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Preface 

This book is an attempt to focus attention on new themes in developmental and 
evolutionary biology. It is, in fact, an attempt to include Darwinism in a broader 
context. The central themes are easily stated. Simple and complex systems can 
exhibit powerful self-organization. Such spontaneous order is available to nat
ural selection and random drift for the further selective crafting of well-wrought 
designs or the stumbling fortuity of historical accident. Yet no body of thought 
incorporates self-organization into the weave of evolutionary theory. No 
research program has sought to determine the implications of adaptive processes 
that mold systems with their own inherent order. Yet such must be our task. And 
more as well, for some systems adapt readily, whereas others are so badly dis
rupted by minor modifications that adaptive improvement by random mutation 
and selection can hardly occur. Darwin simply assurned that such improvement 
was possible. One might have thought, more than a century later, that we would 
understand the construction requirements which permit complex systems to 
adapt. But we do not. Nor do we understand the extent to which selection can 
achieve systems able to adapt successfully. This book explores these broad 
themes. 

Like many other books by scientists, this one is ineluctably autobiographical. 
It witnesses one mind's sense of mystery. The famous physicist Wolfgang Pauli 
is said to have remarked that the deepest pleasure in science comes from finding 
an instantiation, a home, for some deeply felt, deeply held image. I share that 
odd sense. In my own case, over thirty years ago, walking in Hanover, New 
Hampshire, as an undergraduate at Dartmouth College, I looked into a book
store window and realized that, someday, I would write a book filled with points 
mysteriously connected with arrows. Like cubist paintings, with their quixotic 
surfaces and angles meeting, dispersing, fanning, and fading into the back
ground, edging polygons and polyhedra with currents of meaning, the points and 
arrows in my yet-to-be-written book hinted at spontaneous order. In subterra
nean ways this image works in me still. The greater mystery, after all, is not the 
answers that scientists contrive, but the questions they are driven to pose. Why? 
Why this question rather than another? Why this search, hope, dispair, rather 
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than another? Why this ill-lit, nil understood, hobo path? And why the outra
geous confidence, born of no evidence, to tred it? I do not know. But I know that 
this sense is not rare. What a strange pleasure it is to seek. 

I am glad to thank students, friends, and colleagues who have taken the time 
to read parts of the manuscript as it evolved. In particular, I mention Pere 
Alberch, Jeanette Alexander, Philip Anderson, Vahe Bedian, Richard Burian, 
James Crow, Manfred Eigen, Warren Ewens, Doyne Farmer, Marjory Grene, 
Scott Gilbert, Brian Goodwin, John Holland, Jeremy Knowles, Thomas 
LaBean, David Lane, Simon Levin, David Margolin, Jay Mittenthal, John 
Miller, Sandy Mitchell, Harold Morowitz, Leslie Orgel, Norman Packard, Rob 
Page, Richard Palmer, Alan Perelson, Rudy Raff, Bob Richardson, Irwin Rose, 
Peter Schuster, Daniel Stein, Martin Weigert, and Edward Weinberger. Their 
help, however, has not eliminated all the defects which the reader will encounter. 
My editors at Oxford University Press, Judith May and William Curtis, added 
their efforts. Carole Gan and Elizabeth Kauffman were patient and painstaking 
with the bibliography. Jeanette Alexander drafted many of the final figures. 
Recent close collaborative work has been carried out with Richard Bagley, Lloyd 
Clark, Brian Goodwin, Sonke Johnson, Alan Perelson, and Edward Weinberger. 
I am grateful to them all. 

In the past five years, I have had the pleasure to be associated closely with the 
Santa Fe Institute. I am pleased to acknowledge both the institute and the Uni
versity of Pennsyl vania. 

Authors know that books are not easily written. This one has been no excep
tion. Yet writing a scientific book can be like writing a novel. Ideas, like char
acters, once loose upon a page harbor their own lives, follow their own unsus
pected paths, mature in unforeseen ways, and mingle with their own logic. If 
useful, they have progeny. 

Santa Fe, N.M. 
February 1993 

S.A.K. 
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Themes 

The title of this book, Origins of Order: Self-Organization and Selection in Evo
lution, states the book's task: to answer the question, What are the sources of the 
overwhelming and beautiful order which graces the living world? To presume to 
ask such a question is also to know one must not presume to succeed. Questions 
such as this must ever be asked anew as each generation comes to perceive new 
ways of ordering its view of life. 

One view, Darwin's, captivates us all: natural selection and the great branch
ing tree oflife, spreading from the major phyla to the minor genera and species, 
to terminal twigs, to curious humans seeking their place. Darwin and evolution
ism stand astride us, whatever the mutterings of creation scientists. But is the 
view right? Better, is it adequate? I believe it is not. It is not that Darwin is wrong, 
but that he got hold of only part of the truth. For Darwin's answer to the sources 
of the order we see all around us is overwhelmingly an appeal to a single singular 
force: natural selection. It is this single-force view which I believe to be inade
quate, for it fails to notice, fails to stress, fails to incorporate the possibility that 
simple and complex systems exhibit order spontaneously. That spontaneous 
order exists, however, is hardly mysterious. The nonbiological world is replete 
with examples, and no one would doubt that similar sources of order are avail
able to living things. What is mysterious is the extent of such spontaneous order 
in life and how such self-ordering may mingle with Darwin's mechanism of evo
lution-natural selection-to permit or, better, to produce what we see. 

Biologists have not entirely ignored the spontaneous emergence of order, the 
occurrence of self-organization. We all know that oil droplets in water manage 
to be spherical without the benefit of natural selection and that snowflakes 
assume their evanescent sixfold symmetry for spare physicochemical reasons. 
But the sheer imponderable complexity of organisms overwhelms us as surely as 
it did Darwin in his time. We customarily turn to natural selection to render 
sensible the order we see, but I think the answer to our questions about the 
origins of order is broader. We already have some inkling of the kinds of spon
taneous order which may bear on biological evolution, and I believe we must 
make the most profound assessment of such self-organization. We must look in 
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any direction that seems profitable because whatever spontaneous order may 
abound is available for evolution's continuing uses. 

What makes the present stage of biological science so extraordinary is that 
molecular biology is driving us to the innermost reaches of the cell's ultimate 
mechanisms, complexity, and capacity to evolve. At the very same time, work 
in mathematics, physics, chemistry, and biology is revealing how far-reaching 
the powers of self-organization can be. These advances hold implications for the 
origin oflife itself and for the origins of order in the ontogeny of each organism. 
One major theme of this book is an effort to link recent work in molecular biol
ogy with these new insights into spontaneous order in complex systems. Union 
of the two streams of insight promises to transform our understanding. The 
order inherent in the busy complexity within the cell may be largely self-orga
nized and spontaneous rather than the consequence of natural selection alone. 

Yet our task is not only to explore the sources of order which may lie available 
to evolution. We must also integrate such knowledge with the basic insight 
offered by Darwin. Natural selection, whatever our doubts in detailed cases, is 
surely a preeminent force in evolution. Therefore, to combine the themes of self
organization and selection, we must expand evolutionary theory so that it stands 
on a broader foundation and then raise a new edifice. That edifice has at least 
three tiers: 

• We must delineate the spontaneous sources of order, the self-organized properties 
of simple and complex systems which provide the inherent order evolution has to 
work with ab initio and always . 

• We must understand how such self-ordered properties permit, enable, and limit the 
efficacy of natural selection. We must see organisms in a new light, as the balance 
found, the collaboration achieved, when natural selection acts to further mold order 
which preexists. In short, we must integrate the fact that selection is not the sole 
source of order in organisms. 

• We must understand which properties of complex living systems confer on the sys
tems their capacities to adapt. For Darwin simply assumed that the accumulation of 
advantegeous mutations was possible, and yet the capacity to do so is not self-evi
dent. Some systems can hardly adapt at all. Indeed, we must investigate the possi
bility that selection itself achieves the kinds of organisms which can adapt success
fully. Therefore, we must also wonder whether there may be characteristic features 
so deeply requisite for the capacity to adapt in a coevolutionary process that their 
presence in organisms is itself a lawlike consequence of selection operating on com
plex coevolving systems. 

While these points hardly seem contentious, it is no secret that we have, as yet, no 
theory which embodies them. Physics has its examples of remarkable order, but no 
use for natural selection. Biologists are secretly aware that selection must be working 
on systems which to one degree or another exhibit order by themselves. D' Arcy 
Thompson (1942) told us so with eloquence years ago, but we have not troubled to 
think through the implications. How strange, yet therefore how inviting, that we may 
one day bring ourselves to see life in a new light. 

The major parts of the book discuss the following topics. 
The introduction, Chapter 1, outlines our contemporary view of organisms, 
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order, and evolution. Here we have been persuaded by Monod's (1971) evocative 
phrase, "Evolution is chance caught on the wing." And we are equally persuaded by 
Jacob's (1983) view that evolution "tinkers together contraptions." Here broods our 
sense of organisms as ultimately accidental and evolution as an essentially historical 
science. In this view, the order in organisms results from selection sifting unexpected 
useful accidents and marshaling them into improbable forms. In this view, the great 
universals of biology-the genetic code, the structure of metabolism, and others
are to be seen as frozen accidents, present in all organisms oniy by virtue of shared 
descent. The quiet sense that spontaneous order is everywhere present is itself not 
central to this view. Hence it is not stressed, not investigated, not integrated. 

The first part of the book, Chapters 2 through 6, examines the power and limits 
of selection when acting on complex systems exhibiting spontaneous order, explores 
our first examples of self-organization, and proposes that the evolutionary marriage 
of self-organization and selection is itself governed by law: Selection achieves and 
maintains complex systems poised on the boundary, or edge, between order and 
chaos. These systems are best able to coordinate complex tasks and evolve in a com
plex environment. The typical, or generic, properties of such poised systems emerge 
as potential ahistorical universals in biology. 

None can doubt Darwin's main idea. If we are to consider the implications of 
spontaneous order, we must certainly do so in the context of natural selection, since 
biology without it is unthinkable. Therefore, we must understand how selection 
interacts with systems which have their own sp.0ntaneously ordered properties. At a 
minimum, we must wonder whether selection lrt sufficiently powerful to obviate any 
inherent order in life's building blocks. If so, the order seen might reflect selection's 
dictates alone. Thus Chapters 2 to 4 consider the character of adaptive evolution 
under strong natural selection on mountainous "fitness landscapes," with high 
mountain tops representing peaks of fitness and ridges and deep valleys representing 
low fitness. We shall in fact find critical limits to the power of selection: As the entities 
under selection become progressively more complex, selection becomes less able to 
avoid the typical features of those systems. Consequently, should such complex sys
tems exhibit spontaneous order, that order can shine through not because of selec
tion, but despite it. Some of the order in organisms may reflect not selection's success, 
but its failure. 

Much of the discussion in Chapters 2 to 4 focuses on adaptation in sequence 
spaces, such as among possible DNA or protein sequences, where we can conceive 
of evolution as carrying out adaptive walks toward peaks that represent how well 
proteins perform specific catalytic or ligand binding tasks. Consideration of the evo
lution of proteins able to carry out new catalytic functions, in turn, leads to the 
abstract concept of a catalytic task space. Among the implications of such a space is 
that about 100 million roughed-in enzymes might constitute a universal enzymatic 
toolbox able to catalyze almost any reaction. The immune repertoire of about 1 00 
million may already be a first example of such a universal set. This possibility is not 
merely abstract, for Chapter 4 leads us toward practical implications as well. It is now 
possible to use genetic-engineering techniques to generate extremely large numbers 
of random or quasi-random DNA sequences, hence very large numbers of random 
or quasi-random RNA sequences and quasi-random proteins. Thus it is possible to 
explore sequence spaces for the first time. I believe this exploration will lead in the 
coming decades to what might be called "Applied Molecular Evolution" with very 
great medical and industrial implications, such as rapid evolution of new drugs, vac
cines, biosensors, and catalysts. 
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Chapter 5 seeks the principles of construction in "parallel-processing" integrated 
systems of elements that allow the systems to adapt their behavior in a complex envi
ronment. We find two themes: First, the emergence of profound spontaneous order. 
Second, a bold hypothesis that the target of selection is a characteristic type of adap
tive system poised between order and chaos. The unexpected spontaneous order is 
this: Vast interlinked networks of elements behave in three broad regimes-ordered, 
chaotic, and a complex regime on the frontier between order and chaos. The spon
taneous order of the ordered regime foretells much of the order seen in aspects of 
developmental biology. The bold hypothesis states construction requirements which 
permit complex systems to adapt optimally through accumulation of useful muta
tions, even in a coevolutionary context where an adaptive move by one "player" dis
torts the fitnesses and the fitness landscapes of the coevolving partners. Ordered sys
tems, particularly those near the edge of chaos, have the needed properties. 

In Chapter 6, we see that the same construction requirements find echos at higher 
levels, such as whole ecosystems. Here the problem is to understand how such sys
tems are coupled so that members co evolve successfully and how selection itself may 
achieve such coupling. Again, such ecosystems can behave in three broad regimes
ordered, complex, and chaotic. Again, remarkably, coevolving systems may opti
mize their capacity to coevolve by mutually attaining the edge of chaos. 

The second and third parts of the book discuss other major examples of powerful 
self-ordering. In each case, the spontaneous order appears so impressive that it would 
be shortsighted to ignore the possibility that much of the order we see in the biological 
world reflects inherent order. 

In the second part, Chapters 7 to 10, I discuss the origin oflife.1t requires no more 
words than this phrase to remember that we do not now know how life may have 
started. Any discussion is at best a body of ideas. The central problem is this: How 
hard is it to obtain a self-reproducing system of complex organic molecules, capable 
of a metabolism coordinating the flow of small molecules and energy needed for 
reproduction and capable of further evolution? Contrary to all our expectations, the 
answer, I think, is that it may be surprisingly easy. To state it another way, I want to 
suggest that we can think of the origin oflife as an expected emergent collective prop
erty of a modestly complex mixture of catalytic polymers, such as proteins or cata
lytic RNA, which catalyze one another's formation. I believe that the origin of life 
was not an enormously improbable event, but law-like and governed by new prin
ciples of self-organization in complex webs of catalysts. Such a view has many impli
cations. Among them, the template-replicating properties of DNA and RNA are not 
essential to life itself (although these properties are now essential to our life). The 
fundamental order lies deeper, the routes to life are broader. 

Further, I suspect that the same principles of self-organization apply to the emer
gence of a protometabolism. I suggest that the formation of a connected web of met
abolic transformations arises almost inevitably in a sufficiently complex system of 
organic molecules and polymer catalysts. This view implies that, from the outset, life 
possessed a certain inalienable holism. It also suggests that almost any metabolic 
web, were life to evolve again, would have a very similar statistical structure. Thus I 
find myself wondering if the web structure of a metabolism may reflect not the con
tingent consequences of this particular history oflife, but some underlying ordering 
principles in biology. 

These ideas are generalized in Chapter 10 to a new class of "random grammar" 
models which exhibit functional integration and transformation in coevolving sys
tems, ranging from prebiotic chemical systems with protoorganisms to the emer-
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gence of mutualism and antagonism between simple organisms to similar features of 
economic and cultural systems. Grammar models are new testbeds for the locus of 
law in deeply historical sciences such as biology. 

The third part, Chapters 11 to 14, examines the "genetic program" which controls 
cell differentiation during development of the adult from the fertilized ovum, and 
the machinery which yields ordered morphologies. The main intent is to suggest that 
many highly ordered features of ontogeny are not the hard-won achievements of 
selection, but largely the expected self-organized behaviors of these complex genetic 
regulatory systems. 

The problem of cell differentiation, the focus of Chapters 11 to 13, is one of the 
two most basic issues in developmental biology. Different cell types-nerve, muscle, 
liver parenchymal-arise and differentiate from earlier cell types during develop
ment and, ultimately, in a human, form several hundred cell types. Each cell in a 
human's body contains essentially the same genetic instructions as all other cells. 
Those instructions include the structural genes coding for about 100000 different 
proteins. Cell types differ because different subsets of genes are "active" in the differ
ent cell types. The activation and repression of genes is itself controlled by an elab
orate regulatory network in which the products of some genes switch other genes on 
or off. More generally, expression of gene activity is controlled at a variety oflevels, 
ranging from the gene itself to the ultimate protein product. It is this web of regula
tory circuitry which orchestrates the genetic system into coherent order. That cir
cuitry may comprise thousands of molecularly distinct interconnections. In evolu
tion, the very circuitry is persistently "scrambled" by various kinds of mutations, as 
is the "logic" of the resulting developmental program. 

In Chapters 11 to 13, I try to show that such properties as the existence of distinct 
cell types, the homeostatic stability of cell types, the number of cell types in an organ
ism, the similarity in gene expression patterns in different cell types, the fact that 
development from the fertilized egg is organized around branching pathways of cell 
differentiation, and many other aspects of differentiation are all consequences of 
properties of self-organization so profoundly immanent in complex regulatory net
works that selection cannot avoid that order. All aspects of differentiation appear to 
be properties of complex parallel-processing systems lying in the ordered regime. 
These properties may therefore reflect quasi-universal features of organisms due not 
to selection alone, but also to the spontaneous order ofthe systems on which selection 
has been privileged to act. 

Chapter 14 treads D'Arcy Thompson's ground and considers the second funda
mental problem in developmental biology: morphology. The actual morphologies of 
organisms must also be viewed as a collaboration between the self-ordered properties 
of physicochemical systems together with the action of selection. Oil droplets are 
spherical in water because that is the lowest energy state. The membrane of a cell, a 
bilipid structure, forms spherical closed surfaces because that is its lowest energy 
state. Other aspects of spatial order in organisms reflect dissipative structures rather 
like whirlpools, which require a continuous flow of matter and energy to maintain 
the form. Thus the genome's capacity to generate a form must depend on very many 
physicochemical processes constituting a panoply of developmental mechanisms 
beyond the sheer capacity of the genome to coordinate the synthesis of specific RNA 
and protein molecules in time and space. Morphology is a marriage of underlying 
laws of form and the agency of selection. The task is to find the laws and hallow the 
marriage. 

I should make it clear that there are many fundamental problems in evolution and 
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development which I have made no attempt to discuss. Most notably, the study of 
evolution has focused and will continue to focus on analysis of branching phyloge
nies, with related debates about the tempo and mode of evolution and the roles of 
natural selection and drift in the evolutionary process. In the best sense, this tradition 
studies this history oflife. My aim in this book, nowhere in opposition to the familiar 
tradition, is to examine some new directions in which the occurrence of spontaneous 
order underpins this history of life. 

I should also stress that, while the book is finished, it is not a finished book. Some 
of the subjects are familiar and can be discussed with a modest sense of completion. 
Others, however, constitute new areas of thought and investigation. Premises and 
conclusions stand open to criticism. Ifuseful, I hope they are open to improvement. 



THE ORIGINS OF ORDER 





CHAPTER 1 

Conceptual Outline of 
Current Evolutionary 

Theory 

There are times in any science when one senses that a transformation to deeper 
understanding is pressing upward in some as yet poorly articulated form. We may be 
in such a period in biology. The recent achievements in molecular biology have 
brought us close to the molecular basis of evolution and ontogeny. Yet the organi
zation which stands revealed is puzzling in its vast complexity. It is the hallmark of 
our present understanding of organisms to see this complexity as a result of historical 
accident, due to random mutations and to natural selection, which cobbles together 
jury-rigged contraptions. 

It is the aim of this chapter to explore the genesis of the contemporary view of 
organisms as mixtures of contraption and design under the aegis of natural selection. 
I begin with the pre-Darwinian Rational Morphologists, who believed they were 
examining an unchanging, fixed set of species and sought ahistorical laws of form. 
This look at the Rational Morphologists leads us into the onset of the theory of evo
lution, with its branching phylogenies and Darwin's central concept of natural selec
tion. Evolution, while destroying the idea of fixed species, simultaneously swept away 
the impetus to seek ahistoricallaws of organic form. Further, the concept of branch
ing phylogenies brought with it an emphasis on "population thinking" rather than 
the kind of Platonic "typology" that underwrote the Rational Morphologists' efforts. 
Evolution, branching phylogenies, and natural selection in turn engendered our cur
rent picture of organisms as opportunistic, ad hoc solutions to design problems 
wrought by selection and random genetic drift. The second section of the chapter 
considers familiar and less familiar criticisms of our present view, setting the stage 
for the rest of the book. 

THE EMERGENCE 
OF THE NEO-DARWINIAN SYNTHESIS 

The Rational Morphologists and Laws of Form 

Publication of Darwin's book (1859) changed the agenda of biological science. So 
deep has the transformation been, that the serious purposes of pre-Darwinian biol-

3 



4 CONCEPTUAL OUTLINE OF CURRENT EVOLUTIONARY THEORY 

ogists have receded from our collective scientific mind, not merely by passage of time 
but also by passage from relevance. Yet the aims of pre-Darwinian biology were fully 
sensible and are important to recall here in order to trace the development of con
temporary evolutionary theory and place it in a broader context. 

Late-eighteenth- and early-nineteenth-century biology was faced with the concept 
offixed, unchanging species. It is difficult for us now to grasp the questions which 
arose naturally given this fundamental assumption. If organisms do not literally 
evolve into one another, as we now believe, if they are fixed forever, what account 
are we to make of the obvious and profound similarities among organisms? Granted 
that those similarities were taken to be God's work, nevertheless one Wished to sup
pose a rational creator (Newton's laws were taken as signs of God's law immanent 
on earth). The overwhelming similarities between organisms, later seen as evidence 
of common descent by Darwin, seemed instead to harbor the possibility that there 
might be underlying simple laws of form which a rational mind might apprehend. It 
was entirely rational for such biologists to focus on comparative anatomy. For such 
Rational Morphologists as Goethe, Cuvier, and Geoffroy St. Hillaire, despite their 
differences (Appel 1987), the guiding interest was a search to find some underlying 
logic or laws which would let us understand similar organisms as variations on some 
simple mechanisms that generate living forms. 

Behind this search was a coherent philosophical tradition. Webster and Goodwin 
(1982) note that the benchmark view of organisms in the Enlightenment was set by 
Kant, who undertook to distinguish organisms from mechanical devices. For Kant, 
organisms were fundamentally self-reproducing, and therefore self-organizing 
wholes. In a mechanical device, the parts exist only for one another in that each is the 
condition of the others' functions toward a common functional end. In contrast, in 
an organism, the "parts" exist both for one another and hy means of one another. 
For Kant, an organism "is that in which everything is both a means and end" (Web
ster and Goodwin 1982; for a contrasting account, see Lenoir 1982). While this point 
of view might seem mere common sense, we shall see that it has dwindled from an 
operant role in contemporary biology. Within the Kantian view, and more deeply 
embedded in the tradition of science from Newton, lay the ideal of accounting for 
the diversity of superficially heterogeneous phenomena on the basis of relatively few 
underlying universal principles. 

Comparative anatomy leads naturally to a systematic taxonomy. One result of 
this natural progression, Linnean taxonomy, remains with us today. It is important 
to be clear that the intellectual aims of a systematic taxonomy were not merely to 
categorize organisms into nested clusters, but to discover the natural orderings and 
groupings among all living things. If similarities in morphology were to reveal what 
the proper laws ofform might be, then proper clustering of organisms into a system 
was critical to seeing the proper similarities, hence finding the laws. To this end, Lin
nean taxonomy sought knowledge of the natural order, the "Plan of Creation," link
ing natural kinds in a hierarchical pattern. The aim was to find a kind of inherent 
necessity, the logic behind the apparent diversity. 

The Rational Morphologists' research program to find that logic lay in the sup
position, held first by Cuvier and Geoffroy and then by Owen, that organisms were 
built up by combinatorial variations of a small number of principles. The purpose of 
the research was to discover those principles. Hans Driesch (1892, 1894, 1908, 1914), 
the brilliant experimentalist, understood better than later writers the aims of the 
Rational Morphologists, when noting their goal compared with that of their Darwin
ian successors: they "sought to construct what was typical in the varieties of form into 
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a system which should not be merely historically determined, but which should be 
intelligible from a higher and more rational standpoint." This purpose can be seen 
in, for example, the work of Geoffroy and later Owen on the homologies between the 
various forms of the vertebrate limb. All vertebrate limbs were seen as members of a 
common series, transformable one into another by either deletion of or alteration in 
the character or in the connections of one or more elements. The same effort can be 
seen in Reichert's work (see de Beer 1958) on the homology between the reptile jaw 
and the mammalian middle ear, where invariant relations can be found despite 
marked functional alterations. Homology between organisms and within organisms 
appeared to point toward a rather small number of common patterns, recurrently 
deployed in different species. 

The concept of laws of form, which seems alien to us as biologists reared in the 
Darwinian tradition, is immediately comprehensible if we consider an analogy with 
crystals. All possible space groups for conceivable regular crystals-tetrahedrons, 
dodecahedrons, icosahedrons, and so forth-are now well known. Crystallographers 
have succeeded in finding laws ofform ordering diverse and complex morphologies 
in terms of combinations of only a few underlying principles. Prior to the advent of 
evolutionism and branching phylogenies, biologists confronted by temporally fixed 
species were perfectly sensible in hoping for just those kinds oflaws. 

Four major conceptual strands lead from the Rational Morphologists to contem
porary biology. Darwin's theory is the first. The other three are Mendel's discovery 
of the basic laws of transmission genetics, Weismann's concept of the continuous 
germ plasm from which each organism grows, and the advent of population genetics 
in the effort to account for Darwinian evolution by selection acting on single genes. 
We trace briefly each of these major strands as they lead to the current neo-Darwin
ian Synthesis. 

Evolutionism, Branching Phylogenies, and Darwin 

The onset of evolutionism brought with it the concept of branching phylogenies. The 
branching image, so clear and succinct, has come to underlie all our thinking about 
organisms and evolution. The roots ofthe branching idea are intriguing. From Greek 
and medieval sources came the concept of a linear, unbranched Chain of Being or, 
later, the Scala Naturae, linking lower to higher forms oflife (Lovejoy 1936). As Stan
ley (1979) points out, Cuvier, an arch antievolutionist, played an unwitting role in 
clipping links in the one-dimensional chain of being. In recognizing four major 
waves of creation, corresponding to the Precambrian, Paleozoic, Mesozoic, and 
Cenozoic, during which increasing complex but fixed species were formed, Cuvier 
recognized four major branches in the Chain of Being. Leibniz and Geoffroy, as well 
as others before Darwin, considered branching phylogenies, but with Darwin the 
image snaps into focus. 

With the onset of full-blown evolutionism and Darwin's outlook based on 
branching phylogenies, the very notion that biology might harbor ahistorical uni
versal laws other than "chance and necessity" has become simple nonsense. Dar
win's ascension marks a transition to a view of organisms as ultimately accidental 
and historically contingent. Our purposes have become analysis of branching evo
lutionary paths and their causes on one hand, and reductionistic unraveling of the 
details of organismic machinery accumulated on the long evolutionary march on the 
other. 

Darwin's development of the theory of evolution by natural selection after reading 



6 CONCEPTUAL OUTLINE OF CURRENT EVOLUTIONARY THEORY 

Malthus's theory of population limitation is a familiar story. New conceptual sys
tems such as Darwin's theory emerge as intellectual wholes. Once in place, the logical 
structure of the system inevitably begets a coherent set of questions. Given the view 
that species evolve into one another, then members of one species must somehow 
give rise to members of another species. It follows that members of the second species 
must somehow derive as variants of members of the first. A focus on variants 
emerges. Speciation must then rest on conversion of variation arising within one spe
cies to variation between species, hence from variation within some population to 
variation between populations. Thus the advent of Darwin heralds, as Mayr notes 
(1982), the transition from the typological thinking of the Rational Morphologists to 
the population thinking of contemporary biology. 

The nub of the theory of evolution is as much branching phylogenies as natural 
selection. Natural selection is the force which "wedges new gaps in the economy of 
nature," yielding the "well-marked varieties" which are, for Darwin, species. Suc
cessive, unending, natural wedging yields branching speciation to form the tree of 
life. It is now branching speciation, the product of "descent with modification," 
which enjoins the systematists to harmonize their classes with the pattern of branch
ing: Species, genera, families, order, and the other higher taxa cluster hierarchically 
because they express the pattern of branching speciation, not because they reflect a 
timeless and universal Plan of Creation. 

Branching speciation generates further natural questions: Who branched from 
whom? What was the common ancestral species? What is the branching pattern 
among a given set of species? Did a given species evolve from one or several ancestral 
populations? Do similarities among organisms in related species reflect evolutionary 
homologies due to the propinquity of their descent from a common ancestor? Or are 
such similarities "analogies" arising by parallel adaptive selection in independent 
branches of organisms? How rapidly does phenotypic evolution within one species 
occur? What are the tempo and mode of branching evolution? Even though natural 
selection as the driving "force" underlying adaptation and speciation has been 
doubted by many biologists, questions such as these, based on branching phyloge
nies, have remained the unchallenged core of evolutionary theory. 

A curious, logically unnecessary, but powerfully influential feature of Darwin's 
thinking was that the variation within one species which paved the way for emer
gence of well-marked varieties constituting two species was of an indefinite range. 
The idea that variations could occur in virtually any direction, an idea which dom
inates in Darwin's work despite attention to correlations among traits under selec
tion, has had important conceptual consequences. It follows that selection alone can 
discriminate which new variants will be found in later generations. Here is one root 
of our current idea that selection is the sole source of order in the biological world. 

Menders Atoms of Heredity 

The second fundamental strand in our contemporary view stems from Mendel's dis
covery of transmission genetics. Consider Mendel as though he were a serious atom
ist, for atomism in chemistry, with its remarkable ratios of small whole numbers, was 
in the air. Imagine asking oneself whether there might be permanent, unalterable 
atoms of heredity. Like chemical atoms, such atoms of heredity might form many 
new combinations. Given two parents and the observation that offspring often 
resemble both parents, it becomes plausible that the offspring receive atoms of her ed
ity from each parent. Each sexual organism has two parents, four grandparents, and 
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2N ancestors in the Nth prior generation. If atoms of heredity pass into a member of 
the present generation from all prior generations, then two possibilities immediately 
arise. Either all the atoms from the past cumulate in each generation, which leads to 
an overabundance of atoms of heredity, or some form of steady state is reached in 
which each organism has a constant number of the hoped-for hereditary atoms. In 
the latter case, on average, the organism must receive a twofold dose from its two 
parents and, to maintain the steady state, had best pass along half of its twofold dose 
to each offspring. In particular, the simplest hypothesis must be that, for each prop
erty of the organism, it receives one atom from its mother and one from its father, 
then passes along one or the other to each offspring. But then the wonderful conse
quence: If atoms of heredity are truly permanent and can combine and reemerge, 
their passage through first- and second-generation offspring should be traceable, and 
simple analysis suggests that small-whole-number ratios of effects should be found. 
Mendel's peas. 

It is not overly important whether Mendel actually thought in just this pattern 
(Olby 1979). Rather, this intellectual reconstruction, also attributed to Mendel by 
Fisher (1930), helps exhibit the historical context and natural reasoning by which 
Mendel's discovery harmonizes with the ideas of his time. 

Mendel was obviously no modern academic scientist. He sent his work to some 
of the best botanists of his day, even to Darwin, with almost no response. He made 
little further effort to attract attention. The story of the rediscovery of Mendel's laws 
at the turn of the century and their linking to the observed movements of chromo
somes is part ofthe folklore of biology. Interestingly, it is one of the clear cases where 
a theory predated and helped decisively to identify a functionally important cellular 
component. Recognition that chromosomes might be the carriers of hereditary infor
mation rested in no small part on the parallels between their behavior in meiosis and 
that required by Mendel. 

Weismann's Doctrine of the Germ Plasm: 
Toward the "Genetic Program" 

For Kant and the Rational Morphologists, as we noted earlier, an organism was a 
self-organizing entity whose parts existed for one another and by means of one 
another. That is, an organism was seen as both a structural and a functional whole. 
Early in the nineteenth century, this Enlightenment ideal was challenged by the idea 
of historical or developmental science (Cassier 1950). The question became, How are 
organisms generated, both in the history of the species and in the history ofthe indi
vidual? 

In their tentative reconstruction of the intellectual transitions that occurred dur
ing the early nineteenth century, Webster and Goodwin (1982; and see Lenoir 1982 
for a more detailed account of German biology of the period) note that the capacity 
of mechanical concepts to account for organismic development was an abject failure 
in the eighteenth century. Therefore, some nonmaterial controlling agency might be 
at work. The conceptual lineage may run something along these lines: Kant, in the 
Critique of Judgment, discusses the necessity of using teleological principles if bio
logical organization is to be made intelligible. The possibility of a teleological cause 
has analogies to human planned action, where the idea of the effect becomes a con
dition of the cause. Reified, the "Idea" becomes a distinct cause separate from 
mechanical causes, either transcendent or immanent. As Goodwin and Webster 
point out, in this development of German Romanticism the organism is seen for the 
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first time in modern biology as a dualistic entity-a material substance which is reac
tive to and expressive of a central directing agency, the Idea. The earlier view of an 
organism as a self-generating material whole is gone. 

In our own time, this dualism has not been lost but only washed of its transcen
dent character. It finds a material form in Weismann's doctrine of the continuity of 
the germ plasm passed from parent to offspring. In each offspring, the germ cells were 
to control the development of the organism but not themselves be part of the body, 
or soma. Weismann argued persuasively that the problem of inheritance is not a 
question of how the structure of the parent is transmitted to the offspring, but is about 
growth and development. Offspring resemble parents because both are the results of 
identical processes of growth and development, located in a distinct structure, the 
germ cell, which contains a specific substance with a "highly complex structure," the 
germ plasm, that has "the power of developing into a complex organism" (Weis
mann 1895, 1904). In turn, germ cells are derived not from the body ofthe individual 
but from parent germ cells, whose substance has remained in perpetual continuity 
from the first origin oflife (Weismann 1895, 1904). The organism therefore is not a 
self-organizing whole but an expression of the commands of the central directing 
agency of the germ plasm. 

The theme of a central directing agency mediated by the germ plasm has grown 
into the concept of the genome controlling development. We now conceive of the 
central directing agency as a genetic blueprint, or genetic program. The concept of a 
genetic program continues to playa profound role in the thinking of developmental 
and evolutionary biologists. I will discuss it briefly below and in great detail in Chap
ter 12. 

The Core Paradigm and Population Thinking 

Our contemporary view of biology is truly the marriage of the views of Darwin, Men
del, and Weismann. With the rediscovery of Mendelian transmission genetics and 
the tentative identification of chromosomes as the significant subcellular entities 
which constitute the active substances in Weismann's germ plasm, passing from gen
eration to generation and directing the growth of each organism, the central concep
tual structure is in place. That structure culminates in contemporary molecular biol
ogy, for the natural questions which emerge are familiar ones. What complex 
chemical substances are the carriers of Mendelian genes? How do genes accomplish 
their transmission? How do such genes become expressed as traits in the offspring? 
Answering these questions has led to the elucidation of the structure of DNA and the 
genetic code, the expression of structural genes as specific proteins playing catalytic 
or structural roles in the developing organism, and the concepts of regulatory genes 
and "cybernetic" genetic regulatory circuits governing patterns of gene expression. 
It is here that the program of reductionism in biology has been most profoundly suc
cessful. 

The complement to this reductionistic strand in cellular biology has been the 
insertion of population biology in evolutionary theory. Mayr (1982) is correct in not
ing that the triumph of contemporary biology was attained by replacing typological 
thinking by population thinking. The approval expressed by Mayr is not only posi
tive, in favor of the analysis of population dynamics, but also negative, in favor of 
cleaving away nonsensical medieval ideas about "types" based on an outmoded 
essentialism. As noted, population thinking has been central to the analysis of 
branching phylogenies in Darwinian terms, where speciation is the emergence of 
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well-marked varieties from the variation present within an initial population. And 
in particular, population thinking is central to the emergence of population genetics. 

Population genetics is the fourth major strand leading to the current neo-Darwin
ian Synthesis. It is interesting that population genetics grew out of recognition, by the 
early decades of this century, that Mendel's laws of particulate inheritance solve the 
deep problem Darwin faced because of his concept of blending inheritance: loss of 
variability in the population. According to blending inheritance, offspring blend the 
traits of their parents much as two colors-yellow and blue, say-blend into a single 
color-green, in this case-thereby losing the variability of two original colors. In 
Mendel's theory, the persistent atoms of heredity combine and reshuffle in each gen
eration and pass unchanged to subsequent generations, permitting variability to be 
maintained. This basic result was obtained by the famous mathematician Hardy at 
Cambridge University, as well as by Weinberg independently. 

While the Hardy-Weinberg result helped explain Darwin's theory, it did not suf
fice, for scientists still had to show that selection could lead to evolution as Darwin 
imagined. It is the effort to establish this point which led to the foundations of con
temporary population genetics. The question posed by Fisher, a young Cambridge 
mathematician, was whether a single mutant gene which conferred a very slight selec
tive advantage over the normal, or wild-type, gene and which arose in a single indi
vidual in a breeding population could spread throughout a population by virtue of 
the selective advantage it offered. If it could be shown that slight selection was ade
quate to substitute a more favorable for a less favorable allele, this would sustain Dar
win's theory that slight selective advantages acting over long times could mold and 
remold populations (Fisher 1930). It should be clear that this question is genuinely 
the basic question of population genetics. The minimal microevolutionary step is 
conceived as the substitution of one allele for another in a population. General anal
ysis of the conditions under which such a substitution can be expected to occur has 
formed the core of the powerful body of theory now available. This body of theory, 
united with paleontological evidence and experimental transmission and develop
mental genetics, forms the core of the contemporary neo-Darwinian Synthesis. 

The Neo-Darwinian Synthesis and the Neutralists 

The neo-Darwinian Synthesis (exemplified by Dobzhansky 1937, 1970; Simpson 
1944, 1950, 1953; Mayr 1942, 1982; Mayr and Provine 1980; Stebbins 1950), draw
ing on Fisher (1930), Haldane (1932), and Wright (1931,1932) (see Provine 1971, 
1986), has been extremely successful. It has sought to understand the conditions 
under which slightly advantageous mutant alleles at one or several genes might 
invade a population. Analysis has concerned the influence of population size, the 
selective advantage of the allele, and the relative fitness of homo zygotes and hetero
zygotes for the different alleles of a gene. The Synthesis, in its population-genetics 
arm, has examined the effects oflinkage of many genes on one chromosome and the 
effects of recombination between maternal and paternal chromosomes, which tends 
to disrupt favorable combinations of alleles at different loci on the same chromo
some. The conditions favoring the emergence of sex in evolution have been studied. 
All the vast panoply of phylogenetic variation, the tempo and mode of evolution seen 
in the paleographic record was, it was hoped, to be brought under the umbrella of 
natural selection acting on individuals, substituting one allele for another over evo
lutionary time. 

Despite its wide range and apparent success, the Synthesis has come under attack. 
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Undoubtedly the most successful attack has challenged the neo-Darwinian view that 
most or all evolutionary change is driven by selective advantage. Sewall Wright, one 
of the three pioneers of population genetics, emphasized the role in evolution of 
small peripheral populations that are largely isolated from the main body of a species 
(1931, 1932). In small enough isolates, the particular sample of the gene pool nor
mally shared by the entire population which might be present in the isolate can be 
sharply divergent from the average of the entire pool. In this way, a gene which has 
a low frequency in the population as a whole can have, by chance, a high frequency 
in the isolate. Consequently, the evolutionary dynamics can lead to that allele's dis
placing all alternative alleles of the gene simply by random chance or, more formally, 
by random drift. (For the roles of geographical isolation and founder effects, see also 
Mayr 1942.) 

The neutral theory (Kimura 1983) is the strongest statement of the role assigned 
to random drift. In its strongest formulation, the neutral theory asserts that all or 
most evolution at the molecular level is due to random drift among selectively neutral 
genetic variants, even in large populations. This theory has unleashed an enormous 
amount of energy in an attempt to understand the extent to which the evolutionary 
substitution of one allele by another is, or is not, due to selective differences or to 
chance fluctuations. It is not the purpose of this book to enter into the debate between 
the neutralists and the selectionists. However, some of the material in Chapters 2 and 
3 on the mountainous structure of fitness landscapes-itself an idea introduced by 
Wright-bears on these difficult issues. 

In the next section I will close the chapter with further criticisms of the neo-Dar
winian Synthesis. In the remainder of this section, however, I want to sketch some 
correlates of the Synthesis. 

Four Conceptual Correlates of the Neo-Darwinian Synthesis 

None of the four correlates discussed here need be taken as requisite to the logical 
structure of the Synthesis. Yet each is pervasive and plays a powerful role in guiding 
our thinking. More important, the first three of these patterns of thought harmfully 
constrain our thinking. Not surprising, of course, each contains an element of truth. 

• The first correlate is that we have come to see selection as the sole source of order 
in organisms. This may slightly overstate our common view, but overstatement is 
meant to help clarify. 

• The second is that we have come to think of the development of an organism as 
though that development were controlled by a "genetic program." Our problem, I 
shall argue, is that we wrongfully identify the concept of a genetic program with cur
rent serial algorithms. A better image of the genetic program-as a parallel distrib
uted regulatory network-leads to a more useful theory. 

• The third correlate is that we tend to see organisms, perhaps excessively, as ad hoc 
contraptions cobbled together by evolution. 

• The fourth has been and remains a major useful research paradigm in evolution. 
It is the concept of developmental constraints in evolution. This theme is broached 
here and is the major subject of Chapter 14, on morphogenesis. 

Selection as the Sole Source o/Order. Since Darwin we have come to view selection 
as the overwhelming, even the sole, source of order in organisms. Natural selection 
operating on gratuitous random mutations is the sieve that retains order and lets 
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~haos pass into oblivion. This phrase is no understatement of our world view; it is its 
heart. No idea derivative from Darwin lies deeper in our minds than this: myriad 
mutations, selection sifting. Here rebels the "Creation Scientist," here cavil many, 
but here is the core. 

The routes to and roots of the acceptance of this core belief in selection are inter
esting. Darwin was himself inheritor of the tradition of Natural Theology, a tradition 
in which organisms were considered to have been constructed by the agency of God. 
This tradition focused on the design of organisms, their intimate meeting, and the 
matching of their traits to their environments, all as evidence of a higher purpose and 
intelligence. Such a tradition is uninterested in the earlier Kantian idea of an organ
ism as a self-organized whole, which, even if true, hardly accounts for the organism's 
fit to its environment. Powerfully inimical to the theological consequences, Darwin's 
notion of natural selection can be enthroned in God's stead as the creative agency. 
The conceptual structure is already in place; only a kind of governmental revolution 
and regicide are needed. Selection slips into place as an agency creating order from 
chaotic variation. (The change in governments has not been without detractors with 
a sense of humor. It was noted that making selection a creator of order was parallel 
to creating an apple tree by cutting away its branches, a point not without its merits.) 

If we take selection as the sole source of order, it is because we have come to sup
pose that without selection there could be only chaos. The roots for our continuing 
strong adherence to this core Darwinian view are probably twofold. First, as already 
noted, for Darwin and many biologists, the initial idealization that variation can 
occur in any direction, known by all biologists to be literally false, is too useful a 
simplification to give up. Even should there be some constraints, the open texture of 
possibilities looms so vast that the idealization was and remains a reasonable starting 
point for thinking. Further, since many variations lead to loss of function, some 
selective processing maintaining function must be supposed. Even deeper than this 
set of ideas, which have long appealed to biologists, lies the second root for our belief 
in the Darwinian view: our present intuitions derived from the development of the 
science of statistical mechanics, the idea of entropy, and the second law of thermo
dynamics, which states that, without work, the internal disorder of a system always 
increases. Intuition based on the second law, I think, has now become the deeper 
root. Left to themselves, systems are inherently disordered and unstructured. Should 
some order be created and the ordering efforts cease, then lapse to disorder will occur. 
Therefore, selective "work" is necessary to achieve and maintain order. 

Monod's (1971) book captures the role of selection in maintaining order in the 
biological world, but it also explores evolutionary freedom. For example, Monod 
notes that metabolic regulation is achieved by modification of allosteric enzymes 
through binding of the regulatory molecule at a site other than the site of enzyme 
activity. The consequence is that, from the chemical point of view, the regulatory 
molecule need bear no resemblance to the substrates or products of the enzyme. This 
freedom finds its expression in the capacity of selection to construct rational meta
bolic circuits in which the terminal product of a pathway can feed back to the first 
unique step on that pathway and inhibit the first enzyme if the level of the terminal 
product becomes too high. This leads to arbitrariness, freedom to vary without con
straints, selection, and design. 

The same freedom occurs at the level of genetic regulation. An example is the 
famous lactose operon in the bacterium E. coli. Control of synthesis of the messenger 
RNA coding for the proteins involved in lactose metabolism is mediated by binding 
of a repressor protein to the DNA operator site blocking transcription. Removal of 
the repressor from the operator occurs by a metabolic derivative of lactose, allolac-
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tose, which binds to the repressor. No chemical necessity requires that it be allolac
tose which binds the repressor protein. The genetic-circuit feedback might have been 
controlled by some other metabolite in the cell. Therefore, Monod argues that the 
structure of regulatory circuitry is arbitrary from the chemical point of view. Nor is 
the logic of the genetic circuit constrained. The lactose operon works by repressing 
transcription ofthe lactose-metabolizing genes through a protein called the repressor, 
which is constantly being produced. Transcription is activated by "derepression" 
when allolactose is present. But genetic regulatory circuits with different "logical 
behavior" occur. Some genes are normally inactive and positively regulated to switch 
on in the presence of a specific inducer. Again, the inducer need bear no chemical 
similarity to the chemicals upon which the products of the regulated genes subse
quentlyact. 

The chemical freedom to construct arbitrary genetic circuits is but one expression 
of evolutionary freedom. That freedom then relies upon selection to construct useful 
genetic circuits. 

The "Genetic Program": Sequential Turing Machine or Parallel Computing 
Network? Discovery of the operon helped introduce cybernetic phraseology into 
biology, and the image of genes turning one another on and off is now coupled to the 
central notion of a genetic program underlying ontogeny. Since Boole formulated 
logic in his binary laws, it has become clear that with a small number of Boolean 
functions-in particular, "No," "Or," and "If'-it is possible to derive all of logic. 
A critical implication of the completeness of "No," "Or," and "If' was the discovery 
by Turing of universal computing systems. Such systems are able to carry out any 
algorithmically specifiable computation. This universal computing capacity is the 
logical basis of general-purpose computers, which can perform, in principle, any 
well-specified algorithm. Thus the fact that regulatory relations in metabolic path
ways and in control interactions among the genes themselves can be arbitrary and 
gratuitous from the chemical point of view has been taken to imply that the cyber
netic system within an organism-in other words, the genetic program of the organ
ism-can in principle be rearranged to compute any algorithm, to behave in any 
way. 

From universal computation we have been led to our loose contemporary idea of 
a genetic program underlying the ontogeny of each organism. The genome is pic
tured as a kind of computer specifying the structure of the chemical elements, the 
RNA, and proteins and the regulatory interactions among those components. Like 
a familiar computer program, the genetic program unfolds coherently in develop
ment (see, for instance, Apter 1966). The intellectual strands leading back to the idea 
of development controlled by a central directing agency are clear. 

Two features of programs in universal computers fit with exquisite precision into 
our view of organisms. First, reprogramming allows the computer to compute any 
arbitrary algorithm. Hence in principle we find ourselves thinking that with adequate 
reprogramming the genome could generate an arbitrary diversity of organisms. Sec
ond, most programs are devastatingly fragile to minor variations in the instructions. 
This strengthens our supposition that organisms are precise and must be maintained 
against chaotic degradation by selection. Conversely, we know this is an overstate
ment; organisms can suffer substantial variation and still function. Somehow genetic 
programs must be both free to vary widely and buffered against catastrophic failure 
for many minor changes. As we shall see, the probable answer to this seeming para
dox lies in the fact that the term "genetic program," if it points to anything, points 
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to a parallel-processing genetic regulatory network which can exhibit self-organized 
buffered behavior. 

Organisms as "Locked-In" Historical Contingencies: Rube Goldbergs. It is no 
accident that we have come to view organisms as historical accidents. Nor is this view 
due merely to the recent advent of the Neutral theory; rather, it is rooted in the utter 
blindness and gratuity of mutations, their arbitrary randomness with respect to pro
spective usefulness. 

Current theory affords us only two ways to think about any phenotype-from 
protein structure to limb morphology: random drift and selection. To selection we 
couple some insight into design: Wings must meet aerodynamic criteria, legs must 
confront the law of the lever, and so forth. But within enormous latitudes, we under
stand the branching flow of phylogenies as either natural selection or drift acting 
upon myriad mutations, most of which are harmful, such that the more or less rare 
successes are accumulated in any phylogenetic lineage. Evolution is thus seen as an 
opportunist, remolding hard-won successes for novel uses. As a consequence, the 
results of an evolutionary flow have an historically contingent character, a somewhat 
ad hoc accumulation of accidental successes culled over the eons. 

The coordinated, gratuitous, ad hoc character of organisms is captured by humor
ist Rube Goldberg, whose wonderful cartoons appeared in the post-World War II 
period. Consider the design of a device to ring a bell: Father in the wing chair allows 
tea to fall from his cup to the floor, inciting the cat to run through the resultant puddle 
and leave a trail of conducting moisture to the terminal of a strategically located bat
tery. The current loop is completed, activating a small motor, which moves a lever 
pulling a string releasing a pendulum latched to the shelf and allowing it to swing 
against the gong hung from the Tiffany lamp nearby. Beyond the charm of his style, 
Goldberg's ad hoc machinery demonstrates a basic principle. Once the components 
are assembled and once the system works, the system is an integrated whole. Remov
ing or sharply changing any component will probably lead to failure. That is, solu
tions, once found, are more or less locked in. 

This theme in contemporary biology is not implicit; it is fully explicit. The com
mon current view of the origin ofthe genetic code holds that the particular code now 
used, and its minor variants, rather than being preordained by chemical affinities, 
are a "frozen accident" (Crick 1968). We might have had different codes, but once 
our code is in place, altering any single codon might be expected to alter so many 
proteins that its effects would be lethal. Similar arguments are presented for the chi
rality of metabolites and amino acids. The choice of dextro- or levorotary, once made 
in evolution as an historical accident breaking a symmetry, was frozen in place. The 
well-known evolutionary deployment of the jawbones of reptiles to the middle ear of 
mammals exemplifies the theme of gradual molding of a hard-won success. Our sen
sitivity to the frozen accidents of evolutionary history finds its expression in the 
familiar sense of biology as 2 deeply historical discipline. 

There is no doubt that our awareness of historical contingency is proper. The 
question we must address is whether there might be statistical order within such his
torical processes. A loose analogy makes this point. Imagine a set of identical round
topped hills, each subjected to rain. Each hill will develop a particular pattern of riv
ulets which branch and converge to drain the hill. Thus the particular branching 
pattern will be unique to each hill, a consequence of particular contingencies in rock 
placement, wind direction, and other factors. The particular history of the evolving 
patterns of rivulets will be unique to each hill. But viewed from above, the statistical 
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features of the branching patterns may be very similar. Therefore, we might hope to 
develop a theory of the statistical features of such branching patterns, if not of the 
particular pattern on one hill. 

Evolutionary biologists are well aware of this kind of analogy and have con
structed many such statistical theories with respect to branching phylogenies (Gould, 
Gilinsky, and German 1987), ecosystem stability (May 1973), and other areas. 

Evolutionary Constraints in the Darwinian-Mendelian Tradition. Biologists have 
recognized at all times that evolution is constrained (Bateson 1894; J. M. Smith, Bur
ian, et al. 1985), and the supposition that variation might occur in any direction has 
been well criticized. Even though Darwin considered internal correlations within the 
organism, such that selection for one feature would pull along other, correlated fea
tures, he did stress the capacity for variation in almost any direction, and it is fair to 
say that much of late-nineteenth-century and early-twentieth-century biology was 
concerned with refuting this claim. If evolution is branching phylogenies converting 
variation within populations to variation between populations, then evidently a thor
ough analysis of the patterns of variability thrown up by any population will reveal 
the avenues available to evolution. Constraints on those patterns of variation are 
constraints on branching phylogenies. 

The question under analysis in asking whether constraints exist in evolution 
should be made explicit. It is to ask whether there may be restrictions in generating 
neighboring forms or organisms, given that the process is starting at a specific point
in a given species or in a specific member of the species. Restated, the major idea of 
a constraint in our tradition is a local constraint on transitions between neighboring 
forms. 

Analysis of phylogenies in terms of such local constraints has a rich and successful 
history. Two of the major successful strands are considerations of heterochrony and 
allometries. 

Heterochronic studies posit that changes in the time of onset of particular devel
opmental pathways in an organism, changes in the rate of progression of such devel
opmental processes, and changes in their time of cessation can change the resulting 
organism. If, for instance, limb development were initiated earlier in one species and 
lasted longer in that species than its neighbors, limbs in the first species would be 
expected to be longer. Such alterations in the timing of growth and differentiation 
are clearly a way to deform one organism to a closely neighboring organism. More 
dramatic alterations can be achieved as well, as when, for example, a juvenile form 
distinct from the adult form becomes sexually mature. The well-known example of 
the axolotl, in which the juvenile form is sexually mature without undergoing meta
morphosis, comes to mind. 

Recent studies in this tradition have been carried out by Alberch and his col
leagues (Alberch 1980, 1981, 1982; Alberch and Alberch 1981; Alberch and Gale 
1983; Alberch, Gould, et al. 1979) on several varieties of newts, comparing the inter
specific variation in loss of digits with the order within one species with which digits 
are lost when development of the limb is slowed. The patterns of variation are highly 
similar, strongly supporting the thesis that evolution has made use of the internal 
patterns of variation and achieved the transformation of digits in neighboring species 
by playing on developmental rates. 

Allometric transformations, studied by Thompson (1942) in his analysis of coor
dinate transformations mapping one form into a family of neighboring forms, and 
named and studied in detail by Huxley (1932), are in the same tradition as analysis 
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of heterochrony. It is interesting that the Darwinian idea that absence of change 
requires no selection but reflects simple heredity reemerges in the analysis of allo
metric patterns, but in a hidden form. Consider a series of species with correlated 
alteration in the size of two elements, perhaps body weight and antler spread. It may 
be discovered that a single allomorphic transformation, giving the rate of increase of 
antler spread with respect to change in body weight, yields a curve onto which all the 
species fall but with some scatter about the curve. Then the analysis will often be 
interpreted to mean that the allomorphic transformation reflects internal con
straints, while the deviations from the curve reflect selection. Note, then, that this 
interpretation supposes that no selection is needed to ensure the constraint itself. As 
was Darwin's hope, the constraint persists by some sort of inertia. 

Hints of a Structuralist Paradigm 

The analysis of patterns in neighboring organisms which we have discussed can be 
based on the idea of the organism as generated by a developmental algorithm. Then 
our purpose becomes one of assessing what the generative algorithm-more prop
erly, the developmental mechanism-is and consequently what the truly neighbor
ing organisms are. Consider phyllotaxis, conveniently seen in pine cones and sun 
flowers. The scales, as is well known, form in double spirals which radiate from a 
center, one clockwise, the other counterclockwise. The surprising feature is that the 
number of spirals in one direction is related to the number in the other direction as 
two adjacent numbers in the Fibbonacci series 1, 1, 2, 3, 5, 8, 13, 21, 34 .... 

A number of models to account for this double-spiral pattern have been suggested; 
an example by G. J. Mitcheson (1977) is attractive. Mitcheson suggests that tight 
packing of scale primordia on the conical meristem suffices to generate the observed 
phyllotactic series. The issue here is not the adequacy of his model, but the mode of 
analysis it exemplifies. First, given the presumptive developmental mechanism, we 
have an algorithm to generate a given form and, by modifying parameters of the 
model, a way of computing and predicting neighboring forms. Thus the develop
mental mechanism predicts a family of forms it will generate. Second, unlike the 
cases of heterochrony and allomorphic transformation just noted, where a continu
ous gradation of neighboring forms occurs, here true neighbors are adjacent pairs in 
the Fibbonacci series: either 8-13 or 13-21. Thus true neighboring morphologies in 
evolution reflect transformations to neighboring forms in the family of forms gener
ated by the underlying developmental mechanisms. 

Goodwin and Trainor (1983) have stressed the fact that analysis in terms of devel
opmental mechanisms and the families of forms they can generate is a structuralist 
pattern. As with the pre-Darwinian Rational Morphologists, one attempts to find an 
underlying algorithm, or law of form, which relates a family of different morpholo
gies as members of a series which can transform into one another. In such a view, the 
organism cannot vary equally in any direction but is strongly biased by the under
lying developmental algorithm to vary among a defined set of neighboring mor
phologies. This point of view has been expressed by a number of authors (Alberch 
1980, 1982; Alberch, Gould, et al. 1979; Oster and Alberch 1982). 

The case of phyllotaxis is just one of a number to which we will return in Chapter 
14. In thinking about the evolution of organisms, we would dearly like to know the 
extent to which orderliness in such developmental programs can have origins largely 
independent of selection, and what roles selection has in maintaining or furthering 
that order. 
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ENLARGING THE FRAMEWORK 

In the previous section, I sketched the genesis of the main strands in the Darwinian
Mendelian paradigm which led to the neo-Darwinian Synthesis. In the present sec
tion. I cover three general topics. 

The first topic is a brief review of familiar criticisms of the neo-Darwinian posi
tion. These critiques are largely parenthetical to the main issues of this book and are 
included merely to orient the general reader to the present position of the neo-Dar
winian view. 

The second topic is the difficulty that evolutionary theory has in accounting for 
the evolutionary origin of complex "wholes." The specific example I discuss is the 
origin of life itself. Creditable arguments by respected scientists have led to the unfor
tunate conclusion that we cannot exist. In my view, these arguments fail by failing 
to utilize the self-organized collective properties of simple and complex systems. 
Instead, these arguments hope to find answers to origins in the length of time avail
able for evolutionary search. The origin-of-life argument I examine is important pre
cisely because plausible calculations demonstrate that insufficient time has elapsed 
for life to have originated by chance without such self-organization. This single 
example therefore is a harbinger of an alternative hope: If we understand self-orga
nization, many such origin questions in evolution may become understandable. This 
brief discussion also serves to introduce the entire origin-of-life issue examined in 
later chapters. 

The third topic introduces part of the framework I want to use to think about the 
relation between selection and self-organization. The essential idea is simple. It is to 
think of selection as acting on systems that spontaneously exhibit some particular 
form of order that is typical afan entire class afsimilar systems, called an ensemble. 
Selection can be thought of as moving a "population cloud" to particular parts of 
that ensemble. The balance between the self-organized properties typical in the 
ensemble and selection then depends upon the extent to which selection can move 
the population cloud to parts of the ensemble which no longer exhibit the typical 
order. The critical point we shall find is this: In sufficiently complex systems, seleclion 
cannot avoid the order exhibited by most members of the ensemble. Therefore. such 
order is present not because of selection but despite it. This implies that the kinds of 
collective self-organization which we will discuss in the remainder of the book can 
reasonably be expected to account for some of the order exhibited by organisms. 

Familiar Criticisms 

A number of criticisms against Darwinism and the neo-Darwinian Synthesis have 
been raised. I discuss next eight such issues to help orient the general reader. 

Is the Concept o/Natural Selection Circular? First among the criticisms is the con
cern that the theory is circular, a mere tautology: the survival of the survivors. In its 
neo-Darwinian reformulation, in which the microevolutionary event is a change in 
gene frequencies, the worry is restated as the circularity of defining natural selection 
as the differential reproductive success of genotypes and then defining the fitness of 
a gene as its average probability. over all genetic backgrounds, of being propagated 
to the next generation. This restatement again leads to the possibility of circularity, 
survival of the survivor. 

