Low specificity of metal ion binding in the metal ion core of a folded RNA

KEVIN J. TRAVERS,1 NATHAN BOYD, and DANIEL HERSCHLAG
Department of Biochemistry, Stanford University, Stanford, California 94305-5307, USA

ABSTRACT

The structure and activity of nucleic acids depend on their interactions with metal ions. Fundamental to these interactions is the degree of specificity observed between the metal ions and nucleic acids, and a complete description of nucleic acid folding requires that we understand the nature of the interactions with metal ions, including specificity. The prior demonstration that high concentrations of monovalent cations prevent nonspecific association of divalent ions with nucleic acids provides a novel and powerful means to examine site-specific metal ion binding isolated from complicating effects of the ion atmosphere. Using these high monovalent cation solution conditions we have monitored the affinity of a series of divalent metal ions for two site-specific metal ion binding sites in the P4-P6 domain of the *Tetrahymena* group I intron ribozyme. The metal ion core of this highly structured RNA binds two divalent metal ions under these conditions. Despite multiple metal ion–RNA interactions observed in the X-ray crystallographic structure of P4-P6 RNA at the metal ion binding sites, these sites exhibit low specificity among Mn$^{2+}$, Mg$^{2+}$, Ca$^{2+}$, Ni$^{2+}$, and Zn$^{2+}$. Nevertheless, the largest divalent metal ions tested, Sr$^{2+}$ and Ba$^{2+}$, were excluded from binding, exhibiting affinities at least two orders of magnitude weaker than observed for the other metal ions. Thus, a picture emerges of two metal ion binding sites, each with a high tolerance for metal ions with different properties but also with limits to accommodation. These limits presumably arise from steric or electrostatic features of the metal ion binding sites.

Keywords: RNA folding; metal ion specificity; hydroxyl radical footprinting; P4-P6 domain; tertiary structure formation

INTRODUCTION

Metal ions play critical roles in the structure and function of many biological molecules (Rosenzweig 2002; Babu et al. 2003). They provide structural stability, regulate enzyme activity, regulate structural conformations, and extend the range of chemical functionalities beyond that supplied by the naturally occurring amino acid and nucleic acid side chains (Creighton 1993). The detailed structure of the metal ion binding pockets and the differing characteristics of the bound metal ions can lead to varying stabilities or catalytic abilities with occupancy by different metal ions. Thus, a deeper understanding of metal ion specificity will foster a more incisive understanding of the structure and function of biological macromolecules.

Much effort has been directed toward identifying and understanding metal ion specificity in nucleic acids. There is an ever-growing number of catalytic RNAs, nearly all of which have been examined for metal ion specificity. The most common method used to demonstrate such specificity has been to measure catalytic activity in the presence of different divalent ions (Guerrier-Takada et al. 1986; Grosshans and Cech 1989; Dahm and Uhlenbeck 1991; Chowrira et al. 1993; Heilman-Miller et al. 2001; Nakano et al. 2003). The information gained from these types of experiments has been enhanced by the ability of some ions to support structural stability but not activity (Guerrier-Takada et al. 1986; Grosshans and Cech 1989; Chowrira et al. 1993; Heilman-Miller et al. 2001; Nakano et al. 2003). For example, metal ion specificity for a catalytic activity can be monitored by maintaining a constant background of one cation that does not support catalytic activity on its own and varying the identity of a second cation that does. Structural approaches, including X-ray crystallography (Cate et al. 1997; Basu et al. 1998; Ennifar et al. 2003), chemical and other footprinting (Celander and Cech 1991; Brannvall et al. 2001; Rangan and Woodson 2003), and native gel electrophoresis (Heilman-Miller et al.
2001) have also been used to assess metal ion binding specificity in nucleic acids.

But, despite the considerable efforts to examine metal ion specificity in a wide range of nucleic acid systems, numerous challenges remain. In addition to the presence of an often unspecified number of specific ion binding sites, metal ion studies are fundamentally limited by the polyelectrolyte nature of nucleic acids. These limitations and complications render investigation and interpretation of metal ion specificity more difficult and more complex than is the case for proteins, which are less highly charged macromolecules and typically better characterized structurally.

