Ancient transcriptional regulators can easily evolve new pair-wise cooperativity

Kyle R. Fowler, Fredrick Leon, and Alexander D. Johnson

Edited by H. Mark Johnston, University of Colorado - Anschutz Medical Campus, Aurora, CO; received February 14, 2023; accepted May 26, 2023

Cells regulate gene expression by the specific binding of transcription regulators to cis-regulatory sequences. Pair-wise cooperativity between regulators—whereby two different regulators physically interact and bind DNA in a cooperative manner—is common and permits complex modes of gene regulation. Over evolutionary timescales, the formation of new combinations of regulators represents a major source of phenotypic novelty, facilitating new network structures. How functional, pair-wise cooperative interactions arise between regulators is poorly understood, despite the abundance of examples in extant species. Here, we explore a protein–protein interaction between two ancient transcriptional regulators—the homeodomain protein Matα2 and the MADS box protein Mcm1—that was gained approximately 200 million y ago in a clade of ascomycete yeasts that includes _Saccharomyces cerevisiae_. By combining deep mutational scanning with a functional selection for cooperative gene expression, we tested millions of possible alternative evolutionary solutions to this interaction interface. The artificially evolved, functional solutions are highly degenerate, with diverse amino acid chemistries permitted at all positions but with widespread epistasis limiting success. Nonetheless, approximately ~45% of the random sequences sampled function as well or better in controlling gene expression than the naturally evolved sequence. From these variants (which are unconstrained by historical contingency), we discern structural rules and epistatic constraints governing the emergence of cooperativity between these two transcriptional regulators. This work provides a mechanistic basis for long-standing observations of transcription network plasticity and highlights the importance of epistasis in the evolution of new protein–protein interactions.

While some transcriptional regulators appear to bind their preferred DNA sites on their own, most bind cooperatively in combination with additional regulators, a property often mediated by weak protein–protein interactions between the regulators (1, 2). The resulting combinatorial control—through which multiple DNA-binding proteins control transcription of a given gene—is a hallmark of gene expression, especially in eukaryotes (3–7). The intrinsic DNA-binding specificity of transcriptional regulators often remains unchanged over long evolutionary times; the extensive (hypothetical) pleiotropy resulting from changes in DNA-binding specificity is thought to significantly constrain such changes (8). However, gains and losses of protein–protein interaction between transcription regulators appear relatively frequently and can occur without extensive pleiotropy (9, 10).

One well-studied gain of a protein–protein interaction is found in a particular clade of fungi where the ancient homeodomain protein Matα2 binds DNA cooperatively with the ancient MADS box protein Mcm1 (Fig. 1A) (11). This cooperativity arose approximately 200 million y ago when Matα2 gained the ability to physically interact and cooperatively bind DNA with Mcm1, a change that likely took place only within this clade; this interaction is not found in the species outside the clade (9, 12). The emergence of this cooperative interaction occurred without changes in the DNA-binding specificity of either protein; the newly evolved protein–protein interaction is due to changes only in Matα2 (4, 13, 14). The “recipient” Mcm1 surface involved in the interaction is deeply conserved and did not change when the interaction evolved. The novel Matα2–Mcm1 interaction facilitated the formation of a new transcriptional network to repress the a-specific genes, which are central to cell-type specification.

The cooperative interaction between Matα2 and Mcm1 is due to a short (approximately 11 amino acid) region of Matα2 (Fig. 1B) (4, 14). A crystal structure of the Matα2–Mcm1 complex bound to DNA shows that this region forms a short beta-strand when bound to Mcm1 (15). Numerous contacts between the two proteins occur over a relatively small (~20 Å) interface, including a cation–π interaction with a phenylalanine in Matα2 (Fig. 1B, Inset). This corresponds to a net cooperative interaction energy of 3 to 4 kcal/
mol (11). Prior genetic work (alanine-scanning) has shown that seven contiguous residues in this region of Mat\(\alpha\)2 (including the above phenylalanine) are essential for efficient combinatorial control of \(a\)-specific gene repression by Mat\(\alpha\)2 and Mcm1 (4). Mat\(\alpha\)2 mediates this repression by recruiting the Tup1-Ssn6 corepressor to DNA through a domain distinct from, and independent of, the Mat\(\alpha\)2–Mcm1 interaction interface (9).