The criticism has been answered by attempts to show that fitness is logically dis-



CONCEPTUAL OUTLINE OF CURRENT EVOLUTIONARY THEORY 17 

tinct from the tautology and has reference to design traits in the organism (Sober 
1984). It is of some interest, however, to consider a different response-that such 
circularity is normal at the core of many sciences. For example, a very similar cir
cularity is found at the core of Newtonian mechanics. Newton's second law of 
motion states that F = mao Acceleration is independently defined as measurably 
changing velocity. But force is taken as a primitive, and inertial mass is defined as the 
proportionality constant relating force to acceleration. Mass has no definition inde
pendent of force; a force is that which, acting on a mass, accelerates it. The couplet 
of terms is defined in a circle; each requires the other. In fact, this circularity lay 
behind Poincare's conception offundamentallaws as definitional conventions. 

The reasons for such circularity are, in fact, not strange and are related to a nec
essary holism in science pointed out by the philosopher W. V. Quine, who noted that 
no hypothesis confronts the "world" alone (1961). Instead, it confronts the world as 
part of an entire world view of linked hypotheses plus statements about the experi
mental situation. Given a negative experimental result, something must be rejected. 
Either some hypothesis is wrong, or a description of the experimental situation is 
incorrect. But, as Quine pointed out, the choice of which hypothesis to reject is a/ree 
one. As he notes, we can salvage the hypothesis we want. Different choices of which 
hypothesis to reject impinge on the whole web of hypotheses and laws. To maintain 
coherence in that web, we typically choose to salvage a central circularly interdefined 
cluster of hypotheses. In effect, we treat this central cluster as unfalsifiable by insisting 
that it remain true. But this circularity is not merely definitional, with no grip on the 
world, so long as the circle-or better, web-is reasonably large. Thus although a 
detailed argument in Quine's direction of conceptual "holism" has not to my knowl
edge been worked out for Darwinism, it seems reasonable that the sense of circularity 
in Darwinian theory is no more malign than in other areas of science. 

Panselection. An important argument has developed about panselectivist interpre
tations of Darwin (Gould and Lewontin 1979). The conceptual basis of this inter
pretation is that, in order to be present in organisms at all, any trait must be under 
direct or indirect positive selection. The issue is this: The idea of natural selection 
implies that advantageous variant features will tend preferentially to be passed on if 
there is heritable variance for those features. But Darwin and many others have noted 
that traits are correlated; therefore, a deleterious trait might persistently be selected 
in evolution because of its coupling to some positively useful trait or traits. This argu
ment appears to sustain the logical coherence of a panselectionist position. Among 
the best arguments against this view is the entire body of evidence amassed by the 
Neutralist school (Kimura and Ohta 1971; Kimura 1983). As noted on page 10, the 
Neutralist claim is that many features, at least at the molecular level, persist because 
they are selectively neutral. 

Restricted Selection. The more restricted interpretation of Darwinism has been 
that some but not all features of organisms are present as a result of positive selection. 
But this sensible application of Darwinisn has always faced the difficulty of discrim
inating which features were present even if they were not favored by selection, and 
has always faced the danger offacile constructions of "just-so" stories plausibly pos
iting a use for a feature in the face of no possible tests at all. This has truly been one 
of the major problems in evolutionary biology, for most biologists, myself included, 
would deny a panselectivist view but hold to the claim that many aspects of organ
isms are present due to past or continuing selection. The overall problem here is 

./. 
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great. We do not doubt that, for example, the eye has been selected to enable distant 
vision because such vision makes a significant contribution to organismic fitness, but 
in innumerable concrete cases it has proved elusive to establish what the function of 
a given structure or property is. If selection alone is to account for the order we find 
and if we cannot genuinely determine that which is selected, then our account ofthe 
order in organisms stands in peril of weakening into a formal explanation whose 
validity can rarely be ascertained in concrete cases. 

The Abundance o/Variation. The unexpected abundance of variation in the amino 
acid sequences of proteins segregating in natural populations has posed certain prob
lems for the Darwinian view of evolution. The supposition that most mutants are 
harmful has been correlated with the assumption that organisms must be highly pre
cise entities in order to survive. In turn, this assumption has been linked to the wide
spread belief earlier in the century that organisms are nearly homozygous for wild
type genes; that is, that organisms will have the same normal copy of each gene on 
the maternal and paternal chromosomes. Thus the famous geneticist H. J. Muller 
(1950a, 1950b) reasoned that members ofa species would be nearly homozygous and 
was concerned with genetic purity and the accumulation of defective mutants in 
human populations. With the advent of protein gel electrophoresis and the discovery 
of electrophoretic protein variants due to amino acid substitutions in the proteins 
(Hubby and Lewontin 1966; Lewontin and Hubby 1966), it became possible in the 
1960s to measure protein variants in the population. Very large valiability was found 
(Lewontin 1974). A large fraction of the genes segregating in a population have more 
than one allele, and many individuals carry different alleles on their maternal and 
paternal chromosomes (in other words, many individuals are heterozygotes) at a 
large fraction of their genetic loci. These studies are now being extended to the DNA 
level, where widespread polymorphism has similarly been described. 

High levels of variability lead to the question of how so much variability is main
tained. For Neutralists, it can reflect the birth rate of new mutants, their rate of ran
dom drift through the population, and their rate of either fixation in or loss from the 
population (Ewens 1979; Kimura 1983). For those who maintain a selectionist view, 
maintenance of high levels of variability is taken to reflect selection in favor of the 
heterozygotic condition at each such locus (Lewontin 1974). Whether such selection 
is biologically plausible and adequate to account for the observed variability has been 
sharply debated (Kimura 1983). 

One implication of the discovery of so much variability in a given population is 
that the idea that organisms must be precise in order to function at all needs to be 
rethought. As we shall see in Chapters II through 14, the variability uncovered in 
enzyme polymorphisms is beginning to be extended to the cybernetic aspects of the 
control systems by which genes mutually regulate one another's activities. It there
fore becomes important to assess how much regulatory variability exists and, even 
more profound, how perhaps imprecise genetic programs function adequately. This 
topic is returned to in those chapters, where the stable self-organized structures and 
behaviors of genetic regulatory systems are examined. 

Epistemological Adequacy 0/ Population Genetics. The epistemological adequacy 
of population genetics has been questioned. At its very inception, population genet
ics began by ignoring the organism and ascribed fitness to a given gene. The necessity 
for making this simplification in order to construct a theory was clear and in fact 
acceptable, given the initial question for which the theory was constructed: Could a 
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gene which conferred a slight selective advantage spread through a population and 
displace the former wild-type gene? While it mayor may not be sensible to discuss 
the average fitness of a gene against a range of genetic backgrounds, the entire body 
of theory can be considered to be epistemologically incomplete. This issue was 
cogently raised by the population geneticist R. Lewontin in his Jesup Lectures 
( 1974), where he pointed out that at least the following are needed: (1) a theory map
ping the genotype to the phenotype; (2) a theory relating phenotype to fitness; and 
(3) a theory relating changes in phenotype to resulting changes in genotype. With 
these three theories in place, explanatory closure might be attained for both pheno
typic and genotypic evolution under the drive of either selection or drift. The prob
lem, of course, has lain with the difficulty of obtaining theories which map the geno
type to the phenotype and the phenotype to the genotype. These mappings, and the 
implications of self-organization for them, are discussed in Chapters 11 through 14. 

Missing Phenotypes. An interesting criticism leveled at evolutionary theory has 
been the "emptiness" of phenotypic space. The puzzle seems to be this: In the linear 
Chain of Being, each being is linked to those above and below it, there are no gaps, 
and the economy of nature is filled, an idea expressed in the doctrine of Plentitude. 
As S. M. Stanley (1979) remarks, Darwin is presumably thinking of this gapless state 
in his own initial image of selection, wedging places in the filled economy of nature 
where new species can shoulder into the crowded bustle. But very many conceivable 
useful phenotypes do not exist. Why not, and how can Darwinian theory account for 
their absence? Missing phenotypes appear to imply that failure to achieve so many 
useful phenotypes might be due to unknown constraints that limit the effectiveness 
of natural selection. 

I confess that I believe the emptiness of phenotypic space is filled with red herrings. 
Forget for a moment the possibility of constraints in development. Imagine that we 
can describe the phenotype of an organism by measuring some large number of con
tinuous metric characters, each corresponding to an axis in a phenotypic space. Then 
each organism's phenotype is a single point in phenotypic space, and a species is 
some cloud of points in the space. Phenotypic evolution in one species corresponds 
to the cloud's moving in some trajectory across phenotypic space. Similarly, branch
ing phylogenies are recorded as branching trajectories in this phenotypic space. 

Under the null hypothesis that no constraints at all exist, the branching pathways 
through space taken by this process constitute a random-branching walk in a high
dimensional space. The typical property of such a walk in a high-dimensional space 
is that most of the space is empty. Thus the emptiness of phenotypic space itself 
reveals nothing with respect to constraints on the evolutionary process. Natural selec
tion may be critical in evolution, but it may not have to wedge very hard to create 
open vistas in morphospace. This comment, of course, does not imply that phylo
genetic evolution is such a random walk. 

Phenotypic Stasis. Evolutionary stasis, the long-term persistence of form or fea
ture, is a particularly serious problem. Despite the fact that evolutionary biologists 
have been familiar for years with living fossils, such as the opossum, the problem of 
stability of species form, or stasis, has recently come to the foreground in the debate 
between phyletic gradualism and the theory of punctuated equilibrium. The classical 
neo-Darwinist position favors phyletic gradualism, in which small phenotypic 
changes accumulate slowly in a species (Simpson 1944; see Levinton 1988 for a gen
eral discussion). The punctuated equilibrium theory holds that most phenotypic dif-
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ferences occur at speciation but that species are remarkably stable in phenotype 
thereafter (Eldredge and Gould 1972). 

Whatever the merits of the general case made by the advocates of punctuated 
equilibrium (see criticisms by Charlesworth, Lande, and Slatkin 1982, and Levinton 
1988), these advocates have properly focused on the fact that phenotypic stability 
over millions of years, typically 3 to 6 million for the average species, is not at all rare. 
The problem which must be answered is how such stability is achieved. Ifmutations 
continue to accumulate, as evidenced by the reasonably steady rate of nucleotide and 
amino acid substitution, what holds phenotypes in typical form? For the neo-Dar
winian, the answer is that powerful selection maintains the normal form. The sim
plest argument is that, since stable species live in stable environments, selection 
favors the established normal form. 

The difficulty with this plausible argument, as with so many other arguments in 
evolution, lies in assessing its degree of plausibility. It is difficult to confirm that stable 
species live in "sufficiently stable environments" to account for stasis. The environ
ment of a species is not merely its physical environment but also the many other 
species that constitute its prey, its predators, its competitors. It is at least unclear that 
stability of environment is the norm. If the average species exists for 3 to 6 million 
years and if each species interacts significantly with N other species in its way of life 
and if those species also either alter or become extinct, then on average the species 
aspect of the niche changes N times during the duration of each species. How stable 
does an environment have to be to support phenotypic stability? 

Are stable features obviously maintained by normalizing selection? This is 
extremely hard to assess, since in general field tests for normalizing selection are not 
feasible. Species of trilobites appear to have persisted virtually unaltered in mor
phology over tens of millions of years, with the exception of the addition of a single 
row of ommatidia to their compound eyes. It is certainly plausible that these trilo
bites were a maximally adapted phenotype in a stable environment. But is it true? If 
stasis is more common than rare, then a selectionist argument is left explaining a 
dominant feature of the evolutionary record in terms ofa sufficiently constant envi
ronment, which is often unmeasurable, and in terms of normalizing selection for the 
established form, which is also rarely testable. One need not be a disciple of Karl 
Popper, who holds that theories must be refutable if they are to be scientific at all, to 
be slightly anxious. 

Macroevolutionary Challenges. The centerpiece of the neo-Darwinian Synthesis is 
that natural selection, acting upon individual variations within a population to sub
stitute one allele for another, is the major force driving adaptive evolutionary change. 
In this view, speciation and the patterns of phylogenies from species to the higher 
taxa all express natural selection acting at the level of individual organisms. Yet stu
dents of the major trends at higher taxonomic levels have recently begun to doubt 
that selection at the level of the individual organism is the only factor accounting for 
patterns among higher taxa. Suppose, for example, that some species are prone to 
speciate, while others are not. If the propensity to speciate is itself heritable, then the 
former group will ultimately branch into a large number of species, and the latter will 
not. This difference in tendency to speciate mayor may not be related to fitness at 
the level of the individual, but may dramatically affect the patterns seen within the 
corresponding genera and families. Further, some authors have suggested that spe
cies-level selection may playa role in such macroevolutionary processes (Stanley 
1979). This set of problems seems to me to be important. If these challenges to the 
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Synthesis are correct, then the patterns of macroevolutionary change may be par
tially cut off or screened from the action of natural selection at the level of individual 
fitness variations. 

The Origin of Complex "Wholes" 
and the Problem of Adequate Time 

One of the purposes of an examination of self-organization in complex systems is the 
hope that spontaneous order will help account for origin problems in evolution. 
Everywhere in thinking about evolution, one confronts the question of how hard it 
may have been to "find" a particular structure or property. Such problems appear 
most trying when the structure or property in question requires the concerted action 
of a large number of constituents. It is here, I believe, that consideration of self-order
ing may prove most useful. In contrast to the hope that insight into spontaneous 
order may help us to understand origins, typical thinking in evolutionary biology is 
couched in terms of the notion of an adequate time for the eventual "discovery" of 
the useful property. I discuss next an interesting case concerning the origin of life. 
My purpose is not only to introduce the origin-of-life topic but also to give a clear 
example of the difficulties which often arise from reliance on adequate search time. 

No less a scientist than George Wald, 1967 Harvard Nobel laureate for his work 
in the chemistry of vision, published an article in Scientific American in 1954, based 
on the idea of adequate search time (quoted from Shapiro 1986): "One has only to 
contemplate the magnitude of this task to concede that spontaneous generation of a 
living organism is impossible. Yet we are here-as a result, I believe, of spontaneous 
generation." Wald goes on to argue that, with very many trials, the unthinkably 
improbable becomes virtually assured: "Time is in fact the hero of the plot. The time 
with which we have to deal is of the order of two billion years. What we regard as 
impossible on the basis of human experience is meaningless here. Given so much 
time, the impossible becomes possible, the possible probable, and the probable vir
tually certain. One has only to wait: time itself performs the miracles." 

This line of argument has been sharply criticized, but the critique only leads to 
deeper problems. I should stress that I find the critique below inadequate and shall 
return to this problem in detail in Chapter 7. Robert Shapiro, in Origins: A Skeptic's 
Guide to the Creation of Life on Earth (1986), is not the first to attack Wald's view, 
but Shapiro's argument suffices to exemplify the point. He calculates the number of 
"trials" which can have occurred in the history of the earth, the probability of success 
per trial, and hence the overall probability of success. To calculate the number of 
trials, "We will need to know two items, the length of time needed for a single trial, 
and the number of trials that can take place simultaneously .... The bacterium E. 
coli replicates in twenty minutes, ... let us presume, however, that a simpler bacte
rium than E. coli is involved and estimate one minute as the time for a trial ... (thus) 
5 X 1014 minutes were available." Shapiro then purposefully overestimates the space 
available for trials by assuming an ocean 10 kilometers deep and a volume of 1 cubic 
micrometer per trial, yielding 1036 simultaneous trials. Over 2 billion years, this yields 
2.5 X 1051 trials. 

Shapiro continues with an effort to calculate the odds of attaining, by chance, 
something like E. coli. He begins with an argument by Sir Fred Hoyle and N. C. 
Wickramasinghe (1981). Rather than estimate the chances for obtaining an entire 
bacterium, these authors try to calculate the chances of obtaining a functioning 
enzyme. They begin with the set of the 20 amino acids which are used to construct 
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enzymes. If the amino acids were selected at random and arranged in random order, 
what would be the chances of obtaining an actual bacterial product? For a typical 
enzyme with 200 amino acids, the probability is obtained by multiplying the prob
ability for each amino acid, I in 20, together 200 times, yielding I in 20200. Since more 
than one sequence of amino acids might provide enzymes with proper function, 
Hoyle and Wickramasinghe estimate that the chance of obtaining an enzyme of the 
appropriate type at random was "only" I in 1020. But to duplicate a bacterium, one 
would have to assemble 2000 different functioning enzymes. The odds against this 
would be I in 1020 multiplied 2000 times, or 1 in 1040000. As Shapiro points out, it is 
clear why Hoyle and Wickramasinghe gave up on spontaneous generation, since the 
likelihood of the event was comparable to the chances that "a tornado sweeping 
through ajunkyard might assemble a Boeing 747 from the materials therein." 

Against Wald's world enough and time, Shapiro says that with only 1051 possible 
trials, the odds of success-I in 1040000 -are vastly too improbable to have happened. 
Life, on this argument, cannot have arisen spontaneously. 

The arresting feature of this example is not the apparent improbability of success 
but how typical the apparent failure is (Eden 1967; Schutzenberger 1967). The same 
sense of mystery surrounds the origin of a coupled metabolism, of the genetic code, 
of tissue organization. The general feature of each of these mysteries is that each 
exhibits, in one form or another, the evolutionary emergence of a mutually necessary 
set of processes. Each time we confront the evolutionary emergence of such a whole, 
whose parts are mutually necessary to one another, there is a tendency to reason 
along with Shapiro. What is the chance of obtaining the first part, of obtaining the 
second part-and since each is useless without the rest, what is the chance of obtain
ing them jointly? Where the odds can be estimated, even crudely, the joint probabil
ity is always very low. Typically, one cannot even estimate the odds of obtaining any 
single part. 

Yet it is clear that Shapiro's argument is flawed. Having calculated the probability 
of obtaining a protein with some particular catalytic activity as 1020, he then argues 
that an organism would require a set of 2000 enzymesfor 2000 particular reactions. 
It is this requirement for one particular set of coupled enzymatic activities which 
yields the overwhelmingly poor odds he calculates. We should instead be concerned 
with the probability of finding anyone of possibly very many properly coupled sets 
of enzymatic activities which might constitute a living proto-organism. I will suggest 
in Chapter 7 that, viewed in this way, the origin of life was a quite probable conse
quence of the collective properties of catalytic polymers. More generally, I suggest 
throughout this book that many properties of organisms may be probable emergent 
collective properties of their constituents. The evolutionary origins of such proper
ties, then, find their explanation in principles of self-organization rather than suffi
ciency of time. 

A Framework to Think About Selection 
and Self-Organization 

The task of enlarging evolutionary theory would be far from complete even if we 
could show that fundamental aspects of evolution and ontogeny had origins in some 
measure reflecting self-organizing properties of the underlying systems. The present 
paradigm is correct in its emphasis on the richness of historical accident, the fact of 
drift, the many roles of selection, and the uses of design principles in attempts to 
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characterize the possible goals of selection. Rather, the task must be to include self
organizing properties in a broadened framework, asking what the effects of selection 
and drift will be when operating on systems which have their own rich and robust 
self-ordered properties. For in such cases, it seems preeminently likely that what we 
observe reflects the interactions of selection processes and the underlying properties 
of the systems acted upon. 

In the remainder of the chapter, I want to introduce a straightforward framework 
in which to begin to think about the relation between selection and self-organization. 
The framework has direct analogies with the well-understood !!xample of statistical 
mechanics and can be described quite informally. In Chapter 3, I will take up the 
problem in considerable detail. 

Consider a gas at thermodynamic equilibrium, confined to a box. Statistical 
mechanics is constructed from Newtonian mechanics, and Newton's laws of motion 
apply to each molecule of the gas. The position of each molecule in the box can be 
described by three spatial coordinates. Similarly, the momentum of each molecule 
can be described by three coordinates showing how fast the molecule is moving as a 
projection of its velocity onto the three spatial coordinates. Therefore, each mole
cule's position and momentum at any instant can be described by six coordinates. If 
there are N molecules in the box, then 6N coordinates specify the positions and 
momenta of all N molecules at one instant. 

It is convenient to conceive a 6N-dimensional phase space, each axis of which 
represents one coordinate among the 6N specifying the current positions and 
momenta of the molecules. Then the present state of the entire N molecules can be 
visualized as a single point in this 6N-dimensional space. Furthermore, over time the 
gas molecules move and collide with one another, thereby changing position and 
momentum. Consequently, over time the point representing the entire system moves 
through a trajectory in its phase space. The entire phase space represents all possible 
combinations of positions and momenta of the N molecules in the box. This set of 
all possible combinations is the ensemble of possible states of the gas. 

Statistical mechanics is built up from analysis of this ensemble of possibilities. 
Any specific combination of positions and momenta is as unlikely as any other, since 
each is a single point in phase space. However, the volume of phase space which cor
responds to a certain class of states may be much smaller than the volumes which 
correspond to other classes of states. For example, one class corresponds to all the 
ways the N molecules might be distributed within a specified small distance from one 
specific corner of the box. Another class corresponds to all the possible ways the N 
molecules might be distributed such that any volume representing }1000 of the total 
volume of the box contains roughly the same number of molecules as all the other 
such volumes. Obviously, this class of nearly homogeneous distribution of the gas 
molecules corresponds to a volume of phase space that is vastly larger than the vol
ume which corresponds to the case where all the molecules are confined near one 
specific corner of the box. 

The statistical idea of entropy depends upon the hypothesis that the system's tra
jectory will wander aimlessly, or ergodically, in phase space. Therefore, over long 
periods of time, the probability that the point representing the system is in anyone 
small region equals the probability that it is in any other small region. Consequently, 
the system is more likely to spend time in classes of states represented by large vol
umes in phase space than in those represented by small volumes. The idea that 
entropy increases is restated in statistical mechanics as the idea that the system leaves 
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classes corresponding to small volumes in phase space and is overwhelmingly likely 
to be found in those large volumes which represent the near-homogeneous distri
bution. 

Now consider Maxwell's demon. (I shall take the demon as an analogue of natural 
selection below.) The box is partitioned into left and right boxes by a wall with a flap 
valve. The demon opens the valve to allow faster molecules to pass from the left to 
the right box, and to allow the slower molecules to pass from the right to the left box. 
The faster molecules accumulate in the right box, raising its temperature and pres
sure with respect to the left box. Then, due to the pressure and temperature differ
ential, useful work can be extracted from the pair of boxes as the system relaxes back 
to thermodynamic equilibrium. Maxwell's purpose in constructing his demon was 
to show that the second law of thermodynamics might be violated-a possible vio
lation which has been resolved by noting that the operation of the valve requires 
information, whose energetic price compensates the later useful work. My point in 
reintroducing Maxwell's small colleague is rather to note that, as the demon acts, the 
pressure in the right box increases and opposes his efforts. If the demon is sufficiently 
powerful, he may succeed in separating all the faster molecules into the right box and 
slower molecules into the left box. But if the demon is finite, and rather weak, then 
he will succeed in shifting only a few of the faster molecules into the right box before 
the increased back pressure balances his efforts. In this latter case, the system will 
come to rest at a steady state, displaced away from thermodynamic equilibrium by 
the demon's efforts, but perhaps close enough to thermodynamic equilibrium that 
the statistical features ofthe equilibrium gas distributions will be shifted only slightly. 
Then the statistically robust features seen at equilibrium will remain good predictors 
of the features found in the presence of the demon. 

In the examples of self-organization in complex systems to be discussed below, we 
shall in each case find that it is natural to first consider an ensemble of all possible 
systems and then characterize the typical, average, or, more generally, generic fea
tures of such systems. It will become natural to think of evolution as exploring such 
an ensemble, as mutations drive populations through neighborhood volumes of the 
ensemble. I shall want to say that selection is analogous to Maxwell's demon, for 
selection may attempt to pull the evolving population toward properties which are 
rare in the ensemble, but as it does so, the "back pressure" of mutations toward the 
statistically typical properties of the ensemble will increase. Thus if selection is a suf
ficiently weak force with respect to the mutational processes, the evolutionary pro
cess will come to rest at an equilibrium modestly displaced from the average prop
erties of the underlying ensemble. But then those robust generic properties will serve 
as good predictors of properties actually found. In short, if selection is operating on 
systems with strongly self-organized properties that are typical of the ensemble being 
explored, then those properties simultaneously are the proper null hypotheses con
cerning what we would expect to find in the absence of selection and may be good 
predictors of what we will observe even in the presence of continuing selection. In 
brief, if selection can only slightly displace evolutionary systems from the generic 
properties of the underlying ensembles, those properties will be widespread in organ
isms not because of selection, but despite it. 

The onset of "population thinking" in biology led to the loss of Platonic arche
types. I suggest that incorporation of self-organization into evolution may lead to 
new archetypes which are to be ensemble average properties. In principle, this devel
opment of new archetypes allows a marriage between population thinking and the 
search for underlying laws. 
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The possibility that generic properties of the ensembles in which evolution is 
occurring can be used to predict widespread and persistent features of organisms 
depends upon selection'sfailing to escape those properties. As we shall see, two quite 
different limitations on the capacity of selection to pull an evolving population to 
arbitrary regions of such an ensemble shall require analysis. In the first, selection is 
simply too weak in the face of mutations to hold a population at small volumes of 
the ensemble which exhibit rare properties; hence typical properties are encountered 
instead. In the second, even if selection is very strong, the population typically 
becomes trapped on suboptimal peaks which do not differ substantially from the 
average properties of the ensemble. As we shall see, both limitations tend to become 
more powerful as the complexity of the entities under selection increases. That is, 
there is a strong tendency in complex systems for selection to be unable to avoid the 
typical properties of the class of systems in which evolution is occurring. 

But it will turn out that the marriage between selection operating on complex sys
tems and self-organized properties promises to be yet more subtle. Under favorable 
circumstances, selection may be able to change the kinds of entities upon which it 
operates, hence change the ensemble of systems being explored, in such a way that 
the two limitations noted above are mitigated. In particular, the general strong ten
dency for adaptive processes under strong selection to become trapped on ever 
"lower" local optima as complexity increases can be mitigated. The various ways in 
which this limitation can be mitigated suggest lawlike universals in the ways complex 
systems adapt. 

Just as Darwin's introduction of the ideas of evolution and natural selection cre
ated a web of questions which naturally arise, so an effort to include the emergent 
self-organizing properties typical of large ensembles of systems in evolutionary the
ory must provoke a resonant set of questions and consequences. Not the least ofthese 
is an interesting epistemological implication. Ifwe should find it possible to account 
for, explain, predict widespread features of organisms on the basis of the generic 
properties of underlying ensembles, then we would not need to carry out in detail the 
reductionistic analysis of organisms in order to explain some of their fundamental 
features. As the physicist explains ice formation as a typical phase transition in a gen
eral class of systems, so we might explain aspects of organisms as typical of their class. 
Physics has ahistorical laws and no selection. Biology since Darwin is unthinkable 
without selection, but may yet have universal laws. 

SUMMARY 

This chapter has traced the outlines of our current view in evolutionary biology from 
its pre-Darwinian precursors. The major themes are encapsulated by Monod's lovely 
dictum "evolution is chance caught on the wing." This phrase captures the sense of 
freedom, of accident, of historical contingency, of design, of selection, of drift. Trac
ing the evolution of evolutionary theory has led us to see that the pre-Darwinians, 
considering fixed species with resemblances to one another, were fully reasonable in 
seeking laws of form which might account for such related morphologies. The ratio
nal sense of that enterprise is caught by remembering that crystallographers account 
for all possible crystals as members of a modestly large family of possible forms based 

I on underlying laws of symmetry and structure. 
Darwinism-the joint advent of evolving species arrayed in branching phyloge

nies and of natural selection as the force driving adaptation-undermined the pre-
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vious search for laws ofform. In place of this search, we have focused on design cri
teria which we hope selection has chanced to achieve. We have come to think of 
selection as essentially the only source of order in the biological world. If "only" is 
an overstatement, then surely it is accurate to state that selection is viewed as the 
overwhelming source of order in the biological world. It follows that, in our current 
view, organisms are largely ad hoc solutions to design problems cobbled together by 

\\ selection. It follows that most properties which are widespread in organisms are wide
r spread by virtue of common descent from a tinkered-together ancestor, with selective 

maintenance of the useful tinkerings. It follows that we see organisms as overwhelm
ingly contingent historical accidents, abetted by design. 

The entire neo-Darwinian paradigm has been subject to serious criticisms. The 
most persistent critics have been the neutralists, who argue that much of evolution 
at the molecular level is selectively neutral. At the macroevolutionary level, two 
issues-( 1) the problem of morphological stasis and punctuated equilibrium, and (2) 
species selection-have challenged neo-Darwinism. 

Nevertheless, neo-Darwinism has largely withstood these attacks, both because no 
serious biologist doubts the historical fact of evolution and because few thinking biol
ogists can contemplate the vertebrate eye and not harbor the conviction that natural 
selection is sometimes a dominant factor in evolution. If the tradition is under attack, 
it is only at the margins: Some, not all, evolution may be neutral. At the macroevo
lutionary level, perhaps species selection rather than individual selection plays a role 
in the formation of higher taxa. 

My own aim is not so much to challenge as to broaden the neo-Darwinian tradi
tion. For, despite its resilience, that tradition has surely grown without seriously 
attempting to integrate the ways in which simple and complex systems may spon
taneously exhibit order. Since we shall see in a number of examples that such spon
taneous order occurs, we must not be surprised if evolutionary theory must expand 
to embrace these facts. 



PART I 

Adaptation to 
the Edge of Chaos 





The first part of this book, Chapters 2 to 6, stalks answers to new questions: What 
kinds of complex systems can evolve by accumulation of successive useful variations? 
Does selection achieve complex systems able to adapt? Are there lawful properties 
characterizing such systems? The overall answer may be that complex systems con
structed such that they are poised on the boundary between order and chaos are the 
ones best able to adapt by mutation and selection. Such poised systems appear to be 
best able to coordinate complex, flexible behavior and best able to respond to changes 
in their environment. I suggest that selection does achieve and maintain such poised 
systems. Further, beyond the selective molding of individual adaptive systems, there 
are provocative, promising indications that linked coevolving complex systems are led 
by selection, as though by an invisible hand, to form ecosystems whose members 
mutually attain the edge of chaos. Here all may sustain the highest expectedfitness, 
even while avalanches of coevolutionary changes propagate through the ecosystem, 
ringing out old species and ringing in new ones. 

These are new issues in our understanding of the evolution of life. Darwin told us 
that adaptive evolution occurs by gradual accumulation of useful variants but failed 
to tell us what kinds of systems can evolve successfully by random variation and selec
tionfor fitter variants. It is remarkably easy to lay our minds around this set of issues. 
Most readers will be familiar with programs for contemporary sequential processing 
computers. The issue is this: How readily might a process of random mutation and 
selection operating on the instructions in a computer program succeed at attaining a 
complex program to carry out a desired computation? It is clear that evolution of use
ful sequential programs is very difficult for several reasons, the most obvious being 
that almost all random alterations in the code wreak dramatic changes in the com
putation being performed. 

Adaptive evolution occurs largely by the successive accumulation of minor varia
tions in phenotype. The simple example of computer programs makes it clear that not 
all complex systems are graced with the property that a minor change in system struc
ture typically leads to a minor change in system behavior. In short, as their internal 
structure is modified, some systems change behavior relatively smoothly, some rela
tively radically. Thus we confront the question of whether selective evolution is able 
to "tune" the structure of complex evolving systems such that they evolve readily. 

The variability in behavior as the structure of a system is altered can be pictured 
as characterizing the ruggedness of afitness landscape. In Chapters 2 and 3 we shall 
discuss the concept of such landscapes. In particular, we shallfocus on the simple case 
of protein molecules in "sequence spaces, " where each protein is located next to a 
large number of other proteins which differ from it at only one amino acid position. 
The capacity of each protein to carry out some specified function allows us to define 
the fitness landscape over protein space with respect to this function. Here .fitness 
peaks represent either local or global optimafor such afunction. As we shall see, such 
landscapes rangefrom smooth and single-peaked to very rugged and multipeaked. 

The character of adaptive evolution depends on the structure of such fitness land
scapes. Most critically, we shallfind that, as the complexity of the system under selec
tion increases, selection is progressively less able to alter the properties of the system. 
Thus, even in the presence of continuing selection, complex systems tend to remain 
typical members of the ensemble of possibilitiesfrom which they are drawn. We shall 
find in this book many examples of spontaneous order present in entire ensembles of 
complex systems. Thus 1f selection, when operating on complex systems which spon
taneously exhibit profound order, is unable to avoid that spontaneous order, that 
order will "shine through." In short, this theme, central to our concerns, states that 
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much of the order in organisms may be spontaneous. Rather than reflecting selection '.I' 
successes, such order, remarkably, may reflect selection 'sfailure. 

Analysis o.lthe structure offitness landscapes and its implications occupies Chap
ters 2 and 3. Chapter 4 considers adaptive evolution in the space of possible proteins. 
Here wefind that it is possible to construct statistical models o(molecularjitness land
scapes which apply to the rapid protein evolution seen in maturation o.(the immune 
response. But protein evolution to carry out progressively different catalytic./imctions 
drives us to conceive of an abstract catalytic task space. Among the surprising impli
cations o.lthis view is the possibility that afinite number o.lenzymes can carry out all 
enzymatic tasks: A universal enzyme toolbox is possible. Remarkably, about 
100 000 000 protoenzymes may well constitute such a universal toolbox, and the 
immune repertoire of about 100 000 000 variant antibody molecules is probably also 
a universal toolbox. These possibilities lead me, in Chapter 4, to discuss what might 
become a vastly important new arena of biotechnology: applied molecular evolution. 
I believe we are now crossing the threshold into an era where it shall become possible 
to evolve biopolymers that act as vaccines, drugs, enzymes, biosensors, and soforth, 
serving a wide range o./practical medical and otherfunctions. 

Chapters 5 and 6 present evidence for adaptation to the edge o( chaos both within 
single complex systems and between the linked members of a coevolving system. 
Chapter 5 investigates the emergence of spontaneously ordered behavior in para/lel
processing systems and elucidates the three broad regimes which occur in such sys
tems: ordered, complex, and chaotic. Here we encounter ourjirst power/ul example 
olspontaneous order. Contrary to intuition, even randomly constructed networks of 
elements which turn one another on and oflaccording to complex rules can exhibit 
extremely ordered behavior. This ordered regime is characterized by theftJrmation 
o.l a large connected set of elements of the system thatfreeze into fixed activity stales. 
This frozen component percolates (spans) across the system and leaves behind iso
lated unfrozen islandsfree to vary activities in complex ways. The chaotic regime cor
responds to the case where thelrozen component does not percolate across the system. 
Rather, the unfrozen component of elements clpans the system, leaving behind isolated 
frozen islands embedded in the fluctuating sea. Transition back and forth between 
these two regimes corresponds to a phase transition at which the frozen component 
begins to melt and thefluctuating sea begins to coalesce; this phase-transition region 
is the complex regime. The most complex but controllable behavior arises in parallel
processing systems poised in this complex regime on the boundary between order and 
chaos. 

I hold that the exorbitant order of the ordered regime underlies the evolutionary 
emergence of order in ontogeny-that !,pontaneous order lies to handJree, as it were, 
.frJr selection's further molding. In particular, asking what form such molding may 
take and what laws might govern it leads us to the hypothesis that the target which 
selection achieves is complex systems poised in the complex regime on the boundary 
between order and chaos. Such systems, it begins to appear, harbor behavior which is 
the most flexible, complex, and adaptable. 1lso, we may have uncovered a universal 
in biology relating the mutual implications and interpretations, the true marriage, 0.( 
se(forganization and selection: Selection, in attaining complex systems, may build 
toward and sustain a characteristic poised order, an entire ensemble coursing back 
andforth along a high-dimensional boundary between order and disorder. Then./itr
ther selection would be unable to avoid the typical features of this poised ensemble, 
whose genericfeatures would emerge as additional potential biological universals. 

Chapter 6 examines coevolution. Here we .jind evidence of a selective metady-
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namics which may lead coevolving systems jointly to the edge of chaos. I ask in this 
chapter what the implications for coevolution may be of the ruggedness of the fitness 
landscapes of each of the partners, and of how much an adaptive move by one partner 
deforms the landscapes of others. We are led to provocative results. Iflandscapes are 
too smooth compared with the landscape deformation caused by partners, then each 
partner can hardly respond by increasing fitness as other partners move. The entire 
system is chaotic. Sustained fitness is low because the landscape of each partner is 
drastically altered, typically casting the partner to low fitness, by the moves of its 
coevolving partners. If landscapes are too rugged compared with the deformation 
caused by others, then all partners rapidly freeze into fixed but poor compromise phe
notypes. Again, sustained fitness is low. Just at the boundary between frozen order 
and chaotic wandering, just at the edge of chaos when some, but not all, partners cease 
changing and form a percolating frozen component, leaving isolated islands of part
ners that continue to coevolve and change, the coevolving system attains a structure 
where all partners attain the highest expected sustainedfitness. Adaptation, through 
a selective metadynamics altering landscape structure and landscape deformation, 
again attains the edge of chaos. 

In summary, Part I investigates the mutual implications of self-organization and 
selectionfor adaptive evolution. We ask what the conditions are within and between 
evolving entities which permit adaptive evolution, and whether the attainment of those 
conditions is itself a lawful consequence of selection's operation. The tentative answer, 
to be held as a working hypothesis at this stage, is that at levels within organisms 
which must coordinate complex tasks, within evolving populations, and within 
coevolving systems, selection attains a near-universal poised state hovering between 
unexpected, profound spontaneous order and the incoherence of chaos. Borrowing a 
culminating phrase from my colleagues N. Packard and C. Langton, life exists at the 
edge of chaos. 





CHAPTER 2 

The Structure of Rugged Fitness 
Landscapes 

In this chapter, I begin discussing in detail the central conceptual framework of the 
book: to examine the relation between selection and self-organization, opening with 
a discussion of the structure of the rugged fitness landscapes underlying evolution. I 
shall, for the moment, consider such landscapes as fixed in structure. In reality, fit
ness landscapes deform in response to changes in the abiotic environment and in 
response to coevolution. In coevolutionary processes, the fitness of one organism or 
species depends upon the characteristics of the other organisms or species with which 
it interacts, while all simultaneously adapt and change. A critical difference between 
evolution on a fixed landscape and coevolution is that the former can be roughly 
characterized as if it were an adaptive search on a "potential surface," or "fitness 
surface," whose peaks are the positions sought. In coevolution, there may typically 
be no such potential surface, and the process is far more complex. These more com
plex situations are deferred to Chapter 6. 

As Jacob pointed out in "Evolution and Tinkering" (1977a; see also Jacob 1983), 
adaptation typically progresses through small changes involving a local search in the 
space of possibilities. The paradigm is one of local hill climbing via fitter mutants 
toward some local or global optimum. Despite this transparent metaphor, such a pro
cess involves complex, combinatorial optimization. In such optimization searches, 
many parts and processes must become coordinated to achieve some measure of 
overall success, but conflicting "design constraints" limit the results achieved. One 
purpose of this chapter is to show that increasing levels of conflicting constraints 
make the landscape more rugged and multipeaked. 

The hill-climbing framework is hardly new, for I borrow it with minor modifica
tions directly from Wright (1931, 1932), who introduced the concept of a space of 
possible genotypes. In one version of his idea, each genotype has a "fitness," and the 
distribution of fitness values over the space of genotypes constitutes a fitness land
scape. [Often Wright thought of the fitness ofa given gene or genotype as a function 
of its frequency in the population (Wright 1931, 1932; Provine 1986). In this chapter, 
I shall use the simpler idea that each genotype can be assigned a fitness.] Depending 
upon the distribution of the fitness values, the fitness landscape can be more or less 
mountainous. It may have many peaks of high fitness flanked by steep ridges and 
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precipitous cliffs falling to profound valleys of very low fitness. Or it may be, like the 
gentle Normandy countryside, smoothly rolling with low hills and gentle valleys. 

In this framework, adaptive evolution in a population is a hill-climbing process. 
The population can be thought of as a tight or loose cluster of individuals located at 
different points in the landscape. Mutations move an individual, or its offspring, to 
neighboring points in the space, representing neighboring genotypes. Selection is 
reflected in differential reproduction by individuals with different fitness values. 
Therefore, over time the cluster of individuals representing the population will flow 
over the fitness landscape. In the simplest cases, the population will climb to and 
cluster about one of perhaps a large number of different fitness peaks (Crow and 
Kimura 1965, 1970; Ewens 1979; Gillespie 1983, 1984). In more complex cases, the 
cluster representing the population may spread widely across the landscape, passing 
via a rich web of ridges somewhat below the fitness peaks (Eigen 1985; Schuster 1986, 
1987; Fontana and Schuster 1987; Kauffman and Levin 1987; Kauffman, Weinber
ger, and Perelson 1988; Kauffman 1989a; Eigen, Gardiner, et al. 1989). In cases that 
are still more complex, the population may drift down from the peaks and wander 
within a band of modest fitness altitudes virtually anywhere across the fitness land
scape (Fontana and Schuster 1987; Kauffman, Weinberger, and Perelson 1988; 
Kauffman 1989a; Eigen, Gardiner, et al. 1989). 

It is intuitive from this description that the behavior of an adapting population 
depends on how mountainous the fitness landscape is, on how large the population 
is, and on the mutation rate which moves an individual from one genotype to 
another genotype in the space. The flow of a population over a fitness landscape also 
depends on whether the population is sexual, where mating allows mixing of geno
types from distant points in the landscape in a new individual, or asexual. 

Self-Organization and Selection 

As I sketched in the last section of Chapter 1 and now describe in slightly greater 
detail, part ofthe relation between self-organization and selection depends upon how 
well selection can move an adapting population to arbitrary regions of the fitness 
landscape. If selection can move a population to virtually any region of the land
scape, then selection is powerful enough to avoid any spontaneously ordered prop
erties which most but not all entities on the landscape may exhibit. If selection is not 
able to move an adapting population to virtually any region of the landscape, then 
spontaneously ordered properties which are widespread in the landscape are very 
likely to be found in organisms even in the presence of continuing selection. 

The general ideas will be clearer in the context of a concrete example which will 
occupy us in Chapter 12: the control of cellular differentiation. Among the most 
obvious features of cell differentiation is that less complex organisms possess fewer 
cell types than more complex organisms. For example, yeast has three cell types, the 
coelenterate hydra has 15 to 17, annelid worms have about 60, and humans about 
250. A plot of the number of cell types in an organism as a function of the estimated 
number of genes in that organism shows a profound and simple relation: The num
ber of cell types increases as about a square-root function of the number of genes 
(Figure 12.7). Why should such a remarkably simple relation exist across such a wide 
range of phyla? Yeast, hydra, annelides, and vertebrates diverged around 600 million 
years ago. It is hard to believe that such a relationship is a heritable remnant of a 
property derived from a primitive archean ancestor in the Cambrian or Precambrian 
as a result of propinquity of descent. Perhaps instead selection has directly opted for 
this property? 
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Perhaps not. I shall argue that this strong correlation across many phyla is an indi
rect and virtually inevitable property of the kinds of cybernetic gene-regulatory sys
tems which control cell differentiation and ontogeny. We shall see that a very large 
ensemble of genetic cybernetic systems exhibit a wide range of spontaneously 
ordered properties. Among them, in most members of the ensemble the number of 
cell types the regulatory system can create is about the SQuare root of the number of 
its genes. Thus this first example is a bellwether for all our questions about self-orga
nization and selection. Here is a striking and ordered property which is typical of 
most but not all members of a vast ensemble of regulatory systems. Does its presence 
in organisms reflect selection or the fact that this ordered property is widely distrib
uted in the ensemble and cannot be avoided by selection? 

Throughout this book, it will prove convenient to conceive of an ensemble ofpos
sible "systems," each "next to" slightly different versions of itself. In the cases we 
shall examine, most but not all members of the ensemble exhibit some spontane
ously ordered properties, which mayor may not have anything to do with fitness. If 
an ordered property is selected, we might of course expect to see it in organisms. But 
if an ordered property is not under selection, or if it is even modestly selected against, 
might we still see it? The answer can be "yes." The conditions under which this can 
happen are the central issue. The point here is similar to imagining an ensemble of 
objects most of which are blue but vary in size, weight, and so forth. If selection acts 
on size and weight, will we see blue objects in the continuing presence of selection? 
There are two ways blue objects might persevere in the presence of selection: 

1. If under the conditions of adaptation the population does not remain tightly clus
tered around single peaks of high fitness but instead wanders within some larger 
volume of the ensemble, the chances are high that most members of that volume 
exhibit the ordered property. This corresponds directly to the analogy discussed 
in the preceding chapter of selection as a weak Maxwell's demon. If the demon is 
weak, then the statistical distribution of the faster and slower gas molecules in the 
two boxes will not differ sharply from the distribution at thermodynamic equilib
rium. Similarly, if selection is too weak to hold an adapting population in very 
small volumes of the ensemble, then even in the presence of continuing selection 
the population will almost certainly exhibit the "typical" ordered properties of 
most ensemble members. Hence I tend to say that such adapting systems exhibit 
order not because of selection but despite it. 

2. The second fundamental way that adapting populations might continue to 
exhibit the spontaneous order typical of most members of the ensemble, even if 
selection can hold the population within very small volumes of the ensemble rep
resenting adaptive peaks, is that the vast majority of the adaptive peaks remain 
typical of the ensemble as a whole. This limitation tends to become powerful as 
landscapes become very rugged and multipeaked. In such landscapes, adaptation 
tends to become "trapped" on local peaks and thus cannot move long distances 
to rare regions of the space. If there are many peaks, most of them are likely to be 
in typical regions of the space. Therefore, if adaptation starts at some typical spot 
in the space of possibilities, it will become trapped on a local peak which is very 
likely to remain typical of the space as a whole. In terms of our imaginary exam
ple, blue objects will be found. But a related feature of very rugged landscapes will 
soon emerge: As many rugged landscapes become more multi peaked, the peaks 
dwindle in altitude to mere hills, then hummocks, then faint bumps. As the peaks 
fall ever lower, they necessarily become progressively more typical of the space as 
a whole. Thus even when selection is very powerful and can hold populations on 
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any accessible peak, the peak almost certainly exhibits properties typical of the 
entire space of possibilities. Thus if the space is the space of genetic regulatory 
systems and if member systems typically exhibit the property that the number of 
cell types is about the square root of the number of genes, that relation can be 
expected across phyla despite strong selection. In the simple image, blue objects 
will be found. 

These two limitations constitute what I shall call two complexity "catastrophes, " 
for we shall see that one or the other must ultimately occur as the complexity of the 
entities under selection increases. This is the most important point of the theory dis
cussed in this and the following chapter. As the complexity of entities increases, one 
or the other basic mechanism ultimately limits the power ojselection. 

The intuitive reasons for these limitations are not hard to see, and the NK model 
I introduce in this chapter makes the case clearly. In an adapting system of many 
parts, either those parts are fully independent of one another or they are coupled 
together. In the limiting case where the parts are independent, each part typically 
makes, to the overall function of the system. a contributuion which decreases in rel
ative importance as the total number of parts in the system increases. For a system 
with a sufficient number of parts. the fitness loss due to mutational damage of one 
paft becomes small. Therefore. the selective force tending to restore the damage 
becomes weaker than the mutational pressure tending to damage the part. In short, 
selection becomes too weak a force to hold an adapting population at adaptive peaks. 
The population flows down the adaptive hillside to the lowlands. This contention of 
mutational and selective forces leads, as we shall see, to a complexity catastrophe 
when the number of parts exceeds a critical value. Beyond that level of complexity, 
selection cannot climb to peaks or remain there. 

At the opposite extreme, the parts are very richly coupled. But in this case com
mon experience suggests that conflicting design constraints make it difficult to 
achieve overall success. As we shall soon see, such conflicting constraints lead to an 
adaptive landscape which becomes more multipeaked as the number of parts 
increases. Thus adaptation, which must search such rugged landscapes. tends to 
become trapped in very small regions of the space. Worse, due to the increasing num
bers of conflicting constraints, the peaks become ever poorer compromises among 
those constraints, withering to mere bumps hardly better than chance agglomera
tions of the parts. 

These investigations must brusquely suggest that adaptive evolution is bounded 
by the character of fitness landscapes. But that character in turn depends upon the 
entities which are evolving. Hence evolution can change the rugged structure of fit
ness landscapes and their impact on evolution by changing the adapting entities. 
Thus we shall ask what kinds oflandscapes, in what conditions, allow adaptive evo
lution to be optimized. 

FITNESS LANDSCAPES IN SEQUENCE SPACE 

Sequence Space: The "Practicar Importance of a Theory of 
Adaptation on Rugged Landscapes 

The framework just sketched has, as one overarching purpose, the aim of analyzing 
the relation between self-ordering and selection in complex systems. But there are 
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more immediate reasons to develop a theory of adaptation on rugged fitness land
scapes. The same framework provides a crisp means of describing the selective evo
lution of, say, proteins or RNA molecules for specific functions. More generally, it 
applies to adaptive evolution in sequence spaces. 

Before continuing, I must clarify what I mean by a fitness landscape. For an evo
lutionary biologist, "fitness" applies principally to an entire organism. It has com
ponents of fecundity, fertility, and other factors leading to reproductive success 
(Crow and Kimura 1965, 1970; Ewens 1973). These include complex issues such as 
thejrequencyofeach genotype variant of the organism in the population, the density 
of each genotype variant in a region, and even the entire ecosystem with which each 
organism interacts (S. A. Levin 1978). Therefore, in the general context, it is difficult 
to assign a fitness to a gene or even to a genotype, since all these factors depend upon 
the other organisms in the population. 

For the purposes of the present chapter, I shall use the term "fitness landscape" in 
am uch more restricted sense to refer to any well-defined property and its distribution 
across an ensemble. For example, the capacity of each protein in protein space to 
catalyze a specific reaction under specified conditions is, in principle, a well-specified 
property. The velocity of the reaction catalyzed by each protein can then be defined 
as the fitness of that protein. Then the distribution of velocities across the space of 
proteins constitutes the fitness landscape with respect to that defined function. Adap
tive evolution with respect to that function is a search in protein space which 
attempts to optimize the capacity to catalyze that specific reaction. It is an entirely 
different issue whether optimization of any specific reaction velocity optimizes the 
overall fitness of the organism harboring the protein. 

The concept of protein space was, to my knowledge, first introduced by Smith 
(1970). It has since been reinvented by a number of authors, including Ninio (1979), 
Eigen (1985, 1987), and Schuster (1986, 1987). Others (Borstnick et al. 1987; Kauff
man and Levin 1987; Kauffman et al. 1988; Kauffman 1989a, 1989b) have utilized 
Smith's initial idea as well. The idea is straightforward. Proteins are linear polymers 
comprising various combinations of20 different amino acids. Because proteins have 
distinguishable carboxy and amino terminal ends, each polymer is oriented. The 
total number of proteins of a specific length N is just 20N. Therefore, this set of all 
possible proteins oflength N constitutes an ensemble. Furthermore, each protein can 
be mutated to other proteins by changing any amino acid at one position in the pro
tein to one of the 19 other possible amino acids. Therefore, for a protein length N, 
there are 19N "one-mutant" neighbor proteins. A protein space therefore is a high
dimensional space in which each point represents one protein and is next to 19N 
points representing all the one-mutant neighbors of that protein. The protein space 
therefore simultaneously represents the entire ensemble of 20N proteins and keeps 
track of which proteins are one-mutant neighbors of each other. 

Although it is difficult to draw a picture of such high-dimensional spaces, a sense 
of their structure can be captured by considering proteins with only two kinds of 
amino acids, say alanine and glycine, which can be represented by 1 and 0 (1 = ala
nine, 0 = glycine). Figure 2.1 a shows all 16 possible peptide sequences ofIength 4 
using these two amino acids. Each vertex corresponds to one of the 16 possibilities 
and is linked by a line to four other vertices representing the four other peptides 
which differ from the first by a single amino acid. The point to carry away from this 
picture is that all possible length-4 peptides made up of the two amino acids are rep
resented in this small peptide space and that each is "next to" those four others which 
differ from it by one amino acid in each possible position. 



a 

b 

Figure 2.1 (a) All 24 = 16 possible peptides oflength 4 composed of alanine (I) and/or glycine (0), 
arranged as vertices on a four-dimensional Boolean hypercube. Each peptide is connected to its four 
one-mutant neighbors, accessible by changing a single amino acid from a I to a 0 or from a 0 to a I. 
Thus, the hypercube represents this four-dimensional peptide space. (b) Each peptide has been 
assigned, at random, a rank-order fitness, ranging from the worst, I, to the best, 16. Adaptive 
"moves" pass from any peptide to those of its one-mutant neighbors with higher fitness. Directions 
of such moves between adjacent peptides are shown by arrows from the less fit to the more fit. Pep
tides fitter than all one-mutant neighbors are local optima. 
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Smith's purpose in invoking protein space was to note that if adaptive evolution 
in general occurs by substitutiort of single amino acids, then evolution is a "walk" 
between adjacent vertices in protein space. Therefore, to improve function, any such 
adaptive walk in general must be a connected walk through a succession of adjacent 
vertices, all of which exhibit improvedjunction. 

The most straightforward version of Smith's idea is shown in Figure 2.l. Suppose 
I measure the capacity of these 16 peptides to carry out some specific function-for 
example, that of being bound by a specific cell receptor. I may define the affinity with 
which each peptide is bound as its fitness. In Figure 2.1 b, I have arbitrarily assigned 
16 affinity fitness values. To make inspection easier, I have rank-ordered the 16 pep
tides from worst (1) to best (16). An adaptive walk might begin with any peptide. The 
walk will "move" to a one-mutant neighbor only if the second peptide is fitter than 
the first. Then any adaptive walk starts at a peptide and passes via fitter one-mutant 
neighbors which improve fitness until a peptide is reached which is fitter than all its 
one-mutant neighbors. Any such peptide is a local optimum in peptide space. 

Inspection of Figure 2.1 b shows that three of the 16 peptides are local optima. If 
the adaptive walk starts at one of these three, it stops immediately. If the process 
begins at another peptide, then after one, two, or perhaps three improvement steps, 
the process reaches a local optimum and stops. This model is very useful because it 
immediately focuses attention on a number of obvious questions about such adap
tive walks. 

1. How many local optima exist in the space? 

2. What is the average number of improvement steps on an adaptive walk to a local 
optimum? 

3. What is the average number of mutants tried on an adaptive walk to a local opti
mum? 

4. What is the ratio of the mutations accepted to those tried? 

5. What is the average number of alternative local optima which can be reached 
from a peptide in the space? What is the maximum? 

6. After each improvement step, the number of fitter one-mutant neighbors may 
change. At each local optimum, there are zero fitter one-mutant neighbors. 
Therefore, we might expect the average number of fitter one-mutatnt neighbors 
to dwindle to zero on an adaptive walk. How does it dwindle? 

7. How many peptides can climb to the same local optimum? 

In analyzing the statistical structure of fitness landscapes, I shall use the simple 
image of an adaptive walk via fitter orte-mutant variants. I adopt this idealization in 
order to consider how mountainous such high-dimensional landscapes might be 
expected to be. Nevertheless, it is important to stress that this idealized image of 
walks constrained to pass only via fitter one-mutant neighbors corresponds to one 
plausible limiting case of the adaptive flow of a real population under the drives of 
mutation, selection, and recombination. Gillespie (1983, 1984) has shown that this 
constrained version of an adaptive walk corresponds to an adapting population in 
which the rate of finding fitter variants is very low compared with the fitness differ
entials between the less fit and the more fit allele. In such a limit, if the population 
begins entirely at the less fit allele, a single mutant will eventually encounter the fitter 
allele. Either that mutant dies out before leaving offspring, or a few of the fitter 
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mutant type are produced. Once the number of fitter type produced is sufficient to 
reduce the chance fluctuation leading to their death, the fitter type rapidly takes over 
the entire population. Thus the entire population "hops" to the fitter neighboring 
genotype. Gillespie has shown that the entire adaptive process in this limit can be 
treated as a continuous-time, discrete-state Markov process. Each state corresponds 
to one genotype. The population hops as a whole with different probabilities to one 
or another of the fitter neighboring genotypes. The conditions required for Gillespie's 
limit are that the product of population size and mutation rate be low compared with 
the rate of finding fitter variants. 

THE NK MODEL OF RUGGED FITNESS LANDSCAPES 

The NK Model of Random Epistatic Interactions 

I now introduce a simple formal model of rugged fitness landscapes, called the NK 
model. In this model, N refers to the number of parts of a system-genes in a geno
type, amino acids in a protein, or otherwise. Each part makes a fitness contribution 
which depends upon that part and upon K other parts among the N. That is, K reflects 
how richly cross-coupled the system is. In the geneticist's term, K measures the rich
ness of epistatic interactions among the components of the system. 

Since the model is abstract and since it forms one of the conceptual backbones of 
this book, I should make clear why I believe analysis of it warrants detailed attention. 
The ruggedness of fitness landscapes with respect to catalytic or other protein func
tions are unknown, but knowable. Discovery of the structures of such landscapes is 
of the deepest importance. Although we do not yet know what the real landscapes 
are like, we may be able to develop some intuition for their typical, or statistical, 
structures by building simple models. That is, we need a kind of statistical mechanics 
for fitness landscapes to help us to understand their expected features. The NK model 
is meant to accomplish this. As the main parameters are altered, the model generates 
afamily of increasingly rugged multipeaked landscapes. 

A second reason to develop a formal model for the statistical structure of rugged 
fitness landscapes is that we want to predict and understand the structure of actual 
fitness landscapes in protein space and elsewhere. The NK model is the first effort in 
this direction. Perhaps surprisingly, given its simplicity, the model performs rather 
well when confronted by known adaptive landscapes in protein space. 

The model can be interpreted as a model of genetic interactions, and it is in this 
genetic framework that I now introduce it. 

One of the earliest population-genetic models focuses on haploid organisms with 
a single copy of each chromosome. Each chromosome has some number of distinct 
genes, and the chromosome set has a total of N distinct genes. Each gene may occur 
in more than one allele. In the simplest case, each gene can occur in two alleles (Crow 
and Kimura 1965, 1970; Ewens 1979). Then the haploid genotype has N genetic loci, 
each with two alleles; more generally, each locus might have some larger number of 
alleles A. In the first case, the total number of genotypes is 2N; in the latter case, the 
total number is AN. 

The set of possible genotypes constitutes the ensemble. Each genotype is a one
mutant neighbor of all those genotypes accessible by mutating a single locus from 
one allele to another. In the N-Iocus, two-allele case, each genotype is a one-mutant 
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neighbor of N other genotypes. In the A-allele-per-locus case, each genotype is the 
one-mutant neighbor of N(A - I} other genotypes. The number of one-mutant 
neighbors, which I will symbolize by "D," is the dimensionality ofthe genotype space 
and gives the number of directions in which each genotype can change to another 
neighboring genotype by a minimal alteration. 

As I described in Chapter 1, population geneticists have been interested in whether 
selection can substitute a gene which confers a slight selective advantage on the 
organism and hence have talked in terms of the "fitness contribution" of each gene. 
To carry out their central analysis, therefore, they naturally ask whether selection can 
substitute one allele for a second allele when the first confers slightly higher fitness. 
In models with N loci each having two alleles, it is necessary to specify the fitness of 
the entire genotype of N genes given the fitness contribution of the allele present at 
each of the N genetic loci. The most idealized genetic models assume that each locus 
contributes to the overall fitness of the genotype independently of all the other loci. 
Therefore, given the fitness contribution ofthe allele at each locus, the fitness of the 
genotype is just the sum of the N independent fitness contributions divided by N, 
hence the average of those contributions. This central model is, not surprisingly, 
called the N-locus, two-allele additive fitness model. 

The assumption that each gene contributes to overall fitness independently of all 
other genes is clearly an idealization. In a system with N genes, the fitness contribu
tion of one or another allele of one gene may often depend upon the alleles of some 
of the remaining N - 1 genes. Such dependencies are called epistatic interactions. 
and their existence, which is well known, raises experimental and theoretical issues. 
The experimental issues concern how to measure the extent of epistatic interactions. 
I will not discuss this further. The theoretical problem is how to build useful models 
of epistatic interactions. One device commonly used has been to assume that genetic 
loci which interact can be represented by multiplying their fitness contributions 
(Franklin and Lewontin 1970; Lewontin 1974; Ewens 1979). Multiplication cap
tures a kind of positive cooperativity. High fitness contribution by two epistatic loci 
requires that both have high fitness. If either locus has low fitness, then the product 
may be low even if the other has high fitness. 

