required for specific DNA binding in both GCN4 (4) and C/EBP (5, 6), suggesting that the proposed leucine zipper may have a fundamental role in arranging the DNA binding surface of these proteins (7).

We tested the leucine zipper model and began structural studies of these proteins by focusing on the leucine repeat itself. GCN4.
a positive transcriptional regulator (6), was chosen because it is well characterized both biochemically and genetically. The leucine repeat of GCN4 occurs in the last 30 residues of the protein. Mutational analysis has shown that the last 60 residues of GCN4 are sufficient for specific DNA binding activity (4). Deletion of the last 42 residues from GCN4 abolishes regulation in vivo (7) and DNA binding activity in vitro (8). Biochemical analysis indicates that GCN4 binds DNA as a dimer, and that dimers are formed in the absence of DNA (9).

In order to investigate the role of the leucine repeat in GCN4, a peptide corresponding to the 33 amino acids at the COOH-terminus of the protein (GCN4-p1, Fig. 1) was synthesized with solid-phase methods (10). The identity of the purified peptide was confirmed by mass spectrometry. The NH2-terminus of the peptide was acetylated to avoid introducing additional charge interactions, and the COOH-terminus was left free as in the native protein. Circular dichroism (CD) spectra of GCN4-p1 indicate that the peptide is helical in physiological aqueous solution (2A). The double minima at 208 and 222 nm and the maximum at 195 nm (Fig. 2A) are characteristic of α-helices. The CD intensity at 222 nm indicates that folded GCN4-p1 is essentially 100% α-helical (11, 12).

The helical structure of GCN4-p1 is remarkably stable for a peptide of this size. The midpoint of the temperature dependence (Tm) of the CD signal is 57°C (Fig. 2B). This Tm value depends on peptide concentration (Fig. 3), which suggests that GCN4-p1 self-associates. Sedimentation equilibrium experiments indicate that GCN4-p1 exists as a dimer in the concentration range of 10 μM to 2 mM (13). We conclude that the concentration dependence of the Tm for GCN4-p1 results from a monomer-to-dimer equilibrium, and that the dimer is very stable.

The high aqueous solubility of GCN4-p1 (≥20 mg/ml) suggests that hydrophobic side chains are shielded from solvent in a closely packed interface between the two helices. An interhelical crossover angle of ~20° allows side chains in a helix pair to pack efficiently in a “knobs into holes” (14) or “ridges into grooves” (15) manner. The orientation of the helices (parallel or anti-parallel) has implications for the manner by which DNA is recognized.

We have used disulfide bond formation between cysteines placed at the ends of the helices as a probe of helix orientation [compare with (16)]. Two additional peptides were synthesized, one containing an NH2-terminal cysteine (GCN4-p1N) and another containing a COOH-terminal cysteine (GCN4-p1C). In each case, two glycine residues were added between the helix and the cysteine residue to provide flexibility for disulfide bond formation (Fig. 1). In a mixture of GCN4-p1N and GCN4-p1C, oxidative disulfide formation favors homodimers if the orientation is parallel and heterodimers if the orientation is antiparallel.

Our results with disulfide bond formation indicate that the orientation of the helices is parallel, and that the folded conformation of the peptide is a dimer of helices: (i) Under physiological conditions, it is easy to obtain homodimers with GCN4-p1N or GCN4-p1C, but it is difficult to obtain heterodimers between the same peptides. In contrast, cysteine oxidation in the presence of a denaturant that unfolds the peptides (guanidine hydrochloride, GuHCl) yields both heterodimers and homodimers. (ii) The disulfide-bonded homodimers of GCN4-p1N and GCN4-p1C have Tm values that are independent of peptide concentration (88° and 78°C, respectively), presumably because the dimer is held together covalently (Fig. 3). When the disulfide bond in either homodimer is reduced, stability is concentration-dependent (17). (iii) In contrast to the homodimers, the stability of the disulfide-bonded heterodimer is concentration-dependent; the Tm is 59°C at a peptide concentration of 0.5 μM (18).

