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PROTEIN ENGINEERING

Unsupervised evolution of protein and antibody
complexes with a structure-informed language model
Varun R. Shanker1,2,3, Theodora U. J. Bruun2,3,4, Brian L. Hie3,4†*, Peter S. Kim3,4,5*

Large language models trained on sequence information alone can learn high-level principles of
protein design. However, beyond sequence, the three-dimensional structures of proteins determine their
specific function, activity, and evolvability. Here, we show that a general protein language model
augmented with protein structure backbone coordinates can guide evolution for diverse proteins without
the need to model individual functional tasks. We also demonstrate that ESM-IF1, which was only trained
on single-chain structures, can be extended to engineer protein complexes. Using this approach, we
screened about 30 variants of two therapeutic clinical antibodies used to treat severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection. We achieved up to 25-fold improvement in neutralization
and 37-fold improvement in affinity against antibody-escaped viral variants of concern BQ.1.1 and
XBB.1.5, respectively. These findings highlight the advantage of integrating structural information to
identify efficient protein evolution trajectories without requiring any task-specific training data.

E
volution generates diverse proteins at the
level of biological sequences by explor-
ing a vast search space of potential muta-
tions and acquiring those that improve
fitness.However, it is the three-dimensional

structure encoded by these sequences that ul-
timately determines the function and activity
of a protein. Therefore, as proteins accumulate
mutations, they undergo corresponding struc-
tural changes, which in turn facilitate functional
adaptations (1).
In the laboratory, this tendency for greater

sequence change to cause structural divergence
poses a major challenge for engineering better
proteins through a stepwise evolutionary pro-
cess. Mutations added in sequential rounds
of artificial evolution are increasingly likely to
destabilize the structure and therefore dimin-
ish the protein’s evolvability (2). Identifying
functionally beneficial mutations is also chal-
lenged by the fact that almost all mutations
to a prototypical protein are deleterious, or at
best neutral, and only a rare subset are bene-
ficial on its fitness landscape (3–8). In total,
these phenomena can often reduce the evo-
lutionarily accessible paths and make evolu-
tion more susceptible to local fitness optima

(9, 10), further complicating attempts to in-
crease fitness.
To address both the structural constraints of

protein design and the high dimensionality of
themutational search space, we used a general
protein languagemodel augmented with struc-
tural information and trained across millions
of nonredundant, single sequence-structure
pairs on the sequence recovery task, ESM-IF1
(11). Most simply, the model considers the in-
verse task of that performed by many of the
recent powerful structure-prediction tools, in-
cluding AlphaFold and ESMFold (12, 13): pre-
diction of a sequence that will adopt the fold
of a desired target structure (Fig. 1A). This is
accomplished by predicting the identity of
an amino acid given both the preceding amino
acid sequence (referred to as autoregressive
modeling) and the entire structure’s backbone
coordinates (see the materials and methods).
Thus, sequences assigned high likelihood scores
by the structure-informed language model are
expected to fold into the backbone of the input
structure with high confidence (Fig. 1B).
The problem of designing a sequence for a

desired target structure, such as in inverse
folding, is considered only in terms of protein
folding (14–16) and thus does not guarantee a
functional protein (17). A key barrier to finding
an optimal solution for this sequence design
problem is that many sequences often fold
into a given backbone conformation (18). Our
framework for protein design does not model
an explicit protein function or definition of
protein fitness. Rather, using a structure-guided
paradigm, we leverage this sequence-structure
degeneracy to indirectly explore the underly-
ing fitness landscape by focusing exploration
to regions where the backbone fold of the
protein is preserved. We hypothesize that con-

straining evolution to regimes of high sequence
likelihood can serve as an effective prior for
high-fitness variants and thereby improve the
efficiency of evolution (Fig. 1C).
We reasoned that this approachmay be par-

ticularly valuable for the evolution of human
antibodies, which are used clinically to treat a
broad range of diseases (19). Antibodies offer
protection by selectively binding to a target
antigen involved in pathogenesis and modify-
ing or disrupting its function (20). An impor-
tant optimization step in the development of
most therapeutic human antibodies involves
an intensive process to identify amino acid sub-
stitutions that further enhance potency and
efficacy. Here, we demonstrate that this task
can be accomplished efficiently with machine
learning using an inverse folding model. A
central concept of this study is to use the com-
plete structure of the antibody-antigen com-
plex to guide evolution. By conditioning the
structure-informed language model on the
entire antibody-antigen complex, we sought
to enable the discovery of mutations that pre-
serve or enhance the stability of the entire
complex and thus improve antibody function.