The problem with any such model is that the ways in which different alleles at the 
N loci might be coupled to one another epistatically to produce an overall fitness for 
each genotype might be extraordinarily complex. In general, we truly have almost no 
idea what those mutual influences on overall fitness might be. Take Mendel's peas. 
He found two alleles for seed color, yellow and green, and two alleles of a second gene 
for seed texture, rough and smooth. A priori we have no idea which of the four com
binations of these traits will be of highest fitness, nor how changing from anyone 
combination of traits to any other will affect fitness. If the fitness contribution of each 
gene is epistatically affected by a large number of other genes, the possible conflicting 
constraints among the complex web of epistatically interacting genes are both 
unknown and likely to be extremely complex. This complexity suggests that it might 
be useful to confess our total ignorance and admit that, for different genes and those 
which epistatically affect them, essentially arbitrary interactions are possible. Then 
we might attempt to capture the statistical features of such webs of epistatic inter
actions by assuming that the interactions are so complex that we can model the sta
tistical features of their consequences with a random fitness function. This leads to 
the NK model. 

Consider an organism with N gene loci, each with two alleles, 1 and O. Let K stand 
for the average number of other loci which epistatically affect the fitness contribution 
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of each locus. Thus the two main parameters of the NK model are the number of 
genes N and the average number of other genes K which epistatically influence the 
fitness contribution of each gene. A third parameter characterizes how the K genes 
are distributed among the N genes. In general, the sensible step to take with such 
models is to assess which parameters matter. It turns out that, to a very large extent, 
only Nand K matter. The distribution of K among the N appears to be far less impor
tant. (For the moment, restrict A, a fourth parameter, to two.) 

Having assigned to each locus i the K genes which impinge upon it (Figure 2.2a), 
it is necessary to assign fitness contributions to each gene in the context of the K genes 
which epistatically influence it. The fitness contribution of the allele at the ith locus 
depends upon itself (in other words, whether it is 1 or 0) and on the alleles, 1 or 0, at 
K other loci, hence upon K + 1 alleles. The number of combinations of these alleles 
is just 2K + I. Since we have no idea what the effects of each such combination on the 
fitness contribution at the ith locus might be, let us model those effects by assigning 
to each of the 2K + 1 combinations at random, a different fitness contribution drawn 
from the uniform distribution between 0.0 and 1.0. Therefore, the fitness contribu
tion Wi of the ith locus is specified by a list of random decimals between 0.0 and 1.0, 
with 2K + 1 entries (Figure 2.2b). 

The fitness contribution of each allele at each gene in the context of the K other 
genes which impinge upon that gene must be specified. For each gene, its fitness con
tribution Wi is generated by random assignment on the 2K + 1 allele combinations of 
the K + 1 genes which impinge upon it (Figure 2.2b). 

Having assigned the fitness contributions, we may now define the fitness of an 
entire genotype as the average of the contributions of all the loci: 
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Figure 2.2 (a) Assignment of K = 2 epistatic inputs to each site. (b) Assignment of fitness values 
to each of the three genes with random values for each of the eight combinations of K + I alleles 
bearing on genes 1, 2, and 3. These fitness values then assign a fitness to each of the 23 = 8 possible 
genotypes as the mean value of the fitness contributions of the three genes, as given in Equation 2.1. 
(c) Fitness landscape on the three-dimensional Boolean cube corresponding to the fitness values of 
the eight genotypes in (b), Note that more than one local optimum exists. 
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Given this definition, the NK model is fully specified. Therefore, the fitness of each 
possible genotype in the space has been assigned, and as a consequence, a fitness land
scape over the genotype space has been created. Figure 2.2c shows such a fitness land
scape for the eight possible genotypes available with three genes, each having two 
alternative alleles. In this case, I have assumed that the fitness contribution of each 
gene depends upon the allele at that gene and upon the alleles at the remaining two 
genetic loci. Note that the resulting landscape, like that in Figure 2.1, has more than 
one local optimum and that the questions raised on page 39 about adaptive walks in 
sequence space regarding Figure 2.1 can be posed with respect to this landscape as 
well. 

The NK model is very similar to a famous and well-studied class of models which 
arises in statistical physics, called spin-glasses (Edwards and Anderson 1975; Sher
rington and Kirkpatrick 1975; P. W. Anderson 1985; Binder and Young 1986; Stein, 
Baskaran, et al. 1987). Indeed, Anderson (private communication) has pointed out 
that the NK model is a form of spin-glass. This is important to us for two reasons. 
First, a feature of spin-glasses called frustration helps account for the multi peaked 
features of fitness landscapes. Second, there are profound similarities between the 
behaviors of a physical system in a complex potential surface at a finite temperature 
and an adapting population on a rugged fitness landscape at a finite mutation rate. 
In other words, the tools of statistical physics bear on population biology. 

Spin-glasses are disordered magnetic materials in which the orientation of nearby 
magnetic dipoles may be either parallel or anti parallel. This "preference" for one 
polarity or the other varies sinusoidally in space. Thus whether two dipoles prefer to 
orient either in the same direction or in opposite directions and how much so 
depends upon their precise distance apart. Models of spin-glasses typically consist in 
two- or three-dimensional lattices of spins with each spin pointing either up or down. 
Each spin is coupled with some set of other spins which may be limited to its neigh
bors or may range outward to all other spins in the lattice. For each pair of coupled 
spins, their preference to point either in the same direction or in opposite directions 
and how strong that preference may be are decided at random but then fixed. Pref
erences correspond to energies. The entire spin-glass has N spins, each up or down; 
hence there are a total of 2N possible configurations of spins. Each configuration has 
a total energy given by a Hamiltonian: 

H = - 'f.Jij(s; X s) S;,Sj = ± 1 

where S; and Sj are the orientations (up or down) of the two spins, Jij is the energy 
reflecting how strongly the two are coupled and hence prefer to be in the more favor
able relative orientation, and the sum is over all coupled pairs of spins. 

The similarity to the NK model is clear. In the NK model, each site makes a fitness 
contribution which depends in a random way on the "allele" at that site and on the 
"alleles" at K other sites. The fitness of a given genotype is the normalized sum of the 
randomly assigned fitness contributions of the N sites. Each genotype can change to 
N(A - 1) one-mutant neighbors, and adaptive walks via fitter variants pass to local 
optima. In a spin-glass, each of the 2N configurations has an overall energy, and each 
can change to N one-mutant neighbors by flipping a single spin to its opposite ori
entation. The configuration space of a spin-glass has an energy landscape which is 
directly analogous to a fitness landscape. At 0 K temperature, a spin-glass descends 
to local minima by flipping spins and passing to neighboring configurations-typi
cally constrained to be one-flip neighbors-which are of successively lower energy. 
A main difference between the two models is that biologists like to think of adapta
tion climbing hills, while physicists like to think of systems minimizing energy. 
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Conflicting constraints in spin-glasses account for the rugged structure of their 
potential surfaces. Consider a set of four adjacent spins in a square-lattice spin-glass, 
where three of the four pairs prefer to point in the same direction, while the fourth 
prefers to point in the opposite direction. No arrangement of spin up and spin down 
around the square can satisfy all these constraints. Such a square is said to be frus
trated (Anderson 1985). This frustration, which results from conflicting constraints, 
leads to a complex energy.surface with very many potential minima. We shall find 
the direct analog in the NK model, for as K increases, the conflicting constraints lead 
to an ever more rugged multipeaked fitness landscape. 

Many properties of the landscapes created by the NK model appear to be surpris
ingly robust and depend almost exclusively upon Nand K alone. Therefore, it is 
important at the outset to explain which features are dependent on other aspects of 
the model. 

One very sensitive feature of the model is the range affitness values assigned to 
the space of genotypes. This range depends upon the assumption that the fitness 
value assigned to each of the AK + 1 combinations of alleles influencing each allele i 
was drawn at random from the uniform interval between 0.0 and 1.0. I might instead 
have assigned values at random from different underlying distribution-for exam
ple, a peaked Gaussian distribution between 0.0 and 1.0 in which the random deci
mals are more likely to be near 0.5 than near 0.0 and 1.0, or a U-shaped distribution 
between 0.0 and 1.0 in which the random decimals are more likely to be near 1.0 or 
0.0 than near 0.5. In the Gaussian case, this choice of range would tend to "squeeze" 
fitness values assigned to all possible genotypes closer to the mean of that distribu
tion, 0.5. Use of the U-shaped distribution would tend to expand the deviation of 
fitness values assigned to all possible genotypes farther away from the mean fitness 
of the ensemble, 0.5. Since the actual fitness values assigned are sensitive to the choice 
of the underlying distribution used, I shall avoid properties of the NK model known 
to be sensitive to this choice. 

The reasonably insensitive properties of the fitness landscapes generated by the 
NK model appear to include 

• The number of fitness peaks in the genotype space 

• The lengths of walks via fitter neighbors to fitness optima (equivalently, this is the 
number of accepted mutations on an adaptive walk) 

• The total number of mutants tried before ap optimum is reached 

• The ratio of accepted to tried mutations on a walk 

• The number of alternative optima to which one genotype can climb 

• The number of genotypes which can climb to the same optimum 

• The rate at which the fraction of fitter neighbors dwindles to zero along walks to 
fitness peaks 

• The similarity oflocal optima 

These properties are kinds of rank-order statistics. As Nand K are changed, these 
statistical features of the corresponding more or less jagged fitness landscapes over 
genotype space alter. These features, however, are largely insensitive to the choice 
made for the underlying distribution-uniform, Gaussian, U-shaped, or other-and 
therefore to the range of fitness values in a landscape. This insensitivity rests on the 
fact that, for the moment, I shall count a neighboring genotype fitter than another 
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even if the fitness difference is infinitesimal. Ignoring the actual fitness differences 
amounts to a kind of rank-ordering of the fitness of all possible genotypes. In this 
case, adaptive walks will pass from any genotype to any fitter genotype. 

I should emphasize that, at present, all we can say is that these properties appear 
to be insensitive to the underlying distributions from which fitness values are 
assigned. This assertion is based on numerical investigations (Kauffman, Weinber
ger, and Perelson 1988). The extent of insensitivity warrants further study. 

By focusing on the rank-order statistics ofthe NK family ofiandscapes, we achieve 
a class of models which yields substantial insight into the statistical structure of rug
ged fitness landscapes. However, the flow of an adapting population on such a land
scape also depends critically on the fitness differences between adjacent genotypes in 
the space. 

We turn next to an examination oflandscape structure as a function of Nand K. 
I discuss first the two extremes K = 0, which corresponds to the limit of a smooth 
landscape with a single fitness peak, and K = N - 1, which corresponds to a com
pletely random landscape with very many peaks. Thereafter, I characterize the family 
of correlated landscapes which lies between these extremes. 

K = 0 Corresponds to the Additive Genetic Model and 
Yields a Single-Peaked and Smooth Correlated Fitness 
Landscape: Fujiyama 

The first case to examine is the K = 0 limit, with the further condition that each gene 
has only two alleles. Then there are no epistatic interactions. We show now that the 
structure of this fitness landscape has a single global optimal genotype, that all other 
genotypes are suboptimal and can climb to the global optimum via fitter neighbors, 
and that all one-mutant neighbors have nearly the same fitness. 

At each locus, by chance, either allele 0 or allele 1 makes the higher fitness con
tribution. Therefore, there is a special genotype having the fitter allele at each locus 
which is the global optimum genotype. Furthermore, any other genotype, which must 
of course have lower fitness, can be sequentially changed to the globally optimal 
genotype by successive flipping of each gene which is in the less favored allele to the 
more favored allele. Therefore, any such suboptimal genotype lies on a connected 
pathway via./itter one-mutant variants to the global optimum. It follows trivially that 
there are no optima other than the single global optimum. All other genotypes are 
below the global optimum and can climb to it. 

In previous sections, I used the pictorial image of a rugged or smooth fitness land
scape without defining the terms. A more precise term is the "correlation structure" 
of the fitness landscape. By this I mean how similar the fitness values of one-mutant 
neighbors in the space are. A smooth landscape is one in which neighboring points 
in the space have nearly the same fitness value. Knowing the fitness value of one point 
carries a lot of information about the fitness value of neighboring points. At the oppo
site extreme, a maximally rugged landscape is one in which the fitness values are 
entirely uncorrelated. Knowing the fitness at one point would then carry no infor
mation about the fitness of neighboring points. A variety of alternative measures can 
be used to characterize the correlation structure of a fitness landscape. I discuss one 
below. 

The K = 0 additive model corresponds to a very smooth, highly correlated fitness 
landscape. This is clear because the fitness of one-mutant neighbors cannot differ by 
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more than liN. Therefore, for large N, the fitness of one-mutant neighbors is very 
similar. 

Two other features of the K = 0 model with two alleles per locus are immediately 
understandable. If an adaptive walk starts anywhere and climbs via successively fitter 
one-mutant variants, then the number of fitter neighbors dwindles by 1 at each step 
upward. If the walk starts with a randomly chosen genotype, on average half the N 
loci are already in the more favored allele, the other half are in the less favored allele. 
Therefore, the expected number of steps to the optimum is just N12. This implies 
that walk lengths to the global optimum increase linearly as N increases. 

K = N - 1 Corresponds to Fully Random 
Fitness Landscapes 

The largest possible value of K is N - 1. In this limit, each gene is epistatic ally 
affected by all the remaining genes. It is particularly easy to show that in this limit 
the resulting fitness landscape is entirely uncorrelated. In other words, the fitness 
value of one genotype gives no information about the fitness value of its one-mutant 
neighbors. As I show in this section, we can understand a number of quite surprising 
features of such extremely rugged fitness landscapes (Kauffman and Levin 1987; 
Weinberger 1988, 1991 a; Macken and Perelson 1989). In particular, we shall see that 

1. The number oflocal fitness optima is extremely large. 

2. The expected fraction of fitter one-mutant variants dwindles by Y:; at each 
improvement step. 

3. The lengths of adaptive walks to optima are very short and increase only as a log
arithmic function of N. 

4. The number of mutants tried to reach an optimum is proportional to the dimen-
sionality of the space. 

5. The ratio of accepted to tried mutations scales is InNI N for the two-allele case. 

6. Any genotype can climb to only a small fraction of the local optima. 

7. Only a small fraction of the genotypes can climb to any given optimum. 

These seven features are all ordering properties of completely uncorrelated land
scapes. Perhaps the most important implication of such landscapes, however, is this: 

8. As the number of genetic loci N increases, the local optima fall toward the mean 
fitness of the space of genotypes. 

As we shall soon see, this last feature carries over to a large class of rugged but 
correlated landscapes. This feature is so central that I shall call it a further kind of 
complexity catastrophe. It points to a fundamental restraint on adaptive selection. 
Conflicting constraints in complex systems limit the optimization of function pos
sible. As we shall see, this limitation appears to be a very general problem for many 
classes of systems. 

In the K = N - 1 limit, the fitness vector Wi for each gene i, i = 1, 2, ... , N, is a 
function of all K + 1 = N genes. Consider any initial genotype among the 2N 
genotypes with two alternative alleles at each locus. Alteration of the allele at any 
single locus affects each of the N genes, since that alteration alters the combination 
of the K + 1 = N alleles which bear on the fitness of each gene. In turn, this second 
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alteration alters the fitness contribution of each gene to a different randomly chosen 
value between 0.0 and 1.0. The fitness of the new one-mutant neighbor genotype is 
therefore a new sum of N random decimals between 0.0 and 1.0. Therefore, the new 
fitness value is entirely uncorrelated with the old fitness value. Since fitness values 
of one-mutant neighbors are entirely random with respect to one another, the 
K = N - 1 landscape is fully uncorrelated. Figure 2.2 is a concrete example. 

The first point to stress is straightforward: since K = 0 corresponds to fully cor
related smooth landscapes and K = N - 1 corresponds to fully uncorrelated rugged 
landscapes, it must be true that, as K increases, landscapes must change from smooth 
through a family of increasingly rugged landscapes to fully uncorrelated landscapes. 
Increasing the richness of epistatic interations K increases the ruggedness of fitness 
landscapes. Since increasing epistatic interactions simultaneously increases the num
ber of conflicting constraints, increased multipeaked ruggedness of the fitness land
scape as K increases reflects those increasingly complex mutual constraints. 

The Rank-Order Statistics on K = N - 1 
Random Landscapes 

The Number of Local Optima Is Very Large. We now calculate the expected total 
number of local optima with respect to one-mutant neighbors. In keeping with the 
hypothesis that walks must pass via fitter one-mutant neighbors regardless of how 
small the fitness differentials may be, it is convenient to rank-order all the genotypes 
from worst (I) to best (2N ). The probability Pm that any genotype is a local optimum 
is just the probability that it has higher rank-order than any of its None-mutant 
neighbors: 

1 
P =-

m N+ 1 (2.2) 

Since the total number of genotypes with two alleles per locus is 2N, the expected total 
number oflocal optima with respect to one-mutant moves Ml is 

2N 
Ml =-

N+l 
(2.3) 

Therefore, the number oflocal optima is extremely large and increases almost as rap
idly as the number of genotypes 2N. This means that these extremely rugged land
scapes are so rife with local optima that trapping on such optima is essential inevi
table. 

While I have considered only walks via fitter one-mutant neighbors, it is useful to 
calculate the number of local optima if walks can proceed by two-mutant, three
mutant, r-mutant neighbors. The denominator in Equation 2.3 is replaced by the 
total number of genotypes which can be reached in r or fewer mutations. This is just 
the cumulative binomial sum 

where r = 1 in Equation 2.3. Thus for any small value of r, as N increases, the num
ber of genotypes increases exponentially, but the number oflocal optima with respect 
to walks via fitter r-mutant neighbors increases very rapidly as well. 
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It is easy to generalize the K = N - I model from two alleles per locus to an 
arbitrary number of alleles per locus A. The number of genotypes in the space is then 
AN. As defined earlier, the dimensionality D of the space (the number of one-mutant 
neighbors to each genotype) isN(A - 1). Substitution into Equation 2.3 by the num
ber of genotypes in the numerator and the number of one-mutant neighbors in the 
denominator gives the expected number of local optima: 

The Expected Fraction of Fitter One-Mutant Neighbors Dwindles by Y. on Each 
Improvement Step. The landscape is entirely uncorrelated. Let the adaptive walk 
begin from the lowest ranked genotype. All its D neighbors are fitter, with rank -orders 
spread randomly between 2 and AN. The walk samples neighbors at random and 
moves to the first fitter one encountered. Since those fitter neighbors are spread uni
formly in rank-order from just above the current genotype to the top, and since a 
random fitter neighbor is picked, on average, its rank-order lies halfway to the top. 
When the process moves to that neighbor, because it is expected to be halfway to the 
top, only half its one-mutant neighbors are still fitter. On average, each successive 
step jumps half the remaining distance to the top rank; hence at each step the 
expected number of fitter one-mutant neighbors dwindles by it 

This argument replaces the mean of a family of such adaptive walks with a "mean 
walk." In short, on random landscapes the number of ways uphill increases rapidly. 
Recall, by contrast, that in K = 0 smooth landscapes, the number of ways uphill 
decreases only by I at each improvement step. 

Walks to Local Optima Are Short and Vary as a Logarithmic Function of N. In 
general, adaptive walks might begin anywhere. However, to obtain an upper bound 
on walk lengths, we consider walks which begin at the lowest ranked genotype. 
Because the walk steps halfway to the top at each step r, the expected relative rank 
order xl T at each step, where T is the top rank, is 

x 2' - 1 

T 2' 
(2.4) 

When the walk arrives at a genotype of relative rank-order xl T, that genotype is fitter 
than at least the one from which the process just left. Therefore the probability Pm 
that the newly encountered genotype is itself a local optimum is 

(2.5a) 

When x and T are small, this equation must be modified slightly to take account of 
the lack of replacement in calculating Pm (Kauffman and Levin 1987): 

P = (x - I )!( T - D - 1 )! 
m (T - I)!(x - D - I)! 

(2.5b) 
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Combining equations 2.4 and 2.5a allows us to calculate the probability PI that an 
adaptive walk continues for I steps without encountering a local optimum: 

(2.6) 

Each term in this product is I minus the probability that the current genotype 
reached, which has a relative rank-order given by Equation 2.4, is actually a local 
optimum, as given by Equation 2.5a. Hence each term is the probability that the 
current genotype is not a local optimum and therefore that the adaptive walk con
tinues at least one more step. 

As I increases, the product in Equation 2.6 decreases and eventually falls below 
0.5. The value of I at which this occurs is the number of steps taken such that the 
walks will have arrested in half the trials, while the rest may continue. Thus Equation 
2.6 yields an estimate of expected walk lengths before a local maximum arrests prog
ress upward. 

Equation 2.6 implies that the adaptive walks in uncorrelated landscapes are sur
prisingly short and tightly bounded. Note that if r = log2 (D - 1), the corresponding 
term in PI is 

1 - ( 1 - (D _1 l)D-l) 
which is extremely well approximated by 1 - lie = 0.63. Moreover, if this term is 
the rth term in PI, it is easily shown that the preceding terms are approximately 1 -
l/e2 = 0.86, 1 - l/e4 = 0.98. Thus there is very little probability of the process 
stopping more than one or two adaptive steps before r = log2 (D - 1). To a high 
degree of accuracy, then, the adaptive walk will stop on average at the rth step when 

r = log2 (D - 1) (2.7a) 

Equation 2-7 a therefore shows that the expected lengths of adaptive walks r in uncor
related landscapes are short, on the order of log2 of the number of neighbors of each 
entity in the space. 

Weinberger (1988) and Macken and Perelson (1989) have carried out more 
detailed analysis of such walks, examining the entire distribution of walk lengths with 
similar results. Because adaptive moves which happen to step more than halfway to 
the top at each improvement are more likely to truncate an adaptive walk than 
moves which step less than halfway to the top are likely to lengthen the walk, Equa
tion 2.7 a is an overestimate of walk lengths to optima. Accounting for such fluctu
ations shows that adaptive walk lengths r are more nearly the natural logarithm of 
the number of one-mutant neighbors. This feature shows that, in highly rugged land
scapes, there are so many peaks that the local ones which can be climbed from any 
point are very close in sequence space: 

r::::::: In(D - 1) (2.7b) 

The Expected Time to Reach an Optimum Is Proportional to the Dimensionality of 
the Space. Consider a walk which begins at the lowest ranked genotype and climbs 
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to a local optimum. Let the walk examine the D one-mutant neighbors sequentially, 
taking one unit of time for each examination. This corresponds to the waiting time 
for a mutational event but ignores the fact that such mutations do not examine all 
neighbors in order. The modification makes only a minor difference. 

Since on average the adaptive walk steps halfway to the top rank at each improve
ment step, the expected waiting time to find a fitter variant doubles after each 
improvement step. This result is equivalent to the theory of records found in Feller's 
(1971) classical probability text. The first improvement step occurs after one 
moment; the second on average requires two moments; the third on average requires 
four moments. The expected number of improvement steps to reach a local opti
mum is log2 (D - I). Thus the expected waiting time top to reach that optimum is 
just 

log2(D-I)-1 

top = L 2' 
,~O 

(2.8) 

When log2 (D - I) is an integer, this series sums to D - I. Therefore, top is propor
tional to the number of one-mutant neighbors or, equally, to the dimensionality of 
the space. The time to reach an optimum, of course, is also equivalent to the total 
number of mutants tried before reaching an optimum. 

Macken and Perelson (1989) rederived these results and found a surprising addi
tional fact: For large Nand K, top is nearly independent of starting fitness. 

The Ratio of Accepted to Tried Mutations Scales as In N/N. Since the length of 
an adaptive walk is the number of accepted mutations and the time is the number of 
tried mutations, the ratio ofthese is just In N/ N for the two-allele case. Macken and 
Perelson (1989) make the same point with the addendum that these results may be 
quite insensitive to starting fitness. 

Any Genotype Can Climb to Only a Small Fraction of the Local Optima. A max
imal estimate of the number of branches to fitter variarnts which might emerge from 
the lowest ranked genotype can be obtained: D of its neighbors are fitter. On average, 
after a single improvement step, (D - I )/2 (in other words, almost D/2) ofthe neigh
bors of that first-step variant are still fitter. After successive steps, on average D/4, D/ 
8, ... neighbors are fitter. Adaptive walks continue for about log2 (D - I) steps. The 
series (D X D/2 X D/4 X ... D/D) yields a gross upper bound on the expected 
number of alternative local optima accessible from the lowest ranked entity. This 
bound is 

D 1og2D 

2(1og2DXlog2D-I)/2 
(2.9a) 

D 1og2D 

(2.9b) 
D(log2D+ 1)/2 

D(log2D - 1)/2 (2.9c) 

This bound is an overestimate, since it ignores convergence of walks. Nevertheless, 
it suffices to establish the major point: Branching adaptive walks in uncorrelated 
landscapes reach only a small fraction ofthe total number of local optima. Thus for 
an uncorrelated genotype space using A = 20 alleles per locus and N = 64 genetic 
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loci, an upper bound on the number of accessible local optima from the lowest 
ranked genotype is about 1014 ; by contrast, the total number of local optima in the 
uncorrelated genotype space is about 1080 • Thus only 10 14 among the 1080 optima are 
accessible from even the lowest ranked genotype. 

This property means that any beginning sequence, no matter how poor, can climb 
to only a small range oflocal peaks via one-mutant neighbors and is limited to their 
fitnesses. As in New England, in rugged landscapes "you can't get there from here." 

A Small Fraction of the Genotypes Can Climb to Any One Optimum. It is useful to 
calculate an upper bound on this fraction. First, note that in general there is only a 
single genotype which is the global optimum in the landscape. (We ignore "ties.") 
Note next that the set of genotypes which can climb to that optimum via one-mutant 
fitter neighbors is identical to the set of genotypes that the global optimum could 
descend to via one-mutant lessfit neighbors. Then the fittest genotype could reach D 
less fit one-mutant neighbors. Each ofthose on average has D/2 still less fit neighbors, 
and each of those has on average D/4 less fit neighbors. By the now familiar argu
ment, this process continues for about log2 D steps. Therefore, an upper bound on 
the total number of genotypes which can climb to the global optimum is 

D + (D) ( q) + (D) ( q) ( q) + (D) ( q) ( q) ( f) 
+ ... (D) (q)( q) ... (~) 

This formula is exact only if D is a power of 2, and it is an upper bound because it 
ignores the possibility that a genotype might climb by two or more routes to the 
global optimum. It leads to an expression for the number of genotypes which can 
climb to the global optimum: 

log2D L D i2-U)(i-I)/2 (2. lOa) 
i=l 

Consider genotypes with N = 256 loci and A = 2 alleles. The number of geno
types is 2256, or about 1077, while the number of these which can climb to the globally 
optimal genotype is only about 229, or 109. Thus only a tiny faction of the genotypes 
can climb to even the global optimum if constrained to pass via fitter one-mutant 
variants. This constraint implies that the vast majority of adaptive walks via one
mutant fitter variants end on optima which are below the global optimum. 

I am indebted to D. Lane (private communication) for an alternative simple 
expression for the number of genotypes which can climb to the global optimum. 
Consider a genotype on a random landscape able to descend to two less fit variants, 
each of which, on average, can descend to a single still less fit variant. That initial 
genotype is thus able to descend to four less fit variants. But its predecessor in 
descending from the global optimum had, on average, four less fit variants, and the 
next higher predecessor had eight less fit variants, and so on until the descent started 
at the global optimum. This leads to 

(2. lOb) 
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where 2M = D and M is the number of steps descended from the;lobal optimum. In 
this notation, the total number of local optima 2D/(N + 1) is 22 /(2M + 1), which is 
vast compared with 2 X 2M2/2 even for modest M. 

A Complexity Catastrophe: As Complexity Increases, the Heights of Accessible 
Peaks Fall Toward the Mean Fitness. We now investigate the inexorable onset of 
a novel complexity catastrophe which limits selection. It is the consequence of 
attempting to optimize in systems with increasingly many conflicting constraints 
among the components: Accessible optima become ever poorer, and fitness peaks 
dwindle in height. 

We have already noted that, as K increases, the number of conflicting constraints 
increases. Thus if K = 0, each gene can assume its most valuable allele independent 
of the choice at any other allele. If K = 1 and genes i and} influence each other, the 
optimal choice of allele for i in the context of all possible choices of alleles at} will 
typically not be identical to the optimal allele at} for all possible alleles at i. These 
conflicting constraints mean that the best mutual choices of alleles tend to be poorer 
overall. As K increases, the web of constraints becomes enormously complex. When 
K increases to N - 1, we might expect the conflicts among constraints to reach a 
maximum and hence tend to lead to poorer local optima than for smaller values of 
K. Indeed, this proves to be the case. We examine this complexity catastrophe first 
in the limit offully random landscapes, when K = N - 1, as N grows larger. Below 
I show that the tendency for local optima to fall in fitness occurs for a range of NK 
landscapes in which K increases as a constant fraction of N. 

To be concrete and make the general argument more transparent, I shall modify 
the NK model slightly and randomly assign fitness values not from the uniform dis
tribution but from the extreme of a V-shaped distribution having only the extreme 
values in the range-O.O and 1.0. Also for simplicity, I shall consider the case where 
each gene has two alleles. For each genetic locus, a fitness contribution of either 0.0 
or 1.0 is assigned to each of the 2N combinations of the two alleles of the K + 1 = N 
loci bearing on the fitness contribution of that locus. As before, the fitness of any 
genotype is the average of the contributions from all N loci. Thus the fitness of any 
genotype is just the fraction of the N loci whose fitness contributions are 1.0. There
fore, the distribution of fitness values among the genotypes is now just the binomial 
distribution of the sum of N random variables x, x = 0.0 or 1.0. The mean of the 
distribution is 0.5, and the distribution approaches Gaussian rapidly as N increases. 

Note that I am now considering not a landscape in which fitness is only rank
ordered but one in which the fitness values are real-valued and are drawn at random 
from a defined range, 0.0 to 1.0. 

A simple way to think about the lengths of adaptive walks is that they continue 
until the expected number of fitter one-mutant neighbors drops below 1. Since each 
genotype has N neighbors, on average, walks stop when the expected fraction of fitter 
neighbors just falls below 1/ N. 

The fitness of a genotype jis the fraction of its N loci which make fitness contri
butions of 1.0. Because the fitnesses of one-mutant neighbors are random, the 
expected proportion of one-mutant neighbors which have higher fitness than that of 
a given genotype is simply the probability in the "right tail" of the binomial distri
bution above the fitness of that genotype (Figure 2.3). Asjincreases, say from 0.6 to 
0.7, the probability above this increased fitness decreases. Walks will continue to 
higher fitness values until the expected fraction of fitter neighbors falls to 1/ N (Figure 
2.3). 
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Figure 2.3 Gaussian approximation to the distribution of fitness values in an uncorrelated land
scape with a true binomial distribution and large N. The fraction of fitter neighbors at any given 
fitnessfis the probability in the right tail of the distribution abovef(shaded area). Adaptive walks 
stop, on average, at the fitness f* whenever the number of fitter neighbors drops below one; hence 
when the fraction of fitter neighbors drops below 1/ N, as shown by the shaded area. As N increases, 
f* decreases toward 0.5. 

1 now show that as N increases, the fitness values of attainable local optima 
decrease toward 0.5. For Nlarge, the central limit theorem shows that the fitness has 
approximately a normal distribution with mean 0.5 and variance Ij4N. Using the 
above arguments, the expected fitnessJ of an attainable local optimum is found from 

Pr(x > J) = IjN (2.11 ) 

where x has a normal distribution with mean 0.5 and variance Ij4N. IfJ* = J - 0.5 
and the approximation 

(2.12a) 

(2.12b) 

is used, then Equation 2.11 gives for J*: 

( 0.199v'N) -2U.)2N_ 1* (e ) - 1 (2.13) 

This expression is adequate for reasonably large values of N. 
Equation 2.13 implies that, as the number of genes N increases, the accessible 

optima dwindle in height toward the average unselected fitness in the space of 
genotypes (Figure 2.4). Thus inexorably in these landscapes, adaptive walks termi
nate on poorer "solutions" as N increases. 

1 believe this to be a genuinely fundamental restraint facing adaptive evolution. 
As systems with many parts increase both the number of those parts and the richness 
of interactions among the parts, it is typical that the number of conflicting design 
constraints among the parts increases rapidly. Those conflicting constraints imply 
that optimization can attain only ever poorer compromises. No matter how strong 
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Figure 2.4 The complexity catastrophe. As N increases, the expected fitness of local optima f* 
decreases toward the mean of the space, 0.5. 

selection may be, adaptive processes cannot climb higher peaks than afforded by the 
fitness landscape. That is, this limitation cannot be overcome by stronger selection. 

It might be objected that normalization is essential to this limitation on selection 
and that such normalization is an arbitrary assumption of the model. Yet if we 
include "costs per part," it is clear that some form of something like normalization 
is a natural and general consideration. Further, it is clear that conflicting constraints 
are a very general limit in adaptive evolution. Each part of a complex system costs 
something. For example, additional genes and proteins require metabolic energy. 

As a concrete example, suppose we do not normalize fitness in the NK model and 
consider the total fitness of the system, ignoring any cost per part. Then as N 
increases, both the total complexity, which equals N, and the maximum possible fit
ness, which also equals N, increase without bound. Nevertheless, increasingly high 
total costs will typically bound the overall fitness which can be achieved. In the K = 

N - 1 case, total fitness increases as N increases, albeit ever more slowly. But suppose 
cost per part is constant, so that total cost rises linearly. At some point, total cost 
exceeds total fitness. Further increase in complexity-increasing N-is no longer 
profitable. This argument shows that there is again a limit on the complexity which 
can be attained. The marginal increase in fitness for the next part must be positive. 
The complexity catastrophe due to conflicting constraints captured in Equation 2.13 
is therefore a general property of complex systems. 

The Tunable NK Family of Correlated Landscapes 

The NK model was invented not to explore the two extreme landscapes, but to have 
in hand a model which allowed construction of an ordered family of tunably corre
lated landscapes. In order to investigate the statistical properties of landscapes for 
different values of the fundamental parameters of the model, numerical simulations 
were carried out (Kauffman, Weinberger, and Perelson 1988; Weinberger 1989). The 
four main parameters of the model are N, K, the distribution of K among the N, and 
the number of alleles at each site A. A fifth parameter is the underlying distribution 
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from which fitness values are assigned to each site for each combination of alleles at 
the K + I sites bearing on the site in question. The properties we investigated include 

• The fitness of local optima 

• The lengths of adaptive walks to optima 

• The dwindling fraction of fitter neighbors at each step along a walk 

• The mean waiting time to find a fitter variant 

• The number of local optima 

• The similarity between local optima 

• The number of walks from different initial genotypes which climb to each local 
optimum, hence the attracting basin size of each optimum 

• The autocorrelation of the fitnesses encountered along a random walk in the land
scape as a measure of the correlation structure of the landscape 

To investigate the first four properties, numerical simulations were carried out for 
different random examples of the NK landscapes for fixed Nand K values, initiating 
first adaptive walks from a random initial genotype and then hill climbing via a ran
domly chosen fitter one-mutant variant of each successively fitter genotype to the 
nearest optimum. Walks were carried out on 100 different randomly chosen land
scapes for the same values of the model parameters. The numbers reported are the 
means of those 100 simulations for each value of the parameters. 

Perhaps the most surprising feature of the results is that most aspects of these land
scapes are so nearly insensitive to any parameters but Nand K. 

Table 2.1 shows the average fitness oflocal optima in the case where the K epistatic 
inputs to each gene were chosen to be its flanking K/2 neighbors to either side. To 
avoid boundary effects, we consider "circular" genomes. Each gene was limited to A 
= 2 alleles, 0 and 1. The table shows first that, for K = 0, the fitness of optima are 
independent of Nand equal to about 0.66. This is expected because the fitness values 
were drawn at random between 0.0 and 1.0 for allele 0 and allele 1. Order statistics 
shows that the average value of the less fit allele will be Ya and that of the more fit allele 
will be %. Since each site contributes additively to the overall fitness, which is merely 
the mean fitness per site, the global optimum should be independent of N and should 

TABLE 2.1 Mean Fitness of Local Optima (Nearest-Neighbor 
Interactions) 

N 

K 8 16 24 48 

0 0.65(0.08)' 0.65(0.06) 0.66(0.04) 0.66(0.03) 
2 0.70(0.07) 0.70(0.04) 0.70(0.08) 0.70(0.02) 
4 0.70(0.06) 0.71(0.04) 0.70(0.04) 0.70(0.03) 
8 0.66(0.06) 0.68(0.04) 0.68(0.03) 0.69(0.02) 

16 0.65(0.04) 0.66(0.03) 0.66(0.02) 
24 0.63(0.03) 0.64(0.02) 
48 0.60(0.02) 
96 

'Numbers in parentheses are standard deviations. 

96 

0.66(0.02) 
0.71(0.02) 
0.70(0.02) 
0.68(0.02) 
0.66(0.02 
0.64(0.01) 
0.61(0.01) 
0.58(0.01 
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be %. By a similar argument, for an arbitrary but fixed number of alleles A, the average 
fitness of the fittest of these alleles if drawn at random from the uniform distributuion 
between 0.0 and 1.0 is A/(A + 1). 

Table 2.1 shows that the complexity catastrophe does certainly occur in the K = 

N - 1 limit. The fitnesses of accessible local optima begin high and dwindle toward 
0.5 as Nand K increase. In order to investigate whether the same complexity catas
trophe would occur, as expected, regardless of whether the fitness contributions per 
site were drawn from the uniform interval between 0.0 and 1.0 or from some other 
distribution, we investigated a V -shaped distribution which favored values nearer 0.0 
or 1.0 and an inverted V, or "humped," distribution which favored decimals near 
0.5. In all cases, as expected, in the uncorrelated landscape limit with K = N - 1, 
the fitnesses of optima recede toward 0.5 as Nand K increase (data not shown). 

Three further features of Table 2.1 are important. First note that, if K is fixed while 
N increases, then the fitnesses of optima do not fall. Second, the fitness of optima for 
fixed small values of K (K = 2, K = 4, K = 8) is higher than for K = O. Thus low 
levels of epistatic interaction appear to buckle the landscape like heaving-up moun
tain ranges and yield fitter optima than those available in the simplest additive Fuji
yama landscape. Third, the table shows that, as K increases as a constant proportion 
of N, the fitness values may transiently increase but ultimately fall toward 0.5. This 
third point demonstrates that if K increases linearly with N, the complexity catastro
phe sets in. Therefore, there is some very broad set ofiandscapes within the NK fam
ily subject to the limitation that optima recede to the mean of the space as N 
increases. In contrast, the complexity catastrophe as N increases appears to be 
averted for small fixed values of K. 

These behaviors of optima fitness as a function of Nand K suggest that two major 
regimes within the NK family ofiandscapes exist: (1) K remains small, of order 1, as 
N increases and (2) K grows with N, hence is of order N, as N increases. In the latter 
case, the complexity catastrophe arises. In the former case, optima remain high. Pre
sumably these two regimes are different from each other in many basic respects which 
require investigation. 

Table 2.2 shows similar results for the case where the K genes which epistatically 
affect each locus were chosen entirely at random for each locus. The constraint to 
circular genomes is removed, and no reciprocity in epistatic influence is assumed. 
The main feature of Table 2.2 is that it is nearly the same as Table 2.1. Therefore, 
within the NK family of correlated landscapes, optima fitness is largely insensitive to 
the distribution of the K among the N. 

Table 2.3 shows the average number of steps via fitter one-mutant variants with 

TABLE 2.2 Mean Fitness of Local Optima (Random Interactions) 

N 

K 8 16 24 48 96 

2 0.70(0.06) 0.71(0.04) 0.71(0.03) 0.71(0.03) 0.71(0.02) 
4 0.68(0.05) 0.71(0.04) 0.71(0.04) 0.72(0.03) 0.72(0.02) 
8 0.66(0.06) 0.69(0.04) 0.69(0.04) 0.70(0.02) 0.71(0.02) 

16 0.65(0.04) 0.65(0.03) 0.67(0.03) 0.68(0.02) 
24 0.63(0.03) 0.65(0.02) 0.66(0.02) 
48 0.60(0.02) 0.62(0.02) 
96 0.58(0.01) 
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TABLE 2.3 Mean Walk Lengths to Local Optima 
(Nearest-Neighbor Interactions) 

N 

K 8 16 24 48 96 

0 1.5(1.2) 8.6(1.9) 12.6(2.2) 24.3(3.4) 48.8(4.6) 
2 4.l( 1.9) 8.1(3.2) 11.2(3.1) 22.5(4.6) 45.2(6.6) 
4 3.2(1.8) 6.6(2.5) 9.4(2.9) 19.3(3.9) 37.3(6.1) 
8 2.7( 1.5) 4.7(2.3) 7.7(3.0) 15.3(4.3) 27.7(5.3) 

16 3.3(1.7) 4.8(2.1) 9.6(3.0) 19.3(4.2) 
24 3.5( 1.4) 7.4(3.0) 5.0(3.9) 
48 3.9(1.9) 8.9(3.0) 
96 5.1(2.4) 

K drawn from neighbors as in Table 2.1. For K = 0, walk lengths to optima are about 
N12. For K = N - 1, walk lengths are close to In N. The deviation may reflect sam
pling effects. Thus walk lengths vary from linear in N to logarithmic in N as K 
increases. Table 2.4 shows similar data for the randomly chosen K case of Table 2.2. 
Again, Tables 2.3 and 2.4 are very similar. Thus whether the K epistatic inputs to a 
gene are its neighbors or random among the N has almost no bearing on the lengths 
of walks to optima. 

As walks proceed toward optima, the number of fitter one-mutant neighbors 
dwindles to zero. The reciprocal of the fraction of fitter one-mutant neighbors is the 
expected wait time to find such a fitter variant. Figure 2.5a shows the naturalloga
rithm of the average number of fitter mutants; Figure 2.5b shows the naturalloga
rithm of the wait time for N = 96 as K increases for the neighboring K cases. Data 
for K random are similar. Note that for K = 0 the fraction of fitter neighbors dwindles 
slowly, and as K increases the fraction dwindles ever more rapidly. Furthermore, for 
K = 2 or more, the fraction of fitter neighbors falls offby approximately a constant 
fraction at each improvement step. That is, the fall off in fraction of fitter neighbors 
is approximately exponential for K ~ 2. The slope increases as K increases, toward 
the expected limit (log2) of a fully random landscape. That the slope is approximately 
log-linear even for K = 2 is interesting, for it suggests that this is a general feature of 
rugged landscapes even when those landscapes remain quite highly correlated. 

Figures 2.6a-d examine the ruggedness of the fitness landscape in the one-mutant 

TABLE 2.4 Mean Walk Lengths to Local Optima 
(Random Interactions) 

N 

K 8 16 24 48 96 

2 4.4(1.8) 8.1(2.8) 12.5(3.8) 26.5(5.1) 49.6(6.1) 
4 3.6(1.8) 7.3(2.9) 10.9(3.3) 22.9(5.6) 44.5(7.9) 
8 2.7(1.5) 5.3(2.5) 8.0(3.2) 17.0(4.3) 34.7(6.5) 

16 3.3(\.7) 4.8(2.1) 10.1(3.4) 21.6(4.8) 
24 3.5(1.4) 7.4(2.6) 16.0(4.3) 
48 3.9( 1.9) 9.3(2.6) 
96 5.1(2.4) 
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Figure 2.6 The ruggedness of NK landscapes for N = 96, showing the fitness of all 96 one-mutant 
variants of a random local optimum on one landscape for increasing values of K. (a) K = 2; (b) K 
= 8; (c) K = 48; (d) K = 95. 

vicinity oflocal optima. More precisely, walks were carried to local optima, and then 
the fitness of all one-mutant variants of such optima were assessed. Our expectation 
was that, as K increases, the landscapes become progressively less correlated. There
fore, the fitness drops away from optima that occur for high values of K should tend 
to be more precipitous than the drops in the gentler landscapes having low values of 
K. This is clearly seen, implying that the selection gradients back to optima are 
steeper in rugged than in gentle landscapes. This variation in gradients will clearly 
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TABLE 2.5 Number of Optima 

K 

2 
4 
7 
8 

15 

8 

5' 
15 
34 

• All values are a mean of 20 landscapes. 

N 

16 

26 
184 

1109 
4370 

affect how populations adapt on such landscapes, as we discuss below. Similar results 
are found for K random landscapes as K increases. 

Properties 5 through 7 (p. 55) are nonlocal features of NK landscapes. To inves
tigate these properties, we randomly chose a specific NK landscape and carried out 
many adaptive walks to local optima from randomly chosen initial genotypes in the 
space. To establish the number oflocal optima, searches were carried out either until 
no further optima were uncovered or until 10 000 optima were discovered. Any such 
algorithm has the difficulty that optima with very small basins of attraction may be 
missed. The sampling is therefore biased by the distribution of basin sizes. Therefore, 
current numerical values are estimates. Table 2.5 shows the pooled results for adja
cent and random choices of K and different values of Nand K. 

A Massif Central in K = 2 Landscapes 

Among the most surprising features of the NK family of landscapes is the fact that, 
for small values of K and two alleles, the local optima are not distributed randomly 
in genotype space but instead are near one another. Thus there is a global structure 
to thefitness landscape. More precisely, the highest optima are nearest to one another. 
The natural measure of the distance between two genotypes with only two alleles per 
locus, 1 or 0, is the Hamming distance, which is the number of positions at which 
the alleles differ. Thus (00000) and (10000) have a Hamming distance of 1. Iflocal 
optima were distributed randomly in genotype space, the average Hamming distance 
between two local optima would be N/2. Furthermore, the Hamming distance from 
the highest local optimum (that is, the fittest found) to the second highest local opti
mum would on average be N/2. This is clearly not the case for small values of K, 
whether the K epistatic inputs per site are adjacent to that site or even randomly dis
tributed among the N. Figure 2.7 shows the correlation between the fitness of local 
optima and their Hamming distance from the highest optimum found. Note the 
striking fact that for K small-for instance, K = 2-the highest optima are nearest 
one another. Further, optima at successively greater Hamming distances from the 
highest optimum are successively less fit. Thus, as stated, there is a global order to the 
landscape. LIke the Alps, our landscape here possesses a kind of Massif Central, or 

> 
Figure 2.7 The correlation between fitness of local optima and their Hamming distance from the 
fittest local optimum found. In all cases, A = 2 alleles at each site. (a-c) The K sites affecting each 
site are drawn at random from among the N. (d-f) The K sites affecting each site are that site's flank
ing neighbors. 
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high region, of genotype space where all the good optima are located. As K increases, 
this correlation falls away, more rapidly for Krandom (Figures 2.7a-c) than for K 
adjacent (Figures 2.7 d-f). Some insight into this phenomenon is offered in Chapter 
6. 

The NK family of landscapes offers a further surprise: The distribution of basin 
sizes climbing to specific optima can be very nonuniform. Some basins are enor
mous. Further, for K small, there is a tendency for the highest optima to have the 
biggest basins. These phenomena are shown in Figure 2.8. Thus, simultaneously, the 
global order of the Massif Central in these landscapes is expressed by the fact that the 
highest optima are nearest one another and have the largest drainage basins. In turn, 
this implies that one high local optimum has information about where other good 
local optima are. And further, the region between two high local optima is a good 
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Figure 2.8 The correlation between fitness oflocal optima and the number of times each local opti
mum was attained on independent adaptive walks from random initial genotypes on the same land
scape. In all cases, A = 2 alleles at each site. 
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area to search for still higher local optima. I show below that this mutual information 
carries marked implications about the usefulness of genetic recombination as a 
search strategy in rugged correlated fitness landscapes. 

Note, finally, in Figure 2.8 that, as K increases relative to N, the tendency for the 
highest optima to have the largest drainage basins dwindles. But even for modest val
ues of K, some very large basins persist. The grounds for this are not clear. 

The results given apply to the case where each gene has two alleles. Less is known 
for larger numbers of alleles per site. It is clear, however, that the complexity catas
trophe still occurs as K increases, and a tendency for high optima to have large drain
age basins also persists for small values of K. However, with a large number of alter
native alleles, high optima are not near one another for small values of K. 

Measuring the Correlation Structure of Fitness Landscapes 

The eighth statistical property of landscapes was studied with a procedure due to 
Weinberger (private communication). Earlier in the chapter, I defined a correlated 
fitness landscape as one in which the fitness values at one point were more or less 
similar to the fitness values at neighboring points. Weinberger (1991) has suggested 
use of the autocorrelation function to measure the correlation structure of fitness 
landscapes and has applied it to the NK model. His idea is to begin at an arbitrary 
genotype, then walk randomly via one-mutant neighbors across the landscape. At 
each step, however, the fitness value of the genotype encountered is recorded. If the 
landscape is correlated, then nearby steps along the walk should have similar fitness 
values. This is just what Weinberger found. The autocorrelation function relates the 
fitness of two genotypes along the walk which are s steps apart: 

R(t,s) = E(j; X ];+s) ~ E(j;) X E(j;+s) 
vanance (f) 

(2.14) 

where E is the expected or mean value,j; is the fitness of the genotype at the tth step, 
andj;+s is the fitness of the genotype s steps farther along the walk. Weinberger esti
mated Equation 2.14 by considering random walks of 2048 steps, for all 2048 - s 
possible pairs of genotypes s steps apart along such a walk. His results are shown in 
Figure 2.9. The first feature to note is that the landscape is correlated for K < 95 but, 
as expected, uncorrelated for the fully random K = N - 1 landscape. Second, for 
each value of K the autocorrelation initially falls off exponentially with increasing 
distance between genotypes along the random walk in sequence space. Thus there is 
a natural correlation length for each landscape. Third, as K increases, the autocor
relation drops off faster. Hence as K increases, genotypes a fixed distance apart in the 
space have fitness values which are less correlated. Weinberger suggests the possibility 
that if these properties are generally insensitive to the details of the underlying dis
tributions from which fitness values were assigned in the NK model or, more gener
ally, are insensitive to a wide range of Gaussian statistical landscapes of which the 
NK model is an example, then the autocorrelation function may be a useful measure 
of many fitness landscapes. 

Other Combinatorial Optimization Problems 
and Their Landscapes 

The purpose of this chapter has been to discuss the structure of rugged fitness land
scapes. I have done so in terms of the NK model. I bring the discussion to a close by 
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Figure 2.9 The autocorrelation function of fitness between pairs of configurations encountered 
along a random walk on a rugged landscape for different values of K relative to N. (a) The K sites are 
neighbors. (b) The K sites are randomly chosen. 

mentioning a few other examples of complex combinatorial optimization problems. 
Each has a complex fitness or cost landscape. 

I have already briefly mentioned spin-glasses. These disordered magnetic mate
rials have afforded a rich source of models of complex potential surfaces (Edwards 
and Anderson 1975; Sherrington and Kirkpatrick 1975; P. W. Anderson 1985; 
Binder and Young 1986; Stein, Baskaran, et al. 1987). Analysis of these systems has 
explored topics such as the number oflocal minima, the spin overlaps between min
ima, the heights of potential barriers between minima, and slow relaxation times at 
finite temperatures as a spin-glass explores its potential surface. 

The close relation between the NK model and spin-glasses again warrants com
ment. As noted, the NK model is a version of a spin-glass in which the fitness con
tribution of each site is written as a sum of terms depending upon the "allele" at that 
site, plus terms for pairwise interactions of that allele with each of the K others 
impinging upon it, plus more terms for all the triadic combinations among the K + 
I sites, plus terms for all combinations up to the "K-adic." This version is closely 
related to a spin-glass model investigated by Gross and Mezard (1985), which exam
ines a Hamiltonian energy surface given by the sum of all possible K-adic interactions 
among the spins. The Gross-Mezard model appears to be almost identical to a model 
introduced by Amitrano, Peliti, and Saber (1991) to study molecular evolution on 
rugged landscapes. The limit of the Gross-Mezard spin-glass when K approaches N 
is Derrida's random-energy spin-glass model (1981). In fact, the random-energy 
model is identical to the NK model in the K = N - 1 limit. Thus results we have 
obtained for this limiting case also apply to the corresponding model in statistical 
physics. 

The most famous combinatorial optimization problem is the traveling salesper
son problem (TSP). The task is to begin at one of N cities, travel in turn to each city, 
and return to the initial city by the shortest total route. This problem, so remarkably 
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simple to state, is extremely difficult (Lin and Kernighan 1973; Johnson and Papa
dimitriou 1985; Kirkpatrick and Toulouse 1985; Brady 1986; Kauffman and Levin 
1987). At present, it is believed that the only way to find the globally optimal tour is 
to examine all possibilities. Any tour through the N cities is one of the possible N! 
permutations if choice of the initial city is ignored. Therefore, exhaustive search 
explodes rapidly as N increases. The TSP is the paradigm case of an "NP" (non
polynomial) complete problem (Lin and Kernighan 1973). 

Tours can be located in a "tour space," each tour next to "one-mutant" neighbor 
tours, which differ by exchanging the links between two pairs of cities. An adaptive 
walk via fitter one-mutant tours begins at a tour and walks via fitter neighbors to a 
local optimum. The distribution of optima found in this way appears to be roughly 
Gaussian and far from the optimal tours (White, Solla, and Sorkin 1986). 

Problems similar to the TSP arise in computer design in attempts to minimize 
wiring placement on silicon chips (Kirkpatrick, Gelatt, and Vecci 1983; Anderson 
1985). Another such problem is that of partitioning a graph consisting of a set of 
points connected by a set of lines into two disjoint sets of points such that each set 
has connections only to members of the other set (Anderson 1985; Stadler and Hap
pel 1992). 

Despite the body of research on how to optimize in these problems and the very 
large number of well- and poorly studied complex combinatorial optimization prob
lems, there is only the beginning of a literature on the structure of these landscapes 
(Stadler 1992; Stadler and Schnabl 1992). 

The NK family of correlated landscapes is but one such family. It is an entirely 
open question whether there may be a few fundamental families of correlated land
scapes or an extremely large number of such families. This is a critical question for 
further investigation. The grounds to hope that there may be only a few fundamental 
families is that in many areas of statistics a few fundamental distributions have 
proved important. Should we eventually discover that rather few families of corre
lated landscapes exist, then it might prove possible to measure a few parameters of a 
given rugged correlated landscape and discern both the family to which it belongs 
and the way adaptive strategies based on mutation/selection or some other process 
might best optimize on that particular landscape. Whatever the answer may prove 
to be, the utter simplicity of the NK family lends credence to my impression that it 
is likely to be a fundamentally important family of correlated landscapes. 

There are, in fact, clues that many complex combinatorial optimization problems 
can be mapped by a few parameters onto the NK family of rugged landscapes. Wein
berger (personal communication) recently applied the autocorrelation measure of 
fitness landscapes to an apparently very different problem (described in Chapter 3): 
RNA folding stability for model RNA sequences. He found that the autocorrelation 
structure of the model RNA stability landscape corresponded, via the NK model, to 
an effective K of 8 for RNA sequences of length N = 70. Utilizing these parameters 
and the NK model, he was able to predict the observed number of local optima in 
model RNA sequence space for folding stability. Finally, Weinberger (1991) has pro
posed that a wide class oflandscapes are at least qualitatively described by NK land
scapes having intermediate values of K. He shows that NK landscapes are generic 
members of a class of so-called AR( 1) landscapes, in which all correlations are com
pletely determined by correlations between neighboring points in the space. In this 
case, the sequence of fitness values obtained via an unbiased random walk on the 
landscape must, for large landcapes, be an AR( 1) (Ornstein-Ulenbeck) process. Such 
processes are the most general stationary, Gaussian random process that are also 
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first-order Markovian. Such processes are common among complex combinatorial 
optimization problems (Sorkin 1988), including the traveling salesman problem 
(Stadler and Schnabl 1991). 

The success in mapping a model RNA folding problem, the traveling salesman 
problem, and others into AR( 1) landscapes and onto the NK model, which is a 
generic member of the AR(l) family oflandscapes, suggests that the statistical prop
erties of the NK model can be used to predict features of a wide range of other com
plex cost surfaces. 

SUMMARY 

This chapter has introduced the concept of rugged fitness landscapes. Such land
scapes undoubtedly underlie adaptive evolution at the molecular and morphological 
levels. In order to study the structure of such landscapes, I have carefully eschewed 
discussion of the fitness of whole organisms in their environment. I have instead 
defined fitness narrowly, as, for example, the capacity of pep tides to bind to a specific 
antibody molecule or of proteins to catalyze a specific reaction under standard con
ditions. 

The major discussion of the chapter has explored the expected structure of discrete 
fitness landscapes corresponding to sequence spaces, such as protein space. Here, 
evolution can be considered as an adaptive walk from proteins having low fitness for 
a specific function to or toward proteins having high fitness for that function. In the 
simplest case, walks proceed via fitter one-mutant variants to local optima in the 
space of possibilities. Our analysis has focused upon the statistical features of such 
walks as a function ofthe ruggedness of fitness landscapes. Important aspects of adap
tive walks include the number of local optima, the number of steps on a walk to a 
local optimum, the average number of mutants tried on such a walk, the average 
number of mutants accepted on such a walk, the rate at which fitter one-mutant 
neighbors dwindle to zero along an adaptive walk as local optima are attained, the 
average number oflocal optima accessible by alternative adaptive walks from a given 
starting point, the number of points which can climb to the global optimum, the rel
ative locations of local optima with respect to one another and with respect to the 
global optimum, and the basin sizes draining to local optima as a function of the 
height of those optima. 

We have found that all these properties differ as a function of how rugged and 
mUltipeaked the fitness landscape is. In particular, I introduced the NK family of fit
ness landscapes to explore these issues. This family is among the first studied to 
explicitly invite us to explore the statistical structure of fitness landscapes. In the 
model, tuning the epistatic coupling parameter K relative to N increases the rugged
ness of the landscape in a controlled manner from single-peaked and smooth for K 
= 0 to fully random for K = N - 1. 

I have developed and presented the NK model in detail for the following purposes: 

1. There can be no doubt whatsoever that the real adaptive evolution of proteins for 
specific catalytic tasks, ligand binding tasks, and other purposes confronts fitness 
landscapes with some statistical characteristics. If the NK model were to serve no 
other purpose than to tune our intuitions about what such landscapes might look 
like, that alone would warrant our attention. 
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2. In the interpretation of this model as proteins, the NK family of landscapes may 
or may not prove to be useful in predicting the structure of real fitness landscapes 
with respect to protein evolution. 

3. The model is a serious sustained one of epistatic interactions in a haploid genetic 
system. It is open to direct generalization to diploid genetic models in which the 
fitness contribution of each allele on each chromosome now is a randomly 
assigned function of the alleles at the K + 1 sites on both chromosomes. 

4. The NK family already has led us to a clear and largely unrecognized feature of 
many complex combinatorial optimization processes: As the number of conflict
ing constraints increases, not only do the corresponding landscapes tend to 
become more multipeaked and rugged, but for an unknown and very large family 
oflandscapes the,peaI9u~(;~detoward the mean fitness in the space of possibilities. 
This is clearly important. Organisms are complex. Do they avoid this limitation? 
If so, how? If not, what are the implications? 

5. The model suggests at least one means of mitigating the conflicting-constraints 
complexity crisis. If the number of epistatic interactions K remains small while N 
increases, landscapes retain high accessible local optima. This is a first hint of 
something like a£onst.I:uctiQQ.x~g].lir..~Il1ent19 make complex systems with many 
interacting parts which remain perfectible by mutation and selection. Each part 
should directly impinge on rather few other parts. 