The exclusivity of the parallel orientation can be evaluated from the equilibrium ratio of disulfide-bonded heterodimer to homodimers present in mixtures of GCN4-p1N and GCN4-p1C (19). If the orientation of helices is strictly parallel, then heterodimers are not expected to form disulfide bonds, because the cysteines would be on opposite ends of the heterodimer. No heterodimer is detected when a mixture of both peptides is incubated in a redox buffer (Fig. 4A). To verify that equilibrium had been reached, disulfide-bonded heterodimer (produced by oxidation in a GuHCl solution) was placed in the redox buffer (Fig. 4B). Again, there is no detectable heterodimer present at equilibrium. Based on the detection limits of our high-performance liquid chromatography (HPLC) assay, we estimate that the parallel orientation of helices is preferred over the antiparallel orientation by at least 1000-fold (20).

Landschulz et al. (1) proposed that the leucine zipper is a stable dimer of α-helices. They argued that an antiparallel orientation of the helices would allow the macrodipole moment (21) of one helix to interact favorably with the matching helix, and that side chain interlocking would be favored in an antiparallel arrangement [because amino acid side chains in helices are often arranged at an angle pointing toward the NH2-terminus (22)].

Fig. 1. Sequences of the three peptides studied (10). The leucines that define the proposed leucine zipper structure are underlined. All of the peptides were acetylated at the NH2-terminus. Peptide GCN4-p1 consists of the 33 residues at the COOH-terminus of GCN4. Peptide GCN4-p1N consists of the same 33 residues preceded by the residues Cys-Gly-Gly. Peptide GCN4-p1C consists of the same 33 residues followed by the residues Gly-Gly-Cys. Abbreviations for the amino acid residues are: A, Ala; C, Cys; D, Asp; E, Glu; G, Gly; H, His; K, Lys; L, Leu; M, Met; N, Asn; Q, Gln; R, Arg; S, Ser; V, Val; and Y, Tyr.

Fig. 2. (A) CD spectra of GCN4-p1 at (○) 0°C, (●) 50°C, (△) and 75°C (17). The value for [θ]222 at 0°C of ~33,000 deg cm² dmol⁻¹ indicates that GCN4-p1 is ~100% helical under these conditions (11, 12). (B) Temperature dependence of the CD signal at 222 nm for GCN4-p1 (17). The Tm (obtained by taking a first derivative, shown in the inset) for GCN4-p1 at a peptide concentration of 34 μM was 57°C.
Our results indicate that a peptide containing an isolated leucine zipper motif can form a very stable dimer in the micromolar concentration range. Thus, some features of the proposed leucine zipper model are supported by our experimental data. Specifically, the region containing the leucine repeat is helical and it forms a stable dimer. Our results indicate, however, that the helices of the GCN4 peptide are oriented in a parallel manner.

The leucine repeat from GCN4 has the characteristics of the coiled coil. Coiled coils are often found in fibrous proteins such as tropomyosin and keratin (23) and result from the coiling of two right-handed helices around one another with a slight left-handed superhelical twist (14, 24). The helices in most coiled coils are arranged in a parallel manner ([25]; see however [26]). The helical repeat in a coiled coil is reduced from 3.6 residues per turn (found in a classic α helix) to 3.5 residues per turn, so that the interaction pattern repeats integrally every seven residues. The leucine repeat occurs every seven residues in GCN4 and other "leucine zipper" proteins. Coiled coils also have a characteristic hydrophobic repeat interspersed within the helical repeat (4-3 repeat) (23). The leucine repeat regions from GCN4, Jun, and C/EBP contain this 4-3 repeat of hydrophobic amino acids (discussed below). Although a detailed nuclear magnetic resonance (NMR) or crystallographic study is needed, we propose that a working model for the structure of at least some regions containing this motif is that of a coiled coil (27).