Results
Enriching sequence exploration for high-function
protein variants across diverse tasks with a
structure-informed language model

We evaluatedwhether adding structural infor-
mation to a language model could be used to
guide protein evolution by predicting muta-
tions that improve a protein’s activity for a
specified property without training on or ex-
plicitly modeling the task itself. Accordingly,
for 10 proteins from diverse families among
four organisms and with functions ranging
from enzyme catalysis (TPMT) to oncogene-
sis (HRAS) to transcriptional regulation (GAL4),
we scored variants profiled in large deep mu-
tational scanning experiments (21–30) against
the target backbone of the wild-type protein
(31–40) to compute sequence log likelihoods
(see the materials and methods and table S1).
These predictions were made in a completely
unsupervised setting, with the model never
having been trained on any experimental data.
To demonstrate the utility for a practical user
who wishes to find the most beneficial muta-
tions, we assessed prediction precision by com-
paring the top-scoring variants against their
experimentally determined functional activity
in the relative context of the entire sequence-
fitness landscape.
Within just the set of top 10 predictions, we

identified numerous high-fitness protein var-
iants out of the thousands of tested for each
protein, with experimentally determined ac-
tivities ranking in the top percentiles of the
entire deep mutational scanning screen (Fig.
1D). Our analysis demonstrates that condi-
tioning on structural information serves to
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improve predictive capabilities of protein lan-
guage models by having successfully recov-
ered mutations in the top fifth percentile
for nine of 10 proteins compared with just
two proteins using a state-of-the-art general
protein language model trained only on se-
quence information and specifically for var-
iant prediction (ESM-1v) (41) (Fig. 1D). This
improvement in prediction also holds with
increasingly relaxed thresholds for classifi-
cation as high-fitness variants.
On the basis of this experiment, we con-

clude that structure-based sequence design
offers a promising alternative to brute force
experimental searches for functionally ben-
eficial mutations. Some of the top mutations

predicted are also the same ones discovered
from exhaustive experimental exploration. For
example, for restriction enzyme haeIIIM, var-
iant Q18E is recommended as one of the top
five single amino acid predictions and exper-
imentally ranks as the second-best substitu-
tion (and >5 SDs above themean) of the nearly
2000 substitutions screened across the endo-
nuclease (30). Another key advantage of our
task-independent framework, in addition to
being broadly applicable across diverse pro-
teins, is its ability to improve a single protein
for multiple desired properties without the
need to develop specialized high-throughput
assays to screen each independently. From just
the top 10 predictions for mitogen-activated

protein kinase 1 (MAPK1), we identified sub-
stitutions Q105M and Y64D, which are experi-
mentally shown to confer resistance to two
different oncogenic-targeting MAPK1 kinase
inhibitors (24).

Structural information enables state-of-the-art
zero-shot antibody mutational effect prediction
for language models

To analyze the effectiveness of augmenting a
general protein languagemodel with structural
information specifically for antibody variant
prediction, we compared the likelihoods of se-
quences for three antibodies across entire mu-
tational landscapes against corresponding
experimental fitness values from a total of five

Fig. 1. Guiding evolution of diverse proteins with a structure-guided
language model. (A) The sequence design problem refers to the prediction of a
protein amino acid sequence that will adopt the fold of a given three-dimensional
backbone structure, which is conceptually analogous to the inverse problem
solved by structure prediction tools such as AlphaFold (12). (B) A hybrid
autoregressive model (11) integrates amino acid values and backbone structural
information to evaluate the joint likelihood over all positions in a sequence.
Amino acids from the protein sequence are tokenized (red), combined with
geometric features extracted from a structural encoder (green), and modeled
with an encoder-decoder transformer (purple). (C) Our structure-guided
framework for protein design indirectly explores the underlying fitness landscape
without modeling a specific definition of fitness or requiring any task-specific
training data by constraining the search space to regions where the backbone
fold preserved. (D) High-fitness sensitivity analysis reveals that multimodal
input improves language model performance compared with sequence-only
input across 10 proteins from diverse protein families (left). “High-fitness