The complexity catastrophe is averted in the NK model for those landscapes 'I 
which are sufficiently smooth to retain high optima as N increases. ) 





CHAPTER 3 

Biological Implications of Rugged 
Fitness Landscapes 

We have now investigated in some detail the structure of multipeaked fitness land
scapes. The present chapter begins to discuss the biological implications of such land
scapes, for it is the fixed or deforming structures of fitness landscapes which are the 
nexus of adaptive evolution. The first sections of the chapter take up a number of 
phylogenetic implications of the fact that adaptive evolution occurs on rugged fitness 
landscapes. The second half of the chapter discusses the implications of rugged fitness 
landscapes for the flow of a population under the drives of mutation, recombination, 
and selection. 

The first issues we must examine are the consequences of relaxing the assumption 
that adaptive walks occur via fitter one-mutant or few-mutant variants. In the limit, 
adaptive walks might pass via very distant mutants-in other words, via long jumps 
across genotype space. We shall find a "universal law" showing that, in such long
jump processes, the rate of finding fitter variants slows very rapidly. We shall also 
find that such long-jump adaptation confronts the complexity catastrophe already 
identified: Optima attained fall ever lower. 

The characteristic structure of rugged landscapes and simple adaptive walks lead 
one to expect radiation and stasis as a generic feature of adaptation on relatively fixed 
fitness landscapes. Yet familiar theories of radiation and stasis place no emphasis on 
these features of fitness landscapes. The generic features of rugged landscapes also 
appear to bear on the famous Cambrian explosion, when many new phyla were cre
ated in short evolutionary order. Landscape ruggedness also influences the degree of 
divergent and convergent evolution, and hence is necessarily important in assessing 
morphological evolution and the systematists' problem of "homoplasy" due to con
vergent evolution. Homoplasy, usually viewed as "noise" by systematists, is in fact 
data about the structure of fitness landscapes. Finally, the simple points raised in this 
section may also have bearing on the famous embryological and evolutionary dicta 
known as von Baer's laws. We shall first find a puzzle in these laws and then attempt 
to rederive them. 
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PHYLOGENETIC IMPLICATIONS 
OF RUGGED LANDSCAPES 

A "Universal Law" for Long-Jump Adaptation 

In Chapter 2, we limited our discussion to adaptive walks via fitter one-mutant var
iants. However, in real biological populations with a fixed mutation rate, members 
of the population exhibit a distribution of point mutations (Crow and Kimura 1965, 
1970; Ewens 1979). In addition to point mutations, which lead to substitutions of 
single amino acidsJrame-sh([i mutations due to deletion or addition of nucleotides 
can alter most or all ofthe amino acids incorporated into a protein downstream from 
the mutation site. Such mutations, in a single event, "jump" a long distance across 
protein space. More generally, recombination between two genes can, in a single 
event, lead to a hybrid protein made up of the left half of one gene and the right half 
of the other (Yourno, Kohno, and Roth 1970). Such recombined proteins-or, more 
generally, genes-represent long jumps across sequence space. Similar jumps can 
occur in the space of genomic regulatory systems controlling cellular differentiation 
and morphogenesis. Thus, real populations evolve on rugged landscapes by a mix
ture of mutations which search the immediate vicinity and some fraction of muta
tions which jump long distances in genotype space. 

In keeping with the sensible intellectual strategy of gaining insight into complex 
behavior by proposing simple initial caricatures, it is of interest to find that a simple, 
near-universal law describes the behavior of an adapting population in the limit of 
search by long jumps across sequence space (Kauffman and Levin 1987). The "law" 
is equivalent to Feller's (1971) theory of records, which asks the waiting time for suc
cessive new athletic records to be set. The answer is that the waiting time doubles after 
each record is set. In our context, suppose adaptation is occurring on a highly rugged 
but correlated landscape. An example which suffices is the traveling salesman prob
lem. Consider a search procedure with two individuals. One remains on the current 
best tour while the second jumps a long distance in tour space. If the jumper does not 
find a fitter tour on the first trial, she or he keeps jumping long distances from the 
current best tour until a better tour is encountered. When the jumper finds a fitter 
tour, both individuals gather at that new tour and the second again jumps a long 
distance in tour space. The question is, What is the expected waiting time to find each 
fitter tour? 

The critical idea is that if the searcher jumps beyond the correlation lengths of the 
space, then whether or not the landscape is correlated, the searcher is encountering 
a fully uncorrelated random landscape. Therefore, at each successful jump, the 
expected fitness of the new tour is halfway between the relative rank-orders of the 
present tour and the best tour possible. Since the waiting time to find a still fitter tour 
is the reciprocal of the relative rank-order, the waiting time doubles G:[ier each fttter 
variant is found. This leads to the relation 

s = log2g (3.la) 

where s is the expected number of improvement steps which have occurred and g is 
the number of trials. In the population context, where we can think of each trial as 
constituting a generation, g stands for the number of generations. 

The results expressed in Equation 3.1 a do not require a single searcher but extend 
to a fixed-size, hypothetical population of searchers who leave a single individual on 
the current best tour while the rest all jump long distances. Then the whole popula
tion moves to the fittest tour found. 
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Consider an adaptive process begun with the entire population of N* individuals 
located at a particular randomly chosen entity. The relative rank-order of that entity 
x/T is, on average, 0.5. Thus 0.5N* of the long-jump variants sampled in the first 
generation are fitter than the initial entity. The best among these fitter variants has 
an expected relative rank-order of (N* - 2)/N*. At the second generation, all N* 
long-jump variants are again sampled, and the expected number of fitter variants is 
2. The best of these, on average, is % of the rank-order distance from the current best 
entity to the top-ranking entity. At the third generation, the expected number of fitter 
variants uncovered by the N* long-jump variants sampled is 0.66. Consequently, the 
expected waiting time until a third fitter variant is found is the reciprocal, 1/0.66 = 
1.5 generations. On average, a single fitter variant is found, and on average it lies 
halfway between the last fittest variant and the top rank T. Therefore, after the third 
improvement step, the expected waiting time to find the next (fourth) improved vari
ant doubles to three generations. The cumulative number of improved variants s 
uncovered in g generations is therefore approximately 

(3.lb) 

This simple expression is independent of population size as long as the size is fixed 
and large. 

This is a remarkably simple result. It is also quite accurate. For example, we 
recently tested it on the traveling salesman problem (Kauffman and Levin 1987) and 
found the mean cumulative number of fitter tours at any generation to be 0.8 log2 g. 

The fact that, for N* large, we considered a "greedy" process-that is, one in 
which the fittest variant found is chosen-makes a difference only initially because 
the relative rank-order of the population is soon so high that, at most, one member 
will find a fitter variant in each generation. Thus if one selects randomly from among 
all fitter variants found, it will take slightly longer than Equation 3.1 b predicts to 
reach rank (N* - 2)/ N*. An upper bound for the average is log 2(N* - 2) improve
ments, but asymptotically, the rate of finding new improvements yields the same 
slope as that found in Equations 3.1 a and 3.1 b. For N* = 16, for example, the greedy 
algorithm saves less than one step, on average, compared with a nongreedy algo
rithm. 

Equation 3.1 b is an overestimate of the fitness reached after a fixed number of 
generations. The argument leading to this equation ignores the fact that steps which 
reach more than halfway to the top are more likely to slow the rate of finding still
fitter variants than are steps which reach less than halfway to the top likely to hasten 
that rate. Weinberger (personal communication) recently rederived Equation 3.1h 
taking account of these facts and found 

s = lng (3.1c) 

Equations 3.1 a-c can be thought of as very simple, universal aspects oflong-jump 
adaptation on, presumably, any sufficiently rugged multipeaked landscape. The 
range oflandscapes to which this "universal law" applies is not clear. Nor is it clear 
what length is needed in order for the long jump to jump beyond the correlation 
lengths in the landscape. For example, spin-glasses and the NK model appear to have 
self-similar landscapes (Stein 1987) in which small hills nestle into the sides oflarger 
hills, which nestle into the sides of still larger hills. These landscapes thus have a vari
ety oflength scales. Ifan adaptive processjumps a moderate distance which remains 
shorter than the longest length scales in such a landscape, then that process is sam
pling an uncorrelated landscape with respect to shorter length scales but a correlated 
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landscape with respect to longer length scales. With respect to the latter, the process 
is climbing a local hill. Nevertheless, we have explored this law both for the traveling 
salesman problem and for the very different problem of adaptation in model genetic 
regulatory networks (discussed in Chapter 5) and the NK model. Our results confirm 
the simple universal law (Kauffman and Levin 1987). Presumably its applicability is 
very wide. 

This theory showing the long-jump behavior of an adapting population is impor
tant in two main respects. First, long jumps encounter the complexity catastrophe. 
Second, three time scales arise naturally for adaptive processes on rugged landscapes. 

Long Jumps on Correlated Landscapes Suffer the 
Complexity Catastrophe 

Since the landscape encountered in the long-jump limit is uncorrelated, this limit of 
an adaptive process suffers from the complexity catastrophe. In collaboration with 
my colleague Lloyd Clark, long-jump adaptation was carried out for K = 2 land
scapes, shown to be rugged but highly correlated in Chapter 2, for values of N from 
10 to 200. At each generation, a single copy of the current best genotype was left in 
place, while a second fully random mutant copy explored a single-long-jump new 
genotype. If no fitter variant was found, the process was iterated, leaving the current 
best marker genotype in place. Otherwise, the process moved to the fitter variant. 
Trials were carried out over 200 generations in 100 different landscapes for each 
value of N. Figure 3.1 a shows the average results for each genome size. Clearly, as N 
increases, the fitness attained after any fixed number of generations declines toward 
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Figure 3.1 (a) The complexity catastrophe seen in long-jump adaptation on correlated K = 2 NK 
landscapes. "Generation" is the cumulative number of independent long-jump trials. Each curve is 
the mean of 100 walks. 
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Figure 3.1 (b) The complexity catastrophe. Data from (a) at 200 generations used to plot fitness 
attained as a function of N. Note similarity to Figure 2.4. (c) Testing the universal law for long-jump 
adaptation. Vertical axis is cumulative number of improvements from each adaptive walk in (a). 

the mean of the genotype space, 0.5. The rate offalloff as N increases (Figure 3.lb) 
closely parallels that found in Chapter 2 for the complexity catastrophe in searches 
via fitter one-mutant neighbors in fully random landscapes (Figure 2.4). 

This simple observation means that the general applicability of the complexity 
catastrophe is far wider than one might have supposed. In examining the NK model, 
we found that the complexity catastrophe due to conflicting constraints sets in with 
respect to adaptive walks via one-mutant variants when K increases proportionally 
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to N. This led us to ask for possible construction requirements for achieving epistatic 
systems which adapt on well-wrought, well-correlated landscapes which might main
tain high optima as complexity (N) increases. A sufficient condition appears to be 
that the richness of epistatic interaction (K) remain low. If, however, even on these 
"good" landscapes, adaptive processes which proceed by reasonably longjumps con
front the complexity catastrophe, selection is boxed in. Selection had best confine 
searches to the vicinity of good local hills and not take excessively long jumps. Blind 
long jumps become an ever more wasteful strategy as complexity increases, even on 
the best oflandscapes. 

Figure 3.1 c tests again the hypothesis that the rate of finding fitter variants in the 
long-jump limit varies as given in Equation 3.1c. Clearly, the experimental slope is 
very close to that predicted by theory. 

Three Time Scales in Adaptation on Rugged Landscapes 

Adapting populations exhibit a range of mutations per individual, some due to point 
mutations substituting single amino acids and some due to frame shifts and recom
bination. This feature of real adaptation on rugged landscapes leads us to identify 
three natural time scales to adaptation. 

1. Early in an adapting process, fitter variants in the vicinity of an initial poorly fit 
protein are easily found but are constrained by the correlation structure of the 
landscape to being only slightly fitter. In contrast, fitter distant mutants beyond 
the correlation lengths of the space are as easily found because the initial protein 
is poorly adapted. Because these distance proteins are not constrained by the local 
correlation structure, however, they can be very muchfitter. Since the fittest var
iants sweep the population fastest (Gillespie 1983, 1984), the population will tend 
to flow to these distant points. After each such distant fitter variant is found, how
ever, the waiting time to find another doubles. After relatively few such long 
jumps, the waiting time has become long compared with the rate at which fitter 
mutants are found in the immediate vicinity due to the existence of the correla
tions in the landscape. 

2. Therefore, in the midterm, adaptation finds nearby fitter variants faster than it 
finds distant fitter variants and hence climbs a local hill. As the hill is climbed, 
however, the rate of finding fitter nearby variants first dwindles and then stops as 
a local optimum is reached. 

3. On the longer time scale, the process, before it can proceed, must await a success
fullongjump to a better hillside some distance away. 

I emphasize that this picture of complex diffusion in rugged sequence spaces is a 
caricature in assuming that the entire haploid population moves to a single fitter vari
ant whenever one is found and in assuming that fitness landscapes are fixed in struc
ture. But the outline frames in the behavior of an adapting population when the rate 
of finding fitter variants is low compared with fitness differentials. 

Radiation and Stasis as Generic Properties of Adaptation on 
Rugged Landscapes 

In our consideration of the rugged character of adaptive landscapes, we found a num
ber of general features which, on a little thought, are virtually inevitable. Such land-
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scapes have a large number of local optima. Walks toward optima in high-dimen
sional spaces which begin with poorly fit entities-proteins, DNA sequences, or 
organisms with some set of traits-initially can climb uphill in many alternative 
directions. As optima are approached, the number of ways uphill must decrease to 
zero. It follows from this that if the adaptive process can send branches upward along 
alternative adaptive walks, then initially many branches can emerge from a first poor 
genotype but, ultimately, single lineages wend their way uphill until trapped on local 
optima. 

A simple conclusion follows from this trapped-lineage model, with the permission 
of the reader to think of such branching walks as phylogenetic evolutionary lineages. 
In afixed but rugged landscape, radiation and ultimate stasis are utterly generic. We 
require no special mechanism to account for such phenomena. I return to this 
shortly, for many authors have felt constrained, in accounting for radiation and sta
sis, to offer special explanations, typically in terms of initially empty niche space 
which is progressively filled. 

Rederiving von Baer's Laws 

Von Baer's laws are familiar to all embryologists and are one of the foundations of 
comparative anatomy (de Beer 1958). They state that, in well-established lineages, 
notably the vertebrates, early embryos of the various lineages are more similar than 
late embryos. Thus early fish, frog, chick, and human embryos are remarkably sim
ilar (de Beer 1958, Gould 1977). The familiar explanation for these laws is that 
mutants affecting early ontogeny are more disruptive than mutants affecting late 
ontogeny. Thus mutants altering early development are less likely to accumulate, 
and early embryos remain more similar from one order of organisms to another than 
do late embryos. 

Is this plausible argument actually so plausible? Even if the rate of finding early 
beneficial mutants were a constant low fraction of the rate of finding late beneficial 
mutants, hundreds of millions of years have elapsed in the vertebrate lineage. How 
can we be so assured that, over a time span of 600 million years, no beneficial mutants 
affecting early embryos should have arisen and altered early fish from chick from 
human? 

The simple ideas about rugged landscapes may more adequately explain von 
Baer's laws. A first step in rederiving the laws makes use of Wimsatt's (1986a, b) idea 
of "generative entrenchment," which denotes the number of consequences a given 
mutant has in development. On average, Wimsatt argues, mutants affecting early 
development cause many alterations and thus have high generative entrenchment; 
those acting late in development have few consequences and hence low generative 
entrenchment. The immediate consequence is that early mutants are adapting on a 
highly uncorrelatedfitness landscape and late mutants are adapting on a well-corre
lated landscape. 

From the NK model, we know that adaptation on correlated landscapes typically 
implies that the rate of finding fitter variants decreases far more slowly than on uncor
related landscapes. Thus early mutants, because they are on a nearly uncorrelated 
landscape, confront the consequences of Equations 3.1: The waiting time to find fit
ter early-acting variants doubles after each fitter variant is found. 

This ever-doubling waiting time implies that the rate of finding fitter mutants 
altering early ontogeny decreases rapidly. Thus, to state the result in idealized form, 
given a fixed mutation rate in a fixed-size population with one generation a year, after 
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1000 years, ten early mutants would have accumulated; after 1 000000 years, 
another ten would have accumulated; and after 1 000 000 000 years, only another 
ten would have accumulated. By contrast, late-acting mutants can continue to accu
mulate at a more constant rate, since their fitness landscapes are correlated. It follows 
that early development should soon become more conservative than late develop
ment: hence von Baer's laws. 

The Cambrian Explosion and Permian Quiescence 

The existence of three time scales for adaptive evolution on rugged landscapes cou
pled with the greater generative entrenchment of early mutants appears to offer a 
simple explanation for the vast explosion of biological diversity which took place at 
the onset of the Cambrian. It may also account for the relative quiet following the 
great Permian extinction. 

The Burgess Shale, which was deposited about 550 million years ago in British 
Columbia, bears witness to the Cambrian explosion (Gould 1989), which established 
essentially all the major animal body forms, or baupUine, and hence all the major 
phyla which would exist thereafter. Lewin (1988) points out that, compared with the 
30 or so phyla extant today, the Cambrian explosion may have generated as many as 
100 phyla, many of which subsequently became extinct. Not only did a very large 
number of novel body forms originate rapidly, but the Cambrian explosion exhibited 
another novelty: Species which founded taxa appear to have built up the higher taxa 
from the top down. That is, exemplars of major phyla were present first, followed by 
progressive filling in at class, order, and lower taxonomic levels (Raup 1972, 1983; 
Valentine 1977, 1980; Erwin, Valentine, and Sepko ski 1987; Jablonski and Bottjer 
1988). In contrast to this evolutionary burst of invention are the consequences of the 
great Permian extinction about 200 million years ago, when approximately 96 per
cent of all species became extinct. Following the Permian extinction, there is a rapid 
increase in species abundance and taxa up to the family level, but no new phyla or 
classes were created (Bambach 1985; Erwin, Valentine, and Sepkoski 1987; Jablon
ski and Bottjer 1988). Rather, the existing phyla replenished from the bottom up. 

The puzzle is why the Cambrian and Permian are so different from each other. 
Valentine (1980) and Valentine and Walker (1986), echoed by Erwin, Valentine, and 
Sepkoski (1987), favor an argument based on early ecological opportunity followed 
by progressive filling of niche space. Early Cambrian organisms confronted an empty 
niche space. Valentine, for example, assumes that mutants of nearby morphologies 
occupying nearby niches are more likely to be viable than those which jump to dis
tant morphologies and thus occupy distant niches. Further, Valentine suggests that 
invasion of a niche requires that it be unoccupied. If not, the invader is blocked by 
competitive exclusion. In the early Cambrian, such distant niches were unoccupied. 
This vacancy allowed at least some fraction of distant mutants to colonize distant 
niches, thereby founding new phyla. But, Valentine argues, as niche space filled, the 
Cambrian radiation slowed. By the time of the Permian extinction, the surviving 4 
percent of species were still located across vast tracts of ecospace and hence left little 
opportunity for a new evolutionary explosion. New phyla were not founded, but 
innovation at the family and lower levels was abundant. 

More recently, Valentine (1986) and Valentine and Erwin (1986) also suggest the 
alternative possibility of a change in the genomic system over time such that devel
opment was less constrained, or "canalized" (Rendel 1979), during the Cambrian 
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explosion than it later became. On the genomic hypothesis, by the time of the Perm
ian extinction, the genome had become more canalized, and so development was less 
able to vary. Hence new phyla were not founded, and taxa filled in from the bottom 
up. 

Analysis of the generic properties of adaptation on rugged but correlated fitness 
landscapes suggests an alternative hypothesis: the Cambrian-Permian asymmetry 
may be a direct expression of adaptation on such landscapes. There are three basic 
ideas in such a framework. 

1. Adaptive evolution occurs on rugged fitness landscapes. 

2. The rate of finding successively fitter variants decreases very rapidly both on very 
rugged landscapes and on smoother landscapes explored by long jumps; in con
trast, the rate of finding successively fitter nearby variants decreases gradually on 
smoother landscapes. 

3. Mutants affecting early ontogeny typically have more profound consequences 
than mutants affecting late ontogeny (Wimsatt 1986a, 1986b). Thus the rate of 
finding fitter mutants altering early development and fundamental baupHine 
decreases more rapidly than the rate of finding fitter mutants affecting late ontog
eny. 

Together these ideas imply that early, poorly fit multicellular organisms could rap
idly explore a large diversity of improved alternative basic morphologies, thereby 
establishing phyla. As the rate of finding fitter mutants altering early ontogeny 
decreased but fitter variants affecting later ontogeny were still readily found, variant 
species founding classes, orders, and the lower taxa became established. Taxa filled 
in from the top down. In contrast, by the Permian extinction, early ontogeny was 
largely frozen, and so fitter variants altering fundamental baupHine became very hard 
to find. But mutants altering late ontogeny remained easier to find. New genera and 
families arose. Taxa replenished from the bottom up. 

As noted above, branching radiation which gradually slows and developmental 
locking-in are derived from the generic features of innovation on rugged fitness land
scapes. There is no need in this model for filling of ecospace or competitive exclusion 
to slow radiation, as suggested by Valentine (1980), although such exclusion may also 
occur. Also, a locking-in of early development, and hence von Baer's laws, do not 
represent a special mechanism of developmental canalization, the usual sense of 
which is a buffering of the phenotype against genetic alterations (Waddington 1940, 
1957, 1962, 1966; Rendel 1979). Instead, locking-in of early development is a direct 
reflection of the fact that the number of ways to improve organisms by altering early 
ontogeny has dwindled faster than the number of ways to improve by altering late 
development. 

It might be objected that this argument rests on the assumption of fixed fitness 
landscapes and that, if fitness landscapes changed significantly during the Phanero
zoic, some lineages could have again found themselves at the bottom, and long-jump 
mutations would again have a good chance of being adaptive. This concern is impor
tant. Landscapes cannot be fixed in general, if only because the physical environment 
changes. Iflandscapes heave rapidly in time and dramatically in extent, such that an 
organism's fitness in the old environment is nearly uncorrelated with its fitness in the 
new environment, then the insights derived from thinking in simplified terms about 
fixed fitness landscapes are surely mistaken. Iflandscapes change relatively slowly in 
time, however, and-equally important-if the fitness values in the new environ-
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ment are strongly correlated with those in the old environment, then in the new envi
ronment organisms remain highly fit. Thus in the new environment adaptation will 
be dominated by local search from highly but not optimally adapted organisms, 
rather than by long-jump adaptation. If mutants affecting early development typi
cally adapt on more rugged landscapes than those affecting late development, then 
as the fitness landscapes warp, adaptation should continue to occur via modification 
of late development. Once established, major bauplane remain locked in. Despite 
deformations of the fitness landscapes, formation of new phyla is difficult once lock
ing-in of early development occurs. Formation of new families and genera is easy. 

This account may also offer insight into rapid, bottom-heavy origination below 
the ordinal level in rebounds following mass extinctions (Jablonski and Bottjer 
1988). If mass extinction is assumed to be related to environmental and ecological 
change, then following the change, fitness landscapes may be sharply altered. Such 
altered landscapes would be expected to cast many organisms back to lower fitness 
levels, followed by fairly dramatic alterations of late ontogeny in many directions. 
This would yield bottom-heavy radiations, with families tending to arise early in the 
history of their orders and genera tending to arise early in the history of their families. 
Jablonski and Bottjer (1988) note evidence for this in the early Paleozoic and early 
Mesozoic for marine organisms and in the early Cenozoic for mammals. Focus on 
landscape structure and on the number of improvement directions as adaptation 
occurs and as landscapes alter raises the possibility that post-extinction rebound radi
ations might be due not to lack of competitive exclusion in depauperate environ
ments, but to the increased number of directions open for adaptive improvements 
in an altered environment. Gould, Gilinsky, and German (1987) argue that such bot
tom-heavy clades, which dominate in the fossil record from the Cambrian through 
the Ordovician, constitute an asymmetry which shows the direction of evolutionary 
time. Focus on the fact that bushy radiation dwindling to stasis is generic on rugged 
landscapes may help account for this fundamental asymmetry. 

These general expectations can be assessed readily using a modified version of the 
NK model. The modifications incorporate (1) the hypothesis that some traits are 
more generatively entrenched and therefore cause more disruption if modified and 
(2) the possibility that the world changes, thereby changing fitness landscapes. In the 
NK model as presented, each site receives exactly K epistatic inputs and epistatically 
affects on average K other sites. In order to model differential generative entrench
ment, my colleague Sonke Johnsen and I modified the model such that each site is 
still affected by K epistatic inputs, but some sites epistatically affect a large number 
of other sites, while others epistatically affect no other sites. To be concrete, we dis
tribute the outputs hierarchially, falling off exponentially from the first site to the Nth 
site, such that the weighted proportion of epistatic outputs from each site i is e-Oli• 

This particular choice means that, for N = 50 sites, site 1 affects about 12 times as 
many sites as does site 50. 

In order to consider the effects of changing the external world, the NK model can 
be modified to include an external world consisting in a list of N features, present or 
absent. Hence the world is a vector of 1 and 0 values. A convenient way to couple 
the NK landscape on which adaptation occurs with the world is to suppose that each 
site in the landscape is affected by K other sites in the adapting organism and by w 
sites in the world. Then each site in the organism is affected by K + 1 + w sites, and 
for each ofthe 2K +l+w combinations of organism traits and world features, a random 
fitness contribution by that site is assigned. In effect, this expands the random fitness 
table of each site to include the 2 w alternative combinations of world features which 



BIOLOGICAL 1M PLICA nONS OF RUGGED FITNESS LANDSCAPES 79 

impinge upon that site. Given this coupling, the fitness landscape of the organism 
changes as the features of the world change. If w is large and if each site in the world 
is coupled to many sites in the organism, then a slight change in the world yields a 
drastic change in the fitness landscape. If, instead, w is small, then small changes in 
the world yield small changes in the landscape. 

Simulations with this modified NK model were carried out under three "move" 
procedures. In the first, adaptive steps occurred via the fittest one-mutant variant. 
This corresponds to a greedy gradient ascent and to the situation in which the fittest 
variant sweeps the population. In the second, one of the fitter one-mutant variants, 
if any existed, was chosen at random at each iteration. In the third, a random one
mutant variant was sampled and, if fitter, the adaptive process stepped to that vari
ant. The results are basically similar under all three move procedures and confirm 
the following: 

1. During adaptation, sites of high generative entrenchment are more likely to 
change when the fitness of the adapting entity is low. As fitness increases, sites of 
lower entrenchment become more likely to change. This is shown in Figure 3.2. 
Site I has the highest generative entrenchment; site 50, the lowest. Thus when 
fitness is low, adaptation occurs initially on a very rugged fitness landscape via 
sites which influence the fitness contributions of many other sites. As fitness 
increases, successive adaptation occurs via progressively minor variants which 
affect fewer and fewer other sites. 

2. If the world changes slightly but often, a characteristic distribution is found in 
which sites of high generative entrenchment change rarely or not at all, while sites 
of progressively lower entrenchment change progressively more often. That is, 
sites which influence many other sites become frozen into given states, 1 or 0, and 
are resistant to change, and sites which influence few other sites can continue to 
change rapidly. As the world changes more radically but equally often, all sites 
change more often in an attempt to climb hills on the rapidly deforming land
scape. The most entrenched sites (that is, the lowest-numbered sites) change least 
often (Figure 3.3). Notice that as the world deforms more dramatically, highly 
entrenched sites change. 

3. If the world changes dramatically but only occasionally, then fitness drops dra
matically and sites of high generative entrenchment tend preferentially to change 
during the initial adaptation. As fitness increases, sites of progressively lower 
entrenchment change. This is summarized in Figure 3.4. The effects are clearest 
for the greedy move procedure (Figure 3.4a). 

These results echo and support the arguments advanced above, when we looked 
at the Cambrian-Permian asymmetry. Early development, when associated with 
high generative entrenchment, locks in rapidly, while later development, due to 
lower entrenchment, continues to alter. This remains true if the world continues to 
change rapidly but only slightly at each change. Thus early development should 
remain conservative, as should major features which define higher taxa, such as the 
vertebrates. In contrast, progressively more minor features change more readily. 
Once early development locks in, continued rapid but slight changes in the world 
lead to continued proliferation oflower taxa. Following drastic changes in the world, 
adaptive variation of major features occurs as well, unleashing formation of higher 
taxa during the adaptive rebound. 
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Figure 3.2 Average fitness at which sites change in order to take an adaptive step as a function of 
the number of the changing site, averaged over 200 runs. Hierarchical NK model, N = 50, K = 20, 
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sites and tend to change only at low fitness. High-numbered sites have few or no epistatic effects on 
other sites and tend to change at high fitness. 

Figure 3.3 A verage, over 100 runs, of the number oftimes a site changes as a function of site num
ber: (a) greedy algorithm, (b) fitter algorithm, (c) random algorithm. Hierarchical NK model, N = 
50, K = 20, w = 5, world changes at each generation. wm = 1,2,4,8 sites in the world, a binary 
vector Nlong, change at each moment; thus wm = 8 causes more rapid deformation of fitness land
scapes than wm = I. Low-numbered sites affect many other sites; high-numbered sites affect few or 
no other sites. Note that, in (a) and (b), low-numbered sites almost never change. Progressively less 
highly entrenched sites (higher numbers) change more often and do so more often as the world 
deforms more dramatically. 
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Figure 3.4 Hierarchical NK model in episodically changing world. N = 50, K = 20, w = 20, world 
changes every five generations, changing wm = 20 sites in the N sites of the world. Vertical axis is 
mean site number which changes at each generation: (a) greedy algorithm, (b) fitter algorithm, (c) 
random algorithm. After the world changes, fitness falls and low site numbers, with epistatic effects 
on many other sites, preferentially change. Thus the average number of the site which changes falls. 
As fitness increases, sites which influence fewer other sites (hence in the hierarchical model have 
higher site number) change preferentially. Sawtooth variation shows that, when the world changes 
dramatically, at first low-numbered sites with high generative entrenchment preferentially change, 
then sites with less influence on other sites change. 

I note briefly that if these arguments and results are roughly correct, then von 
Baer's laws might apply to the evolution of complex forms on almost any "rerun" of 
the evolution of multicellular organisms. Von Baer may have enunciated a universal 
law. 

Another point here is of considerable interest: The existence of a hierarchy of 
entrenchment, or of K values, implies that adapting organisms are buffered with 

28 
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respect to the variable extent to which their fitness landscapes deform. Thus when 
confronted with landscapes which typically deform slightly but occasionally deform 
dramatically, organisms can respond to the former by evolving on relatively smooth 
landscapes via changes in moderately entrenched traits and to the latter by evolving 
on very rugged landscapes via alterations in highly entrenched traits. In effect, such 
buffering affords a range of responses as a function of how drastically and how often 
the environment changes. This feature bears on the problem of homoplasy, discussed 
next. 

The Problem of Homoplasy: Convergent Evolution 
Confounds Phylogenetic Tree Construction but Carries 
Information About the Structure of Adaptive Landscapes 

Conceiving of adaptive evolution as occurring on more or less rugged fitness land
scapes may afford a means for turning "noise" in the data of systematists into useful 
data. Convergent evolution, as we shall see, makes construction of phylogenetic trees 
difficult but harbors information about the structure of rugged fitness landscapes. 
Therefore, it is very much worth investigating how to extract this information. 

Here is the problem in brief and informally. When systematists consider a collec
tion of species or, more typically, a collection of higher taxa, one of the major aims 
is to attempt to reconstruct the historical branching phylogenies leading to the group 
under investigation (Patterson 1987; Felsenstein 1988; Levinton 1988). Alterna
tively, the aim of some members of the cladist school of systematists is to construct 
the minimal and natural branching pattern among the taxa, regardless of whether or 
not that pattern fits the evolutionary branching pattern. Analysis by cladists distin
guishes "ancestral" traits and "derived" traits. The former are traits shared by all 
members of a group and some further outgroup. The latter are those which arise dur
ing evolution of the group under investigation. Derived traits shared by any two or 
more subgroups of the group count as evidence that the members of these subgroups 
are more closely related to one another than to members of the other subgroups 
(Hennig 1966). Shared derived traits are called synapomorphies. In either case, the 
aim is to construct the "proper" branching pattern, or cladogram, among the taxa. 

With respect to morphological or molecular criteria, it is often the case that the 
systematist considers each taxon to be characterized by some number of traits N, 
each of which is coded as ancestral (0) or derived (1). Thus each terminal taxon is 
like a sequence in the NK model with A = 2 alleles. In reconstructing the branching 
lineage tree, which is derived from a cladogram by assigning taxa to intermediate 
nodes and assigning one taxon as a basal ancestral root, the aim is maximum parsi
mony and consistency (Patterson 1987; Felsenstein 1988; Levinton 1988). The dif
ficulty with the consistency requirement is that two lineages which may in fact be 
distant in the true historical phylogeny may have independently evolved the same 
new derived trait in parallel. This is called parallel, or convergent, evolution. If many 
derived traits evolve in parallel independently in separate lineages, the task of dis
criminating the true tree is made much more difficult. Such lack of consistency, 
termed "homoplasy" by cladists, is therefore unwelcome noise in the effort to 
uncover the true branching patterns among taxa. The noise, however, is not without 
regularity. Sanderson and Donoghue (1989) have recently shown that, as the number 
of taxa in a tree increase, the consistency decreases in a characteristic way. 

I describe next the measure of homoplasy, called the consistency index, used by 
Sanderson and Donoghue, and their results. Then we shall consider the implications 
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that branching adaptive walks on rugged fixed and deforming landscapes hold for the 
consistency index and other measures of homoplasy. Finally, I shall return to the 
implications of Sanderson and Donoghue's results and point out a striking consid
eration: Viewed casually, their data appear consistent with a null model of neutral 
branching phylogenies in a high-dimensional trait space; viewed with more care, 
however, their results suggest that the observed homoplasy is consistent with adap
tive evolution on landscapes which deform persistently and over a range from minor 
alterations to massive deformations. 

Sanderson and Donoghue collected 60 recent cladistic analyses run on a wide 
variety of organisms-animals, plants, and fungi-and based on morphological and 
molecular data, including proteins and DNA. The independent variables of their 
analysis were (1) the number of terminal taxa in the study, which ranged up to 70; 
(2) the number of derived traits analyzed in each study; and (3) the taxonomic rank 
of the taxa analyzed, which ranged from species to classes/phyla. The dependent vari
able was a consistency index, widely used by systematists as an overall measure of 
homoplasy. For a given branching tree, the ancestral root can be thought of as defined 
by a list of N"O" values, representing the ancestral states of each of the N traits which 
will become derived in one or more of the terminal taxa. At each ascending branch, 
one or more traits have changed states. Thus traits 1 and 17 may change from ances
tral to derived in the first left branch. Ascending higher in the tree, other traits may 
change from ancestral to derived. If there were no inconsistency in the deduced 
cladogram, then each trait would switch from ancestral to derived just once and then 
remain in the derived state in all terminal taxa ascending from that branch. Homo
plasy, or inconsistency, occurs when trait 1, for example, which changed from ances
tral to derived in the first left branch, must be assumed to switch from ancestral to 
derived in some other branch also. Homoplasy also occurs if trait 1 must be assumed 
to revert from derived back to ancestral in some branch. 

The consistency index is a ratio whose numerator is the total number of derived 
traits which occur in one or more of the terminal taxa. Here the numerator is N. The 
denominator is the sum of the number of times each of the N traits switches from 
ancestral to derived or from derived to ancestral in the tree. Thus a great deal of par
allel evolution leads to a large denominator and lowers the consistency index, whose 
maximum value is 1.0. 

Sanderson and Donoghue carried out a regression analysis testing whether the 
consistency index changes systematically with number of taxa, number of derived 
traits, or taxonomic rank. The main results are interesting. The index shows only one 
clear trend. It decreases as the number of taxa in the study increases. The authors 
find that a linear regression analysis accounts for 50 percent of the variance if the 
natural logarithm of the index is plotted as a function of number of taxa. The slope 
observed is -0.0158 (Figure 3.5). In contrast to the clear trend with respect to num
ber of taxa, no trend is found with respect to number of traits or with respect to tax
onomic rank. The results are nearly the same for plants and animals considered sep
arately and for morphological and molecular studies. 

It is, of course, reasonable that, as the number of taxa in a study increases, the 
probability that traits will exhibit homoplasy increases. Thus the consistency index 
would be expected to decrease as the number of taxa increases. It is not obvious, how
ever, that data for so many different systems, studied in such different ways, would 
be so well described by a single regression. 

I turn next to ask whether study of branching adaptive processes on fixed or vary
ing fitness landscapes can be expected to yield insight into divergent and convergent 
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Figure 3.5 Natural logarithm of the consistency index as a function of number of taxa in each clad
istic study. (From Sanderson and Donoghue 1989) 

evolution, and, conversely, whether measures of divergence and convergence can be 
expected to yield insight into the structure of fitness landscapes. Then I return to ask 
what the results of Sanderson and Donoghue suggest about large-scale evolution. 

The first important point to realize is that both divergent and convergent evolu
tion carry information about the structure of the adaptive landscape. Convergence 
can represent adaptation climbing from different initial points to either the same or 
nearby peaks in the fitness landscape. Consider the NKlandscapes. Let each sequence 
correspond to the list of the N traits, present or absent, in each taxon. Confine atten
tion to the K = 2 landscapes for some large number of traits, say N = 100. In these 
K = 2 landscapes, the highest optima are nearest one another. Imagine branching 
adaptive walks on such a rugged multipeaked landscape, where branching reflects 
branching of taxa. Then those walks will in part diverge from one another in the high
dimensional space. That is, the Hamming distances between the diverging taxa will 
tend to increase. Conversely, if those walks climb to the same local optimum or even 
to nearby high optima clustered near one another in the Massif Central, then inde
pendent lineages will evolve the same traits in parallel, and the branching process will 
also tend to converge in Hamming distances. Quite clearly, both divergence and con
vergence will occur during adaptive walks on rugged multipeaked fitness landscapes. 
The extent of convergence will be governed by the structure of the landscape, by how 
close peaks are to one another, by the rate of branching in the adaptive walks, and 
by whether adaptation is constrained to pass only via fitter neighbors or is a more 
general flow. In addition, the relative rates of divergence and convergence will 
depend upon whether the landscape is fixed, as I have supposed it to be for most of 
this chapter, or whether it deforms as a result of environmental changes or coevo
lution, as discussed just above and in Chapter 6. 

Figure 3.6 illustrates these ideas. To model branching phylogenies using the NK 
model, Sonke Johnsen and I assumed that an adaptive process might branch as alter
nate taxa clamber uphill. Specifically, we assumed that, at each time step, each cur
rent taxon examined all its one-mutant neighbors and chose a fitter neighbor at ran
dom. If two or more one-mutant neighbors were fitter, we supposed that the taxon 
branched to two derived taxa with a fixed probability P. Therefore, P fixes the rate of 
branching and forming new taxa as a function of the rate of change of traits. The set 
of trait values of the initial randomly chosen taxon was defined to be the ancestral 
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state values, and the subsequent branching taxa were therefore each characterized by 
their particular mixtures of ancestral and derived trait values. To model the effect of 
changing the external world through physical or coevolutionary processes, each site 
in each adapting taxon was coupled to w sites in an external world given by an N 
vector of 1 and ° values, as described above. Changing the world then consists in 
altering one or more bits in the N vector. Note in Figures 3.6a and 3.6c that both 
when the world is fixed and when it is changing, the logarithm of the consistency 
index decreases in a concave-up fashion with respect to the number of taxa. Fur
thermore, the curve is remarkably similar whether the world is fixed or changing. 

It is important that a neutral null model can account for the main relation 
between consistency index and number of taxa. Thus divergence and convergence 
do not logically require that the branching phylogenies be climbing hills on rugged 
fixed or deforming landscapes. Consider a null hypothesis according to which 
branching phylogenies form by ignoring fitness values and merely walk and branch 
randomly on the N-dimensional trait space. Figure 3.7 a shows the results for N = 
50, with the probability of branching at each moment set to .3. Thus at each step, 
each evolving taxon changes one trait at random either from ° to 1 or from I to ° 
and branches into two taxa with probability .3. If taxa branch, each flips a different 
randomly chosen trait. The results are nearly identical to those shown in Figures 
3.6a, c, and e. Figure 3.7 b shows the traits-versus-taxa curve for the neutral random
branching model. 

These results show that, for a wide range of landscapes and a wide range of alter
ation rates, and even for random nonadaptive branching walks in an N-dimensional 
trait space, the relation between consistency index and number of taxa is nearly iden
tical. Thus it appears that the consistency index is a relatively insensitive measure of 
the underlying structure of adaptive landscapes. This insensitivity suggests that the 
index is a poor guide for distinguishing alternative hypotheses about adaptive evo
lution on rugged fixed or deforming landscapes via random branching walks in high
dimensional trait spaces. Other, more sensitive measures of divergence and conver
gence which might prove useful are worth mentioning. 

Two measures I now introduce, HID and HIP, appear to be reasonably sensitive 
to landscape structure. Each measures how rapidly taxa spread apart in trait space 
relative to how far they have evolved from the ancestral root. Consider a branching 
lineage of taxa whose organisms are characterized by the presence or absence, I or 0, 
of N traits. Three natural distances relate the terminal taxa, or twigs, in the phylo
genetic tree. The first is the Hamming distance between each pair of terminal taxa 
and gives the mean Hamming distance between the two members of each pair. This 
distance measures how similar the phenotypes of the terminal taxa are to one 
another. Call this measure H. A second natural distance measures the number of 

< 
Figure 3.6 (a) Natural logarithm of the consistency index as a function of number of taxa, derived 
from analysis of branching phylogenies in the NK model. The we = 0 means that the external world 
does not change and hence the landscape is fixed. The probability of branching into two taxa at each 
generation is .3. (b) Number of derived traits which have switched from ancestral to derived one or 
more times in the branching lineage, plotted as a function of number of taxa in the lineage. Data 
averaged over 100 trees for each condition. (e) As in (a), except that here one site in the world changes 
at each generation. Hence the landscape deforms while the taxa branch upon it. (d) As in (b), except 
that here one site in the world changes at each generation. (e) As in (a), except that here K = 20 and 
one site in the world changes at each moment. Thus the landscape is more rugged and deforms as 
taxa branch upon it. (f) As in (b), except that here K = 20 and the world changes one site at each 
generation. 
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Figure 3.7 (a) The neutral model, in which phylogeny branch in an N = 50 trait space. Branching 
probability per generation is .3. (b) Trait-versus-taxa scatterplot for the neutral model with N = 50 
and branching probability per generation = .3. 

traits by which each terminal taxon differs from the presumed ancestral taxon. This 
measures the distance D each terminal taxon has diverged from the ancestral taxon. 
The mean of D over the tree is a reasonable measure of the mean distance all taxa 
have come. (D is called the degree of advancement by systematists.) The third natural 
measure traces the total number of trait changes from one terminal taxon to another 
via their most recent common ancestor. Summed over the entire branching tree, this 
measure shows how many trait changes, on average, separate the two members of 
each terminal pair from their common ancestor. Call this measure P. (Pis sometimes 
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called a patristic distance.) The ratios HID and HIP for any pair of terminal taxa 
averaged over the total tree then characterize how rapidly the phenotypes of the ter
minal taxa diverge from one another as a function of how far the taxa have diverged 
from their most ancestral or most recent common ancestors. If convergence due to 
the adaptive landscape is high, then HID and HIP should be low. If convergence is 
rare either because the landscape does not harbor convergence or because the taxa 
are ignoring fitness values and diverging in trait space by random-branching walks 
or because the landscape is deforming rapidly as a result of changes in environment 
due to physical or coevolutionary processes, then HID and HIP should be large. (In 
the HID ratio I describe below, H is the mean over all pairs of terminal taxa and D 
is the mean of the distance from each terminal taxon to the presumed root. In con
trast, the HIP ratio is calculated for each pair of terminal taxa and averaged over the 
entire tree.) 

Preliminary studies using the NK model confirm these intuitions, as Figures 3.8a
c and 3.9a-e show. Unlike the relatively insensitive consistency index, HID and HI 
P are clearly strongly sensitive to the structure of the adaptive landscape and to its 
rate of deformation. Furthermore, the distributions on fixed or deforming landscapes 
can clearly be discriminated from those ofthe neutral random-branching model. The 
results shown in these figures are for 100 independent branching walks on landscapes 
of the same structure and same rate of deformation. The broad spread of HID and 
HIP under each landscape condition suggests that assessing which model landscape 
best fits a specific observed branching walk must be undertaken with care and with 
sufficient data. 

The HID and HIP ratios depend not only upon the structure of the fitness land
scape but also upon how often branching occurs on that landscape and upon how 
rapidly the landscape deforms. It would be useful to have independent evidence bear
ing on how often and how dramatically landscapes deform. 

Both the patterns of homoplasy within trees and the rates of branching within 
trees afford evidence about how dramatically and how often landscapes deform. If 
the landscape remains fixed for long periods and then alters dramatically, currently 
fit taxa will be cast back to lower fitness and should rebound with a burst of radiation 
because the number of directions allowing improvement should increase suddenly. 
This radiation burst should show up in two ways. First, the rate of branching should 
be high right after the dramatic deformation and then decrease gradually until the 
next upheaval. Second, after a marked deformation, highly entrenched traits should 
change but then become locked in thereafter. This locking-in should be seen as a bias 
in the locations of homoplastic traits; these traits should be found in nodes in a tree 
where the trait changes but then remains consistent in higher nodes closer to the ter
minal taxa. 

If landscapes deform somewhat more frequently and less dramatically, smaller 
bursts of radiation would be expected. If the landscape deforms often but only 
slightly, then taxa should continue to branch at a more or less uniform rate. Such 
continuous radiation should show up, again, in two ways: The rate of branching 
should be uniform, and homoplastic traits should be distributed uniformly over 
trees. 

These features of rugged landscapes suggest that analysis ofthe locations of homo
plastic traits in trees and analysis of the variance in the rate of branching per unit trait 
change in the D measure give information on how often and how dramatically land
scapes change. In addition, the mean rate of branching per trait change in the D mea
sure gives information about how often, on average, taxa branch. The HID and HI 
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P measures give information about the extent of convergence among terminal taxa 
relative to their distance from either root or common ancestors. 

Attempts to utilize measures of homoplasy to assess the structure and deforma
tion of fitness landscapes must also discriminate whether convergence and homo
plasy reflect adaptive evolution or merely constraints and biases in developmental 
mechanisms. Consider an organism with a set of N hypothetical traits which, for 
developmental reasons, have only two possible states, 0 and 1, and have the property 
that mutations are four times more likely to change each trait from 0 to 1 than from 
1 to O. Numerical simulations confirm that, if the anscestral root species starts with 
all N traits either in the unstable 0 state or in the stable 1 state, the biased O-to-l muta
tion of each trait will lead to a phylogeny in which HID and HIP are biased low or 
high compared with the HID and HIP values for a random branching phylogeny 
generated with an equal conversion rate between the 0 and 1 states. However, if the 
ancestral species already has an equilibrium distribution of 1 and 0 states over its N 
traits-80 percent 1 and 20 percent 0 in the current example-then HID and HIP 
are not distorted by those biases. In any reconstructed phylogeny, it is possible to 
assess for each trait whether its conversion between ancestral and derived states is 
biased in favor of the former or the latter. Thus it is possible to assess whether the 
presumed root taxon begins with an equilibrium distribution with respect to those 
biases over the N traits. In short, it may be possible to discriminate convergence on 
rugged landscapes due to adaptive evolution toward fitness peaks from selectively 
neutral branching phylogenies in trait space biased by the directional mutability of 
developmental mechanisms. 

In summary, adaptive branching evolution on deforming landscapes is undergo
ing both divergence and convergence. The process is, if you will, surfing the wavetops 
of a tossing fitness sea. The aim is to extract information about the structure and rate 
of deformation of fitness surfaces underlying phylogenetic evolution. Doing so 
requires discrimination of adaptive convergence and homoplasy based on adapta
tion from biased mutations among a restricted number of morphologies or molec
ular traits and neutral random branching phylogenies. Using sensitive measures such 
as HID and HI Pplus careful analysis of the distribution of homoplastic traits in phy
logenies, such an assessment should be possible. Then homoplasy, currently noise in 
the data, can assume its proper role as data. 

I return now to the implications of the Sanderson-Donoghue results. At first 
glance, it appears that a null model can account for the data. Consideration of the 
data at different taxon levels, however, suggests a selection-based account. 

Within the null model, the first major factor tuning the rate of decrease of the 
consistency index with the number of taxa is N, the number of traits which might 
alter from ancestral to derived. As N increases, the probability that any trait will be 
chosen to change in two independent lineages decreases. Hence, as N increases, the 
consistency index is higher for each fixed number of taxa. A second major factor is 
the branching probability P per time step. If the branching rate is very low, then a 
large number of traits will have changed states during the formation of very few taxa. 
Hence the chances of multiple switches for any single trait are large, and the consis
tency index will be lower for that number of taxa than were the branching probability 
higher. In short, at any fixed number of taxa, a high branching rate leads to a higher 
consistency index. 

Using these two parameters, the null model can account for the Sanderson-Don
oghue results. Figure 3.lOa shows the predicted relation between the logarithm of the 
consistency index and number of taxa for the random branching model with N = 
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Figure 3.10 Neutral model in which taxa branch randomly, with probability .3 at each generation, 
in a lOO-dimensional trait space: (a) natural logarithm of consistency index as a function of number 
of taxa in the model phylogeny; (b) number of derived traits as a function of number of taxa in studies 
accumulated by Sanderson and Donoghue (1989), together with their rough quadratic model regres
sion fit to data. 

lOO and P = .3. The mean slope, crudely -0.015, is very close to the -0.0158 
observed by Sanderson and Donoghue (Figure 3.5). The scatterplot of Figure 3. lOa 
is slightly concave upward. So, too, are the data in Figure 3.5 when fitted with a qua
dratic estimate. 

The capacity of the null model to fit these data is, in fact, better than mere curve 
fitting. Although much the same curve as that in Figure 3.1 Oa can be achieved either 
by increasing N and decreasing P or by decreasing N and increasing P, any specific 
pair of Nand P values makes specific predictions about the relation between the 
number of traits and the number of taxa observed in these studies. The choice of N 
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= 100 and P = .3 implies that the initial slope of traits versus taxa is about 3. Further, 
since the total number of traits is N, the curve must saturate at 100. Figure 3.lOb 
shows Sanderson and Donoghue's data and their quadratic regression line. The ini
tial slope is, convincingly, roughly 3. Less convincingly, because of two major out
lying taxa with more than 300 traits each, the asymptote is about 100. It is not obvi
ous that a single choice of Nand Pwould allow the null model to fit both Figure 3.1 Oa 
and 3.1 Ob. This success suggests that some predictive power lies in the null model. 

What inferences should be drawn from the Sanderson-Donoghue results? First, 
caution in two guises. The number of studies, and hence the number of data points, 
remain very limited. Further, the "data" are consistency indexes drawn from recon
structed trees inferred from taxonomic morphological and molecular data. The 
results may tell us more about how systematists classify, however, and about how 
reasonable the tree-construction algorithms are than about the world of biological 
diversity. Given these caveats, Figures 3.6a, c, e, andfand Figure 3.7 show that very 
different adaptive processes give much the same curves as that shown in Figure 3.1 Oa. 
The slight differences in slopes in these graphs can be altered at will by increasing or 
decreasing N in the different models. In short, both the NK model of adaptive eval
uation and a null model of random branching are compatible with the consistency
index data analyzed by Sanderson and Donoghue. Thus these data do not appear to 
discriminate readily among alternative models of forces, adaptation, or drift which 
may underlie branching phylogenies. 

While the null model of random branching cannot be easily excluded by the bulk 
data, one feature of the Sanderson-Donoghue data is hard to reconcile with a ran
dom branching model. The authors find that the same statistical features arise at each 
taxonomic level, from species to class/phyla. While the data are too scant for this 
conclusion to be firm, assume it holds. The curious problem, on a random model, is 
to account for the very different time scales on which trait changes sufficient to 
accord species versus class/phyla rank occur. Changes that accord species rank are 
garden variety, those that accord class/phyla rank very rare. 

One attractive hypothesis to account for these phenomena derives from the hier
archial version of the NK model. Ifsome sites are highly generatively entrenched and 
thus epistatically affect many other sites, while other sites have few or no epistatic 
downstream consequences, the highly entrenched sites will tend to change only when 
the world alters dramatically and then will become locked in. Since alterations in 
more highly entrenched traits cause more downstream consequences, it is natural to 
associate those changes with changes accorded higher taxonomic rank. In turn, given 
a distribution of changes in the world, with many slight changes and few massive 
changes, adaptive alterations by changing highly entrenched traits will be rare, while 
those associated with minor features will be common. Thus hierarchial epistatic cou
plings plus a world which often changes slightly and rarely changes dramatically yield 
the observed time-scale results as a consequence of adaptive evolution struggling to 
climb deforming landscapes. 

To test the compatibility of the hypothesis of hierarchical epistatic coupling with 
the Sanderson-Donoghue results, Johnsen and I used the hierarchial NK model and 
defined alterations in the most entrenched ten sites as phylum/class-level changes, 
while those in the ten lowest entrenched sites were defined as species-level changes. 
The resulting cloud of data on the graph of consistency index plotted as a function 
of number oftaxa lies on a common curve matching the data observed by Sanderson 
and Donoghue. Thus a hierarchical epistatic model appears consistent with the pres
ent data. 

The problem of homoplasy emerges as an opportunity. Without doubt, the pat-
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terns of divergence and convergence in evolution bear witness to complex optimi
zation processes coupled with random drift in high-dimensional trait spaces at the 
morphological and molecular levels. The human genome project promises vast new 
data in the future. The abundant efforts of systematists and molecular biologists to 
utilize these data for the construction of phylogenetic trees has borne substantial 
fruit. An effort to discern in the same data evidence for the structure and deformation 
of the fitness landscapes foreseen by Wright (1931, 1932) and governing evolution 
has just begun. It is too early to be confident that the results will be worthwhile. It is 
not too early to be confident that the effort is worthwhile. 

POPULATION FLOW 
ON RUGGED FITNESS LANDSCAPES 

Adaptive evolution in real populations is necessarily a search process driven by 
mutation, recombination, drift, and selection over either fixed or deforming fitness 
landscapes. Our task in this section is to explore how the multi peaked rugged struc
ture of fitness landscapes governs both the evolvability of adapting populations and 
the sustainedfitness ofthose populations. We must begin with the plausible prejudice 
that properties of organisms which govern the structure and rate of landscape defor
mation, as well as such parameters of the adaptive search process, as mutation and 
recombination frequencies, are subject to natural selection. If so, then our basic ques
tions must be, which properties oflandscapes and search parameters optimize adap
tive evolution? and, Can selection attain such optimization? 

In the present section, I discuss adaptive evolution on smooth and rugged land
scapes in asexual haploid organisms under the drives of mutation, selection, and 
drift. We shall find that, when landscapes are very smooth, an error complexity catas
trophe sets in and adapting populations slide down fitness peaks to the valleys below. 
In contrast, when landscapes are very rugged, a second complexity catastrophe sets 
in: Adaptation becomes trapped in small local regions of the space and hence cannot 
search effectively. Evolvability, the capacity to search a reasonable fraction of the 
space, may be optimized when landscape structure, mutation rate, and population 
size are adjusted so that populations just begin to "melt" from local regions of the 
space. Sustained fitness may be optimized when landscape structure is tuned so that 
the sides of fitness peaks are steep enough to offset the mutation rate and the rate at 
which the landscape is deformed by abiotic or coevolutionary forces. Whether both 
evolvability and sustained fitness can be jointly optimized is unclear. 

In the last part of this section, I discuss the role of recombination as a search strat
egy in rugged landscapes. The capacity of recombination to aid adaptive search 
depends upon the structure of the landscape. Recombination is useless on uncorre
lated landscapes but useful under two conditions: (1) when the high peaks are near 
one another and hence carry mutual information about their joint locations in geno
type space and (2) when parts of the evolving system are quasi-independent of one 
another and hence can be interchanged with modest chances that the recombined 
system has the advantages of both parents. 

The Mutation/Selection Error Catastrophe 
and the Weak Maxwell's Demon 

Chapter 2 deduced general features of adaptive evolution under the assumption that 
selection was always strong enough to pull an adapting population to the fittest vari-
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ant found. Thus hill climbing was limited only by the topology of the adaptive land
scape, the existence oflocal optima for one-mutant adaptive walks, and the metasta
ble durations of fitter variants in long-jump evolution. In the present section, we 
discuss a very general limitation to selective adaptation on reasonably smooth land
scapes alluded to above: 

For a fixed mutation rate, the number of mutants per individual increases as 
the complexity of entities under selection increases. As this occurs, a threshold 
is passed beyond which selection cannot hold a population at the locally fittest 
variant, errors accumulate, and the population falls from rare optima toward 
less fit but more typical members of the ensemble. 

The general idea of a mutation/selection error catastrophe is well known in clas
sical population genetics. I shall discuss first the case of the simplest possible diploid 
model in population genetics, which corresponds very closely to the haploid NK 
model in the K = 0 limit. The landscape has a single optimal genotype and is as 
highly correlated as possible. Thereafter, we shall examine the more complex and 
realistic problem of populations adapting on multipeaked rugged landscapes. I 
should emphasize that this field of inquiry is still largely uncharted, and so we shall 
accordingly raise more questions than answers. Therefore, one major point of the 
following section is to view it as an indication of areas which require further effort. 

Classical Genetics and the Error Threshold 

Classical single-locus theory considers two alleles, A 1 and A2, in diploids with 
genotypes AlA 1, A lA2, and A2A2; a mutation rate v from the more favored A2 to 
A I; and a mutation rate u from the less favored A 1 to A2. Ifboth alleles are equally 
fit, the equilibrium frequency Px of A 1 in the population is v/( u + v). In the presence 
of selection against A I, where A lA 1 has fitness I - s, A IA2 has fitness I - s/2, and 
A2A2 has fitness 1 (s, 0 ::s s::S 1, is the difference in the fitness of the two homozy
gotes), the frequency distribution of A 1 in the population is given by the confluent 
hypergeometric series expression 

P = _u_ X m(4Nu + 1,4Nu + 4Nv + 1,2Ns) (3.2) 
x u + v m(4Nv, 4Nu + 4Nv, 2Ns) 

where N is the number of individuals in the population and m refers to terms in the 
series (Ewens 1979). If the term 2Ns is large and negative, requiring s to be negative 
and not too close to 0, then Equation 3.2 simplifies to 

Px = 2v/lsl (3.3) 

where I s I is the absolute value of s. The frequency ofthe less favorable allele becomes 

N2v 2v 
fX=Nlsl=~ (3.4) 

Single-locus theory can be directly extended to consider a total of t independent 
genetic loci, each with two alleles, one less and one more favorable, and each con
tributing additively and independently to the total fitness of the system. 

To ensure that maximal fitness remains 1.0 as t increases, the total fitness of each 
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genotype is normalized through division by t. Thus it is necessary to define the fitness 
contribution per locus S' as S' = sit. This implies that the proportional contribution 
of each locus to fitness decreases as the number of genetic loci in the system, t, 
increases. Therefore, as t increases, the fitness contribution of each favored allele over 
its less favored version decreases, but the mutation rate converting the more favored 
allele to the less favored one remains constant. One would expect that, as t increases, 
mutation would eventually become stronger than selection. This happens. Eventu
ally, less favorable alleles begin to accumulate in the population. 

Assume for simplicity that the forward and back mutation rates are equal. Then 
at the equilibrium distribution of mutations per individual in the population, the 
expected fraction of less favorable alleles per individual due to the balance between 
mutation and selection is 

f = 2ut 
x I s I 

Consequently the expected number ofless favorable alleles cis 

2ut2 

c=-
lsi 

This simplifies to 

clsl u =--
2t2 

(3.5) 

(3.6) 

(3.7) 

Equations 3.6 and 3.7 imply that, to hold the total number of unfavorable alleles 
at some constant number c per individual as the total number ofloci t increases, the 
mutation rate u must decrease inversely to t2• Alternatively, for a fixed mutation rate, 
as the complexity of the entities under selection t increases, the number of "bad" 
alleles which accumulate increases as t2• 

Let us recapitulate these implications of classical population genetics. The argu
ment assumes that each locus contributes additively to fitness, independently of all 
other loci, as in the NK model for K = O. Further, fitness is normalized, as in the NK 
model for K = O. Third, there is a single global optimum. and connected adaptive 
pathways via fitter mutants to that optimum exist from any suboptimal genotype. 
The single optimal genotype is that with the favorable allele at each of the t loci. Any 
less favorable genotype can always be improved by mutating any less favorable allele 
to its more favorable counterpart at any locus. 