In this work, we investigate several general questions around the emergence and evolvability of combinatorial gene regulation using the Mat\(\alpha\)2–Mcm1 complex as a framework. Beginning with constructs missing the pair-wise interaction, we selected—from a highly diverse pool of Mat\(\alpha\)2 variants—those that could efficiently work in combination with Mcm1 to repress transcription.

We took advantage of the CAN1 gene, expression of which arrests cell growth in the presence of exogenous canavanine (16). We replaced the endogenous CAN1 promoter with a synthetic constitutive construct containing a naturally occurring Mat\(\alpha\)2–Mcm1 cis-regulatory sequence (Fig. 1C). When bound by Mat\(\alpha\)2–Mcm1, which requires pair-wise cooperativity between the proteins, this sequence element brings about strong transcriptional repression of CAN1 and allows growth in canavanine.

Results

We generated two different Mat\(\alpha\)2 mutant libraries based on the Saccharomyces cerevisiae protein. Both libraries consist of Mat\(\alpha\)2 from \(S.\ cerevisiae\) driven by its endogenous promoter cloned into a low-copy plasmid: Mutations were introduced at key positions that mediate its interaction with Mcm1. The first library introduced all possible individual amino acid substitutions at eleven consecutive residues (G113-M123) known to span the sequence of Mat\(\alpha\)2 that interacts with Mcm1. Variants in this library possess a single amino acid change relative to the wild-type protein. Seven of these eleven positions (114 to 120) represent
the essential “core,” which interacts directly with Mcm1 as observed in a crystal structure of the Mattα2–Mcm1 complex bound to DNA (15). A wild-type Mattα2 construct (Sc-Mattα2) was also included as a control.

In the second library, we randomized the seven core residues using an NNK oligonucleotide strategy and obtained ~1.2 million constructs with unique amino acid combinations. Variants in this library differ from the wild-type protein, on average, at all seven amino acids. With this library, we sought to reveal the ease with which functional protein–protein interactions could evolve. The total number of possible amino acid combinations in this library is immense (20 \(^{7} \) or ~1.3 billion possibilities) and technically infeasible to sample completely. However, we reasoned that even a sparse sampling of this sequence space could reveal important functional trends.

To screen for functional variants of Mattα2 that could interact with Mcm1, we transformed the Mattα2 mutant libraries into S. cerevisiae a-cells where the only expressed Mattα2 protein is from the plasmid libraries. As a control, we spiked in cells carrying the wild-type Sc-Mattα2 plasmid at a concentration of 0.1%. Cells with these Mattα2 constructs were then grown for 24 h in media either lacking canavanine (representing the pool of unselected variants) or at 250 \(\mu \)g/mL to enrich for functional variants that could repress transcription of CAN1. Following growth, which corresponds to ~5 generations, the Mattα2 plasmid was purified from the final populations and sequenced deeply. The frequency of any given construct among the reads from each pool correlates with its abundance in that population of cells. We could then calculate a fold-change (FC) for each construct after selection relative to either the starting population or the population grown without canavanine selection, allowing us to control for growth effects that are independent of canavanine. For example, an FC of < 1 means that the sequence was selected against in canavanine. This fold-change allows us to estimate relative fitness for each sequence examined.

In both libraries, Mattα2 mutants with premature stop codons diminished in frequency in the population and therefore exhibited low FCs. Conversely, the frequency of the wild-type Sc-Mattα2 gene—as well as those bearing synonymous mutations—remained stable after selection (Fig. 1D and E). The fully functional Sc-Mattα2 had an FC around 1.0 and was surmounted by numerous other constructs. This indicates that our selection regime successfully enriched for functional Mattα2–Mcm1 interactions.