prediction precision” refers to the fraction of the top 10 single–amino acid
substitution predictions that are experimentally determined to confer
high protein fitness, defined as having an activity level above the specified
percentile threshold among all experimentally screened variants. A
representative plot (right) demonstrates this metric for assessing the
enrichment of high-fitness MAPK1 mutations. Given the vastness of the search
space, finding any function-enhancing variant is valuable for most practical
settings, so only successfully predicted mutations are highlighted (blue) on the
empirical cumulative density function (ECDF) of the experimental data
(black). The three different thresholds, as defined by percentiles, are also shown
as dashed lines. Structure-informed language model predictions were more
enriched, on average, for high-fitness variants across the various tested
thresholds for high-fitness classification. bla, b-lactamase TEM; CALM1,
Calmodulin-1; haeIIIM, type II methyltransferase M.HaeIII; HRAS, GTPase HRas;
TMPT, thiopurine S-methyltransferase; TPK1, thiamin pyrophosphokinase 1;
UBI4, polyubiquitin; UBE2I, SUMO-conjugating enzyme UBC9.
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existing mutagenesis datasets. Themutational
landscapes of the first two antibodies were
evaluated by measuring the scFv equilibrium
dissociation constants (KD) of all possible evo-
lutionary intermediates between the inferred
germline and the somatic sequence of natu-
rally affinity-matured influenza broadly neutral-
izing antibodies (bnAbs) CR9114 and CR6261,
which bind the conserved stem epitope of the
influenza surface protein hemagglutinin (HA)
(42). For both bnAbs, only mutations in the
heavy chain, which is responsible for antigen
binding, were characterized. The profiled mu-
tational landscape of CR9114 includes all pos-
sible combinations of 16 substitutions, whereas
that of CR6261 includes all possible combina-
tions of 11 substitutions, totaling 216 = 65,536
and 211 = 2048 variant antibody sequences,
respectively. Each of these libraries was screened
for binding against two distinct influenza HA
subtypes: H1 and H3 for CR9114 and H1 and
H9 for CR6261. The fifth dataset assesses the
effects of all possible single–amino acid substi-

tutions with a deep mutational scan profiling
4275 mutations in the variable regions for both
heavy chain (VH) and light chain (VL) of anti-
body G6.31 to binding with its ligand, vascular
endothelial growth factor A (VEGF-A) (43).
For each dataset, we computed the Spearman

correlation between the log likelihood estimated
by the structure-informed language model and
the experimentally determined binding mea-
sure for a given antigen across all sequences in
the mutational library. We scored the likeli-
hood of each candidate sequence in the library
using the backbone coordinates of a structure
with the mature antibody bound to its target
antigen (44–46).
Across all five experimental binding data-

sets, we found that the structure-informed lan-
guagemodel performed better than three other
sequence-based methods: (i) a general protein
language model trained across diverse protein
sequences, ESM-1v (41); (ii) a specialized anti-
body language model trained exclusively on
sequences sampled from the Observed Anti-

body Space (OAS) database, AbLang (47); and
(iii) a site-independent model of mutational
frequency curated with extensive antibody se-
quence alignments, abYsis (48). In nearly all
experimental scenarios, supplementingsequence
information with the backbone coordinates of
the antibody alone without providing antigen
information as input was sufficient to outper-
form other sequence-only methods. A notable
feature of the autoregressive architecture is
that it computes the joint likelihood over all
positions in a sequence, making it well suited
to score combinatorial sequence changes. We
found that this method could capture complex
epistatic interactions, or potential interdepen-
dence among individual amino acids, because
it performs well on the CR9114 and CR6261
libraries composed of sequences withmultiple
mutations (Fig. 2, A and B).
We achieved the greatest improvement in

performance on all five experimental screens
by incorporating the structure of both the anti-
body and antigen (Fig. 2A), indicating that the