If this structure is a coiled coil, then the leucine side chains are not interdigitated like teeth in a zipper, as originally proposed [compare with figure 5a of (1)]. In a coiled-coil representation of the sequence from GCN4 (Fig. 5) the leucine of one helix (position 1d, 1d') interacts extensively with the alternate, non-leucine hydrophobic residue in the opposing helix (position 1a, 1a'). Landschulz et al. (1) distinguished their hypothetical motif from the coiled coil because: (i) the interaction surface in leucine zippers is short compared with that for many naturally occurring coiled-coil proteins; and (ii) the leucine zipper structure appears to rely almost exclusively on leucine side chains, whereas coiled coils use almost any hydrophobic amino acid. We note that short segments from coiled coils, containing only four or five heptad repeats, can have substantial stability as dimers (16), and, although many types of residues are found in the hydrophobic positions of coiled coils, there is a strong preference for leucine (23).

The parallel orientation of the helices within the dimer places constraints on models for DNA binding by these proteins. For GCN4, the addition of 30 residues located at the NH1-terminal to the region studied here is sufficient to allow specific DNA binding (4). The parallel, dimeric nature of the leucine repeat region may be an essential component of bidirectional transcriptional activation (28) and palindromic DNA binding (29) for GCN4. However, Myc (30) and some other proteins containing leucine repeats (31) contain a putative DNA-contact region that is far from the leucine repeat. It is possible that in some proteins the leucine repeat simply facilitates dimerization and has little to do with positioning a DNA-binding region.

A computer search identifies many proteins that contain four repeats of leucine spaced seven residues apart (31). Since leucine is a common amino acid, however, some of these leucine repeats may not represent true dimerization sites. Moreover, in some of these sequences, proline residues are found within the leucine repeats. Our finding that a peptide with the leucine repeat from GCN4, can, by itself, form a stable dimeric structure suggests that genetic and biochemical analyses will be useful for distinguishing leucine repeats that function as dimerization sites.

Detailed structural studies of the leucine repeat motif will be simplified using peptides, because complications involved in studying the intact protein are avoided. Indeed, preliminary analysis of GCN4-1Î project indicates that high-resolution two-dimensional NMR data can be obtained, and these data confirm the conclusion that only one orientation of the helices predominates (32).

Finally, our finding that a synthetic peptide of a leucine repeat region forms a stable, dimeric structure could have practical applications. Such peptides may be useful as specific inhibitors of biological activity in leucine repeat--containing proteins, both in vitro and possibly in vivo. The interesting suggestion has been made (1) that this structure may be important in the formation of heterotypic complexes [such as between the Fos and Jun gene products; see (33)]. Synthetic peptides offer a way to test directly such suggestions. For both homodimer and possible heterodimer formation, it may be possible to use peptides to investigate protein-protein interactions mediated by leu-
The leucine zipper motif modeled as a coiled coil. (A) Computer graphics illustration of the stabilizing hydrophobic interactions in a coiled coil. The leucine side chains are not interdigitated. The positions of hydrophobic side chains in the 4-3 repeat are represented as dot-surface spheres, and the backbone of the helices as continuous ribbons (36). Interactions occur between leucine side chains (magenta) and side chains in an alternate hydrophobic repeat (cyan), as well as between leucines on each helix (27). (B) Representation of the leucine repeat of GCN4 as a coiled coil. A view down the helix axis from the NH2-terminus of GCN4-p1 is shown, modeling the potential interactions between the two helices as a coiled coil (16). The two positions of the 4-3 hydrophobic repeat are shown as 1a and 1d (also 1a' and 1d'), illustrating interhelical hydrophobic interactions that contribute to the stability of the coiled coil. Residues in GCN4 that occupy these hydrophobic positions in subsequent heptad repeats are shown in order above positions 1d and 1a' and below positions 1a and 1d'.