Using the first library, we assessed the consequences of single amino acid mutations on Mattα2–Mcm1 function. Many amino acid substitutions were well tolerated and remained at high frequency after selection (Fig. 1D), a pattern not necessarily predicted from the alanine-scanning experiments (4). Alanine substitutions in our library had modestly reduced FCs, especially at the “core” seven positions, a result entirely consistent with previous work.

For example, the phenylalanine at position 116 is especially critical, as many substitution mutations were highly detrimental (Fig. 1A). However, replacement with another large aromatic (e.g., F116W) or aliphatic residue (F116I) did not diminish its function, suggesting that a variety of bulky or hydrophobic side chains at this position would suffice for the Mattα2–Mcm1 interaction. Aromatic amino acids were also tolerated at other positions throughout the region: mutation to phenylalanine, tryptophan, or tyrosine at most positions had little or no effect. Together, these results suggest that the Mattα2–Mcm1 interaction depends broadly on hydrophobicity, with many different individual sequences sufficing for function.

This view was supported and greatly extended by the results of our second library where the interfacial positions of Mattα2 were randomized, generating a complex library of amino acid sequences. Following the selection scheme described above, these Mattα2 variants exhibited a broad, largely symmetric fitness distribution with a median FC around one (Fig. 1E). The spiked-in wild-type construct also exhibited an FC close to one (0.93) but was surpassed by many variants, indicating a large dynamic range of “successful” variants, many of which outperform the natural sequence under the selection scheme imposed. Using the naturally occurring Sc-Mattα2 as a basis for comparison, we initially estimate that ~35% of variants in our library (> 100,000 unique proteins) are at least as functional as the extent protein in our transcriptional repression assay (Fig. 1B). When we compare variants with low starting frequencies (that is, those with lower statistical significance), the percentage of fit sequences was even higher approaching ~45% (SI Appendix, Fig. S1A). Thus, many combinations of random amino acids result in a functional Mattα2–Mcm1 complex, suggesting that a surprising fraction of this sequence space is functional. We refer to these as “fit” Mattα2 variants. The high frequency of fit variants was reproducible between replicates and robust to read depth (SI Appendix, Fig. 1 B and C).

What is the molecular basis for this large number of functional, fit alternatives? Do their solutions exhibit any patterns? Normalizing amino acid frequencies in fit sequences to their abundances in the unselected library revealed how residues increased or decreased in frequency after selection, and therefore which residues promote function. Phenylalanine showed the strongest enrichment at every position, followed by most aliphatic amino acids and tryptophan (Fig. 2A and SI Appendix, Fig. S1 D, E). Disavored amino acids were primarily charged. Most striking, however, is the lack of position specificity: for example, phenylalanines are broadly beneficial at each of the seven randomized positions. Nonetheless, as discussed below, the quantitative effects are highly dependent on the amino acids in the remaining positions.

When we considered combinations of residues, rather than individual amino acids, we detected some additional patterns among fit sequences; for example, although a single phenylalanine promotes fitness at all positions (Fig. 2A), two phenylalanines occurred less frequently together than expected by chance (Fig. 2B). Nonadditive interactions, typified by this observation, are indicative of intramolecular epistasis, and we next examined epistasis more systematically. For example, among variants with a phenylalanine at the seventh position (7F), the pattern of favored/disavored amino acids resembles that in the general population (Fig. 2C). But among the fit 7F sequences, all previously favorable amino acids (e.g., aromatic residues) occurred less frequently, while disavored amino acids (e.g., charged residues) were more abundant (Fig. 2D). Even prolines, which were generally selected against and known to be disruptive to protein secondary structure, were enriched among 7F variants. This pattern was highly idiosyncratic, however, with drastically different amino acid biases exhibited when the phenylalanine was fixed at different positions, or when other amino acids were fixed (SI Appendix, Fig. S2 A and B). We further probed the extent and nature of epistasis by quantifying pair-wise interactions between all amino acid states across the seven positions. To do so, we first determined the frequency of each amino acid at each position among the fit variants (Fig. 3A). We then calculated the expected co-occurrence of each amino acid state pair assuming independence (i.e., no epistasis). Deviations from this expectation indicate a genetic interaction between residues (Fig. 3B).