Fig. 2. Prediction of antibody-antigen complexes resolves mutational
landscapes by implicitly learning features of binding and protein epistasis.
(A) Spearman correlation using the structure-informed language model and
the sequence-based modeling approaches ESM-1v (41), AbLang (47), and
abYsis (48) reported for three antibodies screened with corresponding antigens.
Bars are colored by the type of model used: SILM, structure-informed language
model (green); LM, language model (orange); and MSA, multiple sequence
alignment (purple). The structure-informed language model was evaluated in
three different settings: (i) by providing the entire antibody variable region and
antigen complex (Ab-Ag); (ii) by providing only the antibody-variable region
(Ab only); and (iii) by providing only the single-antibody variable region of
the chain responsible for binding or being mutated (Ab VH only or Ab VH/VL
only). Antibody sequences scored by the structure-informed language model

with antigen information were computed using input complexes of CR9114
with H5 HA [PDB 4FQI (44)], CR6261 with H1 HA [PDB 3GBN (45)], and
g6.31 with VEGF-A [PDB 2FJG (46)]. (B) Scatter plots showing predictions
against experimentally determined dissociation constants of CR6261 against
HA-H1(left) and HA to H9 (right). The germline and mature sequences are
highlighted on all plots, as indicated on the right. For visualization, all scatter
plots omit points on the lower limit of quantitation. (C) Conceptual illustration
of protein language model performance with improved priors. Providing
sequence and structural information for both the antibody and antigen enables
the structure-informed language model to most efficiently enrich for high-
fitness antibody variants (top right, blue square) by identifying and guiding
focused sequence exploration (green square) away from regimes of mutations
destabilizing to the complex.

RESEARCH | RESEARCH ARTICLE

Shanker et al., Science 385, 46–53 (2024) 5 July 2024 3 of 8

D
ow

nloaded from
 https://w

w
w

.science.org at Stanford U
niversity on July 08, 2024



structure-informed model can implicitly learn
features of binding (Fig. 2C). This result is
notable given that themodel is only trained on
single-chain protein structures, whereas the
antibody-antigen complexes that we used as
inputs are composed of either three (G6.31) or
four (CR9114 and CR6261) protein chains. The
most substantial contribution of antigen in-
formation was observed in the case of CR9114-
H1, for which the correlation increased from
0.17 with only antibody information to 0.65
with sequence and backbone coordinates of
the entire complex. By contrast, this same per-
formance improvement was not observed when
the sequence-only general protein language
model was provided with additional context
of the paired antibody chain or antigen se-
quence (fig. S4). We found that extending our
model beyond the monomeric structures seen
during training to protein complexes also per-
formed better for antibody prediction than
ProteinMPNN (49), an alternate structure-
based deep learning method that was trained
on a dataset that includes multichain protein
structures (fig. S5).
These results showed that we could even pre-

dict the effects of mutations to a cross-reactive
antibody on binding to a strain of influenza
different from the one used as input to the
model (Fig. 2, A and B). Despite using a target
antibody structure in complex with HA from
H5N1 influenza to score CR9114 variants, we
obtained correlations of 0.65 and 0.50 with
experimental binding data for H1 and H3,
respectively. This is particularly important
because the antibody epitope, which spans
both HA subunits, only has 67% sequence iden-
tity between the H5 strain of the structure used
to make predictions (A/Vietnam/1203/2004)
and the H1 strain experimentally tested against
(A/New Caledonia/20/99) (fig. S6 and table
S2). This same cross-reactive predictive capa-
bility was observed with CR6261 (Fig. 2A), for
which the experimentally tested H9 (A/Hong
Kong/1073/1999) differs atmore than one-third
of the residues in the epitope from the 1918
H1N1 influenza strain used in the structure
(A/BrevigMission/1/1918). Although the structure-
informed language model cannot learn explic-
it chemical rules of binding (e.g., hydrogen
bonding or disulfide bridge formation) be-
cause it does not have access to amino acid
side chain atomic coordinates, these results
suggest that structural principles such as in-
terface packing or potential steric interfer-
ence are not only implicitly accessible from
residue identities, but are also informative
for binding prediction.
Our model’s top recommended mutations