Despite the fact that connected pathways to the single global optimum exist, selec
tion fails to hold a population at that optimum as t and hence the complexity 
increase. Each locus contributes proportionally to total fitness. Thus as t increases, 
the contribution of each favorable allele versus its unfavorable allele to overall fitness 
decreases, but the mutation rate from favorable to unfavorable allele remains con
stant. In short, as t increases, the "gradient" of selective force pulling the population 
uphill to the global optimum decreases, while the mutational forces tending to dis
perse the population away from that optimum remain constant. Below a critical 
complexity (., the selective force is stronger than the mutational force, and selection 
can either hold the population at the global optimum or pull it there from any sub
optimal genotype. In this condition, the population exists as a tight cloud centered at 
the global optimum. Above the critical complexity tn the dispersing mutational pres-
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sure becomes stronger than the selective force and the population disperses away 
from the global optimum. In that case, the population falls from the global optimum 
to a stationary state distribution, a fixed average "distance" from the global opti
mum, where the fraction of unfavorable alleles is steady and proportional to t2• 

How does such a population displaced a fixed mean distance from the global opti
mum behave? Note that in the present model, where all loci make equal contribution 
to fitness, a very large number of genetic states are all at the same fitness distance from 
the global optimum. Concretely, suppose 10 percent, plus or minus a bit, ofthe t loci 
are in their less favorable allele. A very large number of alternative genotypes have 
about 10 percent of the loci in the unfavorable allele. These many genetic states are 
all almost equally fit and form a kind of thin shell around the global optimum at a 
constant distance from it. Movement in and on that shell is almost selectively neutral. 
Further, each genotype on that shell is a one-mutant or a two-mutant neighbor of 
many other genotypes on the shell. Thus within each shell, there are connected walks 
which are selectively neutral. 

Will the population diffuse to a uniform distribution on that shell, remain at a 
single point, or wander as a coherent cloud across the shell surface? The answer tends 
to be the last. The reason is straightforward. Consider any fixed population. At each 
generation, some members may fail to leave offspring, not due to fitness differences 
but merely by chance. In a haploid nonsexual population, this failure implies that 
after a number of generations, all members of the last generation will have descended 
from a single founder in the first generation. In small populations, this founder effect 
tends strongly to trim the dispersing cloud on the shell and lead to a coherent random 
walk of a clustered cloud across the shell surface. The size of the cloud increases with 
population size, of course. Similar arguments apply to sexual populations. 

These results are easily demonstrated using the NK model in the K = 0 limit, as 
Figure 3.11 shows. In this numerical simulation, N = 50, we have assumed two 
alleles per locus, a mutation rate from each to the other of 0.00 I, and 50 genotypes 
evolving. At each generation, each genotype is sampled at random and produces an 
offspring at each sampling in proportion to its fitness. Whether or not that potential 
parent produces an offspring, it is placed back in the parental pool and so may be 
sampled as a potential parent again. This process normalizes fitness. After 50 off
spring genotypes constituting the next generation are created, each site in each geno
type is mutated with probability 0.001, and the simulation iterates. A mutation rate 
of 0.00 I is high enough that selection is here unable to hold the population at the 
optimum. It falls and wanders at a level with about seven to nine genes in their less 
favorable allele. If released instead from a random genotype, the population climbs 
to the same steady state level with seven to nine genes in their less favorable allele. 
Thus from both the global optimum and a random initial starting genotype, the sys
tem falls or climbs to the same intermediate level of fitness. This represents the neu
tral shell within which the population thereafter wanders. 

In summary, classical population genetic models demonstrate a tendency, as the 
complexity of entities under selection grows, for the population to fall from optima 
due to an accumulation of "errors." This tendency has been rediscovered in different 
contexts which generalize the classical result. 

More on Mutation/Selection Error Catastrophes 

Eigen and Schuster (1977, 1978a, 1978b, 1979) were the first to stress these kinds of 
results. These authors constructed detailed models of evolution among replicating 



BIOLOGICAL IMPLICA nONS OF RUGGED FITNESS LANDSCAPES 99 

N·50 K'O ~'I/IOOO 

1.00 

N·50 K'O ~'I/IOOO 

1.00 
'" '" CU 

" 
ii: 

'" '" CU 

~ 0.71 ii: 
0.47 

0.50 cu_ "-,,, 0.50 cu_ ,,-"-,,, 0'" ,,- _ 0 

o '" "'0. 
_0 o~ 
'" 0. .- " .~p; 0", 
"'iii 0.25 E E 0.25 '" 'E E 

Eo o ~ 
Eo rlL 
o ~ 
rlL 

0 
0 

cu" cu " " 0 " .- " 0 0- ".-_ 0 0-
.!! :; _0 

"'-00. -- :::I 
00. 0 0.25 ",0 "'(1. 0.25 

" ,,(1. 

'E :E 'E .!: 
E .':: E:: 
~~ 

0'-
r~ 

2500 5000 2500 5000 
Generation Generation 

a b 

Figure 3.11 The error catastrophe. Population flow on K = 0 landscapes, with mutation rate of 
0.001. Top panels: 50 genotypes released (a) at a local optimum and (b) from a random initialgeno
type. Note that in (a) selection cannot hold the population at the global optimum, while in (b) the 
population climbs to the same stationary intermediate fitness level seen in (a). Middle panels: mean 
Hamming distances (measured in fractions of N) of the adapting populations, measured from con
sensus-sequence signposts created every 100 generations along the adaptive flow. Distances are mea
sured to each signpost. Many signpost curves lie on top of one another. Lower panels: mean Ham
ming distance within each population. 

molecules, such as DNA or RNA, competing with one another and subject to fixed 
mutation rates per nucleotide. In a population of competing replicating sequences 
which initiates from some single sequence, the dynamics of the population depend 
on these factors: 

1. The replication rate of each sequence with respect to competing sequences. 

2. The forward mutation rates by which each sequence mutates into its many one
mutant, two-mutant, ... neighbor sequences, together with the back mutation 
rates by which those neighbors mutate to each specific sequence. These mutations 
generate a cloud of related sequences, called a quasispecies, each member of 
which subsequently becomes a competitor of all the rest. 

3. The boundary conditions specifying the competition. Typically, this is given by a 
constant rate of influx of monomers to a "chemostat" and a constant rate of efflux 
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of material from the chemostat. Under these conditions, the fastest replicating 
molecular sequence, called the "master sequence," plus its quasi-species cloud 
wins the competition and dominates the chemostat until, at rare intervals, a truly 
improved variant occurs and dominates the chemostat with its own new quasi
species cloud. More precisely, the quasi species is approximately the fastest grow
ing eigenvector (Chapter 14), or fixed concentration ratio of the master sequence 
and its one-mutant, two-mutant, ... variants. 

Eigen and Schuster prove a basic result showing that, as the sequence lengths of 
replicating molecules under selection increase, a threshold is reached beyond which 
selection cannot maintain the fittest variants. Errors accumulate in the replicating 
molecules. The error threshold these authors find depends on the ratio of the selective 
superiority of the wild-type sequence with respect to its competitors: 

ET ex Sm 

U 
(3.8) 

where u is the mutant rate per symbol (for example, nucleotide within a sequence) 
and Sm is the relative selective superiority of the sequence. When this threshold is 
surpassed, the predicted result is that the most highly fit variant will become a minor 
component ofthe spectrum of replicating sequences. In the absence of a further the
ory about the distribution of fitness values in sequence space, the Eigen-Schuster 
error catastrophe states merely that the population will flow away from the current 
master sequence and that the information encoded in this sequence will be lost. 
Where the population may flow thereafter is not definable without some further 
hypotheses about the structure of the fitness landscape. 

Elegant experiments have confirmed these predictions (Biebricher 1987; Eigen 
1987; Biebricher and Eigen 1988). Moreover, Eigen and Schuster have pointed out 
that viruses in fact live within and close to the error thresholds given by the known 
rates of nucleotide mutations (Eigen and Schuster 1979; Eigen 1987). For example, 
single-stranded RNA viruses such as Q8 replicate via specific replicases with an error 
rate per nucleotide on the order of 5 X 10-4 • For fitness advantages of the wild type 
with respect to its mutant neighbors ranging from 2 to 200, this error rate leads to the 
prediction that the maximum number of nucleotides can range from 1386 to 10 597. 
In fact, Q8 has 4500 base pairs. 

The classical genetics result and Eigen and Schuster's error threshold are clearly 
intimately related. They differ in whether fitness is independent and additive across 
the symbols within a sequence. For the additive model, fitness is independent. For 
Eigen and Schuster's general result, the assumption is merely that the current master 
sequence has replication superiority over its competitors. No further specification of 
the fitness landscape is made. Thereafter, the general result of these models is that, 
even with connected pathways to a single global optimum, scaling laws exist and 
show that, when the system is sufficiently complex, selection is unable to hold a pop
ulation near that optimum in the face of mutation. In terms of the image from an 
earlier chapter, in which Maxwell's demon plays the role of selection, as the system 
becomes complex, the demon becomes weaker than the mutational back pressure 
driving the system toward the average properties of the ensemble. Thus both models 
point toward another critical limitation on selection. This same limitation will arise 
in a different form in Chapters II and 13, when we consider the capacity of selection 
to achieve arbitrary genomic cybernetic regulatory systems. 
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Population Adaptation on Multipeaked Rugged Landscapes 

The classical genetic model concerns very simple fitness landscapes with single 
optima. But real landscapes in genotype space-or in protein space or sequence 
space or phenotype space-are almost certainly multipeaked and rugged. While pop
ulation geneticists have implicitly and explicitly studied population dynamics in 
complex fitness spaces (Crow and Kimura 1970; Ewens 1979), we lack a general the
ory which relates the known statistical ruggedness o/landscapes with populationflow 
upon them under conditions of mutation, recombination, and selection. We now 
examine recent provocative numerical simulations by Fontana and Schuster (1987) 
on a model of adaptive evolution of RNA-like polymers which replicate and mutate 
in a chemostat. (See also Schuster 1986, 1987; Eigen 1987; Eigen, McCaskill, and 
Schuster 1988; Fontana, Schnabl, and Schuster 1989; Fontana, Griesmacher, et al. 
1991; and Fontana, Stadler, et al. 1992 for discussions of landscapes in sequence 
spaces.) In addition, I shall briefly describe work using the NK model. 

Fontana and Schuster (1987) take, as their primitive model of a single-stranded 
RNA sequence, a sequence N long of 0 and 1 bits. These strings, like true single
stranded RNA molecules, are subjected to a folding rule in which 0 bits bond to 1 
bits. This rule yields model RNA sequences, which I hereafter will call RNA 
sequences, with secondary structure consisting in hairpin loops and bonded stems, 
plus open loops whose bits cannot bond to one another (Figure 3.12). The folding 
rule utilized is complex and seeks to maximize the number of 1-0 bonded pairs pos
sible in any RNA molecule, depending upon the number and arrangement of the 0 
and 1 bits along the RNA string. 

The authors' purpose is to investigate the flow of an adapting population of self
replicating RNA molecules across RNA space. The space, of course, is just the 2N 
possible strings of 1 and 0 bits. Each string is a one-mutant neighbor of N other 
strings, which differ from one another by changing a single bit to the opposite value. 
Throughout the simulations, N is 70. To model the evolution of replicating RNA 
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Figure 3.12 Model RNA molecule with 1 and 0 "bases." The molecule folds under the constraint 
that 1 and 0 are template complements which bind. (From Fontana and Schuster 1987) 
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molecules, the authors need to assign a fitness landscape over RNA space. They 
invent two such landscapes, a thermodynamic landscape and a kinetic landscape. 
Each is very rugged. Each helps tune our intuitions about the kinds of phenomena 
found and about sensible ways to try to build toward a general theory. 

In the thermodynamic landscape, the fitness of each RNA molecule depends 
upon the stability of the folded strand and so is proportional to the total fraction of 
the N bits which are bonded in the folded strand. Therefore, it is straightforward to 
deduce what the optimal sequences look like: Each is a single hairpin with a stem of 
bonded bits about N/210ng, with about four bits at the loop end ofthe hairpin reflect
ing steric hindrance in real single-stranded RNA hairpins. As the authors point out 
parenthetically, substitutions of I and 0 values in this terminal loop are selectively 
neutral. 

In the kinetic landscape, the authors imagine a more complex rule to ascribe fit
ness to each string. Specifically, they suppose that the rate of replication ofa string is 
increased in open, unbonded regions but that the loss of stability in these regions 
leads to easier degradation of the molecule. Thus the fitness of any folded molecule 
is a complex mixture of ease of replication and resistance to degradation. Here the 
optimal folded forms are not at all clear. 

Fontana and Schuster carefully emphasize, and I echo, that the point of construct
ing these landscapes is not their utter realism from the molecular point of view. 
Rather, the point is to have in hand some explicit and complex landscapes upon 
which evolution of a population may be studied. 

Selection is carried out in a model chemostat. Each molecule replicates at a rate 
proportional to its fitness. Influx of monomers or bits I and 0 into the chemostat and 
efflux of all molecules at a constant flow rate supply the selection conditions. Under 
such conditions, the total number of bits, either free or bound into polymers, falls to 
a constant number. The remaining selection dynamics occur subject to this con
straint. Therefore, selection is reflected in the increasing proportion of the total num
ber of bits which are in the form of one specific RNA molecule. In other words, selec
tion is just an increase in the relative abundance of one specific RNA molecular 
sequence in the adapting population of replicating RNA sequences. 

In addition to the selection dynamics, the authors impose a mutation rate at which 
I bits mutate to 0 bits and vice versa. The mutation rate is given as I - Q, where Q 
is the probability that any bit is copied accurately. Therefore, I - Q is the probability 
of a replication mistake per bit. This means that each replicating molecule produces 
mutant strings at some frequency. Since each bit in a string may mutate, the number 
of mutations introduced into any string after it replicates is a Poisson process with a 
meanof(l - Q)N. Typical valuesofQwereon the order of 0.995. Thus most strings 
have no mutations, some have one mutant bit, and a few have a fairly large number 
of mutants. 

As mentioned above, both landscapes are very rugged. In this respect, they are 
reminiscent of the rugged one-mutant fitness spectrum around local optima in the 
NK model for modestly large values of K relative to N (Figure 2.6a-d). Indeed, the 
thermodynamic landscape shows a Gaussian distribution of fitness values and, as 
noted in Chapter 2, apparently can be mapped onto an NK landscape with N = 70, 
K = 8 to 10. 

Three aspects of the simulations carried out by Fontana and Schuster are partic
ularly interesting: 

1. They studied how well the population of 2000 replicating molecules climbed hills 
as a function of the mutation rate. For small enough mutation rates, hill climbing 
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was successful and faster with a slightly higher mutation rate. As in the example 
of adaptation in the traveling salesman problem (Kauffman and Levin 1987), too 
Iowa mutation rate limits the rate of finding fitter variants on the current hill. A 
slightly higher rate explores not only one-mutant but two-mutant, three-mutant, 
and higher-mutant variants more extensively, and the population as a whole 
adapts more effectively. Typical values of Q are 0.999 to 0.997. 

2. At a still higher mutation rate, selection cannot hold the population at a local opti
mum. When Q is reduced to 0.996, the population rapidly falls from the global 
optimum to very modest fitness values. In addition to falling from the optimal 
RNA sequence, the population rapidly encounters a very large number of differ
ent sequences, all of modest fitness. The population as a whole is wandering 
through some reasonably large volume of sequence space. Fontana and Schuster 
carry over the concept of a master sequence into the current context. In a simple 
fitness landscape with a single global optimum, the master sequence is that opti
mal sequence. For low mutation rates, the master sequence is also the most abun
dant in the population. On a rugged landscape, the master sequence becomes sim
ply the most abundant sequence present at any moment, regardless of its fitness. 
The wandering population therefore encounters a very large number of master 
sequences, many of which have very low fitness. 

3. The authors utilize a Hamming-distance description of how the population flows 
through the multipeaked landscape over time. Recall that the Hamming distance 
between two strings of 1 and 0 values Nlong is just the number of sites where the 
two strings differ. Figure 3.13 shows the Hamming distance, fitness, and abun
dance of strings over the course of adaptation. Hamming distance of all strings 
was measured with respect to the final master sequence with the highest fitness. 
The fascinating feature of Figure 3.13 is that the population is initially localized 
as a clump far from the ultimate master sequence. In the midterm of the adaptive 
process, a small number of sequences appear halfway to the ultimate master 
sequence. This small number grows into a substantial cluster of sequences. Then 
a new cluster appears in the vicinity of the ultimate master sequence. This implies 
that the mutant cloud surrounding the initial master sequence included some 
members with a modest number of mutations which were only slightly less fit than 
the initial master sequence and hence could gain purchase on a new hill some 
distance from the initial hill. The population can therefore reach across valleys of 
low fitness, sending scouting parties far enough away to encounter good terrain. 
Yet from Figure 3.11 we know that, if the mutation rate is too high, the popula
tion will simply flow down from peaks and wander the lowlands of the fitness 
landscape. 

These simulation results make it clear that we need a real theory relating the struc
ture of rugged multipeaked landscapes to the flow of a population upon those land
scapes. We do not yet have such a theory. 

Population Flow on NK Landscapes 

The advantage of the NK family oflandscapes in studying population flow is that the 
structure of the landscape can be tuned from smooth to rugged. This ability allows 
us to investigate both the error catastrophe on smooth landscapes and trapping or 
Jreezinginto small regions of the space at a fixed mutation rate as landscapes become 
progressively more rugged. 
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Figure 3.13 Adaptive flow in RNA sequence space. (a) Population fitness (0-1500) and Hamming 
distance (1-25) from ultimate master sequence as a histogram in two dimensions. Simulation time 
step t = 700. (b) As in (a) but at a later time step, t = 840, when the adapting molecules have pop
ulated an "island" partway between the initial region of sequence space and the terminal region of 
higher fitness. (c) As in (a) but at t = 960. The population is now clustered around the ultimate 
master sequence. (From Fontana and Schuster 1987) 

:> 
Figure 3.14 All panels as in 3.11 a. (a) Population flow in K = 2 landscapes. The mutation rate is 
0.00 I. Population is released from an average local optimum and shows no overall increase in fitness 
over the walk, and population walks over large reaches of genotype space (middle panel). (b) The 
same landscape as in (a), but the mutation rate has been reduced to 0.0001. The population appears 
to show slow but steady increase in fitness during the last 5000 generations and does not walk far 
across genotype space. (c) Population flow on a more rugged (K = 25) landscape. The mutation rate 
is 0.00 I. Population released on an average local optimum. Note fitness initially decreases but then 
jumps to a new higher level. Population is frozen into a small region of genotype space (middle panel) 
over the last 8000 generations. Freezing appears to coincide with the jump in fitness and hence with 
flow to a good small region of the space. Note also that, at the same mutation rate, the population in 
(a) on the smoother K = 2 landscape is not frozen into a small region of genotype space. 
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We have carried out initial simulations (Kauffman 1989a) for N = 50; K = 0,2, 
and 25; and mutation rates (1 ++ 0) of 0.001 and 0.0001 per allele per genotype per 
generation. Populations were fixed at 50 haploid "organisms." The initial population 
was released either at a single local optimum or at a single random "genotype." As 
described above, in order to normalize fitness, at each generation, each organism was 
sampled randomly and then, whether or not it produced an offspring, was placed 
back into the pool. Sampling continued until 50 offspring were generated. Thereafter 
the process was iterated for 5000 or 10 000 generations. 

The questions of importance concern the flow of the population over the land
scape as a function of the evolutionary parameters concerning landscape structure, 
population size, and mutation rate. To monitor how spread out the population was 
over genotype space during its wandering, we measured the mean Hamming distance 
within the population at each generation. To measure how far the population moved 
across the space, we defined consensus-sequence signposts every 100 generations. At 
each generation, the mean distance of each of the 50 genotypes to each of the previ
ously planned signposts was measured. Thus flow across the space shows up as 
increasing distance from previously planted signposts. 

The error catastrophe on smooth landscapes is shown in Figure 3.11. Lack oftrap
ping or freezing at a high mutation rate and freezing into a local region at a lower 
rate on modestly rugged landscapes are shown in Figures 3.l4a and h. Finally, as 
landscapes become more rugged, trapping into local regions occurs at a mutation rate 
which would not cause trapping on a smoother landscape, as shown in Figure 3.l4c. 

Landscape ruggedness and mutation rate also govern sustained fitness, which can 
be higher on more rugged landscapes with lower peaks. Recall that, as K increases, 
the heights of local optima fall ever lower, while the steepness of fitness peaks 
increases. The increasing steepness implies that the selective gradient back toward 
the peaks or high ridges is greater in more rugged than in less rugged landscapes. Thus 
in the face ofa modestly high mutation rate, an adapting population might fall far
ther from the high peaks on a smooth, gentle landscape than from the somewhat 
lower peaks on a more rugged landscape. Figure 3.15 compares the mean fitness 
maintained by adapting populations on K = 0, K = 2, and K = 25 landscapes in 
the face of a mutation rate of 0.00 1. The striking feature is that mean fitness is highest 
on the most rugged, K = 25, landscape. Yet the local optima on this landscape are 
clearly lower than on the smoother K = 2 and smoothest K = 0 landscapes. 

The implications of these results with respect to evolvability and sustained fitness 
include the following: 

1. In rugged landscapes, many local optima exist, perhaps in a self-similar form. 

2. At sufficiently low mutation rates, the population will climb the nearest fitness 
peaks and remain clustered about one or another of those peaks. The process is 
then limited merely by the heights of those peaks. On rugged landscapes, this 
behavior implies that the population will typically be trapped on a relatively poor 
local optimum. 

3. As the mutation rate increases for a fixed population size and landscape, the pop
ulation may "melt" with respect to a local small region of genotype space and flow 
within it. However, fitness valleys between this region and other, perhaps better 
regions offer barriers to traversing the space for greater distances. Thus a hierarchy 
of mutation rates coupled with a hierarchy of sized regions which can be explored 
is expected. At any mutation rate, a local region can be explored relatively quickly 
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Figure 3.15 (a) Comparison of fitness attained at 0.00 I mutation rate in K = 0 and K = 2 land
scapes. Data redrawn from Figures 3.11 and 3.14a. (b) Asin (a), except comparison is between fitness 
attained in K = 2 and K = 25 landscapes. Data redrawn from Figures 3.14a and 3.14c. 

while escaping to other regions past the fitness-loss barriers will be a very slow 
process. 

4. At sufficiently high mutation rates, the population can flow across vast tracts of 
genotype space. It will have entirely melted. At these high mutation rates, no accu
mulation of heritable information beyond the coherence of walks due to founder 
effects is to be expected. 

5. An optimum mutation rate at which populations just begin to melt seems likely 
to optimize both evolvability and sustained fitness. At a low mutation rate, pop
ulations become trapped on poor local peaks. At a high mutation rate, popula
tions are driven far below the peaks and drift in fitness lowlands. Thus sustained 
fitness should be optimized at some intermediate mutation rate. That rate is likely 
to occur when populations are just beginning to melt from peaks. First, in pop-
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ulations which are just melting, evolvability should be optimized. This interme
diate mutation rate seems to be a good compromise between maintenance of her
itable information and search across the space. But sustained fitness should also 
be optimized. Analysis of the NK family oflandscapes also shows that, typically, 
the highest optima have the largest drainage basins. Thus if the population just 
melts off local peaks, it has a reasonable chance to flow into the basins climbing 
to high peaks. If so, it will tend to hug the higher peaks and therefore optimize 
sustained fitness. 

6. The mean fitness maintained by a population can be higher on a more rugged 
landscape, which harbors lower optima, than on smoother landscapes. Thus again 
we see that sustained fitness reflects both landscape structure and the properties 
of the stochastic adaptive process on that landscape. The highest average main
tained fitness need not occur on those landscapes with the highest peaks but will 
occur on those landscapes whose ruggedness best suits the character of the adap
tive process. In the present case, for any fixed size of genotype N, population size, 
and mutation rate, some particular value of K will yield a landscape whose rug
gedness is optimal for maintaining high average fitness. Thus some presently 
unknown curve in the NK plane corresponds to the optimal landscape to match 
a given stochastic flow exploring that landscape in order to achieve the highest 
average fitness. Grounds to suppose that this curve is related to the mutation rate 
at which populations just begin to melt from local regions, hence that both evolv
ability and sustained fitness can be jointly optimized, were noted above. 

The freezing and melting alluded to above bear analogies to thermal physics and 
bear on the famous selectionist-neutralist controversy: Once off the peaks, popula
tions can often wander vast distances across genotype space among a percolating 
cluster of near-neutral mutants. We consider this briefly next. 

Neutral Percolation Domains 
and the Selectionist-Neutralist Argument 

When examining the classical additive population genetic model, we found that the 
error catastrophe led an adapting population to fall below the single optimum. 
Thereafter, the population wandered neutrally as a coherent cloud within a thin shell 
at a fixed mean fitness distance below the global optimum. 

In a rugged multipeaked landscape, if a population is displaced from an optimal 
point in genotype space and falls to lower fitnesses, there may well be a very large 
number of different genotypes with very nearly the same fitness, each of which is a 
one-mutant neighbor of many other genotypes within the same narrow fitness band. 
Whether there is a single peak in the landscape or many peaks, suppose mutation is 
strong enough to force the population off the peak or peaks down to such a fitness 
band and hold it there; then the population must wander neutrally through this band. 
Thus the distance across the space over which the population wanders depends on 
how far the narrow band of fitness values extends across the landscape. The intuitive 
image is of a cloud layer hanging below the peaks of a mountain range. As we note 
below, this image oversimplifies the flow of an adapting population, for such a pop
ulation will typically not be held in a constant narrow range offitnesses but may more 
or less hug the landscape, moving higher when below the higher peaks, falling lower 
when below lower peaks. Nevertheless, the simplified image helps tune intuition. 

Mathematically, such a band is a connected cluster of one-mutant near-neutral 
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genotypes. More precisely, restrict attention to any defined narrow band of fitness 
values and imagine coloring all genotypes within that range red. Then connect any 
red genotype to those other red genotypes which can be reached via one-mutant 
neighbors. This process forms connected clusters of near-neutral genotypes ranging 
in size from isolated red genotypes to perhaps much larger clusters. Ifthe size of the 
largest cluster scales with the number of genotypes in the space, the cluster can be 
thought of as percolating, or extending, across the space (Stauffer 1985). Recently, 
Flesselles et al. (1988) investigated the statistics of clusters on the N-dimensional 
Boolean hypercube, corresponding to a genotype space in the NK model with two 
alleles, 1 and O. These authors examined the relationship between the fraction x of 
red sites and cluster size, under the assumption that the locations of the red sites are 
uncorrelated. Thus their example corresponds to the K = N - 1 limit of the NK 
model or to any other fully random, uncorrelated fitness landscape. As noted by 
Amitrano, Peliti, and Saber (1988), a good estimate for the critical value of x is 

1 3 15 83 
x ::=::::-+-+-+-+ ... 

c z 2Z2 3z3 4Z4 
(3.9) 

where z = N - 1. Intuitively, when x, the fraction of red genotype, is slightly more 
than liN of the 2N genotypes, each red genotype will have slightly more than one red 
one-mutant neighbor, and therefore a very large cluster will form. Were the popu
lation to wander randomly on such a cluster, arbitrarily different genotypes would 
be encountered. By contrast, if x is less than xc, then small isolated red clusters will 
form, and the population will be confined to wander neutrally in one or another of 
these clusters. Thus a small increase in x from below to above Xc yields a phase tran
sition: The population will melt from a well-localized distribution to one which is 
delocalized and can wander neutrally across vast tracts of genotype space. 

Three features of this simple image should be emphasized. First, the red-con
nected clusters of near-neutral genotypes may be few in number, very large, and scale 
in size with the number of genotypes in the space, or they may be many and small. 
Second, small changes in x can lead to dramatic changes in population behavior. 
Third, any such cluster may correspond to an interconnected web of fitness ridges of 
high fitness, just below the fitness peaks of the landscape. The population will then 
tend to flow along this system of interconnected ridges. Although the dimensionality 
of the entire genotype space may be high, the connectivity patterns among the 
genotypes on the ridges may be very low, each being connected to only a few others. 
As noted by Eigen (1987), the adapting population will tend to be guided along such 
ridges, with selection operating on the entire mutant distribution in genotype space 
at once. 

The analysis of Flesselles et al. (1988) is valid only for fully random fitness land
scapes. On correlated landscapes-for example, in the NK model with K < N
neighboring genotypes have more or less similar fitness values; thus the locations of 
genotypes within any narrow fitness range is not random. Among the important 
issues in understanding population flow on rugged multipeaked landscapes are the 
sizes, numbers, and relative locations of such connected neutral clusters. A question 
of fundamental interest is the rate at which such clusters increase in size as fitness 
levels are lowered. The increase may be gradual, as in a K = 0 landscape, or a single, 
sudden, dramatic increase in size may be encountered, as in the case of fully random 
landscapes, K = N - 1. In the latter case, a slight increase in mutation rate, pushing 
the population slightly farther down from the optima, may suddenly leave the pop-
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ulation on a very much larger cluster. Then a very slight increase in mutation rate 
will yield a sudden, dramatic increase in the range over the fitness landscape across 
which the population wanders as a coherent cloud. In landscapes with 0 < K < N 
or in other complex landscapes, a variety of rates of increase in cluster sizes as suc
cessively lower fitness levels are examined may arise. Slight increases in mutation rate 
would then sometimes lead to jumps in the range of genotype space accessible by 
diffusion among near-neutral mutants. 

Another question of importance is how far below the fitness peaks neutral per
colating clusters spanning large tracts of genotype space lie. On rugged landscapes, 
such neutral clusters should hover close to the peaks. On smooth landscapes, such 
clusters must be farther below peaks. It is easy to see that, on fully random land
scapes, such spanning clusters need be only slightly below fitness peaks. Consider a 
point one step from a local optimum. Typically, only a single direction uphill is avail
able: that which leads to the local optimum. If one considers a point about two or 
three steps from a local optimum, however, then typically one or two directions do 
not lead directly to local optima. Therefore, a connected web of ridges only a few 
steps below local peaks, hence typically of rank order about 2/( N + I) or 4/(N + I), 
may participate in such neutrally connected clusters spanning much of genotype 
space. In contrast, consider the single-peaked K = 0 landscape. To gain access to 
large tracts of genotype space, mutation would have to be strong enough to force the 
population far below the peak. For example, access to halfthe genotype space would 
require that the population be driven down to a level of fitness at which half the N 
genes, on average, are in their less favorable state. Since landscapes are undoubtedly 
quite rugged, neutral percolating domains are typically not far below fitness peaks. 

As remarked above, these neutral percolating domains oversimplify the problem 
of understanding population flow, for an adapting population is not held in a fixed 
fitness band. Instead, it is expected to follow the contours of the fitness landscape in 
a complex distribution reflecting fitness gradients, sizes of genotype basins able to 
climb to each local optimum, distribution of fitness-loss barriers between alternative 
basins, mutation rate, and population size. Nevertheless, the sizes of near-neutral 
percolating domains is one estimate of the range of the landscape accessible and of 
how that range increases as mutation rate increases. 

The behavior of an adapting population on a rugged landscape obviously should 
have high significance in the selectionist-neutralist debate. The neutralists assert that 
the bulk of evolution is selectively neutral drift. In particular, this claim has been held 
to apply to the molecular level. But it seems likely that most protein fitness land
scapes are rugged, not neutral. For example, in the next chapter we shall find that we 
can use the NK model to fit many features of adaptive evolution of antibody mole
cules by assuming that each amino acid in the 110 to 120 amino acid "variable" 
region of the antibody molecule is influenced by about K = 40 other amino acids. 
The corresponding landscape is very rugged and corresponds to what we know about 
how many amino acid substitutions significantly lower a protein's function. Then 
does such ruggedness assure us that the neutralist claims are wrong? Not necessarily. 
Consider instead that, in much of molecular evolution, the mutation rate relative to 
population size and landscape structure may be high enough to drive the population 
below the peaks; the population can then diffuse vast distances among a percolating 
cluster of near-neutral mutants. Then, although the landscape is rugged, the popu
lation experiences a largely neutral drift across sequence space. Therefore, to the 
extent that molecular evolution occurs onfixed fitness landscapes, the neutral theory 
would seem to require that very large near-neutral clusters occur in genotype space 
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and guide evolutionary flow. Since fitness landscapes undoubtedly are not fixed, the 
plausibility of the neutral theory is even greater. As a landscape deforms, the popu
lation may drift across a large connected cluster of near-neutral genotypes whose 
components alter as the landscape does. 

The flow of an adapting population on rugged landscapes under the drives of 
mutation and selection is closely analogous to a physical system, such as a spin-glass 
at a fixed finite temperature. These analogies are important because ideas from sta
tistical physics are likely to prove generally useful in population-flow problems. For 
example, in spin-glass models at OaK, the spins can flip only if the new configuration 
is oflower energy than the old configuration. In the typical Glauber dynamics used 
to model such a system, only one spin is allowed to flip at a time (Sherrington and 
Kirkpatrick 1975). Thus at OaK, a spin-glass walks to a local energy minimum via 
fitter (lower-energy) one-mutant neighbors. Higher temperature is analogous to a 
higher mutation rate. At a finite temperature, a spin is allowed to flip to a higher
energy, unfavorable state with a probability which increases as the temperature 
increases. Thus at higher temperature the system can jump to one-mutant neighbors 
which are much less favored and can move in a zone of quite high energy across con
figuration space (Stein, Palmer, et al. 1984; Stein and Ogielski 1985). 

The consequences of spin-glass behavior on rugged energy landscapes at any finite 
temperature are freezing into local regions and slow relaxation times. At a fixed tem
perature, the system remains frozen into some region of configuration space, through 
which it wanders on some typical time scale but eventually can escape to other 
regions (Stein, Palmer, et al. 1984; Stein and Ogielski 1985). This phenomenon leads 
to nonexponential, or slow, relaxation times in the exploration of the space. At a 
fixed temperature, a system with two quadratic potential wells separated by an energy 
barrier typically shows an exponential escape from the higher-energy to the lower
energy well. The exponential rate gives the time scale of the escape. In spin-glasses 
with complex potential energy landscapes, slow relaxation is manifest by a multi
plicity of time scales of exploration of ever larger regions of configuration space. The 
parallels to population flow on rugged landscapes are clear. 

The parallel between statistical physics and population biology is welcome. The 
same tools apply in both areas. Ebling, Engel, et al. (1984) have begun such studies 
for fully random landscapes. Their analysis is based on the eigenvalues and eigen
vectors of the genotype system under the influences of mutation and selection. As 
described in Chapter 14, the eigenvalues and eigenvectors give the behaviors of the 
independent modes of the system. The largest positive eigenvalue is associated with 
a specific eigenvector, or linear combination of underlying genotypes, whose relative 
concentrations are increased over time. Localized population flow occurs if the larg
est positive eigenvalues amplify the concentrations of only a small fraction of the 
genotypes. Nonlocalized melting corresponds to amplification ofthe concentrations 
of a large fraction of the genotypes which are well dispersed across genotype space. 
While these analyses have been carried out for random fitness landscapes with some 
success (Ebling, Engel, et al. 1984), it is necessary to extended them to correlated 
landscapes (for example, K « N) for large N. Eigen (1987) has made useful contri
butions to this general subject. 

A combinatorial optimization procedure called simulated annealing, based on 
concepts from statistical physics, offers insights for population biology. Simulated 
annealing (Kirpatrick, Gelatt, and Vecci 1983; Aarts and van Laarhoven 1985) 
derives from the fact that the range of states explored by a system such as a spin-glass 
is a function of temperature given by the Boltzmann distribution. At high tempera-
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ture, the system is not trapped by potential barriers. At low temperature, the system 
spends most of its time confined to deep potential wells. The idea behind simulated 
annealing is to gradually lower an analogue of temperature appropriate to the opti
mization problem. If temperature is lowered gradually enough, the system tends to 
become trapped in deep, wide energy wells. Ultimately, when the temperature is near 
O°K, the system ends up in a very good energy minimum. In contrast, if the process 
were carried out at very low temperature, the system would rapidly fall into a poor 
local energy minimum and become trapped there. 

Simulated annealing is a powerful optimization strategy. In effect, the use of high 
temperature smoothes out the free-energy landscape. More precisely, at high tem
perature the landscape is smooth. As temperature is lowered, the landscape becomes 
more rugged and the system eventually becomes trapped in an energy valley. 

The analogue of simulated annealing in population flow on rugged landscapes 
would be to begin with a high mutation rate and gradually lower it. In effect, a high 
mutation rate smoothes out the analogue of the free-energy landscape of a physical 
system. The potential power of this procedure is great, and in Chapter 4 I shall 
describe Eigen's efforts to utilize it in applied molecular evolution. 

Although it seems unlikely that the precise analog of sim ulated annealing plays a 
role in population search on rugged landscapes, the search behavior of nearly melted 
populations may mimic important aspects of simulated annealing. A precise analog 
would require adapting populations to gradually tune their mutation rates from high 
to low. I find it highly implausible that a natural biological population could control 
its mutation rate to decrease gradually enough for effective annealing. On the other 
hand, annealing works well only in landscapes in which deep energy wells also drain 
wide basins. It does not work well on either a random landscape or a "golf course" 
potential, which is flat everywhere save for a unique "hole." In the latter cases, the 
landscape offers no clues to guide search. But we have good grounds to think that 
very many complex fitness landscapes have the property that high peaks drain large 
basins. Thus, as noted above, if mutation rate is tuned relative to landscape structure 
so that populations are just melting, then two features mimic simulated annealing. 
First, at the melting mutation rate, very small changes in mutation rate or population 
size can dramatically alter the extent of genotype space explored. Second, the pop
ulation has a good chance of flowing into a basin climbing to a high peak and hence 
of optimizing sustained fitness. These possibilities lie behind the intuitive hope that 
proper evolutionary tuning of mutation rate, population size, and landscape struc
ture might simultaneously optimize both evolvability and sustained fitness. 

Recombination as a Global Search Strategy 
on Rugged Landscapes 

In this final portion of the chapter, I want briefly to discuss the following issue: When 
is recombination an effective adaptive strategy on rugged landscapes? As we shall see, 
there appear to be some surprising answers to this question, for the effectiveness of 
recombination depends in subtle ways upon the ruggedness of the landscape. 

So far we have focused on adaptation by accumulation of advantageous point 
mutations and considered largely the structure of fitness landscapes. But organisms 
make use of recombination in evolution. Most generally, recombination occurs 
between two strands of genetic material, DNA or RNA, within or between genes. For 
example, recombination between parental chromosomes with alleles A 1 and Bl on 
the maternal chromosome and alleles A2 and B2 on the paternal chromosome can 
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lead to two new chromosomes with A 1 and B2 on one and A2 and B 1 on the second. 
This event occurs if the recombination break points lie between the A and B loci on 
both chromosomes. Recombination occurs not only between genes but within genes 
as well. In the latter case, the left half of the gene coding for protein A 1 is recombined 
with the right half of the gene coding for protein A2, forming a recombined gene 
coding for a recombined protein. The question we shall address shortly is whether 
such recombination, even within a protein whose amino acids cooperate in complex 
ways, is a useful hill-climbing strategy. 

From the geneticist's point of view, recombination is often considered the reason 
for sex. The problem is this: Why bother with diploid organisms and the genetic cost 
of two parents, rather than blissful haploid fission? Why do even bacteria, normally 
content with the haploid state and mitotic division, engage in occasional bouts of 
passion? 

Why sex has evolved remains a matter of debate which I shall not discuss beyond 
a brief note. The classical argument for the existence of sexual recombination, due 
to Fisher (1930) and Muller (1932), is that recombination favors the incorporation 
into the population of favorable new alleles arising at different loci, since recombi
nation is more efficient in allowing such favored genes to occur in the same individ
ual. Ewens (1979) discusses this in an informal argument: 

Suppose a favorable mutation A 1 arises at a locus A and begins to spread through
out a population. If a favorable mutation B 1 subsequently arises at a locus B, then 
without recombination A 1 and Bl cannot both become simultaneously fixed (in 
the population) unless the initial Bl happens to arise on an A 1 chromosome. This 
is unlikely to occur until the frequency of A 1 is substantial, and thus either the 
evolution at other loci is slowed down by the evolution of the A locus or the favor
able mutation A 1 is lost through the increase in frequency of BI (and hence the 
linked allele A2) at the B locus. With recombination, both A 1 and BI genes can 
eventually arise on the same chromosome so that evolution, under this argument, 
proceeds more rapidly than with no recombination. 

Crow and Kimura (1965) later attempted to quantitate this argument for diploid 
populations, attempting to show the rate of incorporation of useful new mutations 
into a population as a function of population size, the selective advantage of each 
mutation, the overall constant rate of finding favorable new mutations, and the 
recombination rate. 

As Ewens (1979) points out, many such arguments concern long-term optimiza
tion and ultimately rely on intergroup competition rather than selection acting solely 
on individuals. More recent models which attempt to quantitate the advantages of 
sexual over nonsexual existence have looked in the direction of rapidly changing 
environments, parasite-host coevolution, and other mechanisms to explain the vir
tues of recombination. The focus on rapidly changing environments reflects the fact 
that recombination not only builds up useful combinations of genes but destroys 
them as well. Thus once a population has attained a fitness peak, recombination will 
tend to disrupt useful combinations of genes. If one considers recombination as a 
search for peaks not yet found, this symmetry can be ignored. I shall make this 
assumption for the remainder of the discussion. In the context of the current debates 
about the usefulness of sex in a changing environment, we see next that the usefulness 
of recombination demands something of the underlying fitness landscape. 

Fisher's and Muller's arguments, as well as that of Crow and Kimura, appear to 
require something like additivity. If mutation A 1 is favorable compared with A2 and 
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B I is favorable compared with B2, then the joint presence of A I and B I on the same 
chromosome is still more favorable. But our experience with the NK model of ran
dom epistatic interactions has by now shown that, in general, this additive feature is 
false. 

Recombination is a useless search strategy in random landscapes. Consider again 
the K = N - I limit of an entirely uncorrelated landscape. Let two peptides exist. 
Let the left half of the first happen to be fitter than the left half of the second, while 
the right half of the second is fitter than the right half of the first. Break and join the 
better halves. What is the result? The new peptide has a fitness which is entirely ran
dom with respect to the fitness values of the two parental peptides. The recombina
tional move has not helped at all other than in the sense of constituting a long jump 
across peptide space. And with respect to that process, we know that the rate of 
improvement slows as improved variants are found according to s = log2 g(Equation 
3.1 a). Evidently, whether or not recombination is a useful strategy depends upon the 
character of the landscape. 

Any account of the origin of sex presumably must show that recombining a vari
ety of potentially interacting genes, or parts of genes, on one chromosome is typically 
useful. And beyond theory, such recombination is a fact oflife. Does it typically help 
adaptive evolution, and why? These issues have also been stressed and studied in 
some detail by Holland and colleagues in the genetic algorithm (Holland 1981; Gold
berg 1989). 

Conditions for Useful Recombination 
in NK Rugged Landscapes 

It is obvious that recombination is useful in the NK model in the K = 0 limit. Here 
the genes in the model genome make independent contributions to fitness. This sim
ple case carries over to the argument that recombination is useful whenever the 
adapting system comprises functionally independent parts. 

Consider next the NK model as a model of either genotypes or amino acid 
sequences. Focus attention first on the general class of models in which each gene or 
amino acid is affected only by its neighbors along the sequence. In the genetic con
text, this amounts to assuming that epistatic interactions are local. It is intuitively 
plausible that adaptive hill climbing will achieve local optima in which neighboring 
genes are coadapted. Nevertheless, depending upon the value of K, the correlation 
length along the sequence for such coadaptation is bounded. Then the fitness con
tributions of sites at the left end of the sequence are expected to be little affected by 
the alleles at the right end. 

The local-epistasis model leads to the intuition that, when K is small, recombi
nation between long genotypes can be useful, since distant regions are functionally 
independent. Thus if the left half of genotype I is fitter than the left half of 2 while 
the right half of 2 is fitter than the right half of I, the breaking and joining will yield 
two recombined strands, one of which has the two better halves. This recombination 
event will tend to disrupt any co adapted complexes only at the break point but leave 
intact coadaptation among alleles far from the break point. If the two fitter halves are 
sufficiently fitter, the fitness of the recombinant may already be higher than that of 
either initial genotype. In any case, further adaptive hill climbing may ameliorate the 
disruption at the break point. 

The idea that recombination is generally useful because local coadapted gene 
complexes exist faces a serious objection: Knowledge of the cybernetic structure of 
genomic regulatory systems, discussed in Chapters 12 and 13, makes it clear that 
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genes at a variety of sites distributed over the entire set of chromosomes may directly 
or indirectly regulate the activity of genes anywhere else in the genome. In other 
words, the genomic regulatory network is rich in widespread epistatic interactions. 
Worse than the image due to simple recombination, mating of two parents to form 
a zygote typically unites genomic regulatory systems which harbor detailed differ
ences in distributed circuitry and control logic. 

In short, we must ask whether recombination might be a useful strategy when the 
epistatic interactions are not localized but instead are spread out over the entire 
genome. 

To gain qualitative insight into the role of recombination, we must change our 
perspective from the genotype sequences to the structure of the entire fitness land
scape. That space of 2N genotypes harbors some very large number of local fitness 
optima. The question we must ask is this: If we know where one such optimum is, 
does that give us any information about where other optima may be? As we saw 
above, the answer can be "yes." As described earlier, in the NK family oflandscapes, 
when K is small relative to N, the highest optima are near one another and also have 
the largest drainage basins climbing to them (Figures 2.7 and 2.8). Clearly in such a 
landscape the location of one high optimum carries information about where other 
good optima are located. 

Consider an analogy with the Alps. Like many other mountain ranges, the Alps 
have a Massif Central of very high peaks clustered on one another's shoulders. About 
these lie lower peaks, and yet farther away lie the foothills ebbing to the plains 
beyond. It now becomes intuitively plausible that locating one peak gives some infor
mation about where other peaks may be. But even more important, if two peaks are 
located, it is reasonable to think that high peaks lie between those two peaks. More 
generally, quartering the region between many peaks is an organized way of quarter
ing the region which might well contain high peaks. Thus pairs of peaks contain 
mutual information about good regions of the space. 

Recombination is just a means oflooking between the two recombined genotypes 
in high-dimensional space. Thus recombination between local adaptive peaks is a 
means of quartering and searching the prospectively good region of the fitness land
scape, where more high peaks are likely to be found. More precisely, in the present 
case, any two local optima are identical at some fraction of the N sites and differ at 
some others. Let the Hamming distance H stand for the sites which differ. Recom
bination between the two genotypes cannot alter the alleles, 1 or 0, at the sites which 
are identical but can alter the combination of H alleles which occur on each of the 
recombined genotypes. There are 2H such possible combinations, each of which lies 
between the two initial genotypes in the Boolean hypercube. 

In order to test this numerically, my colleague Lloyd Clark and I have used the 
NK model and schematized the effects of recombination in a simple way. We released 
a fixed number (100) of randomly chosen genotypes upon an NK fitness landscape 

. and allowed each to walk via randomly chosen one-mutant fitter variants to a local 
optimum. In general, 100 or fewer independent local optima were found. Thereafter, 
we mated and recombined randomly chosen pairs oflocal optima at randomly cho
sen positions within each genotype, to form 100 recombined genotypes. These 100 
recombinants were then allowed to walk via randomly chosen one-mutant fitter var
iants to local optima. Thereafter, the cycle of recombination followed by hill climb
ing to optima was repeated. This numerical procedure clearly asks whether the 
regions between local optima help direct the adaptive process to yet higher local 
optima. 

The control experiment consisted in choosing 100 random initial genotypes and 
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allowing them to walk to local optima. Thereafter, 100 entirely new fully random 
initial genotypes were chosen and allowed to walk to local optima. This cycle was 
repeated. This control procedure merely samples local optima repeatedly but never 
uses information about the locations oflocal optima. 

Figure 3.16a shows that, over successive generations of recombination and hill 
climbing, the mean fitness of optima gradually increases. In contrast, the control 
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Figure 3.16 Usefulness of recombination tested on an NKlandscape with N = 100, K = 16, and 
coupling to adjacent sites. Lower panel: mean Hamming distance between 100 "walkers" at the 
beginning and end of each cycle of walks to local optima. Walkers at local optima are recombined 
and walk from consequent genotypes to local optima. Top panel: random recombination between 
walkers at optima, biased recombination with nearest neighbors, and recombination restricted to the 
fittest half of the walkers at each cycle. (b) Same as (a), except that K = 2 and the epistatic couplings 
among the genes are random. (c) Same as (b), but K = 4. 
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shows no gradual improvement; rather, the mean fitness of optima attained fluctu
ates narrowly around the level found on the first trial. Thus recombination has 
helped the adaptive search process. 

Happily, recombination also aids search on rugged landscapes when the K sites 
are randomly assigned. Figures 3.16b and 3.16c show results when the epistatic 
inputs to each site are chosen entirely randomly. Again, random pairs oflocal optima 
are recombined. The same results are found. 

1. The mean fitness of local optima increases. Thus adaptation is helped more by 
recombination than by repeated jumps into genotype space. 

2. The local optima after one step have a mean Hamming distance of about 40 
rather than 50.0. Thus for K small, the optima are in a local region in hyperspace, 
even though the inputs to each site are random. 

3. After recombination but before hill climbing again, the mean fitness of the 
genotypes rises. This means that much of the region between the local optima is 
well above the average of the space as a whole. The peaks occur in an entire region 
of high fitness. 

4. The Hamming distance between the optima continues to decrease over recom
bination cycles. Since recombination alone cannot reduce the mean Hamming 
distance in the population of genotypes, this decrease means that the net effect of 
each cycle of hill climbing is to pull the genotypes closer together. We see why in 
a moment. 

Two features of the landscape structure noted above suffice to account for the 
observations. 

1. There is a Massif Central where most of the good optima lie and where the higher 
optima are closer together than the average Hamming distance among all local 
optima. 

2. The higher optima drain larger basins; that is, the higher optima can be climbed 
to via adaptive walks from a greater volume of the space than can lower optima. 

Ifthese two properties hold, then, on average, each new set of walks from recombined 
walkers to local optima will climb to the higher local optima via the larger drainage 
basins; hence mean fitness will increase. And because the higher optima are closer 
together than the average distance between optima, the mean Hamming distance will 
decrease. 

These numerical results demonstrate a fundamental feature of adaptation on rug
ged correlated landscapes: Recombination can be an effective search strategy in rug
ged landscapes without requiring functional isolation of the epistatically interacting 
parts of the system. 

SUMMARY 

This chapter investigates some of the biological implications of the structure of fit
ness landscapes. These include a universal law for long-jump adaptation, where 
genetic alterations jump beyond the correlation length of the landscape. The rate of 
finding fitter variants slows exponentially in the long-jump limit. Furthermore, the 
complexity catastrophe sets in; as the complexity of the entities under selection 
increases, long-jump adaptation becomes an ever poorer search strategy. These gen-
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eral results suggest three QaturaLtil!l(!scales in adaptive evolution. Early in an adap
tive process, distanivariants of a poorly fit entity can be much fitter than nearby var
iants; hence distant variants sweep through a population faster than do nearby 
variants. Therefore, the population adapts by long jumps. As this occurs, however, 
the rate of finding fitter distant variants slows exponentially. Thus in the mid-term 
of an adaptive process, fitter variants are more readily found nearby. Adaptation 
climbs local peaks. On a longer term, long jumps to distant promising hillsides 
occurs, or landscapes deform. 

Radiation and stasis are fundamental features of phylogenies in the evolutionary 
record. Radiation is often explained in terms of free ecospace. Stasis has been 
explained as a consequence of filled niches in a crowded ecospace and normalizing 
selection, or as a consequence of special genetic mechanisms which canalize, or 
buffer, development against phenotypic alterations. In contrast, the very structure of 
rugged fitness landscapes, where the number of directions uphill dwindles as adaptive 
walks climb toward peaks, implies that radiation and stasis are inherent features of 
adaptation on rugged landscapes. Branching radiation should typically be bushy at 
the base, dwindling to single lineages which become trapped on alternative local 
optima. Bushy-based radiation is, in fact, typical in the evolutionary record and 
exhibits an asymmetry in time which has puzzled many thinkers. All may well be 
simple consequences of adaptation on rugged landscapes. 

The wonderful burst of diversity of the Cambrian explosion, the quiescence ofthe 
rebound in diversity following the Permian extinction, and von Baer's laws may also 
reflect the same deep properties of adaptive evolution on rugged landscapes. Mutants 
altering early ontogeny typically affect development more than do mutants affecting 
late development. Thus mutants affecting early ontogeny adapt on more rugged 
landscapes than do mutants affecting late development. It follows that the rate of 
finding fitter variants altering early ontogeny slows exponentially, and does so far 
faster than the rate of finding fitter variants altering late development. Early devel
opment locks in, not necessarily due to the filling of ecospace or to special genetic 
canalization mechanisms, but simply because discovery of fitter variants affecting 
early development and making massive changes to the pathways of development 
becomes exceedingly rare. It follows that early vertebrate embryos should be more 
similar than late-stage embryos; hence von Baer's laws are expected. And both the 
Cambrian explosion and the Permian quiescence also are expected. In the former, 
the higher taxa filled in with founder species from the top down. Naturally: Early in 
the evolution of multicelled organisms, mutants altering early development, and 
hence long-jump adaptations to distant fitter variants, were easily found. Species 
founding phyla were established. Later, nearby variants were more readily found. 
Species founding orders, classes, and the lower taxa arose. In the post-Permian 
extinction rebound, early development had locked in; hence higher taxa were replen
ished from the bottom up. Finally, branching phylogenies climbing fixed or deform
ing landscapes will show patterns of convergent or parallel evolution which reflect 
that landscape structure. Thus homoplasy in systematists' phylogenies should be 
viewed as data, not noise. 

Adaptive evolution is a search process-driven by mutation, recombination, and 
selection-on fixed or deforming fitness landscapes. An adapting population flows 
over the landscape under these forces. The structure of such landscapes, smooth or 
rugged, governs both the evolvability of populations and the sustained fitness of their 
members. The structure of fitness landscapes inevitably imposes limitations on adap
tive search. On ~p1ooth landscapes and a fixed population size and mutation rate, as 
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the complexity ofthe entities under selection increases, an error threshold is reached. of" 
Beyond that complexity, selection is a weaker force than mutation. The weak Max- {' 
well's demon sets in. The population "melts" from the adaptive peaks and flows 
across vast reaches of genotype space among near-neutral mutants. Conversely, on 
sufficiently rugged landscapes, the evolutionary search process becomes trapped in 
very small regions of genotype space. Evolvability is compromised. On a fixed rugged 
landscape, as mutation increases in frequency, one or a series of phase transitions 
occurs at which the population "melts" out to ever larger regions of the space ofpos
sibilities. Reciprocally, for a fixed mutation rate and population size, adaptive search 
will remain frozen in small regions on sufficiently rugged landscapes, but melt over 
ever larger tracts of smoother landscapes. 

An attractive hypothesis is that evolvability may be optimized iflandscape struc
ture and search parameters yield a population which is nearly melted. Such a popu
lation has the advantageous property that small changes in mutation rate can dra
matically alter the extent to which the fitness landscape is explored and hence can 
best balance preservation of heritable information with exploration. That is, the pop
ulation can optimize evolvability. Furthermore, such a poised mutation rate should 
optimize sustained fitness. If the mutation rate is too low, the population will be 
trapped on poor local peaks. If the mutation rate is too high, the population will be 
driven far from the peaks and drift in fitness lowlands. An intermediate mutation 
rate and population size relative to landscape structure must optimize sustained fit
ness. Further, very many rugged landscapes have the property that the highest peaks 
drain the largest basins. In such landscapes, a search process which is not too frozen 
into small regions has a reasonable chance of reaching basins that climb to high 
peaks. Thus optimizing evolvability may often optimize sustained fitness. 

Fitness landscapes are not fixed, but deform as a result of alterations in the phys
ical environment and coevolutionary effects. Organisms may be buffered against a 
range of alterations in their fitness landscapes by harboring a hierarchy of epistatic 
couplings among genes or traits. Alterations of highly epistatic traits alter phenotype 
drastically and hence adopt on very rugged landscapes. Alterations of traits with few 
epistatic consequences cause minimal alterations to phenotype and hence adapt on 
relatively smooth landscapes. Possession of a hierarchy of epistatic interactions 
among genes or traits automatically permits organisms to tune their response to the 
deformation rate of the fitness landscape being explored. 

Recombination is presumed to be the reason that sex and diploidy have evolved. 
The general supposition is that recombination is a useful search process which has
tens the assembly of useful combinations of genes or parts of genes. However, the 
usefulness of recombination itself is governed by the structure of fitness landscapes. 
For example, on fully random landscapes recombination suffers all the defects of 
long-jump adaptation. Conversely, recombination is a useful search procedure on 
rugged landscapes in which high peaks nestle close together. In such cases, the loca
tions of high peaks carry information about the locations of other high peaks. The 
region between those high peaks is then likely to harbor even higher peaks. Recom
bination is precisely a process which quarters the region between such peaks. Clus
tering of high peaks can arise due to functional modularity, as in the NK model with -~. 
the K epistatic inputs to each site chosen among its nearest neighbors, or in additive ' 
genetic models. But clustering can also arise as a feature oflandscape structure with
out obvious modularity, as shown by NK landscapes with the K epistatic inputs to 
each site chosen at random among the sites. 

A major purpose of Chapters 2 and 3 has been to lay the foundations to examine 
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the relation between self-organization and selection, the two overarching themes of 
this book. For concreteness, I introduced an example of such self-organization in 

, I Chapter 2. The number of cell types in an organism is about a square-root function 
~ I of the number of genes in that organism. This property holds over a large number of 

phyla. But it is also a typical property of a very large class of genetic regulatory systems 
which we will discuss in detail in Chapter 12. Unless we are utterly stubborn, we must 
wonder at this correspondence and ask whether this beautiful and simple ordered 
property of many organisms over many phyla which diverged 600 million years ago 
reflects selection or not. Perhaps it is a self-ordered property so deep within genetic 
regulatory systems that selection cannot avoid it. 

Within the framework introduced in Chapters 2 and 3, this ordered property is 
widely spread in a large ensemble, or space of genomic regulatory systems. The 
ordered property is not randomly spread in the space of systems, but distributed in 
some broad way. On the other hand, isolated zones in the space which do not exhibit 
the property exist. 

The results of this chapter suffice to say that selection can be unable to avoid spon
taneous order. The limitations on selection arise because of two inexorable com
plexity catastrophes. These two "catastrophes" conspire to limit selective adaptation. 
Each arises where the other does not, one on rugged landscapes trapping adaptive 
walks, the other on smooth landscapes where selection becomes too weak to hold 
adapting populations in small untypical regions of the space of possibilities. Between 
them, selection is sorely pressed to escape the typical features of the systems on which 
it operates. Order for free should shine through. 



CHAPTER 4 

The Structure of Adaptive 
Landscapes Underlying Protein 

Evolution 

We turn now to the evolution of proteins in "protein space." There can be no doubt 
that such evolution occurs on more or less rugged fitness landscapes. I emphasize 
again that by the "fitness" of a protein in protein space I mean the measurable capac
ity of the protein to carry out some defined function. The distribution of such a fitness 
measure over the space of possible proteins is the fitness landscape with respect to 
that specific function. 