We found numerous instances of both positive and negative epistatic interactions (Fig. 3B). For example, the heat map illustrating
the relationship between the first and seventh positions reveals that many amino acid pairs exhibit a degree of epistasis (Fig. 3C and SI Appendix, Fig. S3A). This pattern was consistent between replicate selections and was not observed in the absence of selection (Fig. 3B and SI Appendix, Fig. S3 B and C). In sum, 29% of all pairs of amino acid states along the interface exhibited a significant epistatic interaction, with positive and negative interactions equally represented.

Finally, we considered whether the fitness landscape of functional variants was rugged or smooth. Based on the effects of single amino acid substitutions away from fit variants, we conclude that most fitness peaks were relatively broad, with many single substitutions showing little or no decreased fitness (Fig. 4A and SI Appendix, Fig. S4). The magnitude of the fold-change difference between our matched mutational pairs describes peak “steepness,” while the landscapes overall “smoothness” can be estimated from the fraction of all mutation pairs where function is compromised by the mutation. Overall, only ~20% of matched mutation pairs exhibit this pattern, while specific substitutions (e.g., position 120 to phenylalanine) alter fitness more frequently (Fig. 4B).

Our analysis has relied thus far on the ability of Matα2 variants to repress transcription of an artificial CAN1 reporter construct, and here we consider the natural function of Matα2. We tested several variants spanning a range of FC values by replacing the endogenous Matα2 locus with the variant and monitoring the normal role of Matα2, namely, in promoting the ability to mate, which requires repression of multiple a-specific genes by Matα2, not just a single gene as in our selection. Using a quantitative mating assay, we measured the mating efficiencies of a-cells bearing either wild-type or mutant Matα2. Cells with wild-type Matα2 were highly proficient at mating (SI Appendix, Table S1). In contrast, and as a control experiment, replacing the Mcm1 interaction region of Matα2 with that of C. albicans, which diverged prior to the emergence of the interaction, strongly reduced mating efficiency. Replacement with variants from our library resulted in a range of mating efficiencies.
Cells bearing Matα2 variants with low FC scores mated as poorly as the C. albicans-like protein. Conversely, the mating efficiencies of the highest scoring variant (FC = 5.2, core sequence PCLRFVF) mated as well as wild-type Matα2. However, a variant with an intermediate FC of 1.6, which indicates proficient growth in the bulk canavanine competition, was not able to restore mating. This discrepancy likely reflects the different requirements of these assays: Repression of the a-specific genes for mating involves the binding of Matα2–Mcm1 to a range of cis-regulatory sequences at multiple genes, while growth in canavanine involves binding a single DNA sequence at CAN1. However, we emphasize that a random Matα2 variant, chosen for repressing our CAN1 reporter, also functions as well as the wild-type Matα2 in its natural setting to repress the a-specific genes and allow mating (SI Appendix; Table S1).

Discussion

In this work, we investigated how a pair of deeply conserved ancient transcriptional regulators can acquire a protein–protein interaction that results in their ability to cooperatively and efficiently regulate gene expression. The framework for the study is based around a known protein–protein interaction between an ancient homeodomain protein (Matα2) and an ancient MADS domain protein (Mcm1) that evolved relatively recently in the S. cerevisiae clade. By investigating a large number of the “paths not taken,” we uncovered the constraints—or seemingly lack thereof—governing the de novo emergence of a functional interaction that allows these two ancient proteins to work in combination to regulate gene expression. Our study shows that many different solutions in the Matα2 protein are capable of mediating a functional, cooperative interaction with Mcm1. We further probed the chemically diverse set of novel Mcm1-interacting interfaces to reveal rules and constraints, including widespread intramolecular epistasis, underlying this interaction.

