Calvin Kong Physics Tuition		www.calvinkongphysics.com 82465685 calvinkongphysics@yahoo.com
Name:	Class:	Date:
Unit 11		
THERMAL PROPERTIES OF MATTER	STRU	
11.1 Heat Capacity		Level 1 Worksheets comprises of
(A) Heat Capacity		knowledge
(B) Specific Heat Capacity		questions and
1. Define the terms, "heat capacity" and "specific heat capacity"		questions that involve simple calculations to build concepts.
Physics Tultion		
 60000 J of thermal energy is given to a Material X in order to raise its temperature from 255 K to 258 K. (a) Calculate the heat capacity of Material X. 		

heat capacity =

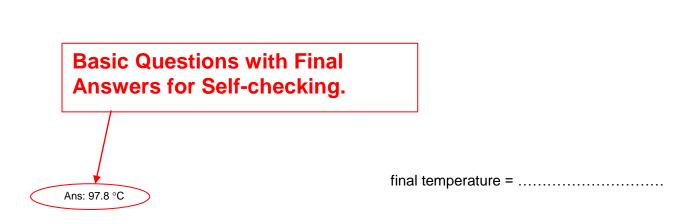
(b) Given that there was 8 kg of Material X, calculate its specific heat capacity.

Ans: (a) 20000 JK⁻¹ (b) 2500 Jkg⁻¹K⁻¹

specific heat capacity =

3. Find the amount of thermal energy needed to raise the temperature of 500 g of liquid water from 0 °C to 100 °C. Take the specific heat capacity of water to be 4.2 J g^{-1} °C⁻¹.

Ans: 210000 J


Ans: 16 °C

thermal energy =

4. What is the final temperature when 0.03 kJ of energy is supplied to a 5 g iron rod at 3 °C. The specific heat capacity of iron is 460 J kg⁻¹ °C ⁻¹

temperature =

- 5. Water has a very high specific heat capacity of 4186 J/kg °C. Comparatively, the heat capacity of copper is 385 J/kg °C. This means that water can absorb a lot of heat before raising its temperature by 1 °C. What are the applications that make use of the high specific heat capacity of water?
- 6. 0.3 kg of water at 100 °C is poured into a copper vessel of mass 0.1 kg at 30 °C. What is the final temperature of water assuming there is no heat lost to the surrounding? (specific heat capacity of copper = $400 \text{ Jkg}^{-1} \text{°C}^{-1}$ and specific heat capacity of water = $4200 \text{ Jkg}^{-1} \text{°C}^{-1}$) [Hint: Let the final temperature be x. Consider heat lost by water equals heat lost by vessel]

Only Section 11.1 - Heat Capacity is shown in this sample