The most important theme of this chapter is the need for experimental work to 
establish the structure of protein fitness landscapes. Given such information and a 
companion theory about how populations may adapt on such landscapes under the 
simultaneous action of mutation, recombination, and selection, we shall be better 
able to understand major features of biological evolution, at least at the molecular 
level for protein function. 

If our most basic task is to discover the statistical character of fitness landscapes 
with respect to specific protein functions, the next most important task is to build 
reasonable mathematical models of such landscapes. The theory outlined in the pre
vious chapters was meant to provide us with a mathematical framework for thinking 
about adaptive evolution of genotypes or proteins in sequence spaces in which the 
notions of neighbor sequences and fitness can be defined. It led us to focus upon the 
characteristics of fitness spaces, such as number oflocal optima and lengths ofadap
tive walks to optima. Since real fitness landscapes are correlated in some way, useful 
mathematical models will help us characterize their statistical structure. I introduced 
the NK model in Chapter 2 as a first attempt to build a theory of such landscapes. In 
the present chapter, I ask whether this model is useful in characterizing protein fitness 
landscapes. The tentative answer is "yes." For example, the model does quite well in 
predicting a number of features of maturation of the immune response. 

Our concept of a fitness landscape now needs to be broadened. As defined, a fitness 
landscape for proteins is merely the distribution of the capacity to perform some 
function over protein space. Yet protein evolution often is not optimization of an 
initial catalytic action but evolution of an entirely new catalytic action. The fitness 
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landscape with respect to this new function may be quite different from the landscape 
with respect to the initial catalytic action. Thus we need a conceptual framework for 
analyzing the evolution of new catalytic activities. To build this framework, I intro
duce the concept of a catalytic task space. 

Catalytic task space is an abstract representation, or mapping, of all chemical reac
tions which can be catalyzed onto a space of tasks. Here any point represents one 
catalytic task, and an enzyme covers a "ball" of similar tasks. This abstract represen
tation is useful and carries surprising and potentially important implications. First, 
the idea of a task space carries with it the idea of neighboring tasks; hence the evo
lution of an enzyme to carry out "nearby" reactions maps into the idea of evolving 
an enzyme to cover a neighboring ball. A second important implication rests on the 
fact that apparently very different reactions may constitute the same catalytic task. 

l[A third is the striking possibility that, since any enzyme covers a ball in task space, a I finite number of roughed-in enzymes might cover all of catalytic task space and be 
i capable of catalyzing virtually any reaction. Such a set would be a set of universal 

protoenzymes for all catalytic tasks. As we shall see, recent work which shows that 
antibodies binding to the transition state of a reaction can catalyze that reaction 
strongly supports both the idea of a catalytic task space and the possibility that a finite 
number of enzymes might catalyze all reactions. 

This chapter discusses four major topics: the structure of specific_fitness.land
scapes in protein space, the adequacy of the NK mOdeLfor-such landscapes, the con
cept of catalytic task space and eVIdence supporting it, and the use of genetic engi
neering to generate large numbers of random genes, RNA molecules, and proteins 
to .£Y>l()~rotein fitness landscapes on a massive scale. These conceptual and exper
imental questions are now open to investigation in a powerful new way. In the final 
section of this chapter, I shall describe a new experimental program that explores the 
ligand-binding and catalytic properties of proteins. This program uses recombinant 
DNA technology to generate billions, indeed trillions, of novel genes, followed by 
either selection or ~~!1ing procedures to identify those with specific catalytic or 
ligand-binding properties. Current methodologies, in short, for the first time allow 
us to explore the character of adaptive landscapes in protein space. These technolo
gies promise new drugs, new vaccines, new enzymes catalyzing single reactions and 
connected sequences of reactions. I believe we are on the verge of a tremendous new 
field: applied molecular evolution. This study of landscapes is no mere academic 
quest, then. Theories of adaptive walks in rugged landscapes are likely to find prac
tical application in the near future. 

ADAPTIVE MATURATION OF THE IMMUNE RESPONSE 

During the immune response, a remarkable and rapid adaptive evolution of anti
body molecules occurs (Kauffman, Weinberger, and Perelson 1988). During this 
adaptive evolution, the genes coding for the antibody secreted in response to a spe
cific antigen accumulate successive mutations which progressively increase the affin
ity of antibody for antigen. Such adaptive improvements constitute one of the most 
rapid and easily studied adaptive walks in sequence space (here, the space of antibody 
sequences). Therefore, maturation of the immune response is a testing bed for ideas 
about the structure of mountainous fitness landscapes. In thinking about these issues, 
we are really considering three bodies of questions: 

1. What does the affinity landscape, or fitness landscape, in antibody space look like, 
and how does its structure bear on the behavior of the immune system? 
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2. Is this landscape a good harbinger of other adaptive landscapes with respect to 
catalytic function? 

3. Is the NK or any other mathematical model a good one for representing the struc
ture of such adaptive landscapes, and if so, why? 

When an organism is exposed to an antigen and mounts an immune response, the 
complex sequence of events which ensues includes binding of the antigen to imma
ture antibody-secreting B cells. Those B cells whose antigen receptors, each with the 
same specificity as the antibody molecule it will later secrete, best match the incom
ing antigen proliferate most rapidly. This process is called clonal selection (Burnet 
1959) and leads to an abundance in the serum of antibodies which match the antigen. 

The antigen specificity of an antibody immunoglobulin is determined by the 
amino acid sequences in the heavy-chain (H) and light-chain (L) variable (V) regions 
of the immunoglobulin. The diversity in these two regions is generated by the com
binatorial assembly of five different V-gene segments during the formation of the V 
genes. A complete heavy-chain V domain results from the joining of V H, diversity 
(D), and H-chain-joining (JH) gene segments in the genomic rearrangements in each 
stem cell. Similarly, the light-chain V domain is created by the joining of V Land h 
gene segments. Each of these segments is chosen from a repertoire of several to hun
dreds of alternatives, to build up combinatorially a very large number of alternative 
heavy and light variable regions (reviewed in Honjo 1983; Yancopoulos and Alt 
1986). Estimates of the minimal diversity in the mouse generated by these mecha
nisms range from 5.1 X 107 (Honjo 1983) to 109 (Berek, Griffiths, and Milstein 
1985). 

In addition to this combinatorial diversity, a further source of diversity is gener
ated by variability in the locations of joining at the junctions of V-gene segments 
during assembly with insertion of random nucleotides (Tonegawa 1983). In addition, 
another source of diversity results in nucleotide replacement and is termed somatic 
mutation. In principle, somatic mutation allows almost limitless V-region diversity. 
From analysis of clonally related cells, it now appears that there exists a special hyper
mutation system which specifically alters bases in the V region at a rate of 10-3 per 
base pair per generation, a rate approximately six orders of magnitude higher than 
the spontaneous mutation rate (McKean, Huppi, et al. 1984; Clark, Huppi, et al. 
1985; Manser, Wysocki, et al. 1985; Sablitzky, Weisbaum, and Rajewsky 1985; 
Sablitzky, Wildner, and Rajewsky 1985; Wabl, Burrows, et al. 1985; Wysocki, Man
ser, and Gefter 1986). 

Antigen Selection Theories 

The cellular and molecular mechanisms by which the immune response matures are 
still being uncovered. Classical theories suggest that competition for limited amounts 
of antigen may drive a selection process (Siskind and Benaceraf 1969). The argument 
goes as follows: The amount of antigen bound to cell-surface immunoglobulin 
depends upon the product of the antigen concentration and the affinity of the recep
tor for antigen. During an immune response, the antigen concentration should 
decrease. Ifthere is a critical amount of bound antigen required to stimulate a B cell 
into antibody production, then as antigen concentration falls, only those B cells with 
increasing affinities for the antigen will remain stimulated and continue to secrete 
antibody. Because the antibody secreted by a cell has the same affinity for the antigen 
as when that antibody acts as the cell's receptor, the average affinity of serum anti
body should increase during an immune response. According to this theory, based 
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on clonal selection, smaller and smaller subsets of preexisting B cells are selected by 
antigen during the immune response. Mathematical models based on this theory 
were developed by Bell (1970, 1971). 

Somatic Mutation Theories 

Doria (1982) pointed out that certain observed patterns of affinity changes are not 
consistent with the classical theory. For example, antigen selection theories predict 
that antibody affinity should be higher for low doses of antigen than for higher doses. 
Instead, lower doses lead to antibodies with lower affinity (Siskind, Dunn, and 
Walker 1968). 

Recent evidence has been obtained by studying the messenger RNA (mRNA) 
sequences for different specific antibody molecules called monoclonal antibodies. 
These monoclonal antibodies are created experimentally by fusing B cells with can
cerous immune-system cells to create hybridomas. These hybridoma cells divide and 
secrete the specific antibody initially secreted by the B cell. Sequencing of mRNAs 
from different stages ofthe immune response to a single antigen indicate a more com
plex process (Kohler and Milstein 1976; Kennett, Denis, et al. 1978). In particular, 
it now appears that somatic mutation plays a major role in maturation of the 
immune response such that, over time, the affinities of the antibodies secreted 
increase. 

In response to a specific antigen, clonal proliferation of those germ-line genes 
whose variable regions most precisely match the antigen leads to amplification in the 
serum of an initial set of roughed-in antibodies from a restricted number of cells, 
which contain V regions. The initial fraction ofB cells which responds to an antigen 
is on the order of 10-5 (Press and Klinman 1974; Cancro, Gerhard, and Klinman 
1978). These germ-line genes have little or no somatic mutation evident (Kaartinen, 
Griffiths, et al. 1983; Tonegawa 1983; Manser, Wysocki, et al. 1985; Wysocki, Man
ser, and Gefter 1986). Later in the primary or secondary response, the majority of 
antibodies no longer directly correspond to germ-line varieties but instead show 
extensive somatic point mutations. The accumulation of these mutations is corre
lated with an increase in the affinity of the antibody for the antigen (Urbain, Van 
Acker, et al. 1972). According to present somatic mutation theories, the increased 
affinity is a direct consequence of further clonal selection. Those somatic mutations 
which result in an alteration of the protein sequence of the V region may alter the 
binding affinity of the antibody. Then those mutated B cells whose antibodies bind 
the antigen with higher affinity proliferate more rapidly and come to dominate the 
immune response by clonal selection. Over a succession of somatic mutations in the 
V region of the initial roughed-in B cells, the mean affinity of the antibodies increases 
sharply. Typical increases over the course of maturation are from 5 X 104 M- ' to 5 
X 107 M- ' (Kaartinen, Griffiths, et al. 1983; Fish and Manser 1987). 

Maturation of the immune response is an adaptive walk in antibody space from 
the initial V region, through a succession of higher affinity variants, toward some 
locally optimum antibody which has higher affinity for the antigen than does its one
mutant neighbors. All the questions we posed in the previous chapter about the char
acter of adaptive walks come to the fore and point to a central experimental question: 
How correlated is the landscape? 

I again define precisely the fitness landscape in question. Consider the incoming 
antigen and a single epitope, or molecular feature, on that antigen. Then consider 
measuring the affinity of all possible antibody molecules for that epitope. The distri-
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bution of affinity values across antibody sequence space constitutes a well-defined 
affinity landscape with respect to that epitope. Presumably it is the statistical char
acter of that landscape which largely determines the character of adaptive walks in 
antibody space. Therefore, we would hope that studies of a model like the NK model 
might provide this kind of statistical information. I discuss next a method of applying 
the NK model to these issues, based on work with my colleagues (Kauffman, Wein
berger, et al. 1988; Kauffman and Weinberger 1989). The first attempt to apply the 
concept of an affinity landscape to maturation ofthe immune response was based on 
the idealization that such landscapes are entirely uncorrelated (Kauffman and Levin 
1987). Further analysis using this limiting idealization has been carried out by 
Macken and Perelson (1989). 

Application of the N K Model to Maturation 
of the Immune Response 

The fundamental assumptions in applying the NK model to immune-response mat
uration are that a representative member of the population of maturing antibodies 
can be identified at any time and that the affinity of these antibodies for the antigen 
steadily increases, due to fortuitous point mutations, until a locally optimal antibody 
is obtained. We define a locally optimal antibody as one having higher affinity for the 
antigen than any of its one-mutant neighbors. The experimental results in the pre
ceding section confirm that this is, in general, a plausible scenario. However, it is not 
known whether mature antibodies are in fact local optima. It is known that the V 
regions continue to mutate without substantial changes in affinity even after they 
have attained maximum affinity for the antigen. This continued mutating may 
reflect mutational dispersal among near-neutral mutants in the immediate vicinity 
of the local optimum. 

In addition to these two main assumptions, there are a number of others, which I 
describe now. 

Choice of N. We identify the parameter N with the number of amino acid sites in 
the V region which has between 110 and 120 amino acids. In applying the NK model 
to immune-response maturation, N = 112 was used because it was slightly easier to 
with K amino acids drawn randomly from the chain. 

Choice of Starting Place. We assume that the fact that one in 100 000 B cells 
responds to a given antigen implies that those that do respond secrete antibodies that 
are in the 99.999th percentile in ability to bind to the antigen. In other words, walks 
start well up on adaptive hillsides. From the point of view of numerical simulations, 
the fitness contribution of each amino acid in the model antibody is a random num
ber. Therefore, finding model antibodies in the appropriate percentile reduced to the 
problem of finding random-number seeds that give a sequence of N = 112 random 
numbers whose average is in the same percentile. Although use of this procedure 
implies that there will be some fluctuation in the starting fitness of the model anti
body, departure from the bottom boundary of this top percentile was insignificant. 

Choice of Neighborhoods. The NK model suggests that lengths of walks to optima 
and fitnesses of the optima achieved do not depend strongly on the details of which 
sites interact with each other. However, preliminary simulations assumed that there 
could be only two amino acids per site and that the walks started from randomly 
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selected initial proteins rather than from proteins already in the 99.999th percentile 
in fitness. In modeling V regions, we considered both extremes: Each amino acid 
interacts directly only with its K neighbors; to avoid boundary effects, we therefore 
idealized the V region as a circular protein. Alternatively, each amino acid interacts 
with K amino acids drawn randomly from the chain. 

Choice 0/19N Neighbors or Neighbors via the Genetic Code. A V -region length N 
can be thought of as having 19N one-mutant neighbors. However, at the DNA level, 
many single amino acid substitutions require two or three base pair changes. Restric
tion to single base changes at the DNA level implies a reduction on the number of 
one-mutant neighbors at the protein level. Both cases were studied. "Coding" was 
incorporated into the model by explicitly including translation. In particular, coding 
was modeled by assuming that the evolving entity was a pair of polymers: a "protein 
molecule" consisting of the 112 "amino acids," as before, and a (single-stranded) 
"DNA molecule" consisting of 112 X 3 = 336 sites, each with one of the four 
"bases." The initial DNA molecule was back-translated from the starting-model V 
region to a DNA sequence coding for that model V region. The codon assigned to 
each position in the back-translation was chosen randomly from the synonymous 
codons for that amino acid. A step consisted in a point mutation of one of the DNA 
sites, using the genetic code to translate the new DNA sequence into the correspond
ing protein, and then computing the fitness of the protein. Since model adaptative 
walks pass only to fitter neighbors, the adaptive walk in this procedure did not pass 
to a one-mutant neighbor which was a silent mutation to a synonymous codon. A 
DNA mutation which resulted in an internal stop codon in the model V region was 
scored as a lethal mutation with fitness O. 

Use of the genetic code reduced the number of one-mutant neighbors. Each DNA 
sequence had only 1008 one-mutant neighbors, obtained by substituting any of the 
three other bases in each of 336 sites. In addition, due to synonymous codons, only 
about 75 percent of these substitutions resulted in substitution ofa new amino acid. 
Thus in the versions of the model based on coding, each model V region had about 
756 one-mutant neighbors rather than the 19 X 112 = 2128 based on mutation of 
any amino acid to one of the 19 remaining possibilities. 

Complement-Determining Regions or Not. The NK model in its general form is 
isotropic. It assumes that all sites make a direct contribution to fitness of the overall 
string, whether that string is interpreted as a genotype or as a protein. Proteins, how
ever, may be more hierarchically constructed, with some sites-for example, amino 
acids at the active site of an enzyme or the binding site of an antibody molecule
having direct bearing on function and other sites playing a support role. 

In the V region of antibody molecules, special hypervariable regions called com
plement-determining regions (CDRs) are known to playa critical role in antibody 
diversity and in antigen binding. The surrounding parts of the V region are thought 
to be a supporting framework for the binding site (Kabat 1976; Kabat, Wu, and Bil
of sky 1979). A simple way to begin to model the distinction between CDRs and 
framework is to assume that only the amino acids in the CDRs have a direct impact 
on the fitness ofthe V region, while those in the framework influence the CDR amino 
acids. Thus, as a first effort, the existence of CDRs was modeled by assigning three 
contiguous regions of amino acid positions in our model V regions, matching those 
in V regions, and measuring the fitness contributions only of the CDR amino acids. 
Because the framework amino acids interact with the CDR amino acids, the former 
still have an indirect bearing on fitness. 
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Choice of K. The experimental data described below show that walk lengths in 
affinity landscapes average between six and eight steps, but with considerable vari
ance. Walks start well up on adaptive hillsides, where the starting germ-line V region 
initially amplified by clonal selection is in the highest 99.999th percentile. Thus we 
seek a value of K such that walks to local optima from that starting percentile average 
six to eight steps. This is the central parameter-matching step in applying the NK 
model. We use two features of the immunological data: (1) the fraction of B cells 
which respond to an antigen sets the starting percentile in affinity space and (2) the 
number of mutations substituting amino acids in the V region during maturation sets 
the mean walk length to optima. Given these conditions, it is possible to find the 
value of K which yields walks with the appropriate length by carrying out numerical 
simulations at various trial values of K (Kauffman and Weinberger 1989). 

Affinity Landscapes Are Correlated 

An immediately interesting point arising from framing these questions is that the 
appropriate value of K must be less than the maximum, K = N - 1, and therefore 
that antibody affinity landscapes must be correlated. This conclusion follows from 
examining walk lengths at the upper extreme value K = N - I, which corresponds 
to a fully random landscape. Here the probability that a model V region with fitness 
x is fitter than its 19 N fitter neighbors is X I9N• Thus any starting protein that is in the 
top 99.999th percentile in fitness has roughly a 98 percent chance of already being 
fitter than its 2128 one-mutant neighbors. That is, if affinity landscapes were entirely 
uncorrelated, initially selected germ-line variants would already be local optima. 
Since antibody molecules mature, we can conclude both that affinity landscapes are 
correlated and that K must be less than N - 1. 

Experimental Features of Affinity Landscapes 

The immune response matures on a rugged affinity landscape whose structure is only 
partially known. In general, all the questions raised previously regarding abstract 
landscapes are afortiori of interest with regard to the immune system. 

1. How many improvement steps must be taken from any initial antibody molecule 
to a local optimum; that is, how many somatic mutations accumulate in the V 
region of an initial roughed-in germ-line variant antibody molecule during mat
uration? The answer, as mentioned above, appears to be a range, with a mean of 
6 to 8 (Bothwell, Paskind, et al. 1982; Tonegawa 1983; Heinrich, Traunecker, and 
Tonegawa 1984; Berek, Griffiths, and Milstein 1985). For example, Crews, Grif
fin, et al. (1981), studying the V H gene responding to phosphorylcholine, found 
between one and eight residues changed; Bothwell, Paskind, et al. (1982) found 
three mutations in a lambda light-chain V region and six in a lambdaz light-chain 
V region; McKean, Huppi, et al. (1984) studying the V K region of antibodies 
against a determinant on influenza found seven or eight replacements; Clark, 
Huppi, et al. (1985), studying the secondary response to influenza, found 20, 12, 
and 19 V H coding mutations and 9, 8, and 15 V K coding mutations. 

2. What fraction of one-mutant variants of the initial roughed-in germ-line antibody 
have higher affinity for the antigen? How does that fraction change, presumably 
dwindling to zero, as successively higher affinity antibody molecules are selected 
as the imm une response matures? Here it is known that a large fraction of the one-
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mutant variants have lower affinity, but the exact fraction with higher affinity at 
any step is unknown. 

3. How rugged is the affinity landscape in the one-mutant vicinity of local optima? 
The question of whether affinity falls off dramatically in some directions and 
slowly in others translates directly to whether mutations at some positions in the 
V region cause dramatic loss of affinity, while those at other positions cause little 
loss of affinity. Restated, the distribution of the number of amino acids which can 
be substituted at a site with retention of function is a direct picture of the local 
ruggedness of the affinity landscape. 

4. How many alternative local optima can be reached from any initial roughed-in 
germ-line antibody amplified by initial clonal selection? Further, what is the prob
ability of climbing to each of those alternative optima and hence the density of 
their occupancy? Here work with inbred mice (Perlmutter 1984; Slaughter and 
Capra 1984) has demonstrated that multiple local optima are accessible. In many 
cases, initial clonal selection opts for the same initial V region, which then climbs 
to different mature forms by accumulating different somatic mutations. It appears 
from these and similar experiments that the number of alternative optima acces
sible from the initial antibody may be at least modestly large. Typically, compar
ison of five to ten monoclonal antibodies deriving from the same V gene shows 
that all differ from one another. Because only small numbers of sequences have 
been compared in this way, it is unknown whether a much larger number oflocal 
optima are accessible. These experiments are ambiguous. As remarked above, we 
have assumed that mature antibodies are local optima, and one of the predictions 
of the NK model will be that many local optima should be accessible. However, 
the fact that different mature antibodies emerge from the same V gene is insuffi
cient to confirm this conclusion. From the work of Eigen and Schuster (1979), 
from classical population genetic analyses (Ewens 1979), and from our analysis 
of adaptation on rugged landscapes as a function of mutation rate as discussed in 
Chapter 3, a distribution of antibody sequences around an optimum can be 
expected, and the rate of hypermutation is known to be high. Thus the diversity 
seen in mature antibodies derived from one V gene may reflect the incapacity of 
clonal selection to eliminate near-neutral variants. 

5. How similar are the local optima? Maturation climbs to alternative local optima 
from an initial roughed-in V region. The typical observations when several dif
ferent monoclonal antibodies derived by maturation are compared is that many 
amino acids are "conserved," while a smaller fraction are repeatedly mutated. 
Furthermore, some sites repeatedly have mutated in parallel to the same alter
native amino acid (Perlmutter 1984; Slaughter and Capra 1984). This topic is 
equivalent to that of the systematist's problem of homoplasy at the molecular 
level, as discussed in Chapter 3. 

Predictions of the Model and Comparison 
with Experimental Results 

The Appropriate Value ofK Is Near 40. Numerical simulations were carried out 
for all versions of V-region models (Table 4.1; Kauffman and Weinberger \989). Of 
these, presumably the most realistic combination includes both the CDR and the 
genetic code. But as we shall see, all possibilities predict the same landscape features 
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TABLE 4.1 Results of Adaptive Walks from Best Initial Model V Region in 100 000, 
Based on Protein V Regions with 19N One-Mutant Neighbors or on the Genetic Code with 
About 775 One-Mutant Neighbors at the Protein Level 

Average A verage number of Mean number of 
walk length fitter neighbors on allowed substitutions 

K to optima first step per site 

Protein (no CDR) 
30 13.6 (3.2)* 65.9 (20.4) 15.4 (3.6) 

Adjacent 40 8.6 (4.5) 24.7 (9.9) 4.1 (3.9) 
50 4.9 (2.3) 10.3 (4.9) 0.8 (1.4) 
30 17.7 (4.4) 83.7 (13.0) 17.9 (2.4) 

Random 40 11.5 (5.3) 42.1 (6.9) 8.5 (5.8) 
50 6.6 (2.2) 17.5 (3.5) 2.1 (3.0) 

Protein (with CDR) 
30 26.1 (7.1) 89.7 (27.8) 12.5 (6.6) 

Adjacent 40 9.8 (3.7) 27.7 (11.3) 5.0 (5.5) 
50 7.0 (3.3) 12.7 (6.0) 1.5 (2.9) 
30 16.1 (5.3) 81.8 (16.2) 15.5 (4.5) 

Random 40 12.0 (3.9) 36.9 (9.3) 7.4 (5.8) 
50 7.3 (3.2) 17.0 (5.8) 1.9 (3.0) 

Genetic code (no CDR) 
30 8.4 (2.3) 20.1 (12.7) 10.5 (5.1) 

Adjacent 40 5.2 (2.7) 7.3 (4.3) 3.4 (3.8) 
50 2.9 (2.1) 3.9 (2.5) 0.3 (0.7) 
30 11.7(4.5) 24.6 (8.2) 14.1 (5.1) 

Random 40 6.9 (3.3) 11.2 (4.9) 5.7 (5.1) 
50 3.1 (1.9) 4.5 (2.8) 1.0 (2.0) 

Genetic code (with CDR) 
30 15.1 (5.6) 41.8(17.5) 9.7 (7.5) 

Adjacent 40 6.7 (3.1) 17.1 (12.1) 3.2 (4.6) 
50 3.5 (2.1) 7.0 (7.0) 0.6 (1.7) 
30 11.2 (4.1) 27.4 (9.3) 11.9 (6.1) 

Random 40 7.6 (2.7) 10.6 (5.5) 3.8 (4.5) 
50 4.1 (2.2) 5.6 (3.3) 0.7 (1.7) 

'The values in parentheses represent standard deviations. 

and qualitatively agree with the available experimental data. The results are remark
ably robust. As Table 4.1 shows, whether CDRs were included or not, whether all 
19N neighbors of the V gene were used or translation via the genetic code was used, 
and whether the K sites were constrained to be flanking adjacent sites or chosen at 
random, a value of K around 40 gives rise to walks of between six and 12 steps. A 
value of K = 30 typically yields walks which are too long; K = 50 typically yields 
walks which are too short. Since walk lengths are largely insensitive to the remaining 
parameters to a very good first approximation, the dominant parameters are N 
andK. 

There is considerable dispersion about this mean value of K. As shown in Figure 
4.1, for a given value of Nand K and under defined conditions for the rest of the 
model conditions, walk lengths might range from two or three steps to 15 to 20. This 
dispersion reflects again the ruggedness of the landscape and is encouraging, given 
the fact that there is a similar dispersion in the experimental data. 

Ultimately, the NK model predicts some specific distribution of walk lengths to 
optima, not just a mean and a standard deviation. Thus accumulation of adequate 
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Figure 4.1 Number of fitter neighbors on an adaptive walk from initial antibody molecule to local optimum plotted as a function of current 
adaptive step on that walk. (a) Variable region modeled as a protein with 19N one-mutant neighbors and K = 40 randomly chosen amino 
acids bearing on each amino acid's fitness contribution. (h) As in (a), except walk carried out with respect to model DNA coding regions and 
hence there are about 775 one-mutant neighbors at the protein level. Ends oflines indicate the step at which walks end. 
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data can ultimately establish the distribution of walk lengths for comparison with 
either the NK model or some improved version of it. 

Finding a specific value for K is in itself interesting. Ifthe model is taken literally, 
K stands for the number of amino acids which bear on the fitness contribution of 
each amino acid. Then, if K is roughly 40, alteration in a single amino acid could 
affect the behavior and function of about 40 amino acids in the V region. Is this plau
sible and is there any evidence bearing on the issue? In a well-folded protein, an 
amino acid is open to influence not only by its neighbors in the primary sequence 
but also by those amino acids which are near it in the folded form even though they 
are distant in the primary sequence. One approach to studying how many amino 
acids in a protein can affect any amino acid is to use hydrogen exchange data, which 
can detect subtle motions in a folded protein as it twists and unfolds slightly in dif
ferent ways. Wand, Roder, and Englander (1986) and Roder, Wand, and Englander 
(1989) have studied such hydrogen exchange in numbers of proteins. While they 
have not yet analyzed differences between a protein and a one-mutant variant, they 
have looked at the oxidized and reduced forms of cytochrome c, a protein containing 
106 amino acids. Oxidization and reduction, due to the presence or absence of a 
charge on the heme group, correspond very roughly to substitution of a charged for 
an uncharged amino acid in that vicinity. These authors have examined 50 hydro
gen-bonded hydrogens and found that at least 30 of them alter their exchange behav
ior when they go from the oxidized to the reduced form. The very crude conclusion 
to be drawn is that a charge alteration at one point in a protein can affect at least 30 
amino acids. Since these authors studied only half the hydrogen-bonded atoms, the 
number of amino acids affected by altering one amino acid may be greater than 30. 
This point has obvious caveats. The study is not of an amino acid substitution but 
of an altered heme group. Further, to have found a statistically significant alteration 
in hydrogen exchange by an amino acid does not yet say that such alterations are in 
any way relevant to protein function. Third, the cytochrome c molecule may be well 
evolved to undergo alterations when the heme group is charged. Many fewer altera
tions in hydrogen exchange behavior might be found by randomly substituting 
amino acids in proteins. Nevertheless, the data suggest that any amino acid might be 
affected by, and affect, as many as 30 amino acids in a protein region of about 106 
amino acids. Direct testing in antibody molecules would require study of hydrogen 
exchange in the V region of a mature antibody and its one-mutant variants. 

The NK Model Makes Plausible Predictions About the Fraction of Fitter One
Mutant Variants. Given a value of K = 40, the NKmodel makes clear predictions 
about the fraction of fitter one-mutant variants of the first roughed-in V region and 
about the fraction of fitter one-mutant variants of each improved variant on the 
adaptive walk. The expected number of fitter variants to the first V region is on the 
order of I or 2 percent in all the combinations of conditions mentioned in Table 4.1. 
In those runs that used alll9N one-mutant neighbors, 24 to 42 among the 2128 one
mutant variants are typically fitter. When translation via the genetic code and the 
implicit constraints in the one-mutant neighbors were added, typically there were 
seven to 17 fitter one-mutant variants among the 1008 one-mutant nucleotide sub
stitutions and about 756 one-mutant V regions at the protein level (Table 4.1). 

On individual walks, there is moderate variance in the fraction of fitter one
mutant variants of the initial V region. The minimum found on the initial step is 
one, and the maximum is 70, or over 3 percent. The fraction of fitter variants dwin
dles, but not smoothly on any specific walk, to zero over the steps to the local opti
mum, as shown in Figure 4.1. 
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The fraction of fitter variants in maturing antibody molecules is not yet known in 
detail, but the experimental procedure for finding this fraction is clear: Monoclonal 
antibodies at different stages during an adaptive walk must be obtained, the genes 
cloned, and the one-mutant spectrum examined for the affinities of the one-mutant 
variants. 

Studies of the lac repressor in the lactose operon of Escherichia coli provide an 
indirect estimate of the number and nature of fitter one-mutant variants of a 
roughed-in V region. Here the observed fraction of fitter one-mutant variants is less 
than 1 percent (Jacob and Monod 1961, 1963; Muller-Hill, Rickenberg, and Wa1-
lenfels 1964; Burstein, Cohn, et al. 1965; Zubay and Chambers 1971). 

The repressor monomeric unit has 360 amino acids. Miller and his colleagues 
( 1979) studied a collection of over 300 altered proteins, each by a single substitution, 
with respect to two ligand-binding activities. Mutant phenotypes in which the repres
sor could no longer bind to either operator DNA or allo-lactose (or a synthetic 
inducer called IPTG) and mutants showing an increased affinity for the DNA or 
IPTG allowed Miller's group to study the consequences of such mutations conve
niently. The results from 323 single amino acid replacements is that 42 percent result 
in a detectable change in the capacity to bind either IPTG or the operator DNA. The 
remaining 58 percent appear to be silent mutations. About 33 percent of the replace
ments decrease capacity to bind to the operator DNA, although only 15 percent of 
the substitutions destroyed 25 percent or more of the capacity, and only 8 percent 
became fully inactive. About 11 percent of the replacements reduced affinity for the 
IPTG. On the other hand, 1 percent of all one-step mutants increased affinity for the 
operator DNA, in some cases by as much as 1 OO-fold. No one-step mutant was found 
which increased affinity for IPTG. 

From the study by Miller and his colleagues (1979) we can draw the following 
conclusions. First, even well-tuned proteins may have rare variants which improve 
a given function. Here, 1 percent of the one-mutant neighbors at a restricted number 
of sites showed increased affinity for the operator DNA, and no mutant showed 
increased affinity for the inducer IPTG. Second, 58 percent of the single amino acid 
substitutions had no obvious effect. Because the assays employed are rough mea
sures, the reported fraction of silent mutants is probably an overestimate. However, 
since 42 percent of the mutants clearly do reduce affinity for the operator or inducer 
or both, it is very unlikely that more than a small fraction of the one-step neighbors 
subtly increase affinity. 

Our simulation results suggest that an initial germ-line V region with K = 40 
would be open to improvement by about 1 to 2 percent of the one-mutant variants 
(Table 4.1). This value is very close to the observed data for the lac repressor. Thus 
tuning K to fit observed walk lengths yields a value which, having tuned the rugged
ness of the fitness landscape, predicts a plausible value for the expected fraction of 
fitter one-mutant variants of the initial germ-line V region amplified by clonal selec
tion. 

These predictions of the NK model are fairly sensitive to K. When K = 30, roughly 
3 to 5 percent of the one-mutant variants of the first c10nally selected V region have 
higher affinity, while walks to optima average about 13 steps. For K = 20, the average 
walk length is 22 steps, and about 7 percent of the one-mutant variants of the initial 
antibody are fitter. 

The NK Model Predicts Conserved and Variable Sites in the V Region. In real pro
teins, some amino acids cannot be substituted without drastic loss offunction, while 
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others can be substituted with relative impunity. It is therefore of interest to ask 
whether the NK model predicts this phenomenon without further assumptions. 

To answer this question, the fitnesses of all one-mutant neighbors of the local 
maxima obtained in the adaptive walk simulations were examined. In order to make 
valid comparisons between simulations with and without the genetic code, all 19 
other amino acids were substituted in each site of the V region, including those amino 
acids that required several mutations of the corresponding DNA sequence. The 
results, for different values of K and for different assumptions about whether the 
entire V region or just the CDRs are used in computing fitness, are as expected (data 
not shown). The first main result is that, as K increases, the jaggedness of the land
scape increases. The second result is that, as K increases, the mean loss infitness and 
the variance in loss of fitness among the different possible one-mutant neighbors both 
increase. Thus as K increases, some mutants persist in causing relatively minor loss 
in fitness, while others now cause a dramatic loss in fitness. The third major result, 
for K = 40, is particularly surprising: At some sites, any model amino acid substi
tution causes a dramatic loss of fitness, while at others all substitutions cause almost 
no loss. At still other sites, some substitutions cause almost no loss of fitness, while 
other substitutions in the same site cause drastic loss. Thus, without further assump
tions, the NK model for these parameters gives a highly rugged landscape in which 
amino acids at some sites in the locally optimal V region must be entirely conserved 
to preserve function, while amino acids at other sites can be substituted indiscrimi
nately. 

Note that, in constructing the general NK model, no site is a priori more impor
tant than others. It is instead the fact that K is high, resulting in a rugged landscape, 
which predicts that some sites are conserved, while others are broadly substitutable. 

A particularly interesting view of these results is the following. We have no direct 
scale relating fitness in the NK model with real affinities of antibody molecules. How
ever, real antibody walks start with those antibody molecules already the best in 
100 000, and such molecules typically have an affinity of 104 M-' for the antigen. In 
contrast, matured antibodies have affinities around 107 M-'. Then it is sensible to 
define the fitness of the first member of the model walks (0.618) as corresponding to 
a modest affinity of 104 M-' and let this fitness serve as a threshold separating model 
V regions which do and do not bind antigen. Given this threshold, one can test the 
number of substituted amino acids at each site in the 112-unit-long optimal V region 
which preserve at least above-threshold function. Table 4.2 shows the results for four 
values of K. Similar results are found for the different versions of the model, with and 
without CDR, coding, or choice of adjacent or random epistatic connections (Table 
4.1). Abain, it is K which determines the qualitative features of the landscape. When 
K is small, one-mutant neighbors of a local optimum have only slightly lower fitness 
and the variance in those fitness levels is small; hence none of the one-mutant neigh
bors fall below the threshold starting fitness, demarking modest affinity. Thus, for K 
= 20, each of the 112 sites can be substituted by all 19 other amino acids, and the 
affinity of the mutated model V region remains above threshold. As K increases, the 
loss of fitness and the variance in that loss increase. For K = 30, most sites are sub
stitutable by 19 amino acids, but some sites can be substituted by only 15, 16, 17, or 
18 amino acids without falling below a fitness threshold of 0.618. For K = 50, the 
mean loss in fitness among the one-mutant variants of a local optimum is dramatic, 
and almost no sites can be substituted with any amino acids and preserve above
threshold affinity. For K about 40, however, a wide distribution is found. Some sites 
can be substituted by 19 other amino acids, some by 15, some by ten, some by five, 
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TABLE 4.2 Number of Allowed Substitutions of a Locally Optimal Model V Region 

Distribution of allowed substitutions 
Allowed 

substitutions K= K= K= K= K= K= K= K= K= 
per site 20 30 30 30 40 40 40 50 50 K= 50 

0 0 0 0 0 7 3 7 105 63 85 
I 0 0 0 0 4 4 14 6 31 20 
2 0 I 0 0 II 5 6 I 13 6 
3 0 I 0 0 10 14 8 0 4 I 
4 0 2 0 0 15 9 3 0 I 0 
5 0 2 0 0 15 9 5 0 0 0 
6 0 3 0 0 12 13 5 0 0 0 
7 0 5 0 0 II 9 3 0 0 0 
8 0 4 0 0 7 6 5 0 0 0 
9 0 20 0 I 6 8 6 0 0 0 

10 0 7 0 0 3 5 6 0 0 0 
II 0 18 I 5 5 6 5 0 0 0 
12 0 10 5 6 2 4 7 0 0 0 
13 0 II 6 3 2 5 6 0 0 0 
14 0 8 4 7 I 5 4 0 0 0 
15 0 10 7 12 0 2 9 0 0 0 
16 0 5 12 16 I 4 8 0 0 0 
17 0 4 12 14 0 0 3 0 0 0 
18 0 I 21 25 0 0 2 0 0 0 
19 112 0 44 23 0 I 0 0 0 0 
Mean 19.00 11.l3 17.14 16.37 5.49 7.23 8.17 0.07 0.65 0.31 
SD 0.00 3.27 2.17 2.39 3.36 4.29 5.62 0.29 0.88 0.61 

and some by zero. Thus a value of K near 40 yields the broadest distribution. I 
emphasize that this broad distribution is a prediction of the NK model. 

This broad distribution reflects the fact that, for K = 40, the mean loss in fitness 
among the one-mutant variants of an optimal antibody roughly equals the difference 
in fitness between the beginning antibody on the adaptive walk, 0.618, and the fitness 
attained at the local optimum. Because the one-mutant variants span across this 
threshold, the distribution of substitutability per site is broad. As we are about to see, 
the observed distribution does appear to be broad; thus we are also led to predict that 
the mean affinity of the one-mutant variants of a locally optimal, mature antibody 
should hover near the affinity of the initial antibody from which adaptive walks 
began. 

The experimental data to test the prediction that the distribution of allowed sub
stitutions per site is broad would consist in a high-affinity, mature monoclonal anti
body against a defined epitope and its entire one-mutant spectrum with respect to V
region mutants. The affinities of that mutant spectrum constitute the data set. It is 
not available, but the experiment is obviously feasible using cloned antibody mole
cules. Nevertheless, a rough approximation to this experiment is available. Geysen, 
Barteling, and Meloen (1985), Geysen, Rodda, and Mason (1986, 1987), Fieser, Tai
ner, et al. (1987), and Getsoff, Geysen, et al. (1987) have studied how all possible one
mutant variations in an antigen change the antigen's affinity for antibody. More pre
cisely, these authors raised, on a protein antigen, polyclonal sera or monoclonal anti
bodies against a defined epitope six amino acid long and then made synthetic hex
amers identical to that epitope and demonstrated that the sera and antibodies had 



ADAPTIVE LANDSCAPES UNDERLYING PROTEIN EVOLUTION 135 

high affinity for the hexamers. Then the authors looked at all 19 variants at each of 
the six positions, one position at a time. The results for nine such epitopes are sum
marized in Figure 4.2. The striking feature is that the distribution of allowed substi
tutions is again very broad. 

Four comments are warranted. First, it is clearly encouraging that the broad dis
tribution for K = 40 predicted by the NK model is found. Second, we have defined 
a threshold affinity as the fitness of the first model V region in the walk, the best in 
100 000; we do not know how this threshold bears on the measured affinities. Third, 
the data need to be used cautiously in this context, since they concern free hexamers 
bound to polyclonal sera or to monoclonal antibodies, not the number of substitu
tions at each position within the V region of a mature monoclonal antibody; the con
straints within a V region mayor may not dramatically alter the observed distribu
tion. Fourth, taking data and model at face value for the moment, the same value of 
K which fits walk lengths to optima also predicts a reasonable fraction of fitter one
mutant variants and genuinely predicts that some sites allow no substitutions while 
others are more permissive. Were K much smaller, say 20, almost all sites would be 
open to substitution by most model amino acids; the prediction is thus sensitive 
toK. 

The Number 0/ Alternative Local Optima Found/rom an Initial V Region. The NK 
model for these parameters allows us to examine the number of alternative optima 
accessible from the initial model V region and also to test whether alternative acces
sible optima are typically attained equally often on independent walks or with biased 
preferences. The experimental data on repeated walks from the same V region 
remain scant, but clearly suggest that multiple optima are accessible from the same 
initial region. The true number of such local optima is not known experimentally 
but presumably is greater than the five to ten alternatives often observed. 

Numerical simulations with K = 40 were carried out from initial model V regions 
and were stopped by limitations of computer storage. In two simulations making 797 
and 315 walks from the same initial region, 150 and 235 optima were found. Because 
many of these optima were found only once, it is difficult to know how many more 
remain to be accessed from the same initial V region. However, it is a clear prediction 
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Figure 4.2 Observed number of amino acids which can be substituted per site in hexapeptides and 
preserve discriminable affinity of the monoclonal antibodies or polyclonal sera to the initial peptide. 
An arbitrary threshold of about 10 percent affinity for the correct hexamer was used. 
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of the NK model that a given initial germ-line V region can give rise to hundreds if 
not thousands of mature antibodies, each a local optimum in affinity space. 

A second feature of these studies is shown in Figure 4.3, which is the histogram of 
the numbers oftimes each local optimum was encountered on independent random 
walks from the same initial model V region. As can be seen, three optima are each 
encountered many times. Analysis of these three showed that each is a one-mutant 
variant of the initial V region from which walks started. Ultimately, the model pre
dicts a distribution which is open to experimental testing. The density distribution 
with which nearby local optima are reached is another expression of the ruggedness 
of the fitness landscape. 

Similarity of Alternative Local Optima: Conserved Sites and Parallel Mutations. 
Comparison of alternative mature V regions obtained experimentally reveals that 
not all sites in the region accumulate somatic mutations equally. In particular, some 
sites are rarely mutated, and among the sites which are preferentially mutated, some
times the same amino acid is substituted on two or more independent walks. These 
are called parallel mutations. To see whether these phenomena are observed in NK 
landscapes, we compared five to ten alternative optima accessed from the same initial 
model V region. Similarly, experimental data often compare five to seven V regions 
obtained by independent walks from the same initial region (Perlmutter 1984; 
Slaughter and Capra 1984). Table 4.3 shows that, for experimental and model V 
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Figure 4.3 Number of times each locally optimal model V region was reached on adaptive walks 
from the same initial V region of modest affinity. Note that some optima are encountered many 
times; typically these optima are only one or two mutant steps from the initial V region from which 
walks begin. 
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Table 4.3 Number of Observed Sites in Model and Real V Regions Which Have Mutated 
One or More Times with Number of Expected Mutations. 

Number of Number of Number of 
K observations experiments sequences· 

APO 79 <91 9 
A25 68 < 83 9 
A25 55 < 68 8 
A30 48 - 48 7 
A 30 52 <62 10 
A40 41 < 54 5 
A40 36 <43 9 
A40 35 < 39 4 
A40 27 < 33 10 
A40 41 < 54 7 
A40 34 < 37 7 
A 50 20 < 20 4 
A 50 18 <27 II 
A 50 15 < 17 4 
A 50 21 <23 6 
Rt 40 47 < 53 5 

Antiarsonate vs. germ line 13 < 23 6 
Antiarsonate vs. prototype antiars 28 <42 6 
Antiphosphocholine vs. germ line 21 < 26 8 

'Number of alternative optima from the same model V region or number of observed alternative mature V sequences to 
the same antigen compared. 

t"A"' means the K sites bearing on each site were adjacent, "R" means those sites were chosen randomly. 

regions, the number of sites which accumulate mutations in one or more local 
optima is less than expected by chance. This means that some sites are preferentially 
not mutated and others are mutated more often than expected in real and model V 
regions. Figures 4.4a and 4.4b show experimental data for two clusters of V regions, 
one for the arsonate system (Slaughter and Capra 1984), the other for phosphocho
line (Perlmutter 1984). In addition, Figure 4.4c shows five local optima and the initial 
model V region for an example with K = 40. Note that, in the real and experimental 
sets, some sites have similar parallel mutations. 

How seriously should we take the NK model as an account ofthe structure of affin
ity landscapes? With considerable but not unbridled enthusiasm. It is the first effort 
at a statistical model for predicting the structure of fitness landscapes in sequence 
space. A single choice of parameter values-N = 112 as set by the known length of 
the V region, and K about 40 as tuned to fit known walk lengths to mature anti
bodies-predicts a number offeatures of antibody affinity landscapes well. It is pre
mature to say that the model predicts these features accurately. All we can say now 
is that the predictions are very plausible. Investigations with cloned V regions at dif
ferent stages of maturation are needed to test the predictions. Even more directly, 
one might imagine carrying out an entire adaptive walk by fitter one-mutant variants 
in vitro beginning with a cloned V gene from the initial B cells which respond. 

Although broadly successful, the NK model as tested does exhibit certain failures. 
During maturation ofthe immune response, there appears to be a tendency for muta
tion causing amino acid substitutions to accumulate preferentially in the CDRs. Fur-
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Figure 4.4 (a) Antiarsonate versus germ-line V region in matured sequences compared with initial canonical V region from which maturation 
proceeds. Boxed regions indicate CDRs (Slaughter and Capra 1984). Note parallel substitutions of the same amino acid in different mature 
sequences. (b) As in (a), except these are mature antiphosphocholine versus germ-line sequences (Perlmutter 1984). (c) Model V regions which 
are alternative local optima climbed to from the same initial region. Boxes mark parallel amino acid substitutions of the same amino acid on 
independent walks to different optima. 
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ther, there may be a tendency for silent synonymous codon mutations to accumulate 
in the framework regions outside the CORso If true, these biases are not captured in 
the current application of the NK model to V regions. Such biases might reflect evo
lutionary specialization of the framework to create the fundamental structure of an 
antibody binding site, while the CORs specialize for antigen binding. In this view, 
the framework is highly adapted and easily disrupted, leading to overall loss of bind
ing by the entire V region. Modeling such a highly adapted character of the frame
work is ignored in this work. Instead, we tested the case in which only CORs con
tribute directly to fitness, while the framework acts indirectly via the CORso An 
alternative approach would be to allow the framework amino acids, on average, to 
affect primarily other framwork amino acids, which CDR amino acids would affect 
only other CDR amino acids. Such functional uncoupling of framework and CDR 
regions would allow the former to be optimized independently in evolution. 

The fact that the NK model appears to succeed as well as it does is encouraging in 
at least three respects. First, it suggests that a statistical model may well capture the 
structure of fitness landscapes. Second, if either the NK model or an improved one 
can predict the statistical structure of antibody affinity landscapes, it may also be able 
to predict the structure of fitness landscapes with respect to the evolution of improved 
enzymatic function. Both landscape types involve the evolution of a structure with 
a "business end," the binding site of the antibody and the active site of the protein. 
Third, if the NK model is close to right, it may be telling us something fundamental 
about how proteins work. In solid state physics, spin-glass mdoels (Edwards and 
Anderson 1975; Sherrington and Kirkpatrick 1975; Binder and Young 1986) cap
ture the real behavior of physical spin-glasses by assuming that interactions are so 
complex that the statistical distribution of their effects can be captured only by ran
dom assignments of coupling energies. The same may be true for proteins. I now 
comment briefly on these issues. 

Certainly the most important implication of the rough success of the NK model 
is the hint that some statistical theory may someday fit well-established data on the 
structure ofthe affinity landscape. Obvious refinements of the model would include 
more details of protein chemistry. Thus some sites should interact more than others, 
reflecting the fact that some amino acids have more hydrogen bonds, hydrophobic 
bonding, and salt bonds than others. One would therefore like K to be chosen from 
a distribution of possible values. In this simplest application of the NK model, the 
identity of the amino acid at each site bears no relation to its identity at another site. 
"Amino acid 7," say, is merely a name specific to one site. In reality, alanine at any 
site is the same amino acid. Thus the nature of the interactions should reflect the fact 
that alanine at each site is the same amino acid and that different amino acids have 
different chemical properties. 

The NK model is but one theoretical approach to the structure of affinity land
scapes. Shenkin, Yarmush, et al. (1987) have carried out detailed simulations pre
dicting antibody hypervariable loop conformations using a realistic model of molec
ular dynamics. Among the intersting ways of relating realistic molecular dynamic 
models of protein conformations of the NK model will be efforts to establish whether 
or not the two models can predict similar statistical features for real antibody mole
cules. Thus both models should predict similar numbers of fitter one-mutant variants 
at each adaptive step in the maturation process. Ultimately, it must be possible to 
predict the observed structure of affinity landscapes for real antibody molecules. 

Having focused on the structure of affinity landscapes in maturation of the 
immune response, I should emphasize that it is but one piece of the immune system 
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puzzles. Even maturation of the immune response requires an understanding of the 
relation between the affinity of antibody molecules on B-cell surfaces and the selec
tive advantage increased affinity may confer. Since increased clonal selective advan
tage is probably mediated by faster cell division times and since there is some mini
mal time required for cell division, we can expect selective advantage to saturate as 
affinity increases. Further, as noted, I have idealized adaptive maturation as if the 
mature form is a local affinity optimum, whereas our analysis in Chapter 3 makes it 
clear that a clonally expanding population of antibody molecules will flow in com
plex ways across the affinity landscape under the drives of somatic mutation and 
clonal selection. Finally, I have ignored interactions between B cells and the rest of 
the immune system. 

Are Protein Adaptive Landscapes and Folding Landscapes Related? Adaptive land
scapes appear to be very rugged and may be captured by something like the NK 
model. The clear relation between the model and spin-glasses was noted in Chapter 
2. Spin-glass models are currently proving useful as models for protein folding, a 
complex process in which the protein binds to itself rather than to another molecule 
(Richardson 1981; Debrunner and Frauenfelder 1982; Karplus and Cuschick 1983; 
Ansari, Berendzen, et al. 1985; Stein 1985; Bryngelson and Wolynes 1987; Bryngel
son 1988). Spin-glass models stress the idea that the potential surface guiding protein 
folding is likely to be very complex with many local minima, as do initial attempts 
to apply the NK model to protein folding (Kauffman and Stein 1989). Indeed, one 
way of stating the deep puzzle in understanding protein folding is to ask how the 
potential surface is constructed such that proteins reliably fold, or refold, to essen
tially the same shape without becoming trapped on the many incorrect local minima 
expected in the potential surface. However such reproducible folding is accom
plished, proteins, once folded, presumably "breathe" by undergoing transitions 
between neighboring low-energy minima. Clothia and Lesk (1987) and Karplus, 
Brunger, et al. (1987) comment that families of evolutionarily related proteins 
undergo shape deformations on the same scale as the breathing deformations of a 
single protein. This suggests that the range of readily available protein shape defor
mations, guided by intramolecular forces, is closely related to the range of shape and 
function deformations in protein evolution. In turn, the function of proteins in bind
ing ligands and catalyzing reactions is primarily due to the similar shape and force 
properties. Might it be that the statistical character ofthe potential surface underlying 
protein folding is intimately related to the statistical character of adaptive landscapes 
in protein evolution? If so, then spin-glass models, the NK model, or a similar but 
improved model may capture the right statistical features of both. 

EVOLUTION OF NOVEL CATALYTIC FUNCTIONS 

In the present section, we discuss the evidence that evolution of novel catalytic func
tions has occurred repeatedly. Such evolution, the fundamental stuff of novelty, is 
not mere improvement of an initial catalytic action but instead represents a new 
direction toward a new end. As we shall soon see, this requires us to broaden the idea 
of a fitness landscape. 

The fundamental fact underlying the capacity of selection to achieve enzymes 
which catalyze "new" reactions is that enzymes exhibit a range of activities, such that 
any enzyme typically catalyzes one reaction with maximal velocity but accepts 
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related substrates and catalyzes related reactions with lower velocities. Selection for 
increased catalytic activity with respect to "Such peripheral reactions can accomplish 
two critical alterations. First, it can successfully increase catalytic activity for the ini
tially peripheral reaction. Second, in so doing, the altered enzyme becomes capable 
of catalyzing still further peripheral reactions which the initial enzyme did not cata
lyze at all. Thus, in a third transition, a novel catalytic function can be culled from 
an initial enzyme. 

Such protein differentiation (Dickerson 1977) is both well established in evolution 
and, more recently, the subject of exciting experimental work. The first examples to 
be worked out, by du Vigneaud's group in 1953, were the peptide hormones vaso
tocin, oxytocin, bovine vasopression, and porcine vasopressin. Numerous studies of 
protein evolution have been carried out (for example, Neurath 1984; Carrell, Pem
berton, and Boswell 1987). Indeed, comparison of sequences and functions has been 
widely used to construct a phylogenetic tree (Schulz and Schirmer 1979). Lactalbu
min and lysozome are a well-known case of two proteins with similar sequences but 
different functions. Perhaps the most famous family of proteins with related but 
diverged functions are the trypsin-like serine proteases. Trypsin cleaves lysyl and 
arginyl bonds quite promiscuously. Relatives of trypsin act in a similar manner but 
are more specific in their action, cleaving only one or a few peptide bonds in one 
specific protein (Schulz and Schirmer 1979). A rather more surprising group is the 
immunoglobulins, the transplantation antigens, and superoxide dismutase. In the 
first two, the relation is based on sequence homology and chain-fold homology; 
the grouping with the dismutase is based on chain-fold homology alone. 

Protein differentiation has often been accompanied by (1) gene duplication or 
multiplcation (Rigby, Burleigh, and Hartley 1974; Markert, Shaklee, and Whitt 
1975), allowing a duplicated form to evolve away from the initial task, and (2) geno
mic rearrangements which fuse different protein domains carrying out different cat
alytic or ligand-binding tasks (Y oumo, Kohno, and Roth 1970). Yet the root form 
of protein differentiation occurs within a single protein which can evolve to carry out 
a different catalytic task. Evidence for protein evolution comes not only from the 
evolutionary record, based on sequence and fold homologies between proteins which 
now have distinct functions, but also from the rapid evolution of soil organisms able 
to survive on-and even become obligate to-formerly toxic environments, and the 
repeated acquisition of antibiotic resistance (Clarke 1976). Direct experimental anal
ysis of protein differentiation includes evolution of an acetamidase to a phenylace
taminidase (Betz, Brown, et al. 1974), a ribitol dehydrogenase to a xylitol dehydro
genase (Rigby, Burleigh, and Hartley 1974; Hartley, Altosaar, et al. 1976), and beta
galactosidase activities (Hall 1976, 1978; Hall and Zuzel 1980). 

Neighboring Catalytic Tasks Deform the Fitness Landscape 
and Suggest a Catalytic Task Space 

Protein differentiation for a new catalytic function requires that we broaden our ideas 
about fitness landscapes. A fitness landscape is the distribution over protein space of 
the capacity to carry out one specific reaction. Protein differentiation means that pro
teins evolve to carry out new but "neighboring" reactions. Change of the function, 
or task, measured in protein space will change the fitness landscape. Therefore, we 
would ultimately like a theory which not only specifies the actual or at least statistical 
structure of fitness landscapes, but also allows us to say how a given alteration in a 
task deformed the landscape. 
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We are quite clearly far short of such a theory. In the present section, I discuss 
experimental work evolving novel catalytic functions in proteins. Among the most 
interesting features of this work is the hint that some new reaction tasks are 
"between" two other tasks. The evidence is simple: selection from one of the two 
"outside" tasks for the other increases catalytic efficiency with respect to the "mid
dle" task. 

De Novo Experimental Evolution 
of Beta-Galactosidase Activity 

The experimental evolution of beta-galactosidase function is a particularly good 
example of protein differentiation. Escherichia coli deleted for the lactose operon has 
a second gene, EBG (evolved beta-galactosidase), whose wild-type function is 
unknown but which has been shown repeatedly to code for a protein capable of 
evolving beta-galactosidase activity (Hall 1976, 1978; Hall and Zuzel 1980). The 
wild-type protein does have activity toward an analogue oflactose, the synthetic sub
strate ONPG, but very little activity toward lactose. 

Mutations which result in the capacity to catalyze lactose breakdown fall into two 
classes. Class I strains grow rapidly on lactose but not on the disaccharide lactulose. 
Class II strains grow slowly on lactose but somewhat more rapidly on lactulose and 
have a broader range of activity than class I strains, being active toward lactose, lac
tulose, ONPG, and another substrate, ONPF. Both classes arise as single mutations 
at each of two distinct sites in the EBG gene, about 1000 base pairs apart. 

In addition to lactose and lactulose utilization, selection for lactose or lactulose 
catalysis is associated with an increase of another activity: the capacity to cleave a 
related metabolite, galactose-arabinoside. The wild-type EBG gene does not allow 
galactose-arabinoside to be used as a sole carbon source, while both class I and class 
II mutants, selected for lactose utilization and due to mutations at two different sites, 
permit minimal ability to use the new sugar source. On the other hand, all attempts 
to select for galactose-arabinoside growth directly from wild-type EBG have failed. 
This means that, in order to achieve the capacity to grow on galactose-arabinoside, 
bacteria had first to be selected to grow on lactose or lactulose. Then the bacteria 
could be selected a further step away to the peripheral capacity to cleave glactose
arabinoside. 

Selection on either class I or class II strains for yet further improved capacity to 
utilize lactose repeatedly led to formation of the double intracistronic mutant having 
both class I and class II mutations at the two sites with the EBG gene. These double 
mutants were more capable of growing on galactose-arabinoside than either single 
mutant. 

A further class of mutants was found-this one capable of utilizing lactobionate. 
The evidence strongly suggests that here three point mutants are needed and that an 
evolutionary pathway via one-step mutants, each selected for a specific carbon 
source, is needed to step successively to this altered form. In particular, this mutant 
class is formed via a sequence that starts with either phenylgalactoside or lactose 
selection first and the other second, followed by lactulose selection and finally lac
tobionate selection. Each transition sets the stage for the next. 

A number of features of these studies are of basic interest: 

1. We can calculate that all or almost all one-mutant variants have been sampled. 
For typical genes in E. coli, the mutation rate is reckoned to be about 10- 10 per 
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nucleotide per generation. The EBG gene is large (almost 1000 amino acids long), 
and so the rate of mutation to it is on the order of 10-7 per generation. Typical 
experiments examined platings of 109 cells, and so about 100 variants are 
expected in each trial. The gene admits about 10 000 one-step neighbors at the 
DNA level and about 20 000 at the protein level, some of which require two base 
changes (Hall 1976, 1978; Hall and Zuzel 1980). On the order of 100 trials 
explored most one-step variants. Thus the one-mutant spectrum has been satu
rated. 

2. One striking feature of the results is that sofew mutants improved each givenfunc
tion. Each enzymatic function appears to saturate after one or two mutations. 
Thus selection for increased lactose utilization yields either a class I or a class II 
mutant in a single step. Each mutation occurs at a distinct site. While more than 
one variant (up to three or four) may have been recovered in the class I and class 
II groups based on heterogeneity of the dissociation constant Krn and of the max
imum velocity of the catalyzed reaction Vrnax for the enzymes, this conclusion is 
not firm. No evidence supports the possibility that further selection on class I 
mutants yields further improvements at the class I site; rather, the second muta
tion which improves lactose utilization is at the class II site. Therefore, under these 
conditions, two mutants appear to saturate the capacity to improve lactose utili
zation due to mutations in the EBG gene. 