were made independently of a specific defini-
tion of fitness; they simply represent a set of
variants with a high likelihood of folding into
the input backbone structure. Therefore, our
model’s recommendations may also help to

identify mutations that improve other useful
biochemical properties beyond affinity. For
example, the top recommended mutation to
the VL of G6.31 is F83A, which was identified
in the original screening study to be partic-
ularly interesting because it confers a three-
fold increase in VEGF-A binding affinity and
a 5°C improvement in melting temperature
despite being 25 Å from the antigen and in
the antibody framework region. It was deter-
mined that the VL F83A substitution induces
more compact packing, and the site serves as a
conformational switch that affects biological
activity at the antibody-antigen interface by
modulating both interdomain and elbow an-
gle dynamics (43). However, whereas our model
successfully enriches for high-fitness variants
acrossmany settings, an associated consequence
of this structure-based framework is the lim-
ited ability to identify mutations that impart
beneficial effects by modifying the backbone
of the mature antibody.

Engineering therapeutic antibodies for increased
potency and resilience

Finally, we investigatedwhether the structure-
augmented language model’s predictive capa-
bilities could not only resolve trends on large
sets of experimental data, but also enable ef-
ficient and successful directed evolution cam-
paigns while testing only a small number (on
the order of tens) of variants. To do so, we con-
sidered the task of improving the potency and
resilience (effectiveness against a virus as it mu-
tates over time) of two mature, clinical mono-
clonal antibody therapies.
LY-CoV1404 (bebtelovimab), isolated from

a COVID-19 convalescent donor, binds to the
receptor-binding domain (RBD) of the severe
acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) Spike protein (50). It was approved by
theUS Food andDrugAdministration (FDA) on
11 February 2022 given its activity against both
the original Wuhan strain and the Omicron
SARS-CoV-2 variants, and it was the last re-
maining approved monoclonal antibody ther-
apy withstanding viral evolution (51) until its
discontinuation on 30 November 2022 due to
antibody evasion by VOC BQ.1.1 (52).
SA58 (BD55-5840)was isolated from a vacci-

nated individual and is oneof twoRBD-targeting
neutralizing antibodies in a rationally devel-
oped antibody cocktail. SA58 alone retained
efficacy against all Omicron subvariants, in-
cluding in vivo protection against BA.5 (53, 54),
andwas shown to be effective as a postexposure
prophylaxis in a clinical study (55).
For both antibody engineering campaigns,

we used the structure-informed language mod-
el to compute likelihoods of all ~4300 possible
single-residue substitutions in the VH or VL
regions of the antibody. In the first round of
evolution, we selected only the top 10 predic-
tions at distinct residues in each chain for ex-

perimental validation. An important practical
benefit of ourmethod is the ability to optimize
againstmeasures of fitnessmost relevant to the
protein’s downstream function, such as viral
neutralization or receptor agonism, rather than
being limited to indirecting surrogatemeasures
such as affinity that aremore amenable to high-
throughput screening (4, 56). We leveraged this
advantage to directly evolve these antibodies
for their ability to more potently neutralize
SARS-CoV-2–pseudotyped lentivirus.
Variants recommended by the structure-

informed language model were assessed by
comparing the half-maximal inhibitory concen-
tration (IC50) relative to the wild-type antibody.
Although we chose to only test 20 single-site
substitutions for each of the two clinical mono-
clonal antibody therapies, approximately one-
third of them improved neutralizing potency.
Several of these antibody variants improved
neutralization IC50 by more than threefold
with just a single amino acid change (Fig. 3A
and data S1). We also observed greater var-
iance in changes to neutralization for SA58
than Ly-1404, which may be reflective of in-
trinsic differences in the number of residues
critical for and participating in neutralization
and binding even beyond the antigen interface.
Prompted by recent evidence showing that

