SUPPLEMENTAL INFORMATION FOR

2'-Fluoro Substituents Can Mimic Native 2'-Hydroxyls within Structured RNA

Marcello Forconi, ^{1,2,6} Jason. P. Schwans, ^{1,3,6} Rishi H. Porecha, ¹ Raghuvir N. Sengupta, ^{1,3} Joseph A. Piccirilli, ^{3,5,*} and Daniel Herschlag^{1,4,*}

Correspondence to: herschla@stanford.edu or jpicciri@uchicago.edu

¹ Biochemistry Department, Stanford University, Stanford, California 94305

² Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29401

³ Department of Chemistry, University of Chicago, Chicago, Illinois 60637

⁴ Chemistry Department, Stanford University, Stanford, California 94305

⁵ Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637

⁶ These authors contributed equally to the paper

SUPPLEMENTAL DATA

TABLE S1, related to Table 1. Binding and reactivity of AUCG with closed complexes of different ribozymes, using the -1d,rSA or the -1d,rSA $_5$ substrates.

Numbers in parentheses represent the values relative to the A261OH ribozyme.

-1d,rSA, pH 6.5

-1d,rSA₅, pH 8.1

ribozyme	$(K_{\rm d}^{\rm AUCG})_{\rm c}(\mu{\rm M})$	$k_{\rm c}~({\rm min}^{-1})$	$(K_{\rm d}^{\rm AUCG})_{\rm c}(\mu{\rm M})$	$k_{\rm c}~({\rm min}^{-1})$
A261OH	0.58 ± 0.10	0.076	3.4	1.0
	(1.0)	(1.0)	(1.0)	(1.0)
A261F	0.64 ± 0.06	0.017	4.0	0.24
	(1.1)	(0.22)	(1.2)	(0.24)
A261H	3.2 ± 0.4	0.0040	31	0.023
	(5.5)	(0.053)	(9.1)	(0.023)