The vast majority of the cations that associate with nucleic acids interact in a loosely bound “ion atmosphere” (Bukhman and Draper 1997; Misra and Draper 1999; Draper 2004); thus, ion binding at specific sites can be obscured by changes in composition of the surrounding ion atmosphere. Further, the polyelectrolyte nature of RNA and the complex structural motifs of RNA create the possibility of multiple ion binding sites. X-ray crystallographic experiments using tRNA (Shi and Moore 2000), the hammerhead ribozyme (Pley et al. 1994; Scott et al. 1995), the P4-P6 subdomain of the *Tetrahymena* ribozyme (Cate et al. 1997; Juneau et al. 2001), and the group I Azoarcus ribozyme (Adams et al. 2004) have confirmed the ability of metal ions to bind at multiple positions within a single RNA molecule. The observed metal ion specificity, whether measured by effects on activity or through structural effects, represents a complex convolution of effects of metal ions either directly bound to the nucleic acid or associated with the local ion atmosphere. Thus, the observed specificity generally cannot be ascribed to a particular metal ion binding site (Feig and Uhlenbeck 1999).

Here, we take advantage of the structurally characterized P4-P6 RNA domain from the *Tetrahymena thermophila* group I intron and the recently demonstrated ability to saturate the ion atmosphere with Na⁺ to isolate and probe the binding at two specific divalent metal ion binding sites (Scheme 1; Das et al. 2005b).

RESULTS

Recent advances have provided a unique opportunity to study the site-specific binding of metal ions without the complications described in the Introduction (Bukhman and Draper 1997; Das et al. 2005b). Das et al. (2005b) took advantage of an extensively studied RNA system, the P4-P6 domain from the *Tetrahymena* group I ribozyme. Several crystal structures have been obtained for this RNA, revealing two side-by-side stacked segments of RNA helices and noncanonical structures that make tertiary contacts with each other (Fig. 1A; Cate and Doudna 1996; Cate et al. 1996, 1997; Juneau et al. 2001). Within P4-P6 there is a short region of the backbone that undergoes a tight turn. This region has been called the “metal ion core” due to the fact that the close approach of backbone phosphates in this turn appeared, by structural inspection, to be stabilized by the presence of several Mg²⁺ ions (Fig. 1B,C; Cate et al. 1997).

Placing this or other RNAs in a background of high concentrations of monovalent cations saturates the ion atmosphere, shielding the RNA from the divalent ions that would otherwise make up the ion atmosphere, as depicted in Scheme 1 (Bukhman and Draper 1997; Das et al. 2005b). Thus, divalent metal ion association in the presence of high concentrations of monovalent ions occurs predominantly at specific binding sites (Bukhman and Draper 1997; Das et al. 2005b). P4-P6 RNA in these conditions associates with only two Mg²⁺ ions (Das et al. 2005b). Subsequent metal ion binding studies with phosphorothioate-substituted P4-P6 have provided strong evidence for specific occupancy of the two sites depicted in Figure 1, B and C (J. Frederiksen, R. Das, D. Herschlag, and J. Piccirilli, in prep.). Finally, the ability of P4-P6 to fold in high concentrations of monovalent cations, forming all of its tertiary structure except the central metal ion core (Takamoto et al. 2004), allows study of these sites in the absence of coupled large-scale folding events that could complicate metal ion specificity studies. For example, formation of the tetraloop/tetraloop receptor interaction in low salt conditions requires that the P4/P5/P6 helix align with the P5abc structure. This large-scale folding event will also be accompanied by a change in the ion atmosphere (Bukhman and Draper 1997; Draper 2004). In this way, metal ion site binding specificity under low salt conditions is convoluted with changes in the ion atmosphere that are coupled to overall folding (Bukhman and Draper 1997; Draper 2004).

This simplification for P4-P6 RNA in high salt is shown explicitly in Scheme 2, where the formation and stabilization of the site-specific metal binding sites is depicted in two steps. The Scheme does not imply a kinetic pathway, but rather presents a useful thermodynamic breakdown of the metal ion association process. Because the structure...
itself is essentially the same regardless of the divalent ion used, the energetic contribution from folding is constant. Thus, differences observed between different ions are expected to reflect differences in binding affinity to the metal ion sites (K_{bind} in Scheme 2).

