AeroCene is a sculpture, a message that floats continuously, day and night, around the world by everlasting energies of the planet and all its dwellers. Together we can shatter all records and borders, and rejuvenate exploration with the most sustainable flight.

During the day, warm air heated by the sun keeps it up.

Choreography
- it navigates by changing the altitude and flight with different jet streams.
- different levels, different direction.
- That is the way we move AeroCene!

Keep it in the air

AeroCene takes off for the longest energyless journey around the planet. Keep it in the air or on the ground. It can be used by individuals and organizations dedicated to benefiting together on the move.

AeroCene begins even as a planet-like living technology to renew air, to resolve the aging of the planet (dead line), a planet, being born to be born out of the whole.

AeroCene is a journey that sets off to the atmosphere. A planet-like living technology to renew air, to resolve the aging of the planet (dead line), a planet, being born to be born out of the whole.

AeroCene is a journey that sets off to the atmosphere. A planet-like living technology to renew air, to resolve the aging of the planet (dead line), a planet, being born to be born out of the whole.

Keep it on the ground

Solar panels, batteries, not air, oil, coal, hydrogen, engines, fossil fuels...
How to build it

Build together Museo Aero Solar!

By collecting plastic bags, you help in cleaner our planet and the plastic pollution. Join our initiative and contribute to the building of a flying sculpture to be realized in Sergej Jensen’s installation site – a place well known around the world.

Cutting plastic bags and using glue, you contribute to the building of a flying sculpture which will be self-sustainable thanks to the energy the sun will provide. The project is called Museo Aero Solar.

For more information visit www.museoasonline.com

Everyone can build a sculpture from a reused plastic bag in the journey around the world.

Collect used plastic bag

Cut bags in rectangular pieces

Paste pieces

The sun heats cold air inside the museum

Best season: clean sky no wind

Float in the sky!
Explore the interconnected world

We need to think of ourselves as beings on the surface of the planet: our actions can affect the entire world. The future of our species depends on our ability to understand and act in this interconnected world.

A NO-ONE’S message carries the dense interpenetration of life on this world; its fragile beauty, its fleeting nature, its suffering and joy, and its potential for change. It is a message that calls for more than a mere existence, but for a genuine, meaningful relationship with the earth.

A NO-ONE’s message is a reminder that our actions are not in isolation; they are part of a larger system, and they have consequences that extend beyond our immediate environment.

A NO-ONE is an organism that seeks an understanding of the world through a deep dive into the manifold perspectives and interactions that define our existence.

The message is a call to action, to join together with others in pursuit of a shared vision. The identity of the organism is unknown, the message is a riddle to be solved. The future is uncertain, but the potential for change is real. Together, we can build a world where all species have the opportunity to thrive.

Payload: A celebration of wonder and the joy of exploration.

How to Build It: A guide to constructing your own floating monument.
A social model as such proposes a new vision for humanity, where hierarchies and pre-defined identities and organisational models are discarded in favour of horizontal, equal and immediate interactions between individuals within the aerosolar time-space. The principles that Saraceno relies on and articulates in his visions, such as participative actions, co-creation and do-it-together practices, make this future society less apparent as complex body of entangled social, political, and economical, and more similar to a cyber-network, driven by an artistic aerosolar artifice.

Air Crafted

Air

Crafted

Art

Crafted

Architecture
Piloting the Aerocene

How to group together like-minded individuals, to pool their resources, and to find a way to get them to fly through the air in a coherent form is a question of the future which we are confronted with and have been thinking about for some time. Proposed through an ethos of collaboration, through processes of decision, and through the belief that no one individual can be expected to solve a problem alone, the Aerocene project is a collective effort to investigate the potential of inflatable objects for being piloted and tended by people and animals. The Aerocene project aims to explore the feasibility of deploying inflatable objects as a means of promoting public understanding and appreciation of the environment. Involving an active and enthusiastic group of people, the Aerocene project seeks to engage with the public, to educate and inform, and to inspire a sense of responsibility towards our planet and its inhabitants.

But under certain circumstances imagine that the safety of this aerosolar body can depend on being piloted and tended in relation to variations in heat from the sun, in infrared radiation from the earth, and in the thermo-dynamic winds of the atmosphere. And, further, now imagine that the responsibility for this piloting is distributed amongst an innumerable group of people, some on the ground, and some in the air.

Derek McCormack
Aerocene: Becoming Aerosolar

A collaboration between
Tomás Saraceno, Visiting Artist
Leila Kinney, MIT Center for Art, Science & Technology (CAST)
Lodovica Illari and Bill McKenna, MIT Department of Earth, Atmospheric and Planetary Sciences

Scenarios

One of the scenarios explored in these balloon flights is the effect of aerosols on climate. By releasing aerosols into the atmosphere, we can counteract the warming effect of greenhouse gases. The aerosols scatter sunlight, reducing the amount of solar energy that reaches the Earth’s surface. This process is known as aerosol indirect effects. The aerosols can also act as cloud nuclei, affecting cloud formation and lifetime. This reduces the cloud albedo, further increasing the warming effect of greenhouse gases.