Our principal conclusions are as follows:

1. Many alternatives to the “naturally evolved” sequence function as well or better, suggesting that functional cooperative interactions between transcriptional regulators can arise with relative ease. Remarkably, nearly half of the randomly generated,
or position 120 to phenylalanine). Changes in fitness were defined by the FC of wild-type Mat 2. Matched variants with phenylalanine at position 120 were functional 90% of the time (by either retaining or gaining functionality) when compared with a matched sequence with a different amino acid only at this position.

2. Successful interactions between the two transcriptional regulators studied here are a distributed property of the interface. For example, a single phenylalanine at the interaction surface is broadly beneficial at every position; however, once a phenylalanine is fixed in position, severe epistasis constrains all other positions.

3. The consequences of single point mutations away from a naturally occurring sequence (represented by our first deep scanning library) did not predict the high degree of idiosyncratic solutions (found in our second, de novo library) that bear little resemblance to the natural sequence.

How do the results presented here compare with other studies? When mutations are considered in combination, epistasis has frequently emerged from studies of protein evolution (17–21). Notably, the evolution of other pair-wise protein–protein interactions has revealed instances of intramolecular epistasis. For example, particular residues in the interface between the E. coli PhoQ protein kinase and its substrate PhoP exhibit epistatic interactions (18). Likewise, the evolution of bacterial toxin–antitoxin proteins appears to frequently involve intermediate protein states that are promiscuous, allowing antitoxins to simultaneously recognize and inactivate an ancestral cognate toxin as well as a newly evolved toxin target (17). Such promiscuous intermediates facilitate the evolution of new toxin–antitoxin specificities by avoiding nonfunctional (or less-functional) intermediates. The epistasis we observe between residues of Mat2 alike appears to facilitate the emergence of a new function, namely interaction with Mcm1. The extreme degree of epistasis observed here, however, is much greater than previously observed. We found that every position of the interface, for multiple amino acid states, exhibits epistasis. Other instances of intramolecular epistasis have involved one or a few positions, and typically between specific amino acids (17, 18, 20, 22). Selection for high binding specificity, as in two-component and toxin–antitoxin systems in order to avoid “crosstalk” with numerous paralogs, may also limit intramolecular epistasis. Although for our study Mat2 and Mcm1 are positioned precisely on their adjacent DNA sites, the wide range of functional Mat2–Mcm1 interactions identified in our study are reminiscent of the “fuzzy” interactions between the activation domains (ADs) of some transcription factors that bind subunits of the Mediator complex (23–26). Akin to the Mat2–Mcm1 interaction, this “fuzzy” binding involves degenerate interfaces that are enriched for hydrophobic residues and favor aromatic residues (27–29). Besides bulky hydrophobic residues, ADs are also rich in negatively charged residues; however, the opposite preference is observed among Mat2 variants able to function with Mcm1. These trends suggest that AD- and Mat2-mediated interactions have certain similarities but also important differences. More specifically, the origin of the “fuzziness” is likely to be different: ADs have the possibility of interacting with many different sites on Mediator—with few spatial constraints. In contrast, Mat2 and Mcm1 must interact with precise geometry to maximally satisfy the protein–DNA interaction, which also necessitates DNA bending (15, 27, 28). It is also likely that, due to the thermodynamic contributions of DNA binding, a functional Mat2–Mcm1 interaction could be weaker than those between ADs and Mediator, contributing to the different range of possible solutions.