The results presented below show remarkably low specificity of divalent metal ion binding to the two core metal ion sites in P4-P6 RNA. Nevertheless, there are limits to accommodation that may arise from steric features of the metal ion binding sites, such that a size threshold prevents the binding of ions beyond a certain size, or from electrostatic features, in which ions of lower charge density interact less well with the high charge density of the phosphoryl oxygen atoms at the metal ion binding sites.

Probing metal ion specificity in the P4-P6 metal ion core

As noted above, under conditions of high concentrations of monovalent ions, P4-P6 RNA adopts a nearly native structure, with its tetraloop/tetraloop–receptor interaction formed but lacking a folded metal ion core (Fig. 2A,B; Takamoto et al. 2004). Upon addition of low millimolar concentrations of divalent ions, the metal ion core and the entire RNA molecule adopt their native structure, as judged by the onset of a hydroxyl radical protection pattern that is indistinguishable from that obtained in the presence of divalent ions and only modest concentrations of Na$^+$ (Fig. 2C,D; Takamoto et al. 2004). Strikingly, the Hill slope observed here for the metal ion core hydroxyl radical protections in a titration with Mg$^{2+}$ is 2, identical within error to the difference between the number of ions previously observed to bind to the folded and unfolded states using direct ion counting methods (Das et al. 2005b). These results and those of Frederiksen et al. (J. Frederiksen, R. Das, D. Herschlag, and J. Piccirilli, in prep.) indicate that, in these particular solution conditions, the energetic effects of specific metal ion binding can be reasonably isolated from nonspecific ion–nucleic acid interactions and can be followed by hydroxyl radical footprinting.

We therefore used hydroxyl radical footprinting with a constant background of 2 M NaCl, and we followed protection of the metal ion core region as a function of the concentration of charge density interact less well with the high charge density of the phosphoryl oxygen atoms at the metal ion binding sites.

SCHEME 2.
a series of divalent ions. The ions used were Mg²⁺, Mn²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Zn²⁺, Ni²⁺, and Cd²⁺. Cd²⁺ and Zn²⁺ led to degradation of the RNA at concentrations below any observed folding transitions and were therefore not included in the analyses herein. Of the remaining ions tested, addition of Mg²⁺, Mn²⁺, Ca²⁺, and Ni²⁺ led to folding of the P4-P6 metal ion core at low millimolar concentrations, whereas Ba²⁺ and Sr²⁺ did not (Fig. 3; Table 1).

For the divalent metal ions for which hydroxyl radical protections indicative of folding could be observed, the resulting patterns of protection were analyzed using semi-automated footprinting analysis (SAFA) (Das et al. 2005a). The metal ion concentration dependencies of the protections were fit to the Hill equation (Equation [1]; fN is the fraction P4-P6 protection, which corresponds to the fraction of P4-P6 in its native state, and [M²⁺]_{1/2} is the concentration of the divalent ion M²⁺ that results in folding 50% of the molecules). The fits are shown in Figure 3 and give the folding midpoints ([M²⁺]_{1/2}) and the slopes through the transition midpoint (nH) listed in Table 1.

\[
f_N = \frac{\left([M^{2+}] / [M^{2+}]_{1/2}\right)^{nH}}{1 + \left([M^{2+}] / [M^{2+}]_{1/2}\right)^{nH}}
\] (1)

For Mg²⁺ and Mn²⁺, the value of nH was 2, within error (Table 1, n_H), consistent with two additional metal ions taken up by the folded molecule relative to the unfolded, as was previously observed and verified for Mg²⁺-dependent folding (Das et al. 2005b). In the case of Ca²⁺ or Ni²⁺, the slope differed slightly from the expected value of 2, perhaps indicative of a small alteration of binding cooperativity. However, in both cases the data could be fit essentially as well with the slope fixed at 2, without altering the [M²⁺]_{1/2} significantly (Table 1). For Sr²⁺ and Ba²⁺, no folding transition was observed.