In recent years, several experiments have been conducted to study the effects of aerosols on climate. These experiments have focused on the impact of anthropogenic aerosols on climate change. The results of these experiments have shown that aerosols can have a significant impact on the Earth’s climate. However, the exact magnitude of this impact is still uncertain, and further research is needed to better understand the role of aerosols in climate change.

Scenario 1: Aerosol indirect effects

In this scenario, we release aerosols into the atmosphere to counteract the warming effect of greenhouse gases. The aerosols scatter sunlight, reducing the amount of solar energy that reaches the Earth’s surface. This process is known as aerosol indirect effects. The aerosols can also act as cloud nuclei, affecting cloud formation and lifetime. This reduces the cloud albedo, further increasing the warming effect of greenhouse gases.

Scenario 2: Aerosol direct effects

In this scenario, we release aerosols into the atmosphere to counteract the warming effect of greenhouse gases. The aerosols scatter sunlight, reducing the amount of solar energy that reaches the Earth’s surface. This process is known as aerosol indirect effects. The aerosols can also act as cloud nuclei, affecting cloud formation and lifetime. This reduces the cloud albedo, further increasing the warming effect of greenhouse gases.

Scenario 3: Aerosol climate engineering

In this scenario, we release aerosols into the atmosphere to counteract the warming effect of greenhouse gases. The aerosols scatter sunlight, reducing the amount of solar energy that reaches the Earth’s surface. This process is known as aerosol indirect effects. The aerosols can also act as cloud nuclei, affecting cloud formation and lifetime. This reduces the cloud albedo, further increasing the warming effect of greenhouse gases.

Conclusion

In conclusion, aerosols have a significant impact on the Earth’s climate. By releasing aerosols into the atmosphere, we can counteract the warming effect of greenhouse gases. However, the exact magnitude of this impact is still uncertain, and further research is needed to better understand the role of aerosols in climate change.
High Altitude,

The bladder inflates slowly to claim a vast parcel of the air ocean. The solar stream courses onto and through it as the various component materials convert light energy into units of heat. The internal numbers build like steam in a locomotive chamber...

Low Opening

(H.A.L.O.)

1. Happy, Applying to the Ongoing.
On the Political Influence of the Sun

During the period of revolution we've witnessed in the extraordinary role humans play in determining the course of events in which they live, as well as in shaping the course of human history. Under the conditions of mass media, we can no longer simply be passive spectators of events, but must actively participate in the shaping of our own destiny. This is what it means to be a true revolutionary, to actively engage in the struggle for a better world.

The role of the sun in human history is vast and complex. The sun is not only a source of energy and light, but also a symbol of life, growth, and future. In many cultures, the sun is revered as a god or goddess, and its power is harnessed in various ways to bring about change and transformation.

In the context of politics, the sun symbolizes the power of the people and the potential for radical change. The sun sets the stage for the rise of new leaders and the fall of old ones, and its movement across the sky is a constant reminder of the cyclic nature of history. As the sun rises, so too can new hopes and dreams be born, and as it sets, the possibilities for tomorrow are无限.

In conclusion, the role of the sun in human history is a complex and multifaceted one, and its influence on politics cannot be overstated. As we look to the future, we must recognize the power of the sun and the potential for change it represents, and work to harness that power for the betterment of our world.
In our fast-paced world, we are constantly searching for new ways to solve problems and improve our lives. The Aerocene, a project by Nicholas Shapiro, is one such endeavor. The Aerocene is a large inflatable balloon designed to float in the sky, providing a unique perspective on our world. The Aerocene is made of materials that are both durable and lightweight, allowing it to stay in the sky for extended periods of time. The Aerocene is not just a balloon, but a platform for art, science, and education. It provides a unique opportunity to explore the world from a new perspective, and to think about the impact of our actions on the environment. The Aerocene is a reminder of the importance of creativity and innovation in solving some of the world's most pressing problems.
I bind the Sun’s throne with a burning zone*

*From a piece written by Harry Styles.

during the atomic era. When the 1950s ended, the world looked for new directions. But the ways of the past were hard to abandon. The first atomic bombs were dropped in Hiroshima and Nagasaki, and the world was forced to confront the reality of nuclear war. The Cold War began, and the US and the Soviet Union raced to develop more powerful weapons. The Cuban Missile Crisis brought the world to the brink of nuclear war. But it also showed that the world was not ready to accept the horrors of nuclear weapons.

