SUPPLEMENTAL INFORMATION FOR ## 2'-Fluoro Substituents Can Mimic Native 2'-Hydroxyls within Structured RNA Marcello Forconi, ^{1,2,6} Jason. P. Schwans, ^{1,3,6} Rishi H. Porecha, ¹ Raghuvir N. Sengupta, ^{1,3} Joseph A. Piccirilli, ^{3,5,*} and Daniel Herschlag^{1,4,*} Correspondence to: herschla@stanford.edu or jpicciri@uchicago.edu ¹ Biochemistry Department, Stanford University, Stanford, California 94305 ² Department of Chemistry and Biochemistry, College of Charleston, Charleston, South Carolina 29401 ³ Department of Chemistry, University of Chicago, Chicago, Illinois 60637 ⁴ Chemistry Department, Stanford University, Stanford, California 94305 ⁵ Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 ⁶ These authors contributed equally to the paper ## SUPPLEMENTAL DATA ## TABLE S1, related to Table 1. Binding and reactivity of AUCG with closed complexes of different ribozymes, using the -1d,rSA or the -1d,rSA $_5$ substrates. Numbers in parentheses represent the values relative to the A261OH ribozyme. -1d,rSA, pH 6.5 -1d,rSA₅, pH 8.1 | ribozyme | $(K_{\rm d}^{\rm AUCG})_{\rm c}(\mu{\rm M})$ | $k_{\rm c}~({\rm min}^{-1})$ | $(K_{\rm d}^{\rm AUCG})_{\rm c}(\mu{\rm M})$ | $k_{\rm c}~({\rm min}^{-1})$ | |----------|--|------------------------------|--|------------------------------| | A261OH | 0.58 ± 0.10 | 0.076 | 3.4 | 1.0 | | | (1.0) | (1.0) | (1.0) | (1.0) | | A261F | 0.64 ± 0.06 | 0.017 | 4.0 | 0.24 | | | (1.1) | (0.22) | (1.2) | (0.24) | | A261H | 3.2 ± 0.4 | 0.0040 | 31 | 0.023 | | | (5.5) | (0.053) | (9.1) | (0.023) |