The folding midpoints for this series of divalent ions followed the trend Mn²⁺<Mg²⁺<Ca²⁺<Ni²⁺<<Sr²⁺,Ba²⁺ (Table 1). This trend matched that of the Irving–Williams series (Irving and Williams 1948) with the exception of Ni²⁺, which would be expected to bind tighter than Mn²⁺ according to this series. Further, the midpoints for the metal ions that did bind were similar, within sixfold of one another, whereas the midpoints for Sr²⁺ and Ba²⁺ were at least two orders of magnitude higher than those for the other metal ions.

Is there “hidden” specificity for the two metal ion binding sites in P4-P6 RNA?

Despite the enormous simplifications due to the experimental design and detailed knowledge of the RNA system studied, relative to prior studies of RNA metal ion specificity, the results shown in Figure 3 and summarized in Table 1 still represent a potentially complex composite of binding specificities and cooperative effects from the two metal ion sites. We therefore carried out experiments to test whether there were hidden preferences for specific
metal ions at one or the other of the two binding sites or cooperativity specific to distinct sets of metal ions at the two sites.

The general approach can be understood as follows (see Materials and Methods for details of the model used). If different metal ions were to have different specificities for two binding sites on P4-P6, then combinations of metal ions at one or the other of the two binding sites or metal ions at one or the other of the two binding sites could not be used at higher concentrations due to solubility limits and also only gives a lower limit.

It is important to recognize that, although the two metal ions bind cooperatively and this binding is coupled to folding, the results nonetheless speak to the binding preferences of each of the two binding sites individually. That is, as shown in Scheme 2, the energy required to fold can, in principle, be thermodynamically parsed from the energies for binding the metal ions in the two sites. While one cannot parse these energies in practice, the experiments herein are comparative in their nature—we are assessing the relative ability of different metal ions to occupy the sites. The results, as analyzed above, indicate that there is no strong preference for the metal ions Mn$^{2+}$, Ca$^{2+}$, and Ni$^{2+}$ relative to Mg$^{2+}$ for either of the two specific metal ion sites in P4-P6.

It is important to further consider the results of Figure 4, A–C, in terms of cooperativity of metal ion binding. There is binding cooperativity—the structure probing results indicate that local folding is coupled to binding of two metal ions (i.e., Hill slope of 2), and there is no detectable binding of just one metal ion. Nevertheless, as above, we can assess whether there are differences in cooperativity with different combinations of metal ions, relative to having Mg$^{2+}$ occupy both metal ion sites. If, for example,

\[\text{Fraction folded} = \frac{[M_1]^2}{[M_1]^2 + [M_2]^2} + \frac{[M_1][M_2]}{[M_1][M_2] + [M_1][M_2]} + \frac{[M_2]^2}{[M_1][M_2] + [M_2]^2} \]

To obtain the relative affinities at the two sites, it was assumed that one site has a preference of three-, 10-, or 30-fold, and the affinity for the test ion at the second site was adjusted by the same factor in the opposite direction to reproduce the observed folding midpoint for the titration with that metal ion alone. For example, if one site has a threefold preference for Ca$^{2+}$, the other site would have a threefold decrease in affinity for Ca$^{2+}$. For ions with similar affinity in single ion titrations (for example, Mg$^{2+}$, Ca$^{2+}$, and Ni$^{2+}$), this procedure results in one site having a preference for the other site.

We first explored potential preferences at individual sites by carrying out mixed metal ion folding experiments titrating mixtures of Mg$^{2+}$ with Mn$^{2+}$, Ca$^{2+}$, or Ni$^{2+}$ at a constant ratio, with ratios of 4:1 for Mg$^{2+}$ and Mn$^{2+}$ (Fig. 4A) and 1:1 for Mg$^{2+}$ and Ca$^{2+}$ or Ni$^{2+}$ (Fig. 4B,C). As above we assayed metal ion binding by its coupling to folding and protection from hydroxyl radical cleavage. Comparison of the data obtained in the mixed metal ion experiments shown in Figure 4, A–C, with predicted dependencies with or without preferential site binding (see Materials and Methods) revealed that differences of 30-fold for Mn$^{2+}$ and 10-fold for Ca$^{2+}$ and Ni$^{2+}$ would be readily detectable (Fig. 4A–C, dashed lines). Fits of the experimental data with a preferential site binding model resulted in poor r^2 values: 0.872 for the Mn$^{2+}$/Mg$^{2+}$ data with a 30-fold preference, 0.908 for the Ca$^{2+}$/Mg$^{2+}$ data with a 10-fold preference, and 0.891 for the Ni$^{2+}$/Mg$^{2+}$ data with a 10-fold preference. By comparison, the fits without preferential site binding resulted in r^2 values of 0.984 for the Mn$^{2+}$/Mg$^{2+}$ combination, 0.984 for the Ca$^{2+}$/Mg$^{2+}$ combination, and 0.994 for the Ni$^{2+}$/Mg$^{2+}$ combination. Thus, the similar values of $[M^{2+}]_{1/2}$ obtained in the mixed metal ion titrations of Figure 4, A–C, suggest that there is no large differential specificity at the two binding sites.