conservation of the overall RBD structure is
robust to SARS-CoV-2 evolution (57), we next
sought to determine whether we could also
evolve the previously mature antibodies against
SARS-CoV-2 BQ.1.1, the variant responsible for
diminished therapeutic efficacy. Although the
antibodies were previously effective, a change
in antigen conceptually represents a funda-
mental shift in the underlying fitness landscape
(Fig. 3B). Accordingly, the baseline neutraliza-
tion activity against BQ.1.1 for LY-1404 and
SA58 dropped to IC50 values in the nanomolar
range. However, from the same set of 20 single–
amino acid substitutions to LY-CoV1404, we
found that nearly half improved neutraliza-
tion of variant BQ.1.1. In addition to a high
success rate, we also found that many of these
mutations provided a large magnitude of im-
provement. Several single–amino acid substitu-
tions to LY-CoV1404 individually resulted in
a more than fourfold improvement, whereas
the most beneficial mutation to SA58 resulted
in a nearly fivefold improvement (Fig. 3C).
Approximately two-thirds and one-half of

tested single amino acid substitutions to LY-
CoV1404 and SA58, respectively, were benefi-
cial for neutralization of either the original
strain or BQ.1.1. For both antibodies, the most
potent single–amino acid mutations were dis-
tinct to the two different strains tested (fig. S7).
These results reinforce the idea that despite
all of them being predicted to have the same
backbone fold, the top set of designed variants
feature functional diversity and can be used for
distinct notions of protein fitness.
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A common challenge in directed evolution is
contending with the combinatorial explosion
of possible sequences that emerges from try-
ing to combine a set of individually beneficial
mutations. In the second round of evolution,
we simply used the structure-informed model
again to acquire up to five top-scoring combi-
nations of mutations to each antibody chain

(see the materials and methods). Across both
evolutionary trajectories, all 11 LY-CoV1404
and five SA58 antibody designs with multiple
mutations had IC50 values better than wild
type, with many designs showing synergistic
effects upon combination. For example, just
a single–amino acid mutation in each of the
two chains of SA58 led to amore than 14-fold

improvement (Fig. 3, C and D). Similarly, the
most potent evolved design of LY-CoV1404 is
a combination of seven of the eight benefi-
cial single amino acid substitution to the VH
and improved neutralization 25-fold (Fig. 3D).
These improvements to neutralizing potency
against BQ.1.1 do not sacrifice potency against
the original strains. We found that the top SA58

Fig. 3. Evolution of antibodies with a structure-informed language model
improves neutralization potency and resilience. (A) Each point represents
the fold change in IC50 of pseudovirus neutralization for antibody variants with
single–amino acid mutations. Antibodies were tested against the viral strain
represented in the input structure (Ly1404, Wuhan; SA58-BA.1, Omicron). A
dashed line is shown at a fold change of 1, corresponding to no change. Improved
antibody potency is defined as a 1.1-fold or higher improvement in IC50 compared with
wild type. (B) Conceptual representation of viral evolution. Selection for immune
evasion drives antibody escape, which fundamentally represents a dynamic change
in the underlying fitness landscape for the antibody. This antigenic drift displaces a
potent antibody from a peak on the previous fitness landscape (left) to a new
starting point at lower activity (right). (C) Strip plots visualizing antibody evolution
across two rounds. Each point shows the corresponding fold change in IC50 of
pseudovirus neutralization for a designed variant and is colored according to the
number of mutations it has (1 to 8). Consistent with preserving backbone fold, all

55 designed variants across both antibody evolutionary campaigns could be
expressed. All round 1 variants are only composed of only single–amino acid
changes, whereas beneficial mutations are combined in round 2. All round 2 variants
have improved neutralization activity compared with their respective wild-type
antibody (dotted line). (D) Pseudovirus neutralization curves for the most potent
evolved antibody variant consisting of mutations annotated on the left. The
top LY-CoV1404 variant, bearing seven amino acid substitutions in VH, achieves a
25-fold improvement in neutralization against BQ.1.1 (top). The top SA58 variant,
bearing single–amino acid mutations in both VH and VL, achieves a 14-fold
improvement in neutralization against BQ.1.1 (bottom). (E) Residues at which
mutations improve neutralization against either the structure-encoded strain,
BQ.1.1, or both viral strains are highlighted with spheres for antibodies
LY-CoV1404 [PDB 7MMO (50)] and SA58 [PDB 7Y0W (54)]. Beneficial mutations
are identified both within the binding interface as well as distal to the antigen.
Neutralization enhancing mutations are labeled in fig. S10.
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design against BQ.1.1 after the second round of
evolution also improved BA.1 neutralization by
more than threefold (data S1).
To rigorously evaluate the benefit of add-