Finally, we bring up an apparent paradox raised by our results: If so, many solutions exist for a functional interaction between Mat2 and Mcm1, why is the naturally occurring solution preserved across a clade of closely related species? We consider three possibilities. 1) There is some other function for this region of Mat2 that constrains its sequence. This possibility seems unlikely given the detailed biochemical, genetic, and structural studies of Mat2 over the past three decades, which has revealed that the only role of this stretch of amino acids considered here is interacting with Mcm1 (4, 11, 13). The fact that one of our randomly chosen de novo variants (which lacked any resemblance to the naturally occurring sequence) functioned and properly recapitulated the normal role of Mat2–Mcm1 in promoting mating argues against an “unknown” function that would have a noticeable consequence on the cell. 2) The Mcm1-interacting sequence of the wild-type Mat2 is constrained to prevent its promiscuous interactions with other transcriptional regulators. Over the short term, we know that the de novo derived functional Mat2s do not cause a noticeable fitness defect; that is, their representation in the control experiment (in the absence of canavanine) did not increase or decrease. However, it is possible that over long
Materials and Methods

S. cerevisiae Strain Construction. All *S. cerevisiae* strains were in the 288C background and grown on yeast extract peptone dextrose (YPD) media at 30 °C unless otherwise indicated. Transformations were conducted using the standard lithium acetate/polyethylene glycol method (30). In the 288C a cell, the CAN1 gene was engineered to be repressed by Mata2-Mcm1 by inserting immediately upstream of the CAN1 ORF a PCR product amplified from pKF145 using oKF437 and oKF438. This PCR product contains part of the CYC1 promoter with a Mcm1 cis-regulatory sequence from STE2 inserted upstream of its transcriptional start site. The resulting strain yKF230 constitutively expresses CAN1 in the absence of Mata2 but strongly repressed by Mata2-Mcm1. Deletion of the silent MATα locus (HML) in yKF230 used an NatI marker amplified from pRa6a-natMX with homology to HML and resulted in yKF231. The initial Mata2 selection screen was done in yKF230 (in which HML is intact), with all subsequent work being done in yKF231 (HMLΔ). All genetic manipulations were confirmed by PCR and DNA sequencing.

Mata2 Expression Plasmid Construction. Mata2 and its endogenous promoter were synthesized as gBlocks (IDT) and ligated together before being inserted into the AscI site of pRTDM (Addgene), a compact CEN/ARS plasmid, to generate pKF146. This Mata2 expression plasmid was subsequently digested with Ndel and AgeI and oKF457 was inserted to generate a mutant Mata2 with a unique EcoRV site in place of the Mcm1 interaction region (pKF154). This served as an efficient “landing pad” for the subsequent insertion of various DNA sequences, which eliminates the EcoRV site in the process of regenerating either the wild-type Mata2 DNA sequence or variants containing mutations. A separate silent mutation was also introduced nearby at I124 (codon ATA to ATC) to differentiate the Mata2 construct from any chromosomal gene sequence. Regeneration of full-length Mata2 was accomplished using the NEBuilder HiFi DNA Assembly master mix (New England Biolabs) following EcoRV digestion of pKF154. The wide-type *S. cerevisiae* Mata2 protein was assembled using oKF458 and oKF459. To test whether the homologous region of Mata2 from *C. albicans* was capable of interacting with Mcm1, a chimeric protein was constructed using oKF460 and oKF461 which substitutes the *C. albicans* amino acid sequence SPFSNASDG in place of the *S. cerevisiae* sequence GLVFNVVTQDM.