Low specificity metal ion binding to a folded RNA
Mg\(^{2+}\) increased the binding affinity of Ca\(^{2+}\) more than it increased the binding of a second Mg\(^{2+}\), a lower midpoint would have been observed with the metal ion mixture. Such a decrease would correspond to an increased cooperativity for the Mg\(^{2+}\)/Ca\(^{2+}\) pair relative to Mg\(^{2+}\)/Mg\(^{2+}\). As no effect was observed, we can conclude that there is no large difference in cooperativity for the different metal ion pairs. This result is the simplest expectation given the similar \([M^{2+}]_{1/2}\) values for each of these metal ions alone.

A related strategy was employed to probe whether the weak Sr\(^{2+}\) and Ba\(^{2+}\) effects resulted from exclusion from only one site. As we know that Mg\(^{2+}\) can occupy both sites, we added Mg\(^{2+}\) at a concentration just below its folding midpoint (0.2 mM added, compared with a \([\text{Mg}^{2+}]_{1/2}\) of 0.6 mM) in the presence of 2 M NaCl, as above. We then titrated Mg\(^{2+}\) (Fig. 5B) to determine if folding could now be induced by having Mg\(^{2+}\) bound at one site and Sr\(^{2+}\) or Ba\(^{2+}\) bound at the other. In neither case was folding rescued. We also tested the possibility that the relatively small Mg\(^{2+}\) ion bound at one site induced a conformation that could not accommodate the larger Sr\(^{2+}\) ion at the other site, whereas an alternative structure that could accommodate Sr\(^{2+}\) might be established with a larger ion such as Ca\(^{2+}\). This test was carried out by adding Ca\(^{2+}\) at 0.6 mM (the midpoint for folding in the presence of Ca\(^{2+}\) alone) and adding increasing amounts of Sr\(^{2+}\). No further folding was observed (data not shown), suggesting that the lack of folding due to Sr\(^{2+}\) was not specific to a structure induced by a particular starting ion. Thus, Sr\(^{2+}\) and Ba\(^{2+}\) are excluded from both binding sites in P4-P6 RNA.

Finally, to control for the possibility that Sr\(^{2+}\) might interfere with Mg\(^{2+}\)-dependent folding, we also titrated Sr\(^{2+}\) into a solution containing P4-P6 in 2 M NaCl and 1.5 mM Mg\(^{2+}\). In this case, there was no unfolding or alternative conformation indicated by the hydroxyl radical protection pattern of P4-P6 (not shown). This result suggests that Sr\(^{2+}\) has a very low affinity for the metal ion core of P4-P6. Thus, we conclude that Sr\(^{2+}\) and Ba\(^{2+}\) are excluded from both metal ion binding sites, relative to Mg\(^{2+}\), Mn\(^{2+}\), Ca\(^{2+}\), and Ni\(^{2+}\).