ing structural information, we also performed
identical evolutionary campaigns for both
LY-CoV1404 and SA58 using an ensemble of
general sequence-only protein language mod-
els to recommend variants (58) (see the ma-
terials and methods), an approach that has
previously been experimentally validated in
applications for antibody engineering and
serves as a competitive unsupervised base-
line. Consistent with the computational re-
sults, we found that the structure-informed
language model led to final antibody designs
with substantially greater overall magnitudes
in improvement (25-fold versus twofold for
LY-CoV1404 and 14-fold versus fourfold for
SA58) (fig. S8). Compared with our structurally
informed evolution campaigns, combinations
of language model–recommended beneficial
mutations have limited additive effects. These
results further underscore the value of selecting
mutations from the outset that are known to be
structurally compatible and thereby enable a
more efficient ascent up the fitness landscape.

Additional characterization of evolved antibodies

To further characterize the basis for enhanced
neutralization of SARS-CoV-2 VOC BQ.1.1, we
tested the binding affinity of all variant anti-
bodies to RBD as bivalent immunoglobulin
G (IgG) using biolayer interferometry (BLI)
to obtain the apparent dissociation constant
(KD,app). For LY-CoV1404, a total of 23 designs
across both rounds of evolution exhibited im-
proved viral neutralization, and each of these
improved antibodies was confirmed to have
increased apparent binding affinities of up to
~27-fold. However, we found improved appar-
ent affinity to not be a sufficient condition for
improved neutralization potency, because four
additional model-recommended mutations
that were neutral or deleterious to neutral-
ization actually improved binding. Across all
variants, there was a Spearman correlation
of 0.45 between the fold change in IC50 and
the fold change in KD,app (Fig. 4, A and B).
We similarly screened the SA58 variants for

binding to the RBD of BQ.1.1. However, because
the KD,app of the wild-type antibody as IgG was
already subpicomolar, further improvements
to binding were below the limit of quantita-
tion and indistinguishable using this measure.
Given this strong binding affinity of wild-type
SA58 to BQ.1.1 RBD, we also screened this same
set of variants against emerging VOC XBB.1.5
and observed improvements in KD,app of up to
37-fold (Fig. 4, C and D).
By testing several top affinity-matured de-

signs in a polyspecificity assay, we also con-
firmed that improvements in binding are
not mediated by generalized enhancements

of nonspecific interactions (fig. S9A). In this
assay, we observed no substantial changes in
off-target binding of the evolved antibodies to
membrane-soluble proteins, particularly with-
in a therapeutically viable range (as defined by
controls of clinically approved antibodies with
recordedhigh and lowpolyspecificity). Further-
more,we foundno correlation between the fold
change in polyspecificity and the fold change in
affinity (fig. S9B).

Analysis of evolutionary exploration

Confronted by the large number of possible
mutations, traditional experiment-based meth-
ods for antibody affinity maturation often re-
strict the mutational search space to only a few
regions of the antibody. Specifically, binding
optimization efforts are typically focusedwith-
in the complementarity-determining regions,
which are hotspots for natural somatic hyper-
mutation. However, using our unbiased ap-
proach to consider all regions of the variable
domain allows for many discoveries that may

be less intuitive to a rational designer. For ex-
ample, the most beneficial substitutions to
LY-CoV1404,VHF24Y, andVHV90Sare located
within framework regions and positioned dis-
tally from the binding interface (fig. S10 and
table S3). They both improve neutralization of
BQ.1.1 by more than fourfold and are not del-
eterious to Wuhan neutralization. In other
cases, the structure-informed language model
also successfully predicts beneficial substitu-
tions using residues rarely observed among
human antibody sequences. Substitution VL
N95V in SA58, which improves neutralization
by about fivefold against BQ.1.1, is mediated by
the incorporation of a valine observed in only
0.7% of human antibody sequences at that po-
sition and enhances antibody-antigen contact.
Although the model is capable of successfully
making new predictions, in some instances it
also suggests reverting residues to ones fre-
quently selected for in natural somatic hyper-
mutation. Mutation VL F51Y in LY-CoV1404
changes a phenylalanine observed in just 5%