REFERENCES AND NOTES

10. For a review, see S. B. H. Kent, Annu. Rev. Biochem. 57, 957 (1988). Peptides were synthesized on an Applied Biosystems Model 430A peptide synthesizer with standard reaction cycles modified to include acetic anhydride capping. The peptides were cleaved from the resin with the use of low/high HF cleavage (Immunodyanamics, Inc., San Diego, Ca) and deluted on a Sephadex G-10 column in 5% acetic acid. Final purification was by HPLC on a linear acetonitrile-H2O gradient containing 0.1% trifluoroacetic acid (TFA); fast atom bombardment spectroscopy (FAB-MS) yielded a molecular weight 4038.4 for GCN4-p1 (calculated, 4038.9).
13. Sedimentation equilibrium studies (E. K. O'Shea, W. F. Stafford III, P. S. Kim, unpublished results) gave a value of 7900 for the molecular weight of GCN4-p1 (calculated, 8080) over a concentration range of 0.1 to 2 mM in phosphate-buffered saline (PBS; 0.15M NaCl, 10 mM phosphate, pH 7.0).
17. The CD spectra were recorded in a 1-mm path-length cell at a sample concentration of 34 μM in PBS. All peptide concentrations were determined by tyrosine absorbance at 278.5 nm in 6M GuHCl (H. Edehoch, Biochemistry 6, 1448 (1967)). Thermal unfolding studies were performed in PBS with a 1-cm path-length cell. An Aviv Model 60DS CD spectrophotometer with an Aviv Model 9100A Felder temperature control unit was used. GCN4-p1, reduced GCN4-p1N, and reduced GCN4-p1C all show a similar dependence of the Tm on peptide concentration, measured from 800 nM to 34 μM (reduced peptides were used in the presence of 0.5 mM reduced dithiothreitol (DTT) and 1 mM EDTA). At 800 nM peptide concentration in PBS, the Tm values were: GCN4-p1, 43°C; reduced GCN4-p1N, 47°C; and reduced GCN4-p1C, 40°C. The homodimers were produced in 50 mM oxidized DTT, 0.1 mM tris, pH 8.5, followed by HPLC purification. In addition, the GCN4-p1 homodimer was thermally denatured in 4.5M GuHCl (near the midpoint of the GuHCl denaturation curve). These conditions were chosen to give the most sensitive test for a concentration dependence of the Tm. The Tm of GCN4-p1N homodimer in 4.5M GuHCl, PBS was 34′ ± 0.5°C over the range of peptide concentrations.
18. The concentration-dependent stability of the disulfide-bonded heterodimer can be explained by an association to form a dimer of heterodimers (molecular weight 17,000). This explanation is compatible with the proposed transition orientation and also accounts for the greater stability of the heterodimer compared with GCN4-p1 at an equivalent concentration; the dimer of heterodimers has twice as many possible stabilizing interhelical interactions as does GCN4-p1.
19. The reduced peptides were mixed and incubated in either 2 mM HCl (control) or redox buffer (1 mM oxidized glutathione, 1 mM reduced glutathione, 0.2M KCl, 1.0 mM tris, 1 mM EDTA, pH 8.7) for 1.5 hours at a total peptide concentration of 34 μM, and then analyzed by HPLC (an acetonitrile-H2O gradient (with segments of 0.5% and 0.1% by volume increase per minute of acetonitrile) was used in the presence of 0.1% TFA with a gradient of 10% acetonitrile (Vydac C-18 column). The peptide concentration was high enough to ensure that the reduced peptides were predominantly dimers (Fig. 3), but low...
A Genetic Polymorphism in the Renin Gene of Dahl Rats Cosegregates with Blood Pressure

John P. Rapp,* Sue-May Wang, Howard Dene

Blood pressure is influenced by multiple genetic loci whose identities are largely unknown. A restriction fragment length polymorphism (RFLP) in the renin gene was found between Dahl salt-hypertension-sensitive (S) and Dahl salt-hypertension-resistant (R) rats. In an F2 population derived from crossing S and R rats, the renin RFLP cosegregated with blood pressure. One dose of the S-rat renin allele was associated with an increment in blood pressure of approximately 10 mmHg, and two doses of this allele increased blood pressure approximately 20 mmHg. From this it can be definitively concluded that in the rat the renin gene is, or is closely linked to, one of the genes regulating blood pressure.