The absence of folding by Sr\(^{2+}\) or Ba\(^{2+}\) alone, and Sr\(^{2+}\) or Ba\(^{2+}\) in the presence of Mg\(^{2+}\), also argues against a mechanism for folding in which divalent ions that accumulate in the ion atmosphere cause or stimulate the folding transition. If, even in the presence of 2 M NaCl, folding were induced by accumulation of divalent metal ions in the ion atmosphere, then both Sr\(^{2+}\) and Ba\(^{2+}\) would be expected to induce folding of the A-rich bulge, as their ability to enter the ion atmosphere and screen charge is similar to that of Mg\(^{2+}\) and the other divalent metal ions (Y. Bai, V.B. Chu, J. Lipfert, V. Pande, S. Doniach, and D. Herschlag, in prep.). This observation is consistent with the measurement of substantial metal ion core folding under 2 M Na\(^{+}\) conditions that give <1 Mg\(^{2+}\) associated with the ion atmosphere (Das et al. 2005b) and with the ability of atomic-level changes in the putative metal ion ligands to alter M\(^{2+}\)-induced folding in 2 M Na\(^{+}\) (J. Frederiksen, R. Das, D. Herschlag, and J. Piccirilli, in prep.).

DISCUSSION

We have reported a direct observation of metal ion site specificity in natural RNA metal ion binding sites. The tested divalents fall into two classes: ions that are capable of folding P4-P6 and those that are not, at least up to the physical limits imposed by ion solubility. Among the ions that bind the metal ion core of P4-P6, there is little specificity: Mg\(^{2+}\), Mn\(^{2+}\), Ca\(^{2+}\), and Ni\(^{2+}\) bind with similar affinity. This similarity occurs despite the wide variation in size, preferred hydration number, and hardness of these metal ions (Table 1). This degree of accommodation is greater than often observed for protein metal ion binding sites. It is likely that the low specificity of the RNA metal ion binding sites relative to many protein sites derives at least in part from the presence of only oxygen ligands in the RNA metal ion core. In all cases, oxygen ligands from solvating water molecules are swapped for oxygen ligands.
at these binding sites so that intrinsic atomic preferences of metal ions, which can contribute greatly to specificity, do not contribute at these sites. Ironically, the $[M^{2+}]_{1/2}$ values for Mg$^{2+}$ and Mn$^{2+}$, which are most similar in size and properties, differ by about fourfold. We do not understand the origin of the modest preference for Mn$^{2+}$. It may result from additional interactions with the P4-P6 RNA at sites other than the metal ion core; Mn$^{2+}$ has a higher affinity for the N7 of purines than do alkaline earth ions (Duguid et al. 1995).

Although Mg$^{2+}$, Mn$^{2+}$, Ca$^{2+}$, and Ni$^{2+}$ all bind with similar affinity, there is substantial discrimination against Sr$^{2+}$ and Ba$^{2+}$, the two largest metal ions probed (Table 1). A possible model is as follows. The P4-P6 metal ion core has substantial flexibility due to the limited packing density in RNA and the multiple degrees of freedom of the RNA backbone. Thus, the sites can accommodate divalent cations of different sizes and different geometrical preferences. Nevertheless, there are limits to the adaptability of these sites, and metal ions that are larger than a certain threshold allowed by the RNA’s malleability are strongly discriminated against. This model requires a sharp threshold, as Ca$^{2+}$ and Sr$^{2+}$ are similar in size (1.12 Å and 1.18 Å, respectively), and yet Ca$^{2+}$ is able to fold P4-P6 at concentrations at least two orders of magnitude lower than Sr$^{2+}$. Alternatively or in addition, charge density may be a critical feature with the larger, less charge dense metal ions interacting less well with the highly charged phosphoryl oxygen atoms that are localized at the metal ion binding sites.

Our understanding of metal ion/RNA interactions and of the energetic rules that govern affinities and specificities is in its infancy. We expect that the approaches outlined herein that allow more incisive investigation of metal ion binding sites in RNA will provide important physical insights into these and other metal ion binding and folding systems. Future studies will allow the generality of the initial observations herein and the models proposed to be tested and
refined. Furthermore, these approaches may prove valuable in dissecting the properties of RNAs, or "riboswitches," that act as natural magnesium sensors (Brantl 2006).

MATERIALS AND METHODS

RNA preparation

P4-P6 RNA was obtained by in vitro transcription using PCR-generated DNA templates, and purified by denaturing polyacrylamide gel electrophoresis (PAGE). Purified RNA was radiolabeled at the 5'-end using γ-32P-ATP in a T4 polynucleotide kinase-mediated reaction. Radiolabeled products were again purified by denaturing PAGE, and buffer-exchanged into doubly distilled water by gel filtration in Microspin columns (Bio-Rad).