It must be stressed that the observations underestimate the numbers of muta
tions which may marginally increase each catalytic activity, since the selection 
conditions were sufficiently crude that a substantial increase in activity (on the 
order of twofold) was probably necessary for recovery of an improved variant. 
With that caveat, it nevertheless appears that rather few neighbors are (much) bet
ter than the initial form at a given peripheral catalytic task, and that rather 
few steps are needed to achieve a local maximum for that peripheral function 
when it is selected. Even if these are underestimates, they leave the strong 
sense that, among contemporary well-evolved proteins, selection for a neigh
boring catalytic task achieves a local maximum after very few steps. In com
parison, in the immune system maturation, it appears that a larger number 
of mutations (typically six to eight) intervene between the roughed-in canon
ical V segment selected initially and the highest affinity variants subsequently 
selected. 

3. Some reactions are "between" other reactions. Another feature of the experimen
tal evolution of EBG which deserves attention is the complex interplay of selec
tion for one catalytic function and increases/decreases in catalytic activities for 
other tasks. All cases of selection from class I and class II lactose-utilizing strains 
to class III or class IV lactulose-utilizing strains simultaneously increased activity 
for galactose-arabinoside; at the same time, most strains showed a decrease in 
capacity to utilize lactose. Conversely, a class III strain which utilized lactose 
poorly but lactulose well was selected to increase its efficiency oflactose utilization 
and simultaneously showed decreased activity toward lactulose and increased 
activity toward galactose-arabinoside. Overall, the data suggest not only that 
increase for one function may often cause correlated increases or decreases in 
other functions but also that, with three functions, a notion of "between" makes 
sense. Galactose-arabinoside utilization appears to be between lactose and lactu
lose utilization. Selection from either of these outside functions toward the other 
increases galactose-arabinoside utilization. 
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Measuring and Covering Catalytic Task Space 

In this section, I examine the possibility that the notion of between-ness in catalytic 
tasks can be formalized as a catalytic task space. This abstract representation has 
important implications: 

1. Because catalytic task space contains a notion of nearby catalytic tasks, it provides 
a framework for thinking about the evolution of divergent enzymatic activities. 

2. The concept of catalytic task space implies that different reactions can represent 
the same catalytic task. 

3. Because any enzyme covers a ball of similar tasks in task space, a finite number 
of enzymes might catalyze all possible reactions. To estimate the number of crude 
enzymes required, I shall derive measures of the number of effectively different 
catalytic tasks in catalytic task space. The number appears to be between 106 and 
108• Thus about 1 000000 to 100 000 000 enzymes might suffice as a universal 
enzymatic tool kit. 

The hypothesis of a catalytic task space has experimental support in the recent 
discovery that antibody molecules which bind the transition state of a reaction can 
catalyze that reaction. Therefore, provisionally, we might think ofa catalytic task as 
the binding of the transition state of a reaction. 

A useful way to think about catalytic task space is to consider first the immune 
system and the concept of shape space introduced by Perelson and Oster (1979). (See 
also Perelson 1988; Segel and Perelson 1988.) As noted above, the immune system 
supports on the order of 108 antibody variants due to combinatorial diversity. Con
sider each such antibody molecule with its antigen-combining site as a specific 
"shape" able to bind a complementary antigenic epitope shape. The familiar image 
is lock and key. 

The recognized features of an antigenic epitope are spatial extent-on the order 
of 1 to 5 nanometers in length, width, and depth-and some number of chemical 
features such as charge and dipole moment. Consider, then, some general "shape 
space," each of whose axes corresponds to one such feature. Since the physical 
lengths involved in an epitope are bounded between zero and some modest number 
of nanometers and since the other physical quantities are also bounded between 
some minimum and maximum values, shape space itself is bounded. Then any epi
tope shape can be represented as a single point in this shape space, and epitopes with 
similar shapes are a neighboring cluster in shape space. Similarly, a given antibody
combining site is a specific point in shape space. Then any antibody molecule will 
bind an epitope with the appropriate complementary shape. Further, since specificity 
is not infinite, any antibody molecule with bind a ball of epitopes with sufficiently 
similar shapes. 

Perelson and Oster (1979) use this picture to ask the question, How many anti
body molecules does it take to cover shape space? That is, how many antibody mol
ecules are needed to make sure that almost all possible epitope shapes are matched 
by at least one antibody molecule? To think about this problem, they imagine that 
each antibody molecule has a combining site with a shape that is drawn at random 
and hence able to recognize some complementary ball of epitope shapes. By hypoth
esis, the location of each such epitope ball is random. Then the question of how many 
antibody molecules are needed to cover shape space becomes the question of how 
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many balls of a given average volume must be placed at random to ensure that almost 
the entire volume is covered by at least one ball. 

The fraction of shape space covered by placing a fixed number of balls at random 
locations by a Poisson process depends only on the ratio of the volume of each ball 
to the total volume. Perelson and Oster then note that the simplest immune systems 
have an estimated antibody diversity of about 104 and argue that, to be minimally 
effective, such a system must cover a sizable fraction of the space. They pick lie = 

0.37 as a convenient threshold. Therefore, they are led to say that 104 random balls 
cover at least 0.37 of the volume. In turn, this threshold value allows them to cal
culate the average volume of one ball, allowing for possible overlaps when many ran
dom balls are thrown into shape space. Then it is easy to calculate that an immune 
system with 108 antibody molecules would cover the space very well indeed. Virtually 
any antigen shape would have at least one antibody molecule able to bind it. 

In addition to this inventive line of thought, Perelson and Oster advance a further 
argument to estimate that the number of features, or dimensions, of shape space must 
be small. The idea is disarmingly simple. A finite number of antibody molecules can 
cover all of shape space because each recognizes a finite ball of shapes. This quantizes 
shape space into a finite number of balls which just suffices to cover the space. The 
size of each ball reflects the range in antigenic shape which an antibody can tolerate. 
Alternatively stated, ball size represents imprecision in specificity. Suppose the range 
in each dimension of such a ball were imagined to be 0.5 of the possible range. Then 
along each dimension, an average of two nonoverlapping balls could be placed adja
cent to each other. From this supposition, we can calculate the number of dimen
sions which must exist in shape space. If the immune system requires 108 antibodies 
to cover shape space and if two nonoverlapping balls occupy each of L dimensions, 
then 2L = 108 and L = 26, where L is the number of dimensions in shape space. 

But suppose the permissible fraction of the range in each dimension is only 0.1. 
Then ten adjacent balls can be placed along each dimension; hence lOL . = 108 and 
L = 8. If the imprecision tolerated by an antibody in each dimension is 0.05, then 
20L = 108 and L is about 6. 

This is a powerful line of reasoning, for it is undeniably plausible that imprecision 
in shape with respect to spatial or other "shape" features is on the order of 0.05 to 
0.1 with respect to each feature. Hence only about six to eight spatial and chemical 
features matter! Without the concept of shape space, it would be hard indeed to 
derive such a general conclusion from such simple premises. 

A more precise statement ofPerelson and Oster's idea is that many different pos
sible contributions to "shape," including spatial extent in three dimensions and an 
unknown variety of chemical and physical properties, project onto about six axes. 
"Projection" merely means that each of these six axes may itself be made up of some 
combination of a large number of spatial, physical, and chemical aspects of antigens 
and antibodies. These spatial and chemical features can be projected to an indepen
dent set of six to eight features which suffice to characterize shape space. 

Different Molecules Can Have the Same Local Shape 

Among the most critical features of the concept of a shape space is that very different 
molecules may have essentially identical epitopes. That is, the same point in shape 
space corresponds to indefinitely many different molecules, all of which have essen
tially the same local shape. This idea is quite different from the familiar notion that 
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similar molecules have similar shapes. That concept is captured in the idea of a ball 
in shape space. Rather, the newer concept is that quite different molecules can, on 
the relevant scale of an epitope, have the same shape. 

This idea has become familiar as the concept of internal images in the immune 
system (Jerne 1974, 1984; Sege and Peterson 1983; Greene and Nisonoff 1984; Gaul
ton and Greene 1986; Greenspan and Roux 1988). When exposed to an antigen, an 
organism mounts an immune response by secreting a set of antibody molecules 
which are shape complements of the antigen determinant(s). But these rank 1 anti
body molecules have V regions which are themselves antigenic determinants which 
elicit a second rank of antibodies. In turn, the rank 2 antibodies stimulate rank 3 
antibodies against rank 2 idiotypes. But rank 1 antibodies are shape complements ol 
the external antigen, and rank 2 antibodies are shape complements of rank 1 anti
bodies. Hence rank 2 antibodies might be expected to include some molecules with 
shapes which mimic the shape of the external antigen. Shape, shape complement, 
shape. Think of the rank 1 antibody as a lock; if two keys, antigen and a rank 2 anti
body, fit the same lock, the two keys must have similar shapes. Such rank 2 antibodies 
are then internal images ()l external antigens. 

Indeed, such internal images exist. And, as we shall see, their existence carries a 
host of implications. It is known that a rank 2 antibody can mimic the shape of an 
external antigenic determinant even when the antibody site is a sequence of amino 
acids but the antigenic determinant is a carbohydrate (Sacks, Kirchhoff. et al. 1985). 
That is, very different molecules can have the "same" shape on a local part of the 
molecule. Many examples exist beyond the immune system. The action of opiates 
derives from the fact that they are close mimics of peptide endorphins and bind the 
same receptors, despite marked chemical differences. 

From Shape Space to Catalytic Task Space 

In shape space, a point represents an antigen shape. Implicit in this concept is the 
idea of a corresponding task. That is, the task is the requirement for some antibody 
to have a complementary shape and hence be able to bind the antigen. Shape space 
is then a space of binding tasks. 

We are used to conceiving of chemically similar reactions. Indeed, all ofbiochem
istry is based on classifications of reactions into similarity groups based on which 
functional groups participate in the reaction and by which reaction mechanism. Any 
enzyme carries out a catalytic task. Nearby ractions are nearby tasks. A catalytic task 
space is then a space in which each point represents a different catalytic task, while 
neighbors in the space represent neighboring catalytic tasks. Just as we do not know 
exactly what spatial, chemical, and physical features constitute shape but can still 
make substantial use of the concept of shape space, so too can we make use of the 
concept of a catalytic task space without knowing in detail the spatial, chemical, and 
physical features which constitute a task. To be concrete, however, I suggest that, to 
a first approximation, a catalytic task is the high-affinity binding ()lthe transition 
state ()la reaction. 

According to transition state theory (Lienhrd 1973), catalysis occurs because the 
enzyme has a catalytic site capable of binding the transition state of a reaction with 
high affinity. The binding energy of the enzyme for this intermediate state deforms 
bonds in the substrate(s) and thus lowers the activation energy of the reaction leading 
to the products. This lowering of the activation energy catalyzes the reaction. 

The suggestion that a catalytic task is as simple as binding the transition state with 
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high affinity is an oversimplification (Fersht 1974, 1985; Fierke, Kuchta, et al. 1987). 
Indeed, as Jencks (1987) points out, the statement that enzymes catalyze reactions 
by stabilizing the transition state is not a hypothesis but is required by the definitions 
of "catalysis" and "transition state." However, mere stabilization of the transition 
state is only necessary for catalysis, not sufficient, for the critical issue is the energy 
barriers from the enzyme-substrate complex and from the enzyme-product com
plex to the transition state. The necessary and sufficient condition for catalysis is that 
the enzyme lowers these energy barriers. Typically, this is achieved when the enzyme 
binds to the transition state with sufficient affinity to stabilize the state while increas
ing the energy of the enzyme-substrate and enzyme-product complexes. The 
increase in free energy of the ES and EP complexes can be due to physical strain, 
desolvation, or other mechanisms and is relieved in the transition state. Thus the 
enzyme utilizes the specific binding energy of the ES or EP complex to overcome the 
strain and entropy loss which destabilize the complex and make the transition state 
more available (Jencks 1987). 

Albery and Knowles (1976), Hermes, Blacklow, et al. (1987), and Knowles 
(1987a, 1987b) discuss the same issue in considering the evolution of catalytic per
fection. These authors conceive of three stages in the evolution of catalysis. In the 
first, a primordial catalyst binds the ES complex, the transition state, and the EP 
complex with equal affinities, lowering the energies of all three. In a second step, dif
ferential binding occurs with higher affinity for the transition state than for the two 
complexes, thus meeting Jenck's proposed minimum requirements for catalysis. In 
a third stage, the energy minima ofS alone, the ES complex, the EP complex, and P 
alone are tuned to be monotonically increasing to maximize catalytic efficiency in 
conversion ofS to P or P to S, without unduly high concentrations ofES or EP com
plexes unable to release S or P. 

These considerations make it clear that picturing a catalytic task as merely binding 
of the transition state with high affinity is too simple. At best, the concept of task 
conforms to Albery and Knowles's second stage (differential affinity for the transition 
state over the ES and EP complexes). However, the simpler image will suffice for a 
start. 

Conceive, then, of a catalytic task space whose axes represent some number of 
shape and chemical features relevant to catalysis. These features obviously include 
those relevant to shape, since fitting of substrates and enzyme are critical features of 
effective catalysis. If we accept either the simpler or the more complex understanding 
of transition state theory, then we are saying that the generalized shape of the tran
sition state compared with the generalized shapes of the ES and EP complexes cor
responds to a point in catalytic task space. The task is accomplished by an enzyme 
binding the transition state with high affinity and the ES and EP complexes with 
lower affinity. 

To be concrete in discussing catalytic task space, I shall assume a simple transition 
state theory. Each catalytic task is to bind a shape afforded by the transition state of 
a reaction. Using this concrete idea, however, should not obscure the fact that the 
same principles carry over to more complex theories of what might constitute a cat
alytic task. 

Different Reactions Can Represent the Same Catalytic Task 

Corresponding to the idea of a ball of shapes recognized by a given antibody is the 
idea that any highly evolved enzyme catalyzes a set of similar reactions. That is, a 



150 ADAPT A TION TO THE EDGE OF CHAOS 

shape space ball is a set of similar shapes; a catalytic task ball is a set of similar reac
tions. Further,just as more than one molecule can have the "same" shape, so too can 
more than one reaction represent, in some sense, the "same" catalytic task. 

As above, this is not the idea that similar substrates and products constitute sim
ilar reactions (this idea is incorporated in the concept of a ball in catalytic task space) 
but that very different substrates and products might constitute roughly the same cat
alytic task, by virtue of having locally identical transition states. Ifso, then the same 
enzymatic site and machinery would be expected to catalyze two nonhomologous 
reactions. In the logical limit, two quite different substrates and reactions might con
stitute such highly similar catalytic tasks that any enzyme capable of catalyzing one 
would catalyze the second as well. 

How Many Enzymes Might Cover Catalytic Task Space? 

The concept of catalytic task space and the idea that quite different reactions can 
constitute the "same" reaction really mean the following. We have assumed that an 
indefinitely large number of different reactions can each be identified with a single 
point in catalytic task space. And we have assumed that all reactions can be mapped 
to some point in task space. Further, to capture the idea of similar reactions, we have 
assumed that nearby points in task space can represent nearby reactions. But since 
quite different reactions can map to the same point, nearby points really represent 
similar tasks, not merely similar reactions. 

We can then ask, How many enzymes are required to be certain that at least one 
enzyme can catalyze each task in task space? A highly evolved enzyme covers some 
volume in catalytic task space. Just as Perelson and Oster can reason that each anti
body molecule covers a fraction of shape space and can estimate how many mole
cules are needed to cover shape space completely, we can use the idea that an enzyme 
covers a ball in task space and try to estimate the number of balls needed to cover 
the whole space. I discuss next two crude estimates of the number of enzymes 
required to cover catalytic task space. Both estimates are based on asking the prob
ability that two apparently different chemical reactions constitute nearly the same 
task. If so, an enzyme catalyzing one might cover a ball in task space which covers 
the second. From that, we can estimate the number of balls which might cover task 
space. 

Suppose a square dart board is divided into N small square sections and m darts 
are thrown at it at random. At first, as more and more darts land on the board, all 
sections have zero or one dart. Eventually, some sections begin to have two darts. 
The number of darts which must be thrown in order that some sections have two 
darts is on the order of the VIV. Thus finding the number of darts which must be 
thrown such that some sections have two darts is a means of measuring the number 
of sections N. 

We can apply this measure to estimate how many enzymes cover task space. Any 
well-evolved enzyme covers some small ball of catalytic tasks. Imagine throwing ran
dom "reaction darts" at catalytic task space, where each section corresponds to one 
ball, and ask how many must be thrown to find two reactions which land in the same 
ball. Stated otherwise, one enzyme covers one ball. That such an enzyme catalyzes 
one reaction corresponds to being hit by one dart. Excluding similar or cognate reac
tions present in the same ball by simple virtue of similarity, are there any enzymes 
known which catalyze reactions whose substrates and products are seemingly very 
dissimilar? Such cases correspond to two darts in the same section. 
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Indeed, there are some such cases. For example, glucose oxidase can catalyze the 
production of hydro quinone from benzoquinone, and galactose oxidase can catalyze 
the stereospecific oxidation of aliphatic alcohols (Klibanov, Berman, and Alberti 
1981; Klibanov, Alberti, and Marietta 1982). An immobilized sulfatase can separate 
alpha and beta napthols (Cambou and Klibanov 1984). Cambou and Klibanov 
report these and other examples of unusual catalytic activity, many of which are 
transesterifications catalyzed by carboxyl esterase. In addition, other workers have 
recently succeeded in constructing novel substrates for specific enzymes by consid
ering the structure of the active site. Here the substrate is chemically distant from the 
normal substrates of the reaction catalyzed by the enzyme; hence this work shows 
that one enzyme can act on quite diverse substrates but of course cannot be taken as 
evidence for the probability of finding such distinct reactions, since the novel sub
strate was constructed with a chemist's insight. 

The fact that such cases have been found allows a rough estimate of the number 
of effectively different catalytic tasks. The number of reactions which have been stud
ied is more than 1000 but probably less than 10000. At least some of these reactions 
are catalyzed by the same enzyme and hence fall in the same ball. Then the number 
of catalytic tasks is on the order of the square ofthese numbers, or between 1 000000 
and 100 000 000. 

These numbers are striking. A maximum estimate of the number of catalytic tasks 
is on the order of 108, but this is also just about the number of human antibody mol
ecules needed to cover shape space. The estimates are based on entirely different 
approaches, yet a posteriori it is encouraging that they are similar. One would expect 
that shape matching is critical to effective catalysis; hence the two estimates might 
well be about the same order of magnitude. This correspondence is all the more 
encouraging since, as we shall see in a moment, antibodies which are the shape com
plement of the transition state of a reaction can catalyze that reaction. 

An independent argument leads to a similar conclusion. Suppose that 10 000 
enzymes have been studied and that, at a maximum, each has been tested for the 
capacity to catalyze 100 apparently unrelated reactions. Assume further that any pos
sible reaction must lie in one of a total number x of balls in task space. Assume that 
there are ten to twenty known cases of enzymes which catalyze two quite different 
reactions. Then among the 10 000 X 100 reactions tried, ten to twenty have landed 
in the same catalytic ball. From this, x is trivially estimated: 100 X 10000jx = 10; 
x = 105• Were we to assume that fewer than 100 apparently unrelated reactions had 
been tried, then x would be even smaller. 

In either estimate, however, 105 or 108, the major issues to focus on are (l) that 
catalytic task space should be covered by a finite number of balls representing more 
or less well-tuned, highly specific enzymes and (2) that that number might be on the 
order of 100 000 to 100 000 000. 

There are a number of reasons to consider these estimates cautiously. First, esti
mates from the first method depend on the idea that random reactions are thrown at 
catalytic task space. But reactions that take place in an organism which appear to be 
sufficiently different to count as independent darts may have evolved because of hid
den similarities in substrates and products. Equally obvious, the choices of reactions 
studied have not been random, and estimates ofthe number of reactions studied are 
crude. 

Without the concept of a catalytic task space, the conclusions we have reached 
would be hard to state. Task space allows us to map indefinitely many diverse reac
tions to the same point and each possible catalyzable reaction to some point. There-
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after, it becomes obvious that any enzyme covers a finite volume ball, thus that some 
finite number of enzymes might cover the space. While the estimates of the number 
of enzymes required to cover catalytic task space may be wrong, the basic idea seems 
likely to be right. Just as 108 antibody molecules may suffice to cover shape space and 
recognize any epitope on the relevant size scale, 108 enzymes might cover catalytic 
task space and catalyze any reaction on the relevant molecular scale. Such a set of 
enzymes would be a universal chemical catalyst set. 

Testing the Hypothesis of a Coverable 
Catalytic Task Space: Catalytic Antibodies 

The recent discovery of antibodies which catalyze specific reactions (Pollack, Jacobs, 
and Schultz 1986; Tramontano, Janda, and Lerner 1986a, 1986b) affords the first 
independent tests of the concept of a catalytic task space and of the hypothesis that 
a finite number of catalysts might be able to perform all catalytic tasks. Indeed, the 
repertoire of antibodies in humans may already be one such universal toolbox. 

According to transition state theory, as noted above, an enzyme lowers the acti
vation energy of a reaction by having high affinity for the transition state. By the 
enzyme's binding of that deformed state with high affinity, the binding energy is 
thought to be harnessed to catalysis. Based on this idea, Pollock, Jacobs, and Schultz 
(1986) and Tramontano, Janda, and Lerner (1986a, 1986b) reported preparation of 
monoclonal antibodies raised against stable molecular analogues ()( the transition 
state of a reaction. Such antibodies might therefore serve as catalysts for the reaction. 
In fact, several such catalytic antibodies, termed abzymes. have been recovered. They 
show high specificity for the substrate and Michaelis-Menten kinetics and increase 
reaction rates by nO-fold or more (Tramontano, Janda, and Lerner 1986a, 1986b; 
Tramontano, Janda, et al. 1987). Since the turnover rate of an enzyme is related not 
only to the enzyme's affinity for the transition state but also to its capacity to release 
substrates and products Km , achieving truly efficient catalytic antibody molecules 
will require tuning the affinity for the transition state so that it is much higher than 
the affinity for the substrate or product conformations. Pollock, Jacobs, and Schultz 
(1986) and Pollock and Schultz (1987) demonstrated that a phosphorylcholine-bind
ing antibody which binds the transition state analog 4-nitrophenylphosphorylcho
line selectively catalyzes the hydrolysis of the corresponding choline carbonate. Tra
montano, Janda, et al. (1987) report the capacity of catalytic antibodies to catalyze 
a stereospecific reaction with Michaelis-Menten kinetics and a 167-fold rate accel
eration. Jacobs, Schultz, et al. (1987) report that antibodies elicited to an aryl-pho
soponate transition state analog selectively catalyze the hydrolysis of the correspond
ing aryl-carbonate. 

These are very exciting results. First, they tend to support transition state theory. 
They show that catalytic activity can be driven by affinity for the transition state. 
Second, since we know that quite different V regions can bind to the same epitope, 
it is legitimate to surmise that quite different monoclonal antibodies might bind to 
the same transition state analog and catalyze the same reaction. Third, since the 
abzymes were selected not by action on the target reaction but by affinityfhr an ana
logue ()lthe transition state, it follows that, if there are other reactions with nearly the 
same transition state, the same analogue should allow recovery of an abzyme which 
catalyzes these dijJerent nonhomologous reactions as well. In short, the success 
strongly suggests that different reactions with nearly the same transition state, even 
if the substrates are highly dissimilar, will be catalyzed by the same abzyme. These 
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reactions represent the same catalytic task. Fourth, the immune system is thought to 
be capable of responding to nearly any epitope on the proper size scale and of mount
ing a response locating antibodies with high affinity for that epitope. If an analogue 
for the transition state is an epitope, then on the order of 108 antibodies ought to 
suffice to allow recovery of a few which catalyze the corresponding ball of reactions. 
If antibodies can cover shape space, they may also cover catalytic task space. Then 
108 will suffice. Finally, from the analysis above concerning maturation of the 
immune response, we would expect on the order often improvement steps to occur 
between a roughed-in antibody binding to the analogue of a transition state and a 
well-honed, highly specific antibody with high affinity for that state. Thus the number 
of improvement steps needed to achieve a quite good enzyme from a rough starting 
point may be limited. 

These results suggest that a well-developed theory of adaptive walks in correlated 
landscapes may ultimately allow a modest number of proto enzymes, say 100000 to 
100 000 000, with low specificity to be kept in a library as starting material for in vitro 
or in vivo selection procedures allowing attainment of highly efficient enzymes for 
almost any catalytic task. 

Evolving Novel Catalytic Tasks Projected onto 
Catalytic Task Space 

The evolution of proteins to carry out new neighboring reactions, so fundamental to 
evolution at the molecular level, can be interpreted within the image of catalytic task 
space. If an enzyme covers a ball in task space, then evolution to a new neighboring 
function moves the ball to a nearby point in task space. Thus the concept of a task 
space allows us to ask how enzyme specificity is related to protein differentiation. 
This raises three issues: 

1. How many crude enzymes might cover task space? 

2. Is protein differentiation easier with crude enzymes? 

3. How many improvement steps separate an enzyme specialized for one task from 
one specialized for a task at the first enzyme's periphery? 

Let us consider question 1 first. Presumably a low-specificity enzyme, by virtue of 
its lower specificity, covers a larger volume of catalytic task space than a high-speci
ficity enzyme. Borrowing from Perelson and Oster, we can say that roughly a dou
bling in range of imprecision-from 0.05 to 0.1 or from 0.1 to 0.2 of the range of 
each of six to eight dimensions in catalytic task space-suffices to increase the vol
ume covered by an imprecise enzyme by a factor of 100 to 1000 over the volume 
covered by a high-specificity enzyme. Therefore, if we crudely estimate that 105 to 
108 specific enzymes might cover task space, it follows that 102 to 106 low-specificity 
enzymes might cover task space. I confess that 102 appears quixotically low, but 106 

might be reasonable. 
In regard to question 2, differences in ball size imply a difference in how easy it is 

for evolving proteins to carry out novel enzymatic tasks. Like other adaptive walks 
in protein space, presumably walks which evolve novel function must always main
tain or improve some other function. We saw in the experimental evolution ofEBG 
that obligate sequences of selection transitions were required, from an enzyme per
forming a task A well and a peripheral task B poorly to one performing B well but a 
new peripheral task C poorly. Ultimately, via a succession of selection steps, enzymes 
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for C were obtained. This argument implies that walks to novel functions by less
specific enzymes should be far easier than walks by highly specific enzymes. The ball 
in task space covered by each crude enzyme is larger than the ball covered by a spe
cific enzyme. If each ball is bigger and if a fixed number of crude enzymes N are con
sidered, each covering its own ball, then anyone crude enzyme overlaps more neigh
boring balls than were the same number of smaller balls considered. It follows that, 
with crude enzymes, a greater diversity of peripheral intermediate tasks can be found 
which lie on one or another pathway leading from an initial task to a distant target 
task. Therefore, the number of alternative routes via possible neighboring tasks 
which lead to a distant task is greater for crude enzymes than for highly specific ones. 
We must conclude that the variety of selection conditions that can lead from task A 
to task W is wider for crude enzymes than for highly specific ones. These ideas suggest 
that evolution of novel function was easier when life first appeared on earth than it 
is now. We shall return to this point in Chapter 7 in considering the origin of life. 

To answer question 3, consider that, since high-specificity enzymes cover smaller 
balls, the number of mutation steps to an optimal enzyme for a peripheral task 
should be smaller with high-specificity enzymes than with crude ones. This expec
tation seems to be borne out experimentally. The data on selection for peripheral 
catalytic tasks-for example, in EBG (Hall 1976, 1978; Hall and Zuzel 1980)-sug
gest that only one or two single-neighbor mutant steps separate a current well-tuned 
enzyme from a local maximum for peripheral tasks. In contrast, a roughed-in V 
region with low affinity for an antigenic determinant takes eight to ten adaptive steps 
before reaching an optimum for that binding task. Buried in this, however, is the 
assumption that EBG is already of high specificity, while an initial antibody for an 
antigen is oflow specificity. 

The general implication of catalytic task space and of data on evolution of novel 
neighboring catalytic functions is that such adaptation might be expected to proceed 
via a small burst of substitutions until a local optimum is reached. Evidence of such 
bursts is available in the rates of alteration of protein and nucleotide sequences in 
evolution (Gillespie 1983, 1984). In fact, Gillespie has proposed a model of deform
ing fitness landscapes to explain just such phenomena, which we discuss next. 

Bursts of Substitutions in Molecular Evolution 

In phylogenetic comparisons of the amino acid sequences of a particular protein, the 
observation that evolution rate is nearly constant over extended periods of time led 
Zuckerkandl and Pauling (1965) to call the amino acid substitution process a 
"molecular evolutionary clock." Detailed studies of both a large number of proteins 
over a few species and particular proteins over a large number of species have sub
stantiated this general idea. They have also substantiated the observation ofOhta and 
Kimura (1971) that the variance in evolution rate is higher than what would be 
expected if substitution were a Poisson process. 

There are serious problems estimating variance in substitution rates, both because 
estimating the number of substitutions rests on procedures such as maximum-par
simony procedures, which assume the minimum number of mutational changes 
needed to account for the observed transitions, and because variance in the evolution 
rate is of interest only in comparison to the mean, as the ratio K = var/mean. For a 
simple Poisson process, K = I. As Gillespie points out, however, the data are strong 
enough to establish that the observed value of K is approximately 2.5. This higher 
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value means that substitutions tend to occur in small bursts. The molecular clock 
stutters. 

Hudson (1983) asked whether the pure neutral-allele model could account for a 
value of K as high as 2.5 and concluded that, in order to do so, we have to assume 
population sizes and mutation rates which conflicted with other data. If the neutral 
model is hard pressed to account for such bursts, can selection? 

To address this, Gillespie proposed a general model of molecular evolution similar 
to that presented in Chapter 2. It is based on fitness landscapes in sequence space. He 
supposes that any sequence has D neighbors and that adaptive steps proceed via one
mutant neighbors. Gillespie's concern is to model the adaptive behavior of a gel}etic 
system as the environment changes. He supposes that the current fittest allele or pro
tein carrying out a given task is fixed in the population. When the environment 
changes, he assumes that it deforms to a similar fitness landscape such that the cur
rent fittest allele remains one of the two to five best among the D + 1 neighboring 
sequences and itself. He then examines the expected number of evolutionary steps 
to a local maximum in the new environment. At each adaptive step, Gillespie draws 
fitness values at random from a predefined, fixed probability distribution-Gaussian 
or exponential, for example-and assign the randomly chosen fitness values to the 
new D - 1 neighbors which become accessible at that step. The adaptive process 
moves to a fitter neighbor not equiprobably but weighted in favor of the fitness dif
ferences with respect to the currently fixed allele. The process stops when a sequence 
which is fitter than all its neighbors is found. 

The main results of Gillespie's efforts are that, when the rank-order of the previ
ously fixed protein in the new environment is two to five among the D, evolution to 
a local maximum occurs in a small number of steps which constitute a burst, yielding 
a value of 2.5 to 3 for K. Further, the results are very insensitive to the underlying 
probability distribution, whether it is Gaussian or exponential. 

Gillespie concludes that selective evolution is able to account well for the observed 
bursting character of molecular evolution but that such correspondence alone can
not rule out either a neutral-allele model or the still more plausible hypothesis that 
both selective and neutral drift changes occur in protein evolution. 

The close relation between Gillespie's ideas and the development of Chapter 2 and 
this chapter is obvious. His assumption that, in a new environment, the rank-order 
of the previously fixed allele becomes the second to fifth among the D - 1 neighbors 
is a reasonable approach to modeling the statistical deformation of fitness landscapes 
as the catalytic task changes. This approach is underpinned by the concept of a cat
alytic task space, where selection for a neighboring task begins with a protein already 
weakly able to carry out that task and moderately high up in the global rank-ordering 
for the task. Within the context of the NK model of fitness landscapes, Gillespie's 
ideas amount to modeling expected landscape deformations when an external task 
requirement, corresponding to a catalytic task, changes. Development of such a 
model seems an important direction for further work. If either the NK model or bet
ter successors capture the statistical structure of fixed fitness landscapes underlying 
adaptive evolution in protein space, then extension to landscape variation as the task 
varies should follow. 

We have now discussed the possible structure of fitness landscapes in sequence 
space, developed the NK model of such landscapes, and applied the model to mat
uration of the immune response. We have considered the concept of catalytic task 
space. These ideas invite a massive experimental program to discover the structure 
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of fitness landscapes for specific protein functions in protein space. It is therefore 
remarkably fortunate that we stand on the threshold of just such a program. I turn 
to this in the final section of this chapter. 

APPLIED MOLECULAR EVOLUTION: 
DIRECT EXPLORATION OF DNA, RNA, AND PROTEIN 
SEQUENCE SPACES 

I believe we have crossed the threshold of a terribly important new era. Applied 
molecular evolution of useful biopolymers has become feasible. It has become clear 
in the past several years that, for the first time in history, molecular cloning tech
niques afford us the possibility of truly exploring sequence spaces. In particular, we 
can for the first time generate billions, trillions, indeed many orders of magnitude 
more, of totally or partially stochastic novel DNA sequences, RNA sequences, and 
protein sequences, either introduce these sequences into viruses, bacteria, or higher 
cells or amplify them in vitro, and then utilize selection or screening procedures to 
find biopolymers of interest. Those interests range from basic science-the distri
bution of structural, catalytic, and ligand-binding capacities in sequence space-to 
practical-the generation of novel drugs, vaccines, catalysts, ligands, DNA regula
tory elements, ribozymes, biosensors, and even self-reproducing biochemical sys
tems. 

The first expressions of interest in this field, to my knowledge, occurred in 1985. 
In March of that year, my colleague Marc Ballivet and I applied for international 
patents bearing on many of these purposes. Patents have now been issued in France 
(Ballivet and Kauffman 1987), Great Britain (Ballivet and Kauffman 1989), Ger
many (Ballivet and Kauffman 1991), and India (Balli vet and Kauffman 1991). Smith 
(1985) and Childs, Villanueva, et al. (1985) subsequently proposed some aspects of 
the field. Since then, the area has continued to grow dramatically (Cull, Miller, and 
Schatz 1992). 

The basic science interests in DNA, RNA, and protein sequence spaces are by now 
obvious (Eigen 1985; Kauffman and Levin 1987; Kauffman, Weinberger, and Per
elson 1988) and range from the issues mentioned above to the fundamental question 
of the requirements of protein folding. The discovery several years ago that RNA 
molecules can act catalytically (Kruger, Grabowski, et al. 1982; Zaug and Cech 1985; 
Cech 1986a, 1986b; Been, Barfod, et al. 1987), discussed in more detail in Chapter 
7, has only intensified the importance of exploring these spaces. We wish to know 
not only how easily current well-evolved sequences can either evolve to improve a 
given function or differentiate to carry out a neighboring function, but also how dif
ficult it was in evolution to find DNA, RNA, or protein sequences with any function 
at all. Therefore, we are hardly well advised to limit ourselves to the biopolymers 
present in contemporary organisms. Even if we examine one-mutant, two-mutant, 
or higher variants of enzymes and utilize selection regimes to seek fitter variants, as 
Hall (1978) and others have done, we limit ourselves to exploring the vicinities of 
proteins which have had the benefit of3.8 billion years of evolution. One cannot map 
a continent by walking about a small subset of its highest peaks. On two counts, our 
understanding of biological molecular evolution implies that, at best, only a tiny 
region of sequence space can have been searched since life began. First, the total 
number of DNA, RNA, or protein polymers which might plausibly have formed dur
ingthe history of the earth is about 1065 , as discussed in Chapter I. But the total num
ber of DNA sequences of length 300, which is the minimum length needed to code 
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for an average-size protein, is 4300 :::::: 10 18°. Second, within the local reaches of 
sequence space which historically might have been explored by evolution, trapping 
in local peak subregions will have markedly constrained further search. The number 
of alternative solutions to functional design problems in sequence space is undoubt
edly far larger than we have supposed. In fact, the concepts of shape space and cat
alytic task space clearly point in that direction. There are far fewer effectively differ
ent shapes and chemical reactions than there are sequences. Function must be highly 
redundant in sequence space. If so, life itself is far more readily attained than we have 
thought heretofore. 

We need to explore DNA, RNA, and protein spaces in earnest, but doing so con
fronts obvious combinatorial and practical problems. The number of potential poly
mers of interest is larger than the number of hydrogen atoms in the universe. If our 
questions concern the distribution of catalytic or liganding properties, then we must 
pose questions which we can answer by sampling locally at many points in DNA, 
RNA, or protein space, exploring the immediate vicinities of those points, and then 
building up a unified picture of the statistical structure of fitness landscapes with 
respect to single structural, catalytic, or liganding properties. Further, we need the 
mapping from the set of organic chemical reactions onto catalytic task space and 
from the set ofbiopolymers or other organic molecules onto shape space. That is, we 
want to know not only how many local optima there may be for a given catalytic task 
in sequence space but also how, as we move in sequence space, we move from 
enzymes for one catalytic task to enzymes for neighboring tasks. Similarly, we wish 
to know not only the distributions oflocal optima to exhibit a given shape and hence 
a given capacity to bind but also how, as we move in polymer space, we move in the 
corresponding shape space such that the ligan ding capacity covers a nearby ball in 
shape space. Toward these ends, we need to find a way to generate a very large num
ber of random DNA, RNA, and protein sequences; find those which exhibit some 
structural, catalytic, or liganding property of interest; and then mutate, explore, and 
hill climb in the vicinity of the local optima and utilize recombination to search 
sequence space between local optima. 

The basic idea of applied molecular evolution is simple. Use anyone of a variety 
of techniques to generate extremely large numbers of fully or partially stochastic 
DNA or RNA sequences, which may be of interest either in themselves or in terms 
of the vast array of different proteins for which they code. Select or screen such 
sequences for properties of interest and then amplify those sequences of interest 
either in vitro or in vivo (or else amplify the sequences first-for example, by cloning 
into viral or plasmid expression vectors, with passage through bacterial or host 
cells-to create a vast library expressing novel sequences and then select or screen 
the library for properties of interest). In short, rather than attempting to guess the 
design of useful biopolymers from first principles, we can hope to utilize either selec
tion or screening techniques to find even very rare sequences with specified proper
ties. Alternatively, we can use large numbers of variants of best-guess-designed DNA 
or RNA sequences for further selection. Since it remains improbable that we shall 
soon be able to design DNA, RNA, or proteins optimally for desired functions, any 
biotechnology based on finding novel sequences with desired functions seems almost 
certain to use best-guess sequences followed by adaptive evolution for improved 
function among those showing a modicum of the desired activity. 

Among the immediate obvious advantages of in vitro or in vivo cloning proce
dures over the examining of mixtures of nonamplifiable sequences is that the DNA, 
RNA, or protein sequence of interest can be amplified and selection carried out on 
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it. For example, if the novel gene is cloned into a plasmid introduced into a host cell, 
the gene coding for a useful protein is identified simultaneously with the protein hav
ing an interesting function. Therefore, any such protein can be isolated from a mix
ture of novel proteins and produced in abundance. Furthermore, it becomes straight
forward to utilize mutation and recombination in adaptive hill climbing to seek 
improved function. 

Applied molecular evolution requires large-scale efforts and sophisticated use of 
population genetics theory. All the rugged landscape theory of the previous two chap
ters becomes immediately applicable. Simultaneously, the enormity of sequence 
space suggests that practical applied molecular evolution cannot be a timid under
taking. We must explore trillions, not hundreds, of sequences with high efficiency. I 
turn next to discuss this opportunity in more detail. 

Four approaches are now being taken in exploring protein space. In the first, 
mixtures of random proteins or peptides are generated and analyzed for function. In 
the second, random fragments of genomic DNA are used to search for a specific func
tion. In the third, defined mutant spectra around a current well-evolved protein 
sequence are introduced as replacements into that protein, and function is sought. 
In the fourth, entirely random, partially random, or pseudorandom DNA coding 
sequences are constructed and used to create libraries of random or partially sto
chastic proteins in the search for function. All approaches are promising. 

Interest in the properties of random peptides or proteins is longstanding. There is 
wide evidence that mixtures of synthetic peptides exhibit a range of weak catalytic 
activities, ligand-binding activities, and so forth (Cavadore 1971). Further, exami
nation of a small collection of protein fragments by Orgel (1987, personal commu
nication) abets this impression. Very small peptides can exhibit catalytic activity. For 
example, tripeptides with tryptophane can recognize and cleave DNA at apurinic 
sites (Behmoaras, Toulme, and Helene 1981 a, 1981 b). In addition, as I shall discuss 
in more detail in Chapter 7, Fox and his colleagues (Rohlfing and Fox 1969, reviewed 
in Fox and Dose 1977 and Fox 1980) have for years studied the catalytic properties 
of quasi-random thermal proteinoid polymers made abiogenically by thermal-driven 
condensation reactions. Like many mixtures of random peptides, such mixtures of 
thermal proteinoids catalyze a number of reactions weakly. Yet the fundamental 
problem with mixtures oflarge numbers of synthetic peptides is that isolation ofindi
vidual useful ones is impractical. Thus even if weak catalytic activity with respect to 
a given reaction is found in the mixture, it is difficult to know if a modest fraction of 
the members of the mixture exhibit weak activity or if only one or two exhibit strong 
activity. Thus ascertaining the probability that a given peptide or protein catalyzes a 
given reaction is difficult. Conversely, analysis of small collections of pep tides to find 
one which may catalyze a given reaction is hampered by the fact that only a few can
didates can be studied. 

Random Genomic DNA Codes for Sequences with Function 

Several workers have utilized restriction enzymes to cleave genomic DNA from bac
teria, yeast, and even human cells, and then cloned such fragments into one or 
another expression vector and sought a specific function. The first surprise is that it 
has proved relatively easy to find the desired function. The major limitation of such 
studies should be mentioned immediately, however. Random genomic fragments 
code not for random peptides but for more or less random fragments of highly 
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evolved proteins. Any distribution of function among such fragments, therefore, 
may bear little relation to the distribution of function in peptide-protein space. An 
obvious reason for this concern is the possibility that function requires stable folding, 
which might be rare in random peptides but already selected for in any fragment of 
a well-evolved protein. 

The first reported effort along these lines, by Kaiser, Preuss, et al. (1987), con
cerned the search for DNA fragments which confer signal-peptide function. In more 
detail, many proteins are secreted from the cell which synthesizes them. Secretion is 
mediated by specific signal peptides which are at one end of the protein to be secreted. 
The cell recognizes the signal peptide and transports the entire protein molecule from 
the cell, cleaving off the signal peptide on extrusion. Kaiser, Preuss, et al. cleaved 
human DNA into small fragments with restriction enzymes, replaced the normal sig
nal-peptide sequence of a protein with the DNA fragments, cloned the construct into 
an expression vector which ensured transcription and translation of the new chimeric 
protein + random peptide, and introduced the vector into host yeast cells. Fully 20 
percent ofthe DNA fragments tried coded for peptides able to function as signal pep
tides. Sequence analysis of these peptides revealed essentially no homologies but 
demonstrated that most sequences had a high frequency of hydrophobic amino 
acids. The authors speculate that such hydrophobic residues help intrude the signal 
peptide into lipid membranes and hence aid transport from the cell. Whatever the 
underlying cause, a principle implication is that finding signal-peptide function in 
small genomic fragments is almost trivially easy. 

In a similar series of experiments, Baker and Schatz (1987) showed that random 
digests of the Escherichia coli genome can functionally replace, at a similar fre
quency, the signal sequence involved in the mitochondrial targeting of yeast cyto
chrome c oxidase subunit IV. 

A second exciting body of work has been carried out by Ptashne and his co-work
ers (Ma and Ptashne 1987) utilizing the Gal4 gene in yeast. This gene encodes a pro
tein which binds to yeast DNA at a specific site and activates transcription of an adja
cent yeast gene, presumably by "touching" a transcription factor related to 
transcription of that adjacent gene. Fragment analysis of the Gal4 protein demon
strated that it has two binding domains, one specific for the DNA site, the other for 
transcription activation. The latter site is at the carboxyl end ofthe protein. Ptashne's 
group replaced the coding region for the carboxyl part of the protein with random 
restriction fragments of E. coli DNA which were enclosed in an expression vector 
which was then transformed back into yeast cells. Analysis of 1500 yeast colonies 
revealed that 151 activated transcription of the adjacent gene. Thus an astonishing 1 
percent of random genomic fragments from a bacterium code for a peptide which 
confers the capacity to activate a specific yeast gene when used as the carboxyl ter
minus ofa "fusion protein," next to the DNA-binding part of the Gal4 protein. Since 
it is reasonable to suppose that such activation requires some kind of touching of a 
transcription factor and some kind of reasonably specific molecular recognition, we 
are left with the impression that finding such function in random fragments of 
evolved bacterial genes is easy. Analysis of the peptides, ranging from 14 to 80 amino 
acids in length, revealed a propensity to form amphipathic helices with positive 
charges on one face and negative charges on the other. Ginger and Ptashne (1987) 
then synthesized a completely synthetic sequence predicted to be amphipathic and 
demonstrated that it, too, activated transcription of the adjacent gene when used to 
make a fusion with the remainder of the Gal4 protein. Neither Kaiser, Preuss, et aI., 
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Baker and Schatz, nor Ptashne and co-workers have yet carried out mutational or 
recombinational hill climbing toward improved function in their experimental 
sequences. 

Defined Mutant Spectra 

A third approach to searching sequence space is to replace the active site of an 
enzyme with a mutant spectrum. This work follows more limited mutagenesis and 
analysis of catalytic activity (Raines, Straus, et al. 1986; Raines, Sutton, et al. 1986). 
In the spectrum approach, cloning techniques which replace ten to twenty amino 
acids with sequences containing an average of one, two, three, or more mutants are 
utilized. Very large numbers of such alternatives are generated and transformed into 
host cells which are deletion mutants for the enzyme under study, and then selection 
experiments are carried out to seek sequences which have the enzymatic function 
(Hermes, Blacklow, and Knowles 1987; Hermes, Blacklow, et al. 1987; Hermes and 
Knowles 1988). The first results (Hermes, Blacklow, and Knowles 1990) were 
obtained by screening 150 000 mutants of a sluggish triose-phosphate isomerase 
mutant, thereby covering more than 99 percent ofthe single-base changes and about 
75 percent of the two-base changes. With a single-base change, on average only 5.7 
of the 19 other amino acids can be encoded. Among two-base changes, on average 
15.7 of the 19 other amino acids can be encoded. Thus these workers examined 
almost the entire one-mutant spectrum and parts of the two- and higher-mutant 
spectra. Among these 150 000, six second-site suppressor mutants which partially 
restored catalytic function were found. All map within the first or second shell of 
amino acids near the active site in the folded enzyme. 

Interestingly, none of the six second-site suppressors is itself a local optimum. 
These workers have now examined all possible pairs of the six second-site suppres
sors, and all double-suppressor mutants have higher enzyme activity than any of the 
single-suppressor mutants. In some cases, the effect in the double-suppressor mutant 
is more than additive with respect to either single suppressor (Knowles, personal 
communication). One important implication of this, which precisely parallels our 
expectations derived from application of the NK model to maturation of the immune 
response, is that these suppressor mutants are on pathways that climb to a variety of 
local optima that are differentfrom the optima found with the initial wild-type triose
phosphate isomerase. It should be possible to use the NK model, or an improved 
variant, to predict the number of local optima accessible via such adaptive walks 
from sluggish mutants. 

Search for enzymatic function need not be confined to one- or two-mutant spec
tra. Dube and Loeb (1989) replaced the active site in a gene coding for beta lactam
ase, the enzyme that cleaves the beta-Iactam ring of penicillin antibiotics, with 
sequences which preserve the codon for the active serine 70 but also contain 15 base 
pairs of entirely random sequences coding for 3.2 X 106 amino acid substitutions. 
From E. coli harboring these substitutions, the authors identified seven new active
site mutants, several mutants at more than one site compared with wild type. Oli
phant and Struhl (1989) subsequently performed similar experiments in which they 
substituted the region from Arg61 to Cys77 with an average of three mutant codons 
per molecule, with results similar to those of Dube and Loeb. Gill, Sadowski, and 
Ptashne (1990) recently identified, scattered over a 65-residue region of Ga14, mul
tiple amino acid substitutions that increase transcription rates over their wild-type 
levels. Again, these mutants may be on pathways to many alternative local optima. 
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The use of defined and biased mutant spectra is obviously a powerful way to 
explore adaptive walks to original or other local optima for a given catalytic function 
from defined mutant distances in sequence space (Straus, Raines, et al. 1985). Not 
only can the initial enzymatic activity be sought, but experiments evolving new cat
alytic activities can be undertaken. The strength of this approach is that it explores 
the vicinity of known mountains with known, more or less random peptide replace
ment sequences rather than with random fragments of evolved proteins, as described 
above. The weakness is that, in exploring near the tops of known mountains repre
sented by well-evolved enzymes, this approach may give little insight into how widely 
spread weak enzymatic activity may be with respect to any specific reaction in 
sequence space. This issue requires full-bodied courage. We must use fully non
evolved and perhaps fully random peptides. I turn to this next. 

Generating Fully or Partially Stochastic DNA: 
The Stop-Codon Problem, Optimizing Biological-like 
Sequences, and Optimizing Evolvability 

Exploration of sequence space with respect to protein function can be based on either 
fully or partially stochastic sequences. Optimizing search involves confronting a 
number of choices. Among these, it may often be useful to minimize the frequency 
at which stop codons are encountered in random RNA sequences and truncate trans
lation. It may typically be useful to ensure that the stochastic sequences code for all 
amino acids and, perhaps more critically, all pairs, triplets, quadruplets, and higher 
ordered sequences of amino acids. It may be useful to bias DNA or RNA sequences 
in favor of codons which are highly utilized by a host cell. It may be useful to bias 
sequences toward those yielding random proteins with size, charge, and hydropho
bicity indices typical of evolved proteins. Finally, it may often be useful to construct 
sequence libraries which permit not only ready excision but also easy fragmentation 
and recombination both to increase the diversity of sequences under selection and 
also to ease the use of recombination in adaptive searches over rugged molecular 
landscapes. Alternative techniques to address these issues are available. 

Three ofthe 64 triplet codons are stop codons. Consequently, if random polymers 
of the four nucleotides A, T, C, and G are formed, the mean interval between stop 
codons is on the order of 21 amino acids. One possible solution to this problem (Bal
livet and Kauffman 1987, 1989) uses small sets of double-stranded oligomers which, 
when ligated in tandem, code for all 20 amino acids in both orientations, in all read
ing frames, without stop codons. A simple example is based on the use of six specific 
double-stranded octamer restriction enzyme linkers: EcoR 1, Pst I, HindIIl, Nde, 
CIaI, and SaIl. Restriction enzyme linkers are double-standed DNA oligomers made 
up of eight to 12 nucleotides and having an internal dyad of symmetry; they are use
ful because each is also the site of cleavage of a specific endonuclease. 

A practical procedure for cloning such copolymers of linkers is shown in Figure 
4.5. It suffices to blunt-end-ligate a random mixture ofthe linkers, digest briefly with 
a restriction enzyme corresponding to one of the linkers to produce overhanging cut 
ends, separate the different size classes on a standard agarose gel, elute the size frag
ments desired, and then ligate them into a host vector which has already been cut 
with the same restriction enzyme, thereby creating complementary overhanging 
ends. The resulting plasm ids, or viral DNA molecules-each containing a different 
random copolymer of linkers and hence an open reading frame coding for a novel 
peptide inserted into the cloning site-are then available for further analysis. The 
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procedure has several practical advantages. By using a unique linker at the 3' and 5' 
extremities of previously generated linker copolymers and then cloning into a site 
corresponding to the same linker, one generates open-reading-frame novel genes 
which can later be excised intact. Further, the linker copolymers, built of a smallish 
number oflinker species, have internally repetitive motifs. This small number pro
vides a simple and convenient method for in vivo mutagenesis of the novel gene 
sequences via recombination. When two viruses coinfect a host cell, recombination 
commonly occurs between homologous DNA sequences. Homologous recombina
tion requires that a stretch of 12 to 20 nucleotides be identical. Because each linker 
is eight nucleotides long, a sequence of two in common between two different ran
dom copolymers in two different viruses allows recombination. Indeed, two linkers 
in tandem at two positions within one random novel gene allow recombination 
within that sequence. 

These procedures have proved practical in our laboratory for generating a library 
with on the order of 10 to novel genes. The sequences were cloned into the EcoR 1 site 
in beta-galactosidase in the lambda-gt 11 vector. Using this vector, we confirmed that 
over 80 percent of the vectors contained inserted DNA sequences of the expected 
length distributions. Using "western blots" probed with antibody against beta-galac
tosidase, we confirmed that the experimental sequences code for beta-galactosidase 
proteins containing added amino acids. Insertion of novel sequences into the wild
type beta-galactosidase protein to create a fusion protein would be expected to 
decrease or destroy enzymatic function. Perhaps surprisingly, about 20 to 30 percent 
of our experimental sequences exhibited low levels of enzymatic activity on color 
indicator plates. Since only about 33 percent of the inserted DNA sequences would 
leave the downstream portion of the beta-galactosidase gene in the proper reading 
frame, these results suggest that most in-frame insertions permit at least a low level 
of enzymatic activity to persist in this fusion enzyme system. Detailed examination 
of western blots supports this. Foreign proteins synthesized in E. coli are subject to 
degradation by host cell enzymes. Fusion proteins which exhibited weak beta-galac
tosidase activity were substantially less degraded than those exhibiting no activity. 
This is consistent with the hypothesis that those with activity are in-frame insertions, 
hence less degraded, while those without activity are out-of-frame insertions and 
hence more readily degraded. 

Linker-generated libraries are practical. Furthermore, because of their capacity 
for in vivo or in vitro recombination, it is straightforward to amplify the diversity still 
further. The advantages of this linker technique are clear. These libraries are now 
under investigation for catalytic and ligand-binding functions. 

An alternative approach to the stop-codon problem would generate random cod
ing sequences by use of specific triplets for each amino acid or for all 400 pairs of 
amino acids or for 8000 triplets of amino acids strung together in random order. For 
example, the 8000 codons for all ordered triplets, chosen among the redundant 
codons for each amino acid to favor those utilized by the host cell, can be synthesized 
and cloned. Such sequences would have open reading frames in one orientation and 
frame but stop codons in the remaining orientation and frames. Still another 
approach to the stop-codon problem (Scott and Smith 1990) uses random nucleo
tides in the first two positions of a triplet and only C or A in the third position. Based 
on a related idea, Mandecki (1990) has generated a library of random proteins having 
an average molecular mass of 30 kDa and capable of being expressed in E. coli. 

Evolved proteins are unlike fully random sequences of amino acids with respect 
to average charge, hydrophobicity, and other features. T. LaBean, a graduate student 
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in my laboratory, has developed algorithms which bias DNA sequences to optimize 
with respect to minimizing the stop-codon frequency and these other features 
(LaBean, private communication). A library of such random proteins is currently 
under investigation for folding, catalytic, ligand-binding, and other structural prop
erties (LaBean, Burr, and Kauffman 1992; LaBean, Kauffman, and Burr 1992). 

Other approaches to the generation of random DNA sequences have been pro
posed by Oliphant, Nussbaum, and Stuhl (1986). These authors used random DNA 
sequences to search for consensus sequences for specific regulatory functions as DNA 
sequences (Oliphant and Struhl 1987) and so were not concerned with the stop
codon problem. 

Selection for Proteins Which Catalyze an Arbitrary Reaction 

If a fundamental question is the probability that an arbitrary protein possesses a spe
cific catalytic activity, then a direct approach is to use cloned novel genes in a very 
large number of host cells to select or screen for such catalytic activity. A straighfor
ward example explores this (Balli vet and Kauffman 1987, 1989). Mutants of E. coli 
which lack beta-galactosidase and hence are unable to grow with lactose as sole car
bon source are readily available. Transform a large number of such host cells so that 
each expresses a novel gene and synthesizes the corresponding novel protein. 
Attempt to select for capacity to grow either on lactose alone or on lactose-dominated 
medium. Any cells which survive and grow might do so either because the novel pro
tein has the desired catalytic activity or because the host cell's genome has mutated 
to produce an altered enzyme with beta-galactosidase activity. These two conditions 
can be discriminated by reinfecting naive beta-galactosidase minus mutant bacteria 
with the novel gene. If survival is due to the novel gene, all recipients will fare well. 
Ifnot, only rare mutants of the bacteria will survive. Thus repeated cycles either rein
fecting or retransforming naive bacteria with the population of novel genes derived 
from survivors at each cycle will amplify the useful novel genes. Finally, it is neces
sary to demonstrate that the catalytic activity is due to the novel gene and not to 
another mutation which may have accumulated in the vector. This in general can be 
demonstrated by excising the novel gene, transferring it to a naive vector, and dem
onstrating that it confers the expected activity. Thus this process allows recovery of 
very rare useful novel genes. 

Screening for a Protein Catalyzing Any One 
of Many Reactions 

Demanding that any peptide catalyze one specific reaction places needlessly con
stricted requirements on any analysis of the distribution of catalytic capacities in pro
tein space. It is obviously advantageous to have, as the target of screens or selection, 
as many different reactions as possible. For example, rather than demand that a novel 
protein catalyze lactose cleavage, we might demand that the protein act as an endo
nuclease and cleave double-stranded DNA at some internal site. Any long, fixed, 
double-stranded DNA has a very large number of sites. For example, if one considers 
eight nucleotide sites, there are 48 = 64000 potential sites for cleavage. Thus in a 
long, specific random sequence of DNA, all such sites will be present, each a potential 
cleavage target. By radioactively labeling the sequence, exposing it to one or a mix
ture of potential protein catalysts, and then analyzing the DNA for cleavage frag
ments on agarose gels, cleavage of all such site can be screened in parallel. Similarly, 
in asking for ligand-binding capacity as well as catalytic activity, it might be sensible 
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to select or screen in parallel for binding or catalysis at a wide variety of points in the 
system. For example, penicillin kills only dividing bacteria. Then, by exposing to 
penicillin a large library of bacteria, each expressing a novel protein, all those bacteria 
whose novel proteins interfere with any of the many processes needed for growth will 
be spared, the rest killed. That the sparing was due to the novel protein can be deter
mined by transferring the novel gene to a new host cell. 

Note that such procedures amount to a new kind of additive mutagenesis analysis. 
By inserting novel genes into a virus or cell and interfering with any specific function, 
one has a new way of probing for the components performing that function. The 
novel protein presumably binds to, cleaves, or interacts with some component in the 
underlying normal control system within the virus or cell. 

A Toolbox of Rough Enzymes for All Catalytic Tasks? 

In a previous section, I introduced the idea of a catalytic task space. Just as the 
immune system may have enough antibody diversity covering balls in shape space 
to saturate the space, so too enough enzymes may cover and saturate catalytic task 
space. Maturation of the immume response suggests that adaptive hill climbing can 
begin with a roughed-in antibody, which is then refined to match a given epitope 
shape. Catalytic antibodies complementary to the transition state of reactions have 
been discovered. All this leads to the idea that a finite number of roughed-in enzymes 
might be generated and selection procedures used to sharpen candidates for any cat
alytic task needed. This generation-selection process might proceed via cloning ran
dom DNA into the variable regions of antibody molecules, yielding an in vitro means 
of generating antibody diversity and taking advantage of the evolved capacity of anti
bodies to bind. Alternatively, a universal enzymatic toolbox might take the form of 
entirely novel proteins. In either case, we might guess that on the order of 106 to 109 

such sequences would suffice. Those numbers are no longer at all beyond the possi
bility of discovery, analysis, and exploitation. 