As we have emphasized previously (4), genes that are causally related to blood pressure (or linked to genes that are causally related to blood pressure) must remain associated with blood pressure differences in genetically segregating populations derived from crosses of a hypertensive and a normotensive strain. If the gene being followed and an increment in blood pressure cannot be separated in such segregating populations, where genes are allowed to recombine at random, then this is clear evidence that the gene in question (or a closely linked gene) is causally involved in the blood pressure differences between strains.

We have developed (5) inbred salt-hypertension-sensitive (S) and inbred salt-hypertension-resistant (R) strains of rats from outbred selected stock obtained from L. K.

*To whom correspondence should be addressed.

A genetic polymorphism is known to have a strong genetic component, and genetic selection experiments with laboratory rats (1, 2) and mice (3) have repeatedly shown that blood pressure is a polygenic trait that responds readily to genetic selection. Several strains of genetically hypertensive rats and mice along with their counterpart normotensive (control) strains have been developed. In spite of the accumulation of significant biochemical and physiological data on such strains, little attention has been paid to identifying the genes involved in blood pressure regulation.

The technique of detecting RFLP's facilitates defining areas of the genome that control blood pressure differences between strains of laboratory animals. Since most of the hypertensive and control strains of rats are inbred, strain-specific RFLPs should occur at many loci. Any genetic locus that was polymorphic in the founding population must fix one of the alleles in the homozygous state in the inbred strains, either by chance (genetic drift) or as the result of genetic selection for blood pressure differences. Because of the possibility of chance selection and fixation of contrasting alleles in contrasting inbred strains, the mere existence of an RFLP, or any other genetic polymorphism, between a hypertensive and control strain, cannot be taken as evidence that such polymorphism is a cause of the blood pressure differences between strains.

HUMAN ESSENTIAL HYPERTENSION is known to have a strong genetic component, and genetic selection experiments with laboratory rats (1, 2) and mice (3) have repeatedly shown that blood pressure is a polygenic trait that responds readily to genetic selection. Several strains of genetically hypertensive rats and mice along with their counterpart normotensive (control) strains have been developed. In spite of the accumulation of significant biochemical and physiological data on such strains, little attention has been paid to identifying the genes involved in blood pressure regulation.

The technique of detecting RFLP's facilitates defining areas of the genome that control blood pressure differences between strains of laboratory animals. Since most of the hypertensive and control strains of rats are inbred, strain-specific RFLPs should occur at many loci. Any genetic locus that was polymorphic in the founding population must fix one of the alleles in the homozygous state in the inbred strains, either by chance (genetic drift) or as the result of genetic selection for blood pressure differences. Because of the possibility of chance selection and fixation of contrasting alleles in contrasting inbred strains, the mere existence of an RFLP, or any other genetic polymorphism, between a hypertensive and control strain, cannot be taken as evidence that such polymorphism is a cause of the blood pressure differences between strains.

As we have emphasized previously (4), genes that are causally related to blood pressure (or linked to genes that are causally related to blood pressure) must remain associated with blood pressure differences in genetically segregating populations derived from crosses of a hypertensive and a normotensive strain. If the gene being followed and an increment in blood pressure cannot be separated in such segregating populations, where genes are allowed to recombine at random, then this is clear evidence that the gene in question (or a closely linked gene) is causally involved in the blood pressure differences between strains.

We have developed (5) inbred salt-hypertension-sensitive (S) and inbred salt-hypertension-resistant (R) strains of rats from outbred selected stock obtained from L. K.