Hydroxyl radical footprinting

Data were collected as in (Das et al. 2005b). Briefly, 5'-32P-labeled P4-P6 RNA was incubated in the presence of 50 mM Na-MOPS, pH 7.0, 2 M NaCl, and varying amounts of divalent ion. Fenton reagent (0.1 mM Fe[NH4]2(SO4)2, 0.125 mM EDTA, and 10 mM Na-ascorbate) was added to the RNA and incubated for 60 min at 25°C, at which point the reaction was quenched by the addition of thiourea (100 mM thiourea, 0.1% bromophenol blue, 0.1% xylene cyanol). Radical cleavage products were separated on an 8% polyacrylamide/7.5 M urea denaturing gel and exposed to a Phosphoimager screen overnight. Gels were quantitated by SAFA (Das et al. 2005a). Individual residues within the metal ion core showing protection with increasing divalent ion (typically, residues 169, 176, 177, 180–182, 185, and 187) were normalized to a scale from 0 to 1 and averaged together for the plots shown. Although residues in P4 are also involved in the formation of tertiary structure through their interaction with the A-rich bulge (Battle and Doudna 2002; Das et al. 2005b), changes in protection of these residues were not assessed in these experiments, as 5'- and not 3'-radiolabeled RNA was used. Error bars are not shown for clarity, but are generally ±0.1, and were calculated by comparing the data for each residue with the average for all residues within a given data set.

Site binding model

The thermodynamic model used here assumes cooperativity in metal ion binding. This assumption is supported by the results in all binding studies presented here, as Hill coefficients >1 are observed in all measurements. This assumption requires that only five species exist in a mixed metal ion solution: the unfolded RNA species and four folded RNA species (one with two ions of type A, RA A; one with two ions of type B, RB B; and two with one of each ion type, RA B and RB A). These four folded species are in equilibrium with the unfolded state, with equilibrium constants defined as follows (Equations [2]–[5]):

\[
K_{AA} = \frac{[U][A]^2}{[RA]} \tag{2}
\]

\[
K_{BB} = \frac{[U][B]^2}{[RB]} \tag{3}
\]

\[
K_{AB} = \frac{[U][A][B]}{[RA][RB]} \tag{4}
\]

\[
K_{BA} = \frac{[U][B][A]}{[RA][RB]} \tag{5}
\]

The fraction folded RNA is calculated as the sum of all folded species over the total amount of RNA:

\[
\text{Fraction folded} = \frac{[RA] + [RB] + [RA B] + [RB A]}{[U] + [RA] + [RB] + [RA B] + [RB A]} \tag{6}
\]

By rearranging Equations (2)–(5), and substituting into Equation (6), we arrive at Equation (7):

\[
\text{Fraction folded} = \frac{[A]^2 K_{AA} + [B]^2 K_{BB} + [A][B] K_{AB} + [B][A] K_{BA}}{1 + [A]^2 K_{AA} + [B]^2 K_{BB} + [A][B] K_{AB} + [B][A] K_{BA}} \tag{7}
\]
ACKNOWLEDGMENTS

We thank John Frederiksen and Joe Piccirilli for permission to cite unpublished results and members of the Herschlag laboratory for helpful discussion and critical reading of this manuscript. This work was supported by a Beckman Scholar Award (K.T.) and by NIH Program Project Grant GM066275 (D.H.).

Received March 17, 2007; accepted May 17, 2007.

REFERENCES

Cate, J.H. and Doudna, J.A. 1996. Metal-binding sites in the major groove of a large ribozyme domain. Structure 4: 1221–1229.

Low specificity of metal ion binding in the metal ion core of a folded RNA

Kevin J. Travers, Nathan Boyd and Daniel Herschlag

RNA 2007 13: 1205-1213 originally published online July 6, 2007
Access the most recent version at doi:10.1261/rna.566007

References
This article cites 33 articles, 8 of which can be accessed free at:
http://rnajournal.cshlp.org/content/13/8/1205.full.html#ref-list-1

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.