Fig. 4. Antibodies evolved for high potency also exhibit improved affinity. (A) LY-CoV1404 antibody
variants showing a Spearman correlation of 0.45 between apparent affinity fold change and potency fold
change. Improved affinity is observed to be necessary but not sufficient for improved neutralization activity.
Four variants exhibit improved affinity but do not enhance neutralization. All variants with improved
neutralization also display improved affinity. The top LY-CoV1404 design with a 25-fold improvement in
neutralization has a 9.5-fold improvement in affinity to BQ.1.1 RBD, as measured using BLI. (C) SA58
antibodies evolved for improved potency against BQ.1.1 also exhibit improved affinity against VOC XBB.1.5 up
to 37-fold. (B and D) Representative traces of BLI-binding assays for LY-CoV1404 and SA58 variants with
improved affinity, respectively.
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of sequences to a tyrosine observed in 86% of
sequences. However, this variant results in no
change toWuhan neutralization. Overall, these
results highlight the value in augmenting a
language model with structural information
to evolve antibodies and protein complexes.

Discussion

The discovery of mutations that improve pro-
tein function is inherently challenging be-
cause of the large sequence search space and
complex rules that govern the relationship
between sequence and function, such as sta-
bility or environmental selection pressures.
We have shown that an inverse folding pro-
tein language model informed with the se-
quence and backbone structural coordinates
of a protein can considerably improve directed
evolution efforts by serving as an improved
prior comparedwith sequence-only deep learn-
ing methods. A structure-guided approach can
investigate protein fitness landscapes indirectly
without needing to explicitly model individual
functional tasks or properties, making it broad-
ly applicable to proteins across diverse settings
ranging from enzyme catalysis to antibiotic and
chemotherapy resistance (Fig. 1D).We also dem-
onstrate that the structure-informed language
model generalizes to multimeric proteins de-
spite being trained only on single-chain proteins
through its ability to implicitly learn features
of binding. This result is particularly noteworthy
considering that the model has no access to
amino acid side chain atoms, coordinates, or
bond information.
Equipped with these capabilities, we evolved

clinical therapeutic antibodies and identified
several mutations that act synergistically to im-
prove antibody potency and resilience against
emerging variants of concern. In the context of
pandemics andemergency-use situations,where
monoclonal antibody therapies are limited in
supply and vulnerable to resistance from viral
evolution, the ability to rapidly make improve-
ments in potency with a generalmethod could
have major clinical and economic implications.
Machine learning has transformed protein

engineering across several design objectives.
Methods that design sequences for de novo
proteins with specified folds have enabled
entirely new capabilities to address previously
intractable problems inmany settings (49, 59–62).
Here, we consider the directed evolution prob-
lem of improving a desired function of an exist-
ing protein. Compared with 14 other promising
machine learning–guided protein evolution
methods used to experimentally guide di-
rected evolution campaigns on various proteins
(8, 56, 58, 63–73), our success rates of gen-
erating designs with functional activity better
than the wild-type protein compare favorably
while not requiring any assay-labeled fitness
data to use for training or task-specific model
supervision (fig. S11 and data S5). These results

support the notion that the protein’s structure
itself may be used in lieu of learned surrogate
functions of fitness. By eliminating the reliance
on any initial data collection or prior knowledge
of the protein, we show our structure-informed
method has the potential to accelerate entire
evolutionary campaigns.
Computational methods such as the one we

propose here have the opportunity to democ-
ratize protein engineering efforts. Not only is
our approachmore efficient than conventional
resource-intensive techniques that experimen-
tally test the effects of all single-residue changes
on biochemical functions such as binding af-
finity, but it also enables directed evolutionbased
on properties that are not easily measured at
scale or are incompatible with high-throughput
screening. By overcoming these limitations, we
anticipate that our structure-based paradigm
will be useful for evolving proteins across many
domains.
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