described as a "hot zone." The term refers to a region where the Sun’s surface is very hot, and the temperature is high enough to cause the Sun to emit powerful radiations. The Sun’s surface is divided into several zones, including the photosphere, the chromosphere, and the corona. The photosphere is the layer of gas that surrounds the Sun, and it is the source of the Sun’s light and heat. The chromosphere is the layer of gas just above the photosphere, and it is the source of the Sun’s ultraviolet and X-ray radiations. The corona is the outermost layer of gas, and it is the source of the Sun’s coronal mass ejections.

described as a "hot zone." The term refers to a region where the Sun’s surface is very hot, and the temperature is high enough to cause the Sun to emit powerful radiations. The Sun’s surface is divided into several zones, including the photosphere, the chromosphere, and the corona. The photosphere is the layer of gas that surrounds the Sun, and it is the source of the Sun’s light and heat. The chromosphere is the layer of gas just above the photosphere, and it is the source of the Sun’s ultraviolet and X-ray radiations. The corona is the outermost layer of gas, and it is the source of the Sun’s coronal mass ejections.

described as a "hot zone." The term refers to a region where the Sun’s surface is very hot, and the temperature is high enough to cause the Sun to emit powerful radiations. The Sun’s surface is divided into several zones, including the photosphere, the chromosphere, and the corona. The photosphere is the layer of gas that surrounds the Sun, and it is the source of the Sun’s light and heat. The chromosphere is the layer of gas just above the photosphere, and it is the source of the Sun’s ultraviolet and X-ray radiations. The corona is the outermost layer of gas, and it is the source of the Sun’s coronal mass ejections.
Saraceno’s Model of Models:

We too readily forget today that every political model is constitutively thermo-dynamic and that every thermodynamic model is deeply political. In the case of Aerocene it is thoroughly provoking to imagine political systems based entirely on insulation-based intensive properties of the atmosphere such as temperature, pressure, and density; as manifests in varied jet streams, storms, or doldrums.

The Magnificence of Aerocene

The thermodynamic model of the atmosphere can be understood as a complex system of interacting processes that shape the climate and its dynamics. This complex system is characterized by non-linear interactions and emergent properties that are not easily predictable from the individual components alone.

Aerocene is a fascinating example of how technological innovation can be harnessed to address global challenges. By creating a new form of political representation that resonates with the dynamics of the atmosphere, Aerocene offers a new kind of political dialogue. It invites us to思考 the role of technology in shaping our world and to envision a future where we live in harmony with the forces of nature.
Bronisław Szerzynski

What happens when we put climate change in a longer perspective? How can art and science come together to help us do that?

Opening up

George Bentwood's work can also help us envision another aspect of how we might need to re-orient our relationship to climate change. Bentwood's installations, which are often made from materials that are in some way connected to the climate, are intended to open up new conversations about how we understand and interact with our environment. In this way, Bentwood's work can serve as a catalyst for rethinking how we might approach the challenge of climate change.

For example, Bentwood's installation at the Guggenheim Museum in New York City was composed of thousands of tiny, translucent plastic spheres that were suspended in a cloud of smoke. The spheres represented the tiny particles of dust and pollution that are present in the atmosphere, and the smoke symbolized the heat of the sun. By creating this installation, Bentwood was able to raise awareness about the importance of reducing our carbon footprint and the need for a more sustainable lifestyle.

Conclusion

In conclusion, the relationship between art and science is crucial in addressing the issue of climate change. Art can help us to envision new possibilities and reframe our understanding of the world, while science can provide us with the tools and technologies necessary to make those possibilities a reality. By working together, we can create a more sustainable future for ourselves and future generations.

References

Policy, 2021.
Tianhe

Nothing distinguishes me ontologically from a crystal, a plant, an animal, or the order of the world; we are drifting together toward the noise and the black depths of the universe, and our diverse systemic complexes are flowing up the entropic stream, toward the solar origin, itself adrift. Knowledge is at most the reversal of drifting, that strange conversion of times, always paid for by additional drift; but this is complexity itself, which was once called being. Virtually stable turbulence within the flow.

Parables of the Celestial River

Tianhe is a 12.96-meter inflatable superstructure, the dernier point on Earth visible from the International Space Station orbit. Tianhe's volume is about 10,000 cubic meters, ensuring it remains a visible target over 99% of Earth's surface. The structure consists of 18 heating units, 16 cold units, and 30 thermoelectric units that maintain the correct indoor climate. Tianhe was named after the Chinese word for天河, which means "the heavenly river." In the context of the overall system, Tianhe represents a complex network of interconnected components that work together in a single, unified system. Its design, however, is distinct from other components, due to the unique nature of the mission it supports. Tianhe's role is to provide a habitable environment for the crew, facilitate communication between the ground and the space station, and support scientific research. The structure is equipped with advanced systems for power generation, waste management, and life support, ensuring the long-term survival of the crew. Tianhe is a symbol of human ingenuity and the exploration of space.