Canavanine Selection Assay and Sequencing. Frozen yeast library aliquots were thawed on ice and then added to 500 mL YEPD. Library cultures were grown overnight shaking at 30 °C to allow for the equal expansion of all Mata2 variants. The following morning, cells were collected for sequencing by pelleting 45 mL of saturated culture, washing once in PBS, and then freeze-drying the cell pellets at −80 °C for later plasmid purifications. This is the “Pre” library and provides the starting frequencies of each variant. Selection for Mata2 variants capable of functionally interacting with Mcm1 was carried out by diluting 5 mL of saturated overnight culture into 500 mL synthetic medium lacking arginine and supplemented with either 25 or 250 µg/mL kanamycin and grown over night shaking at 30 °C. An aliquot of transformed cells were also diluted and spread on YEPD plates containing 200 µg/mL G418 sulfate and growing overnight shaking at 30 °C. An aliquot of transformed cells were also diluted and spread on YEPD plates containing 200 µg/mL G418 sulfate to determine transformation efficiencies. Transformation with the point mutation library resulted in ∼1.1 million transformants; the pooled 7 × NNK library had ∼1.88 million transformants. Following overnight growth, 5 mL of saturated yeast culture was combined with 5 mL 50% glycerol to make freezer stocks, which were subsequently stored at −80 °C for later use.

The purified plasmid libraries were used to transform yKF230 or yKF231 to G418R according to a high-efficiency yeast transformation protocol (31). Prior to transformation, a plasmid bearing the wild-type *S. cerevisiae* Mata2 was spiked into both libraries at a frequency of 1/1,000. For the more complex 7 × NNK library, six transformations were done in parallel and then pooled. Transformants were selected in bulk by adding each transformation to 500 mL YEPD media supplemented with 200 µg/mL G418 sulfate and growing overnight shaking at 30 °C. An aliquot of transformed cells were also diluted and spread on YEPD plates containing 200 µg/mL G418 sulfate to determine transformation efficiencies. Transformation with the point mutation library resulted in ~1.1 million transformants; the pooled 7 × NNK library had ~1.88 million transformants. Following overnight growth, 5 mL of saturated yeast culture was combined with 5 mL 50% glycerol to make freezer stocks, which were subsequently stored at −80 °C for later use.

Design of Mata2 Libraries. The assembly of Mata2 mutant libraries was conducted as above using NEBuilder HiFi DNA Assembly master mix (New England Biolabs) except that degenerate oligonucleotide pools synthesized by Integrated DNA Technologies (IDT) were used. Two different mutant libraries were generated. The first consisted of single amino acid changes at each position in the *S. cerevisiae* Mcm1 interaction region. This was accomplished by annealing pairs of oligonucleotides (oKF521–542) in which each codon in the 11 amino acid Mcm1 interaction region has been separately replaced by an NNK codon (where N indicates an A, C, G, or T, and K indicates a G or T). This resulted in 11 separate plasmid pools (pKF159–169) each with 32 possible DNA sequences at each NNK codon (4 × 4 × 2). In the second library, a single pair of annealed oligonucleotides (oKF462 and oKF463) containing seven consecutive NNK codons was used to randomize positions L114–120, generating library pKF157. This second library consists of many distinct Mata2 variants, each with all seven core residues randomized, and the total possible number of combinations (327) exceeding 34 × 109.

Following assembly, these Mata2 mutant constructs were electroporated into 5-alpha electrocompetent *Escherichia coli* cells (New England Biolabs) according to the manufacturer’s instructions. The first library of codon point mutations were transformed separately for each codon and the cells then pooled. To maximize the number of transformants from the second (7 × NNK) randomization library, ten electroporations were done in parallel and later pooled. Immediately after electroporation, prewarmed SOC media were added to the cells, and they were recovered for 1 h at 37 °C. Following recovery, we determined the transformation efficiencies and library complexities by diluting an aliquot of cells and plating on LB media supplemented with 30 µg/mL kanamycin. The single-codon, point mutation library reached saturation, with every DNA mutation being represented several times over in the transformed stock. We estimate the complexity of the second 7 × NNK library to be ~2.92 million unique unit sequences.

To select *E. coli* transformants in bulk, each library was used to inoculate 500 mL LB media supplemented with 50 µg/mL kanamycin and grown overnight shaking at 37 °C. The next morning, plasmid was purified from each culture using ten QiAprep spin miniprep columns (Qiagen). The saturated overnight *E. coli* cultures were also used to make 1 mL and 10 mL library freezer stocks stored at −80 °C for later use.

Downloaded from https://www.pnas.org by UC San Francisco on May 8, 2024 from IP address 169.230.7.236.
Quantitative Mating Assays. Quantitative mating assays were performed according to previously described methods for *S. cerevisiae* [32]. Strains to test were created by replacing the endogenous Matα2 locus with specific variants identified from our library. The chosen variants span the full range of fold-change values and were highly reproducible between replicate experiments. Specific mutations were first cloned into pKF154, the Matα2 expression plasmid used above, as previously described to generate the mutant plasmid. Plasmids with these new variants were digested with NdeI and NruI to liberate a DNA fragment containing Matα2 and its promoter and a KanMX resistance marker. PCR primers were used to add sequence homology for the mating-type locus to the end of the KanMX gene. These DNA fragments were then used to transform yKM249, an α cell from the W303 background with Matα2 replaced by the URA3 gene. As controls, we also introduced the wild-type *S. cerevisiae* Matα2 gene and a variant with the *C. albicans* region which is unable to interact with Mcm1. All genotypes were confirmed by PCR and sequencing. The α cells created above bearing Matα2 variants were Trp- G418R and were mated to Trp+ α cells. For each mating, the strains were grown to mid-log phase and their OD600 was measured. Cells were then combined with an α:α ratio of 10:1 and concentrated onto 0.8 μmol nitrocellulose filters using a Millipore 1,225 Vacuum Sampling Manifold. The filters were then placed on YEPD plates containing 200 μg/mL G418 sulfate and grown for 2 d at 30 °C to allow mating. The filters were then vortexed in 5 mL water to resuspend cells for plating. Dilutions were first plated on YEPD plates containing 200 μg/mL G418 sulfate and grown for 2 d at 30 °C to select for conjugants and the limiting parental strain. These G418R colonies were counted and then replicated to SD Trp to select for conjugants only. The Trp+ G418R colonies were counted and mating efficiencies calculated as follows: Mating efficiency = (number of Trp+ G418R colonies)/(total number of G418R colonies).

Growth Competition Assays. Two Matα2 variants from our library appeared to grow slowly in the absence of caravamine, suggesting that some Matα2 mutations may be detrimental to growth. Both these variants involve a single amino acid change to the wild-type *S. cerevisiae* sequence and are at the same position (N117I and N117V). To test whether these specific mutations impact growth, we introduced them into the endogenous Matα2 locus as above for quantitative mating assays. We then carried out growth competitions in an attempt to measure even subtle growth differences. Each mutant was competed against an isogenic parental strain bearing wild-type Matα2 and constitutively expressing mCherry. For each competition, the mutant strain (N117I or N117V) and mCherry competitor were grown separately to saturation in liquid YEPD. Their OD600 was then measured and combined at a 1:1 ratio in a final volume of 1 mL. This mixture was then diluted to OD600 = 0.1 in synthetic (SD) media lacking arginine, which was the media condition in which the slow growth was first observed, and grown overnight at 30 °C. The cultures were back diluted to OD600 = 0.1 the next morning and grown again overnight at 30 °C. This repeated growth and dilution process continued for 5 d. With each daily passaging, cells were also removed and counted on a BD FACS¢eLea flow cytometer. The relative growth rate of the nonfluorescent mutant strain and the mCherry wild-type strain was then determined.

Data, Materials, and Software Availability. DNA sequences (FASTQ files) data have been deposited in Gene Expression Omnibus (GSE233191 [33]).

Acknowledgments. We thank A. Phillips and N. Ziv for valuable comments on the manuscript and N. Ziv, M. Lohse, J. Fraser, and H. Madhani for critical experimental advice. We also thank C. Britton, L. Noiman, and F. Del Frate for helpful discussions during the conception of this project. This work was supported by NIH grant R01 GM037049 (to A.D.J.) and an NSF Graduate Fellowship (to K.R.F.). Portions of this paper were developed from the thesis of K.R.F.