Just this approach has recently been taken by Huse, Sastry, et al. (1989). These 
workers generated a combinatorial V L and V H library in phage lambda. They utilized 
mRNA from a mouse immunized with KLH-coupled p-nitrophenyl phosphonam
idate antigen and coding for Fab fragments. They amplified the mRNA derived from 
spleen cells or hybridomas with the polymerase chain reaction (PCR), cloned the V L 

sequences into one library and the V H sequences into a second library, and then 
united these combinatorially in a master library with a diversity of at least 108• The 
diversity of this phage library can be increased by reisolating the heavy- and light
chain sequences, recombining them into new combinations, and recloning. Thus the 
approach parallels the use oflinker recombination in this regard. Diversity can also 
be increased by massive mutagenesis of the CDRs, which control detailed binding 
affinity. The diversity may also be increased as a result of copy errors made during 
the initial amplification via the PCR reaction; such errors therefore create stochastic 
diversity prior to cloning. These authors propose to use this system to find catalytic 
antibodies. If the concept of a saturable catalytic task space is correct, their system is 
already a selectable universal toolbox. 

Requirements for Shape 

What fraction of random peptides or polypeptides will fold into a stable shape? How 
does that fraction change as a function of peptide length? Ifwe begin with a peptide 
which folds imprecisely and then carry out adaptive evolution by mutating sites in 
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the peptide to produce variants which fold more precisely, can well-folded peptides
or larger polypeptides or proteins-be obtained? No one knows. Yet it would be hard 
to find more fundamental questions. These questions are directly accessible by mak
ing large numbers of random peptides of defined lengths, genetically or chemically, 
and then using a variety of means to look for shape. For example, Richardson (per
sonal communication) noted with respect to this problem that the simplest approach 
would be to run a mixture of such random peptides on electrophoresis gels under 
nondenaturing and denaturing conditions. If a fraction of the polymers are folded, 
then their migration patterns under denaturing conditions should be different from 
the patterns under nondenaturing conditions. The density distribution shift would 
indicate the fraction with folding. Alternative bulk methods suitable for use on com
plex mixtures of random peptides or proteins include circular dichroism and hydro
gen exchange. For any specific peptide, other physical techniques-such as nuclear 
magnetic resonance studies and, ultimately, attempts to crystallize the protein-are 
available. Adaptive evolution to achieve well-folded peptides or polypeptides would 
begin with a specific sequence showing some signs of folding and then carry out a 
mutation-selection adaptive walk (LaBean, Kauffman, and Burr 1992). 

Mapping Shape Space and Its Practical Implications for 
Mimicking Arbitrary Shapes: Novel Drugs and Vaccines 

As noted earlier, the distribution of shape features across the set of all organic mol
ecules constitutes an obvious and fundamental problem. Conversely stated, how do 
organic molecules map to shape space? Since proteins are able to mimic carbohy
drates and other epitopes, use of random proteins to establish their mapping to shape 
space is a step toward mapping organic molecules in general to shape space. 

A sensible approach to answering this question is to use a specific monoclonal 
antibody molecule to probe a very large number of entirely novel small peptides to 
find those which are bound by that antibody molecule and then mutate the positive 
peptides and examine how binding affinity for the monoclonal antibody varies in the 
vicinity of each. Thus it becomes possible to investigate very large numbers of 
entirely different novel peptides, sampling wide regions of protein space, to test 
whether quite different primary sequences give rise to peptides which are all bound 
by the same monoclonal antibody. That is, we have a reasonably efficient way of 
beginning to map clouds scattered across protein space, all mapping to the same ball 
in shape space. A concrete example would consider the set of all 206 = 64 X 106 

hexamers organized into a sequence space with each peptide next to those differing 
in a single amino acid. Clouds bound by the monoclonal antibody become one ball 
in this space. 

Then, by using different monoclonal antibodies, we can begin to map the overlaps 
between clouds in hexamer space bound by one antibody and those bound by 
another. Since the set of peptides bound by each antibody molecule maps to a single 
ball in shape space, these overlaps should given an ordering relation among antibody 
molecules. The overlaps define which antibody molecules are complements to neigh
boring shapes in the space. Thus this same information can be used to assess which 
shapes are neighbors of one another. Concretely, the overlaps in binding by antibody 
molecules define which clouds in hexamer space, each corresponding to one ball in 
shape space, are near one another in shape space. It should ultimately be possible to 
use such balls to map shape space. Equally important, it should be possible, using 
this space, to see where the shape complement to each shape lies in the space. Using 
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this information, one might know how to walk across shape space from an antibody 
binding to one shape to an antibody binding to another shape, via intermediate 
shapes in the space. Since those intermediates would be represented by a consecutive 
sequence of protein ligands for any sequence of antibodies or other liganding mole
cules, it would be clear how to choose a succession of epitope targets to move across 
the space. Such information would help guide adaptive evolution of catalytic anti
bodies-or other sequences-to novel reactions of interest . 

. Such experiments are also potential sources for new drugs and vaccines. The clear 
implication of the concept of complementary shapes in a shape space and of the fact 
that very different molecules can have the same local shape is that it is possible to find 
proteins which mimic the shape of other organic molecules. A direct approach to this 
is the following. Consider an arbitrary molecule of interest, say a hormone. Immu
nize and obtain polyclonal or monoclonal antibodies against the hormone. Each 
antibody has a shape complementary to some epitope on the hormone. Utilize the 
antibody molecules to screen a large library of novel peptides. Any peptides bound 
by the antibody molecules must have shape features similar to that ofthe initial hor
mone. Thus any such peptide is a plausible candidate to mimic those actions of the 
hormone which depend on that shared shape feature. Thus if the antigen is a hor
mone, the peptides may bind to its receptor and antagonize, agonize, modulate, or 
simulate the hormone. Such a peptide is a candidate drug. If the initial antigen hap
pens to be a protective antigen on a pathogen, then the novel peptides mimicking the 
shape features of that initial antigen are candidates for a vaccine (Ballivet and Kauff
man 1987, 1989; Parmley and Smith 1988; Scott and Smith 1990). 

The immune system readily accomplishes the same feat of finding and improving 
mimetic proteins. The initial round of rank 1 antibody molecules which arise to bind 
the antigen are its shape complements. Those antibodies serve as antigens which 
engender rank 2 antibodies binding the rank 1 ones. Among the rank 2 antibodies, 
some have shapes which mimic the shape of the initial antigen: key-lock-key (Jerne 
1974, 1984; Bruck, Co, et al. 1986). That the rank 2 antibody mimics the antigen 
shape is demonstrated by showing that the rank 1 antibody binds both the antigen 
and the rank 2 antibody by the same binding site. 

Not only can rank 2 antibodies mimic the shape of an initial antigen, but exam
ples are now known where these antibodies mimic antigen function. Examples 
include mimicry of biological receptors (Gaulton and Greene 1986). In other cases, 
the initial antigen is the hormone insulin, and the rank 2 antibody is able to induce 
insulin responses. Further, there is now an exciting series of results demonstrating 
that rank 2 antibodies can serve as vaccines against primary protein antigens (Blue
stone, Sharrow, et al. 1981) and even against primary carbohydrate antigens (McNa
mara, Ward, and Kohler 1984; Stein and Sonderstrom 1984; Sacks, Kirchhoff, et al. 
1985). This result is critical, for it unambiguously demonstrates that chemically dif
ferent kinds of polymers-proteins and carbohydrates-can have the same local 
shape. 

Since the immune system, with a diversity of 108, can, via the essentially random 
DNA sequences in the V region, utilize complementary shapes in a shape space span
ning carbohydrates and proteins, entirely novel mimetic proteins can be found in the 
same fashion. The probability that an arbitrary epitope binds with modest affinity to 
an arbitrary antibody is about 10-5 (Press and Klinman 1974). Thus if each novel 
protein presents a single epitope, fewer than a million will reveal some novel proteins 
which cross-react with a monoclonal antibody to an arbitrary antigen. 

A second estimate yields a similar number of proteins which need to be screened 
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to find a protein mimic. Studies of peptide hexamers which are parts of a protein 
epitope (Geysen, Barteling, and Meloen 1985; Geysen, Rodda, and Mason 1986, 
1987; Getsoff, Geysen, et al. 1987) show that about 100 variants bind the antibody. 
Since the number of possible hexamers is 206 :::::: 64 000 000, these results suggest that 
about 640000 random hexamers, slightly fewer than 106, would have to be screened 
to find a mimetic peptide able to bind a given antibody. 

Scott and Smith (1990) and Cwirla et al. (1990) have recently found just such 
mimetic peptides. Both groups cloned sequences coding for random hexapeptides 
into the protein coat of the filamentous fUSE5 factor. Phage which displayed the 
desired determinant bind antibody. They were selected from a background of non
binding phage by affinity purification. Scott and Smith screened, in theory, 21 per
cent of the 64 X 106 :::::: 12000000 hexamers with two monoclonal antibodies spe
cific for hexapeptide DFLEKI and found 19 fusion proteins with high affinity for the 
antibodies. Thus slightly more than one in a million random fusion proteins must 
be screened to find one which can cross-react. Importantly, none of the 19 is identical 
to DFLEKl. Indeed, on average, the novel sequences differ in three positions. Pre
sumably, as in other such cases, all the fusion protein lie on pathways to different 
local optima with respect to mimicking DFLEKl. Cwirla et al. (1990) used the same 
phage system and selected for fusion proteins able to bind an antibody raised against 
the N terminus of beta-endorphin. They screened about 3 X 109 and found 51 cross
reacting proteins. None is like any of the known ligands of beta-endorphin. All are 
dissimilar to one another, except that all share a tyrosine at the N terminus and 48 
share a glycine adjacent to it. 

As a practical matter, it is now possible to mimic the shape-and hence the 
effects-of an unknown variety of biologically active molecules. This can only be 
useful in finding novel drugs and vaccines. For example, contemporary molecular 
biological techniques to create vaccines require cloning the DNA coding region of 
the pathogen which codes for part of a protective antigen. The cloned protein frag
ment is then used to immunize. This can work brilliantly but requires that the anti
gen, at a minimum, be a protein rather than a carbohydrate or another molecular 
species. Further, the pathogen, the protective antigen, and the gene coding for it must 
all be identified. In contrast, an effort to find novel proteins which mimic the shape 
of the protective antigen does not even require, in principle, that the pathogen be 
known, or that any gene coding for it be identified, or that the protective antigens be 
protein. All that is required is that high-titer antibody against the protective antigen 
be available for screening against a large battery of novel proteins. Given such anti
bodies, it should be possible to find mimetic proteins. Thus, using antibodies from 
an infected individual, it becomes possible, in principle, to find vaccines for diseases 
where the pathogen is not yet even known! The implications with respect to many 
orphan infectious diseases for which it is not now practical to manufacture vaccines 
looms large. Further, consider fashioning individualized treatment for autoimmune 
disease: Use a patient's own autoimmune serum to obtain mimetic proteins, which 
then become candidate drugs to bind to and titrate out the autoimmune antibodies. 
Scott and Smith (1990) have independently made similar points. 

Applied molecular evolution includes procedures to evolve novel proteins bind
ing specific cellular or biochemical targets, such as DNA regulatory sites (Ballivet and 
Kauffman 1987, 1989). Devlin, Panganiban, and Devlin (1990), using the same 
phage system as Scott and Smith but coding for 15 random amino acids, screened 2 
X 107 phage for those binding to streptavidin, which had no previously known pro
tein-binding activity. Nine binding fusion proteins were found, all shaping a four-
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amino consensus sequence but otherwise differing widely. The capacity to find and 
perfect novel proteins binding to arbitrary molecular targets is likely to be of great 
medical and applied interest in the near future. For example, it must be anticipated 
that proteins capable of regulating the transcription or translation of specific viral or 
cellular genes can be found and perfected by mutation and selection, that proteins 
capable of binding to components of the immune network and modifying their activ
ities can be evolved, and that such liganding properties will help develop biosensors. 

Selecting for Mimetic Proteins by Closure of an 
Autocrine Feedback Loop 

Screening procedures to find mimetic proteins work, but selective procedures would 
be preferable. A selective procedure would provide a selective advantage to a cell 
which synthesized a protein mimicking some arbitrary hormone or pathogenic anti
gen. A general approach to this problem can be based on closure of autocrine feed
back loops (Kauffman, patents pending). Many cells have specific receptors for spe
cific growth factors. For example, many cells have such receptors for epidermal 
growth factor (EGF) and will multiply only in its presence. But EGF is a small peptide 
hormone. Suppose a cell with EGF receptors happens to synthesize and secrete EGF. 
Then that EGF will bind to the receptors on the same cell and stimulate that cell to 
divide continuously. This is called closure of an autocrine feedback loop. Such loop 
closure may often underlie the onset of cancer (Sporn and Todaro 1980). 

Suppose we wished to find a random peptide which mimics EGF. Use a library of 
random DNA coding fragments to construct a library of expression vectors, each 
containing a random coding sequence adjacent to a signal-peptide coding sequence, 
and transform the library into cells containing surface EGF receptors. Incubate the 
cells under conditions such that only cells containing EGF proliferate. Then any 
EGF-mimicking peptide secreted by a transformed cell will bind to the receptors on 
that cell and trigger its proliferation. This offers a selective procedure to search for 
peptides mimicking EGF. Any cells which grow have a gene which encodes a random 
peptide which mimics EGF. Practical demonstration of this procedure has been 
achieved. Stern, Hare, et al. (1987) have constructed a vector which secretes EGF, 
transformed the vector into cells with EFG receptors, and showed that such cells 
secrete EGF, close the autocrine loop, and proliferate. 

Clearly, closure of autocrine feedback loops generalizes to any protein mimic of 
a specific growth factor which stimulates cell division. Therefore, the most exciting 
potential use of this procedure is based on the realization that, for B lymphocytes of 
the immune system, the antibody molecule which any B cell secretes is present on 
the cell membrane at an early stage in the cell's history and acts as a specific receptor 
for a specific growth factor, and this factor is just the antigen which binds to the anti
body molecule. That is, the antigen acts exactly as EGF does; each binds a specific 
receptor and triggers cell division. Therefore, a general procedure to select for arbi
trary shape mimics is this: To mimic arbitrary epitope X, immunize with X and 
obtain immature B lymphocytes with anti-X antibodies as surface receptors. Trans
form this population of anti-X lymphocytes with a library of vectors, each causing 
secretion of a different random protein. Any protein which mimics X will bind to 
the antibody receptor on the cell which secreted it and stimulate that cell to divide. 
Thus the proliferating B cells contain genes coding for proteins which mimic X. More 
generally, stimulation of some B cells requires that antigen be presented to them by 
antigen-presenting cells, such as macrophages. Transform the macrophages such that 
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they each process different random proteins for presentation, co-culture ~uch mac
rophages with the immature B cells bearing anti-X antibodies, observe whIch B cells 
proliferate, and select macrophages in the vicinity ofthose B cells for further analysis. 

Screening for Useful DNA and RNA Sequences 

Applied molecular evolution also includes procedures for evolving useful DNA or 
RNA sequences (Ballivet and Kauffman 1987, 1989). For example, Horwitz and 
Loeb (1986; see review by Horwitz and Loeb 1988) substituted 16 or 19 base pairs 
centered at the - 35 promoter element ofthe plasmid pBR322 tetracycline resistance 
gene with chemically and enzymatically synthesized random DNA sequences to pro
duce a population of plasmid DNA in which each molecule contained a unique 
sequence. After transfection into E. coli and selection on tetracycline, the authors 
selected from among the 3 X 1011 possible sequences those which had promoter 
activity. Oliphant and Struhl (1987) subsequently carried out similar experiments. 
Among the 170 active sequences recovered, the resulting consensus sequence dif
fered from the known 263 natural variants of the promoter. Interestingly, the strong
est promotors departed from the consensus sequence. 

Another procedure selects and amplifies single-stranded RNA or DNA sequences 
able to bind a protein target. The process rests on incubation of a complex mixture 
of single-stranded RNA or DNA with the protein target, then nitrocellulose-affinity 
selection of such polynucleotide-protein complexes from the mixture, followed by 
amplification of the selected RNA or DNA sequences (Balli vet and Kauffman 1987, 
1989). For example, in an elegant use of this procedure, Tuerk and Gold (1990) affin
ity-purified, from the pool of 65 536 possible single-stranded RNA sequences con
taining a random eight-base-pair sequence, those able to bind T4 DNA polymerase. 
These authors generated the stochastic sequences, bound them to the polymerase, 
and selected nitrocellulose-bound complexes. DNA copies of the selected RNA 
sequences were made by reverse transcription, the copy DNA was amplified via the 
peR reaction, and further RNA was obtained by transcription of the amplified 
DNA. The RNA sequences were then subjected to further rounds of affinity-purifi
cation and amplification. Two RNA sequences were found. One is the wild-type 
sequence; the other varies from the wild type in four positions and has nearly the 
same affinity for the polymerase. 

In another recent experiment, Ellington and Sjostack (1990) generated stochastic 
single-stranded RNA sequences 100 nucleotides long, passed them over affinity col
umns with a diversity of dyes similar to metabolic cofactors, and found a number of 
sequences able to bind several dyes. The authors estimate that they have screened on 
the order of 1013 random RNA sequences and that the complexity of the pool of 
sequences which bind the dyes is on the order of 100 to 1000 sequences, although it 
may be as high as 100 000 sequences. Assuming they have recovered 1000 distinct 
binding sequences, the probability of success is about 1 in 1010. At a minimal esti
mate, if their pool has 105 binding sequences, the probability of finding an RNA 
sequence which binds a specific dye is on the order of 108• These important results 
show that single-stranded RNA sequences capable of binding arbitrary organic mol
ecules can be found. By screening for those binding to a stable analogue of the tran
sition state of a reaction, these authors hope to find novel ribozymes. Presumably, 
like the antib0dy repertoire, RNA sequence space is enzymatically universal. 

The experimental evolution of novel ribozyme activities has already taken place. 
Joyce (1989) has developed a procedure for selectively amplifying RNA sequences 
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carrying out specific catalytic functions and, with Robertson (Robertson and Joyce 
1990), selected among variants of a ribozyme those capable of catalyzing cleavage of 
a DNA sequence rather than an RNA sequence. Finally, Eigen (1985) has for several 
years been carrying out a variety of experiments evolving RNA sequences. He has 
been an early, influential, and highly imaginative proponent of the power of applied 
molecular evolution. 

All these experiments are exciting in a variety of respects. Not the least, it is clearly 
important that a figure on the order of 108 arises in so many contexts. We find it in 
our estimate of the number of enzymes required to cover catalytic task space, as well 
as an estimate ofthe complexity ofthe immune repertoire thought to be able to cover 
shape space. Catalytic antibodies from a set of 108 may be a universal enzymatic tool
box covering task space. The probability of finding cross-reacting proteins to a single 
monoclonal antibody, and hence the probability of mimicking a single shape, are on 
the order of 10-6; the probability of finding RNA sequences binding a dye is perhaps 
as high as 10-8 or as low as 10- 10• All these probabilities are small. The corresponding 
number of sequences to be searched is large but not at all beyond our power of 
manipulation-or the power of evolution to find and mold. The number of effec
tively different shapes, or of effectively different catalytic tasks, is vastly smaller than 
sequence space. Hence, function is highly redundant and far more readily available 
in sequence space than we have thought. 

I emphasize again that development in this area toward large-scale applied molec
ular evolution is critical even in the more restricted domain of modification of 
known proteins to improve or alter the tasks they perform. Whether one is interested 
in catalytic antibodies or in in vitro evolution of novel enzymatic functions via 
mutant spectra, it will be necessary to generate very large numbers of mutants, search 
for improved variants, and carry out adaptive hill climbing on rugged landscapes by 
mutation, recombination, and selection. Thus we must soon develop insight into the 
structure of such fitness landscapes. The quest is not merely academic. 

SUMMARY 

The present chapter has looked at adaptive evolution in proteins with respect to the 
ligand-binding properties of antibody molecules, which improve during maturation 
of the immune response, and with respect to the improvement of ligand-binding 
properties ofthe lac repressor. We haved applied the NK model to maturation of the 
immune response with substantial success. The model captures major statistical fea
tures of adaptive landscapes with respect to affinities for ligand. As such, it supports 
the idea that the statistical features of such landscapes can be captured with relatively 
simple models. Equally, we must suspect that the NK model will account for statis
tical features oflandscapes concerning the adaptive evolution of enzymatic function. 
Hence we can look forward to a new kind of statistical theory about the adaptive 
evolution of proteins that may be brought to bear on the comparative molecular data 
now being assembled. In addition, the NK model, or variants of it, can be expected 
to be useful in applied molecular evolution. 

Biological evolution has required the emergence and improvement of biopoly
mers capable of performing either catalytic or ligand-binding functions. We do not 
yet know how improbable such functions are. However, recent results evolving 
mimetic peptides, novel ribozymes, and single-stranded RNA sequences which bind 
organic dyes indicate(that functiofllis far more probable in sequence space than we 
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have suspected. This chapter has discussed a theoretical and experimental frame
work for exploring this broad question. 

We have looked at data on improved catalytic function by examining the evolu
tion of novel catalytic capacities by hill climbing from an enzyme for one task to a 
better enzyme for a neighboring task. 

We have been led to formulate the ideas of~.space and c<!J~Jytic task space, 
allowing definition ofthe ideas of neighboring shapes and neighboring catalytic tasks. 
The concept of a catalytic task space allows us to pose new questions. Different reac
tions with very different substrates and products may constitute the same catalytic 
task. Thus we must map the indefinitely large set of reactions to catalytic task space. 

)
Given such a task space, an enzyme catalyzes a ball of neighboring tasks.~i.n 
stiffe~~l1tiation is, then, evolution to cover a neighboring ball. Most striking, a finite 
number of enzymes, perhaps on the order of 100 000 000, might saturate catalytic 
task space and constitute a universal enzymatic toolbox. 

The recent discovery of catalytic antibodies, obtained by selecting for those which 
bind a stable analogue of the transition state of a reaction, strongly supports the 
hypothesis of a catalytic task space. Roughly, a catalytic task corresponds to binding 
the transition state with high affinity and binding substrates and products with lower 
affinity. The immune repertoire in humans, with a diversity of about 108 antibody 
molecules, is thought to be capable of recognizing any antigenic epitope. The human 
antibody repertoire may therefore already be one universal enzymatic toolbox. RNA 
'sequences may be another. 

These considerations are not merely academic. The emerging field of applied 
molecular evolution has now made fully feasible the search for novel DNA, RNA, 
or proteins which perform a variety of functions. These possibilities are offered by 
our capacity to generate, screen, or select, and amplify wholly or partially stochastic 
DNA or RNA sequences of interest either in themselves or in terms of the proteins 
for which they code. This allows us to begin to explore protein space and make prac
tical use of adaptive hill climbing and recombination in rugged fitness landscapes to 
evolve new drugs, vaccines, enzymes, ribozymes, biosensors, and DNA or RNA reg
ulatory sites. 



CHAPTER 5 

Self-Organization and Adaptation in 
Complex Systems 

Eighteenth-century science, following the Newtonian revolution, has been charac
terized as developing the sciences of organized simplicity, nineteenth-century sci
ence, via statistical mechanics, as focusing on disorganized complexity, and twenti
eth- and twenty-fIrst-century science as confronting organized complexity. Nowhere 
is this confrontation so stark as in biology. Nowhere are new conceptual tools so 
deeply needed. In this chapter, I describe some of those tools. 

Living systems-organisms, communities, coevolving ecosystems-are the par
amount examples of organized complexity. The genomic system of any higher meta
zoan cell encodes on the order of 10 000 to 100 000 structural and regulatory genes 
whose joint orchestrated activity constitutes the developmental program underlying 
ontogeny from the fertilized egg. The human immune system harbors a repertoire 
capable of deploying on the order of 100 000 000 distinct antibody molecules in har
monized patterns. Neural systems, even in relatively simple organisms, enlist the 
joint parallel activities of perhaps billions of neurons to assess, categorize, and 
respond to the exterior and interior milieu. Each of these systems is the consequence 
of evolution. How, we must ask, can such wonderful systems emerge merely through 
random mutation and selection? For if Darwin told us that adaptation occurs 
through the gradual accumulation of useful variations, he has not yet told us what 
kinds of systems are capable of accumulating useful mutations. Nor has he addressed 
the issue of whether selection" may playa role in attaining systems capable of adaptive 
evolution. 

In this chapter, I seek the adaptation principles of such complex and beautiful 
ordered systems. I explore two components of those principles: self-organization and 
selection. First of all, contrary to our deepest intuitions, massively disordered systems 
can spontaneously "crystallize" a very high degree of order. Much of the order we 
see in organisms may be the direct result not of natural selection but of the natural 
order selection was privileged to act on. Second, selection achieves complex systems 
capable of adaptation. Moreover, I shall suggest that there are general principles char
acterizing complex systems able to adapt: They achieve a "poised" state near the 
boundary between order and chaos, a state which optimizes the complexity of tasks 
the systems can perform and simultaneously optimizes evolvability. 
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In this chapter, I first outline the mathematical theory of dynamical systems, for 
such theory provides the natural language needed to describe the "integrated behav
ior" of systems coordinating the actions of many elements. Here I introduce the con
cept of dynamical attractors, which may be either simple or chaotic. Dynamical 
attractors "box" the behavior of a system into small parts of its state space, or space 
of possibilities. Hence attractors literally are most of what a system does. It is the 
boxing of behavior into small parts of state space which constitutes much of the self
organization we shall encounter. 

The second section of the chapter introduces random NK Boolean networks. This 
ensemble of networks permits us to study the emergence of order in systems coor
dinating the activities of thousands or even billions of elements. In NKBoolean net
works, each element has two possible states of activity: active or inactive; a network 
links the activity of each of its N elements to the prior activities of K other elements. 
Random Boolean networks are a vast family of disordered systems. Yet we shall find 
that they exhibit three broad regimes of behavior: ordered, complex, and chaotic. In 
the ordered regime, many elements in the system freeze in fixed states of activity. 
These frozen elements form a large connected cluster, orfrozen component. which 
spans, or percolates, across the system and leaves behind isolated islands of unfrozen 
elements whose activities fluctuate in complex ways. In the chaotic regime, there is 
no frozen component. Instead, a connected cluster of unfrozen elements, free to fluc
tuate in activities, percolates across the system, leaving behind isolated frozen 
islands. In this chaotic regime, small changes in initial conditions unleash avalanches 
of changes which propagate to many other unfrozen elements. These avalanches 
demonstrate that, in the chaotic regime, the dynamics are very sensitive to initial 
conditions. The transition from the ordered regime to the chaotic regime constitutes 
a phase transition, which occurs as a variety of parameters are changed. The transi
tion region, on the edge between order and chaos, is the complex regime. Here the 
frozen component is just percolating and the unfrozen component just ceasing to 
percolate, hence breaking up into isolated islands. In this transition region, altering 
the activity of single unfrozen elements unleashes avalanches of change with a char
acteristic size distribution having many small and few large avalanches. 

The second section of the chapter also examines self-organization. The transition 
from chaos to order in random Boolean networks occurs either as K decreases to 2 
or as other parameters are altered in simple ways. Thus systems with millions of ele
ments can crystallize order if each element is affected by only a few others. The emer
gence of order does not require that all details of structure and "logic" be controlled 
precisely. Hence a rich vein or order lies available for selection's further sifting. 
Indeed, in Chapter 12 we shall see that the spontaneous order seen in these networks 
accounts for many aspects of ontogeny in higher organisms. 

Complex systems, just like simple peptides, must evolve by accumulating useful 
variations. In the chapter's third section, I examine the structure of fitness landscapes 
of networks in the ordered and chaotic regimes. The former correspond to smooth 
landscapes; the latter, to rugged landscapes. The implications of rugged landscapes 
for evolvability, limitations on selection, and adaptation seen in the NK landscape 
model of Chapters 2 and 3 remerge in these more complex systems. Moreover, it is 
a plausible hypothesis that Boolean networks near the edge of chaos have fitness land
scapes whose ruggedness optimizes the capacity of the networks to evolve by accu
mulating useful variations. 

In the final, fourth section, I take up the new and difficult question of the capacities 
of such large parallel-processing networks for performing complex tasks. We exam-
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ine the attractive hypothesis that networks poised at the edge of chaos can perform 
the most complex tasks. Furthermore, we consider whether selection can achieve 
such poised systems. If both answers are yes, as they begin to appear to be, then we 
may have succeeded in discovering the characteristic kind of complex system which 
selection achieves in order to optimize both evolvability and fitness. 

In order to focus in this chapter on self-organization and adaptation in complex 
systems, I defer to later chapters discussion of many of the biological implications. 
In particular, the topics addressed here will permit us, in the next chapter, to extend 
our thinking to coevolution in interacting systems. The analogues of percolating fro
zen components and avalanches of changes in Boolean networks reemerge as con
nected clusters of species with fixed optimal genotypes and avalanches of coevolu
tionary change and extinction events. 

DYNAMICAL SYSTEMS AND THEIR ATTRACTORS 

State Space and Simple Attractors 

The most natural language for describing the behavior of an integrated system is 
dynamical systems theory. The most familiar form derives from Newton and consists 
in a system of differential equations in which the rate of change of each variable is 
written down in terms of the present values of all the other variables which influence 
the variable in question. To be concrete, suppose there are three chemicals reacting 
in a vessel. The rate of formation and disappearance of each chemical depends on 
the concentrations of (1) those chemicals either forming it or influencing its forma
tion and (2) those influencing its conversion to other chemicals. In addition, each of 
the three chemicals may be added to or removed from the vessel, or their concentra
tions may be held constant or caused to change in arbitrary ways by outside forces. 
The most natural representation of such a system is a three-dimensional state space, 
where each axis corresponds to the concentration of one of the three chemicals (Fig
ure 5.1). The concentration of all three chemicals at any instant then corresponds to 
a single point in this three-dimensional space. 

Over each small interval of time, the concentration of each chemical may increase 
or decrease slightly as a result of the various reactions possible. Therefore, after one 
small time interval, the representative point will have moved to some (in general) 
new point in state space. Over a succession of such small intervals, the representative 
point will move to a succession of (generally) new points. Thus the succession of 
points may be connected by a smooth line which shows the trajectory of the system 
across state space as time passes (Figure 5.1). Notice in the figure that the trajectory 
no longer explicitly shows time increments. (This qualitative description is slightly 
inaccurate mathematically. More precisely, at each point in the state space, the tra
jectory is tangent to a small arrow, or vector which shows the direction and rate of 
movement of the system at that point over the next infinitesimal time increment.) 

If the system had been initiated at a different initial combination of concentra
tions, or state, it will follow some different trajectory. A general theorem for contin
uous systems of differential equations shows that only one trajectory passes through 
each point in state space (Hirsh and Smale 1974). This at a minimum implies that 
each state flows deterministically to a well-defined succession of other states. Further, 
the theorem implies that two states which lie on different trajectories will always, in 
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Figure 5.1 Three-dimensional state space with two basins of attraction, separated by a wall, or 
separatrix. Within each basin of attraction, trajectories flow deterministically toward an attractor and 
remain on the attractor thereafter unless disturbed by an outside perturbation. The attractor in the 
basin is a single point to the left of the wall corresponding to a steady state. The attractor in the basin 
on the right corresponds to an oscillatory limit cycle around which the sytem flows repeatedly. 

the finite future, lie on different trajectories. Two trajectories do not merge into one 
in continuous dynamical systems. However, two states which were initially quite far 
apart and on different trajectories may come to be arbitrarily close to each other, for 
their respective trajectories may converge. In particular, different trajectories may 
converge toward a single state which does not change in time-that is, a steady 
state-reaching it in the limit of infinite time. Then the steady state is a zero-dimen
sional, or point, attractor, and an entire volume of states which lie on trajectories 
flowing to that attractor is its basin of attraction (Figure 5.1). 

Many but not all dynamical systems have attractors. Among those which do not 
are the classical Hamiltonian systems of physics, exemplified by the frictionless pen
dulum. If released at any defined position and initial velocity, the pendulum swings 
on a periodic, closed orbit in its state space without loss of energy. If displaced to a 
slightly larger or smaller orbit by a perturbation, the pendulum follows a different 
closed, periodic orbit in its state space, with a slightly different energy. Each orbit is 
neutrally stable, for the system will remain in any orbit once placed there. No orbit 
drains a basin of attraction. Below we consider limit cycles, or periodic trajectories 
which do drain a basin of attraction. The existence of attractors in physical systems 
often requires some form of driving and friction which prevents conservation of 
energy within the system itself. 

The idea of basins of attraction and steady-state point attractors is essentially the 
same as the idea of a mountainous region with hills, ridges, valleys, lakes, and a water
drainage system. Lakes correspond to point attractors; drainage basins, to the basin 
of attraction. Just as a mountainous region may have many lakes and drainage 
basins, so maya dynamical system have many attractors, each draining its own basin. 
Therefore, it is natural to conceive of the state space as being partitioned into disjoint 
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basins of attraction. When released from an initial state, the dynamical system is on 
a trajectory lying in only one basin, and the system flows to that basin's attractor. This 
restriction means that each disjoint basin leads to only one attractor and thus that 
the different attractors constitute the total number of alternative long-term behaviors 
of the system. In due course, the system winds up on one or another of its finite num
ber of attractors. Note also that, since attractors are typically much smaller than the 
volume of states in their basins, the system becomes boxed into an attractor unless 
perturbed by an outside force. 

Attractors mayor may not be stable to small outside perturbations. The image of 
a mountainous region helps immediately characterize the stability of the different 
kinds of attractors. A stable steady state is represented by a lake at the bottom of a 
valley. A drop of water displaced slightly in any direction will return to the lake as 
soon as the drop is free to move. An unstable steady state is represented by mountain 
peaks and by saddles between valleys. A drop of water will remain on a peak if left 
undisturbed but will flow away from the peak if perturbed in any direction. (Strictly 
speaking, an unstable state is not an attractor, since the only state within its basin of 
attraction is the steady state itself.) A drop of water in a saddle will return if displaced 
up the hills on either side of the saddle but will flow away if displaced toward either 
valley below. In other words, saddle steady states are stable with respect to pertur-/ 
bations in some directions and unstable with respect to perturbations in other direc
tions. The existence of saddles reflects the fact that two stable basins of attraction 
must abut, and the ridge where they do is a basin of attraction having one fewer 
dimension than the number of variables in the system and is called a separatrix 
(Figure 5.1). In two dimensions, the ridge is a line separatrix. If the system is released 
on that ridge line, it flows down the ridge to the saddle steady state. If perturbed off 
the ridge, the system flows to the corresponding valley. Beyond these fundamental 
properties of stability, the trajectories may also approach a stable steady state either 
without spiraling around it or by spiraling into it. Similarly, the system may depart 
from an unstable steady state either without spiraling around it or in ever-widening 
spirals. 

These qualitative descriptions have precise mathematical formulations (Hirsh 
and Smale 1974). The stability of any steady-state point attractor is analyzed by lin
earizing the differential equations about the steady-state point and then assessing the 
characteristic way small displacements away from the steady state change in time. If 
small displacements in one or more directions increase, the steady state is unstable 
in the corresponding directions. The behavior of the displacement is given by the ( 
eigen values of the linearized equations: stable if those eigen values are all negative, . 
unstable if any is positive, and spiraling if any is complex. In Chapter 14, I shall exam
ine this issue in more detail. 

More Complex Attractors 

The general definition of an attractor is a set of points or states in state space to which 
trajectories within some volume of state space converge asymptotically over time. 
Thus, in addition to simple steady states, continuous dynamical systems may admit 
of more complex attractors. The simplest of these is a limit cycle, or loop of states. If 
released on the hoop, the system flows around the hoop repeatedly. Over time, the 
variables exhibit a repetitive oscillation. The hoop is called a limit cycle because 
points not on it lie on trajectories which spiral either in or out and ultimately con
verge on it in the limit of infinite time (Figure 5.1). Thus a stable limit cycle drains 
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some basin of attraction. Just as a steady state is a zero-dimensional attractor in an 
N-dimensional state space, a limit cycle is a closed one-dimensional attractor in 
higher-dimensional state space. 

Antilimit cycles exist, having the property that a point released exactly on an anti
limit cycle will remain on it but, if displaced off the limit cycle, will be on a trajectory 
which spirals away from the limit cycle. Thus antilimit cycles are unstable with 
respect to small perturbations off the antilimit cycle. 

It is easy to see that donutlike, or toroidal, attractors can exist. Suppose the 
dynamical system has a total of ten chemicals. Suppose four chemicals set up one 
oscillation and six set up another oscillation; then in the ten-dimensional state space, 
the representative point moves on two hoops at once. This two-hoop movement can 
be represented by motion on a donut, with flow in one direction passing through the 
hole and flow in the other direction being around the donut but not passing through 
the hole. This simultaneous flow produces a spiraling trajectory which winds both 
through the hole and around the donut. If the periods of the two oscillations are a 
ratio of whole numbers, say 3 to 1, then the trajectory comes back exactly to its initial 
point after three of the faster oscillations. If the relative periods are irrational, then 
the point representing the whole system winds through the hole and around the 
donut at an irrational angle to the donut's natural axes and eventually covers an arbi
trary amount of an entire two-dimensional surface of the donut. Thus this is a two
dimensional attractor in a ten-dimensional state space. In such a flow, motion is 
~guasi~.E.en9dic: After sufficient time, the trajectory will pass arbitrarily close to any 
mitial point. Higher-dimensional toroidal attractors exist. 

In addition to these classes of attractors, strange, or "chaotic," attractors exist 
(Lorenz 1963; Ruelle 1979; Grassberger and Procaccia 1983; Mayer-Kress 1986). In 
such a dynamical system, which might be ten-dimensional, the flow might, for exam
ple, bring all trajectories onto a two-dimensional attractor a bit like a Moebius strip 
with a pleat or some other folded form (Figure 5.2). The interesting property of such 
attractors is that, if the system is released from two points on the attractor which are 
arbitrarily close to each other, the subsequent trajectories remain on the attractor 
surface but diverge away from each other. After a sufficient time flowing on the 
attractor, the two trajectories can be arbitrarily far apart on it. 

The first critical novel feature found in strange attractors but not in steady states, 
limit cycles, and so forth is due to this divergence of trajectories on the attractor. It 
is a sensitivity to initial conditions (Ruelle 1979). Tiny differences in initial condi
tions make vast differences in the subsequent behavior of the system. In contrast, a 
system with a stable limit cycle squeezes all flows onto the same hoop of states; hence 
nearby initial points are still nearby later on. A good example of this feature in a 
strange attractor, and historically the first, is provided by the weather or, more cer
tainly, by a mathematical model of the weather introduced by Lorenz (1963), where 
small alterations in initial conditions lead to vast differences in due course (Figure 
5.2)."This sensitivity to initial conditions is amusingly called the butterfly effect. A 
butterfly in the Amazon might, in principle, ultimately alter the weather in Kansas. 
Dorothy's trip to Oz rode on tiny wings. This effect is the basic reason long-term 
forecasting is notoriously weak. 

The second feature to notice about strange attractors is that they may be of very 
\ low dimensionality even in a high-dimensional state space. Thus a system may have 
1100 variables, but flow may be restricted to a strange attractor of two dimensions, a 
folded surface closing back on itself in that 1 DO-dimensional space. From the point 
of view ofthe entire state space, the attractor is a very small object indeed. The system 
is boxed into a tiny volume of state space even though its behavior within that small 
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Figure 5.2 The Lorenz strange aUractor which models aspects of weather. States not on the aUrac
tor flow to it and then both diverge and converge on the attractor. The local divergence leads to sen
sitivity to initial conditions. (From Holden 1986) 

volume is chaotic in the precise sense of high sensitivity to initial conditions. This 
point is very important to stress, for the behavior of such a system which exhibits 
low-dimensional chaos is much more orderly than the behavior of a system which 
wanders through vast tracts of state space on high-dimensional attractors. 

The dimensionality of a strange attractor is often not an integer. Rather, it is nat
ural to define a fractal dimension (Mandelbrot 1977) for the attractor, which might 
be 2.3 for an attractor which occupies more than two but fewer than three dimen
sions in the 100-dimensional space (Packard, Crutchfield, et a!. 1980; Farmer 1982; 
Farmer, Ott, and Yorke 1983; Mayer-Kress 1986). The definition of dimension 
depends on how the density of points on the attractor changes with radiu~ in all 100 
dimensions away from any arbitrary point on the attractor. The intuitive idea is sim
ple. Consider a hoop limit cycle in a three-dimensional state space. The attractor is 
one-dimensional. Pick a point on the attractor, and examine a sphere of radius r 
around this point. The volume of the sphere increases as r3, but the number of points 
on the limit cycle and within the sphere increases only as r. The ratio of rates of 
increase of attractor points within the sphere allows one to determine that the attrac
tor is a one-dimensional object at the point measured. The generalization of this idea 
provides a measure of the dimensionality of an attractor at each point on the attractor 
and hence an average dimension,ality for many points on it. Such fractal attractors 
are already being found in biological systems-for example, in cardiac and neural 
electrical activity patterns (Holden 1986; Mackey and Glass 1988). 

Parameter Space and Dynamical Bifurcations 
as Parameters Change Smoothly 

We need another fundamental idea from dynamical systems theory: parameter 
space. The behavior of a chemical system depends on how rapidly chemicals are 
added or removed, on temperature, on solvent, and so forth. These values are typi-
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cally held constant in time and are the parameters of the dynamical system. If a sys
tem has some number of parameters, then we must conceive of a parameter space 
where each axis corresponds to one parameter. A point in parameter space then 
reflects a specific combination of all parameter values. Any point in parameter space 
corresponds to a fixed set of parameters and thus to a fixed~U):l~i.ns()fattraction 
and attractors in the corresponding state space of the dynamical system. The set of 
basins of attraction is often called the basin portrait of the dynamical system. 

The next question to address is this: What happens if the parameters are changed 

\
' gradually? The key idea is that, as parameters change slowly, the trajectories and 

attractors typically change slowly also. That is, the basin portrait of the system alters 
smoothly. For particular changes of the parameters, however, sudden dramatic 
changes in trajectories and attractors can occur. Such sudden changes are called 
bifurcations in the behavior of the dynamical system (Hirsh and Smale 1974). 

A familiar example of bifurcation is the onset of turbulence in a fluid flow. A gen
tle stream flowing past a rock shows smooth laminar flow. As stream velocity 
increases, eddies begin to form. An eddy either is or is not present in the fluid flow: 
not present when velocity is slow but present above some critical velocity (Nicholis 
and Prigogine 1977). Thus the character of the flow changes suddenly. 

A second famous but less familiar example is the onset of Benard cells (Nicolis 
and Prigogine 1977). If a pan ofliquid is heated gently from below, water warmed at 
the bottom of the pan is less dense than water higher up and tends to move upward 
gently. But if the heating is more vigorous so that the temperature difference through 
the fluid from bottom to top becomes great, then there are formed rising columns of 
hot water surrounded by descending columns of cooler water. Together, these col
umns form convective cells. Viewed,from the top of the pan, beautiful roll or hex
agonal patterns can be seen. This is a bifurcation at a critical value ofthe temperature 
difference from bottom to top surfaces. Below that parameter value, convective cells 

t
'do not form; above it, they do. Incidentally, this is the first example we have men
tioned in which energy flux through an initially homogenous system sets up a spa
tially ordered pattern. This idea has received enormous attention, with implications 
in pattern formation in embryos, to which we shall return in Chapter 14. 

Bifurcation Surfaces Partition Parameter Space 
into Disjoint Volumes 

The immediate implication of bifurcations is this: Each point in parameter space 
specifies the dynamical system defined in the differential equations and hence also 
specifies its state space and all its basins of attraction. As the parameters change 
slowly, some or all of the trajectories and basins of attraction also change slowly. For 
specific values of the parameters, dramatic changes occur. For example, a basin 
might contract to nothing, or a new basin might appear. The values of parameters at 
which bifurcations occur therefore divide parameter space into disjoint volumes. 
Crossing from one volume to another causes a bifurcation. Ifthere are three param
eters, then the three-dimensional parameter space is, in general, divided by two
dimensional surfaces into three-dimensional subvolumes. Crossing these two
dimensional surfaces causes bifurcations in the dynamical behavior. In general, an 
N-dimensional parameter space is partitioned by N - I dimensional surfaces. 

Bifurcations are profound features of dynamical systems with profound implica
tions in biology. For example, in Chapter 14, where we discuss morphogenesis, we 
shall find that bifurcations in the behavior of developmental mechanisms readily 
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account for the evolutionary generation of families of related forms. Such families of 
"normal" forms go some real distance toward fulfilling the rational morphologist's 
dream of laws of form. In the present context, where we are interested in ways of 
characterizing the integrated behaviors of dynamical systems, the existence of 
parameter space and bifurcations in dynamical behavior carries implications about 
the ruggedness of adaptive landscapes, as described next. 

The Concept of Structural Stability 

The concept of structural stability (Thom 1970, 1972; Hirsh and Smale 1974) con- '\ 
cerns the idea that, typically, volumes in parameter space defined by bifurcation sur
faces are like soap bubbles. The volumes are reasonably large relative to the bifur
cation surfaces which divide them. Thus for most changes in the parameters, the 
system remains within one volume in parameter space and the dynamical behavior 
does not change dramatically. Dynamical systems having this property are said to be 
structurally stable. Their dynamics typically changes only slightly as parameters 
change but does jump crossing bifurcation surfaces. For some time it was thought 
that almost all dynamical systems exhibit this property. However, recent work on 
strange attractors indicates that a large class of systems does not exhibit structural 
stability. In many systems with strange attractors, tuning the parameters leads to a 
succession of bifurcations at successively smaller intervals in parameter space 
(Mackey and Glass 1988). Such is seen in the famous period-doubling bifurcations 
studied by Feigenbaum (1978), which may underlie the onset of turbulence in fluid 
flow. In these cases, the volumes separating qualitatively different behaviors become 
sinuous, intertwined labyrinths in parameter space. Here, tiny changes in parameters 
in almost any direction can lead to successive dramatic changes in the dynamical 
behavior of the correlated dynamical system. 

One implication of the occurrence or nonoccurrence of structural stability is that, 
in structurally stable systems, smooth walks in parameter space lead to mostly 
smooth changes in dynamical behavior. In the third section of this chapter, I discuss 
the idea that adaptive evolution, or learning in dynamical systems, is achieved by 
adaptive walks through parameter space to find "good" dynamical behavior. Thus ' + ? I.;i)c." 1<; 

structurally stable systems adapt on correlated landscapes. By contrast, chaotic sys- ""COO ,"~ Lrlt,Y 
tems, which are not structurally stable, adapt on uncorrelated landscapes. Very small z. "/~"'i J 

changes in the parameters pass through many interlaced bifurcation surfaces and so 
change the behavior of the system dramatically. The link between order, chaos, and 
landscape structure will loom below as a large issue. In particular, it immediately 
becomes obvious that alterations in systems that cause the systems to pass from 
ordered to chaotic behavior will inevitably alter the statistical structure of their fitness 
landscapes from smooth to rugged. We might imagine, in prospect, that an inter-
mediate ruggedness optimizes evolvability. It now appears that that optimum may 
lie near the boundary between order and chaos. 

SPONTANEOUS ORDER AND CHAOS IN 
COMPLEX DYNAMICAL SYSTEMS 

I turn in this section to a new body of theory about the behavior of dynamical systems 
containing extremely large numbers of coupled elements. In setting the stage for our 
analysis, I might first make comparative allusion to statistical mechanics, which until 
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recently provided the best examples of systems in which large numbers of variables 
interact. I described in Chapter 2 the outlines of statistical mechanics with respect to 
perfect gases. Each of N particles of gas in a box interacts with all the other particles 
via the Newtonian force laws. The theory develops by considering the phase space of 
all possible 6N position and momentum variables describing the current state of the 
N particles in a box containing them. For a system released at a point in phase space, 
the flow under the drive of collisions is an ergodic wandering over phase space. 
Because the system conserves energy, the phase volume occupied by a flowing cloud 
of points, representing the system started at neighboring points in phase space, 
remains constant as it flows. From this constancy and ergodicity, it becomes possible 
to calculate the probability that the system is in any specific volume of phase corre
sponding to some macroscopic state, such as all particles being in a corner of the box. 

The contrast with biological systems exhibiting ordered complexity is enormous. 
First, in genomic, immune, neural, or other evolved systems, the law governing the 
behavior of one element is not the same as the laws governing the behaviors of other 
elements. Biochemistry admits of a variety of molecular couplings which control and 
alter catalytic or ligand-binding actions in complex and diverse ways. The behavior 
of one element, enzyme, antibody molecule, or neuron as its regulatory inputs 
change in general differs from the behavior of another element. Second, unlike closed 
physical systems, which conserve energy, biological systems are open thermodynam
ically, typically dissipate energy, and have attractors. Third, the regular unfolding of 
ontogeny alone suffices to say that biological systems cannot wander randomly and 
ergodically over their space of possibilities. The essence of development from the fer
tilized egg is its astounding combination of complexity and utter regularity. Fourth, 
the most profoundly random aspect of biological systems is random mutation in the 
space of possible systems. That is, evolution is an adaptive, or drifting, process which 
searches across the space of biological systems. Thus unlike statistical mechanics, 
which can be characterized as a more or less ergodic flow within the state space or 
phase space of a single system, evolution is a more or less adaptive flow across a space 
of systems. What we need, therefore, is a pew kind of statistical mechanics, one which 
analyzes the properties of ensembles of complex systems with very many coupled 
elements. By understanding the characteristic structure and behaviors of the mem
bers of such ensembles, we may be able to understand both the emergence of order 
in organisms and its adaptive evolution. This section develops aspects of such a new 
statistical mechanics. 

Discrete Dynamical Systems: 
Introducing Boolean Dynamical Networks 

Boolean networks are systems of binary variables, each with two possible states of 
activity (on and off), coupled to one another such that the activity of each element 
is governed by the prior activity of some elements according to a Boolean switching 
function. 

Switching Boolean networks are of central importance to the construction of a 
statistical mechanics over ensembles of systems and to an adequate theory of com
plex but ordered systems. I collect the reasons for this: 

1. We are concerned with dynamical systems containing thousands or millions of 
coupled variables. These variables might be active or inactive genes coupled in a 
genetic regulatory cybernetic network (Kauffman 1969, 1971 a, 1971 b, 1971 c, 
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1974, 1984a), the linked cellular and molecular components of the immune sys
tem and idiotype network (Jerne 1984; Kaufman 1988), the interacting polymers 
in an autocatalytic polymer system (Farmer, Kauffman, and Packard 1986; 
Farmer, Packard, and Perelson 1986; Kauffman 1986b), or the interacting neu
rons in a neural network (McCulloch and Pitts 1943; Hopfield 1982a, 1982b; 
Rummelhart and McClelland 1986). The idealization to on-off switching ele
ments allows us to study such enormously complex systems. The corresponding 
problems are often intractable using continuous nonlinear differential equations. 

2. For many systems, the on-off Boolean idealization is either accurate or the best 
idealization ofthe nonlinear behavior of the components in the system. 

3. Use of the Boolean idealization implies that a well-defined ensemble of all possi
ble networks exists. Given well-defined ensembles, the averages of structural and 
behavioral properties over each defined ensemble can be assessed. Like temper
ature or pressure in familiar statistical mechanics, the statistically expected aver
ages of such structural and behavioral properties are the macroscopic observables 
explained by the new statistical mechanics. 

4. Disordered complex Boolean networks, it has turned out, exhibit three major 
regimes of behavior: ordered, complex, and chaotic. Thus analysis of these 
extremely complex systems reveals unexpected simplicity with important biolog
ical implications for development and evolution. 

5. Use of the Boolean idealization allows us to pose and answer the question, What 
are the requirements for collective order in very complex switching networks? 

6. The same properties which ensure orderly dynamics and hence spontaneous 
order simultaneously yield systems which adapt on highly correlated fitness land
scapes. 

7. Because disordered Boolean networks exhibit three broad regimes of behavior 
and can pass from one regime to another by relatively simple alterations in a few 
parameters characterizing each network, selection can readily tune networks into 
each regime, thereby controlling spontaneous order, complexity of behavior, and 
evolvability. 

Positive Cooperativity, Sigmoidal Response Functions, 
and the On-Off Idealization 

A short example demonstrates why a Boolean, or on-off, idealization captures the 
major features of many continuous dynamical systems. Many cellular and biochem
ical processes exhibit a response which changes an S-shaped, or sigmoidal, curve as 
a function of altered levels of some molecular input (Monod, Changeux, and Jacob 
1963). For example, hemoglobin is a tetrameric protein, with each monomer binding 
oxygen. But the binding behavior of the four monomers exhibits positive cooperativ
ity: Binding of oxygen by one monomer increases the affinity of the remaining three 
monomers for oxygen. This cooperativity implies that as oxygen levels increase from 
a base level, the amount of oxygen bound by hemoglobin increases faster than lin
early at first. At sufficiently high oxygen concentrations, however, all four monomers 
have almost always bound an oxygen, and so further increases in oxygen concentra
tion do not increase the amount bound per hemoglobin molecule. In short, the 
response saturates. This means that a graph of bound oxygen concentration (output) 
as a function of free oxygen concentration (input) is sigmoidal (Figure 5.3). 
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Output 

Input 

Figure 5.3 A sigmoidal curve and a 1: I proportional response curve. Note that, for low values of 
input, output on the sigmoidal curve is lower than input. For input levels above the point where the 
sigmoidal curve intersects the 1: 1 response curve, output is higher than input. Crossing of the two 
curves separates these two response regions. 

The vital issue is to realize that even with a~ sigm,Qidal function-that is, one 
whose maximum slope is less than vertical-coupled systems governed by such sig
moidal functions are often properly idealized by on-off systems. It is easy to see intu
itively why this might be so. In Figure 5.3, I graph both a sigmoidal function and a 
constant, or proportional, response curve, where output is equal to input-in other 
words, the slope is 1.0. The sigmoidal function is initially below the proportional 
response. Here a given input leads to an output that is less than the input. Were that 
reduced output fed back as the next input, then the subsequent response would be 
even less. Over iterations, the response would dwindle to zero. The sigmoidal 
response becomes steep in its midrange, however, and crosses above the proportional 
response. An input above this critical crossing point leads to an output that is greater 
than the proportional-response output. In turn, were that output fed back as a next 
input, the output would be still greater than that input. Over iterations, the response 

f' would climb to a maximum. That is, feedback of signals through a sigmoidal func
tion tends to sharpen to an all-or-none response (Walter, Parker, and Ycas 1967; 

, Glass and Kauffman 1972; Hopfield and Tank 1986a, 1986b). This is the basic rea
\ son the on-off idealization of a flipflop in a computer captures the essence of its 
l behavior. We show this next for a small system of two variables each required to acti-

vate or synthesize the other. 
Among the common mathematical expressions used in biochemistry to capture 

sigmoidal responses are Hill functions of the form 

X N 

Y = ON + XN (5.1 ) 

where N is called the Hill coefficient (Mackey and Glass 1988) and 0 is a threshold 
and constant. The curve showing Yas a function of X is sigmoidal. As N increases, 
the midregion slope of the curve becomes steeper, approaching the all-or-none 
Heavyside step function in the limit as N goes to infinity. 

Consider a small dynamical system with two hypothetical chemical variables, X 
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and Y. Suppose the synthesis of each depends positively on the concentration of the 
other by a Hill function law and that each is lost at a rate (KJ or K 3) proportional to 
its concentration. Then the differential equations for this system are 

dX 
dt 

y2 

(j2 + y2 - KJX (5.2a) 

dY K2X 2 

dt 02 + X 2 - K3Y (5.2b) 

Intuitive insight into the behavior of this system is simple: Neither X nor Yean 
be synthesized if the other is not present. Thus the state X = 0, Y = 0 must be a 
steady state. At the other extreme, if both X and Yare present in high concentration, 
each induces the synthesis of the other, and we expect the pair to remain in abundant 
presence. (I assume some kind of external supply of precursors to X and Y, of course.) 
Thus there should be a steady state in which both concentrations are high. For inter- I 

mediate levels of X and Y, then, it seems plausible that the system will go either to i 

the low steady state or to the high steady state. This is essentially correct. A one
dimensional line separatrix divides the XY state space into two alternative basins of 
attraction flowing to these two stable steady states. The separatrix is a locus of points 
flowing in to an unstable saddle steady state on the separatrix. We see this next. 

A convenient means of analyzing the system represented by Equations 5.2a and 
5.2b is to set both equations equal to zero. Doing so corresponds to seeking the con
centrations of X and Y such that, for Equation S.2a, the concentration of X is not 
changing and, for Equation S .2b, the concentration of Yis not changing. Such a locus 
of points is called a nullcline. The X and Y nullclines are 

- -X 1 ( y2 ) 
KJ 02 + y2 -

(S.3a) 

(S.3b) 

Graphing these two equations yields two S-shaped curves in the XY state space (Fig
ure S.4a). Since each curve represents the locus of states where one of the two vari
ables is unchanging, places where the two curves cross are steady states of the entire 
system. The curves cross in three locations: a low steady state, X = Y = 0; a high 
steady state; and an intermediate steady state. The lower and upper steady states are 
stable to perturbation. The middle steady state lies on a separatrix. Ifit is on the separ
atrix, the system flows to the middle steady state. That state is a saddle, however. If 
displaced toward either stable steady state, the system flows to the corresponding 
attractor. Thus this small system of coupled sigmoidal functions has two extremal 
stable steady states and one unstable interior steady state. 

Next, consider two on-off Boolean logical functions X = Y and Y = X. The 
equality X = Yasserts that, if Y is 1 at a given moment, X will be 1 at the next 
moment; if Y is 0 at a given moment, X will be 0 at the next moment. Similarly, Y 
= X asserts that if X is I at a given moment, Y will be 1 at the next moment; if X is 
o at a given moment, Y will be 0 at the next moment. This small logical system has 
two steady states: X = Y = 0 and X = Y = 1. These two states correspond to the 
two extremal steady states of the continuous system. 
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Figure 5.4 The nullclines (Equations 5.3a and 5.3h) of the dynamical system with two coupled 
variables, each activating the othe according to a Hill function. The Yand X represent dy/dl and dx/ 
dt, respectively. Parameter values are KJ = K3 = 0.1, K2 = 1.0, 0 = 20. For K2 = 1.0, the two 
nullclines cross at three points, each a steady state. The middle point corresponds to an unstable 
saddle point lying on a separatrix between two basins of attraction. Within each basin, trajectories 
flow to the enclosed stable steady state. In one extreme stable state, both X and Yare 0; in the other, 
both are high. This reflects the fact that the two variables jointly activate one another. The separatrix 
is therefore a threshold line in the state space. Below it, X and Y go to 0; above it, X and Y go to high 
steady levels. (b) As in (a). As K2 decreases to 0.8 and 0.6, the Y nullcline(solid lines) shifts to become 
tangent to the X nullcline (dashed line) and no longer crosses the X nullcline in three places. Thus as 
K2 decreases past 0.8, a bifurcation occurs and eliminates the upper and middle steady states. 

186 
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The small continuous system in Equation 5.2 can show bifurcations in terms of 
the parameters Kb K2, K3• Tuning K2 from 1.0 to 0.8 to 0.6 (Figure 5.4b) causes the 
nullclines of Equation 5.3 to shift position relative to each other such that the two 
curves cross only at a single point. Then for those values ofthe parameters, the system 
has only a single stable steady state. The bifurcation occurs as parameters change 
when the two nullclines shift so that, rather than crossing, they are tangent at a point. 
Then the two adjacent steady states have merged to one and will vanish when the two 
nullclines shift slightly farther so thatthey do not touch at all in that vicinity. Boolean 
functions can capture the consequences of bifurcations by altering the logical rule 
computed by an element. 

Figure 5.5 shows a slightly more complex dynamical system with three vari
ables-X, Y, and Z-in which X is activated by Yand Y is activated by either X or 
Z via cooperative sigmoidal functions.. The X and Y nullclines cross, yielding three 
steady states, when Z = O. The lower and upper steady states are stable, as in Figure 
5.4a. Increasing Z, however, activates Yand shifts the Y nullcline, causing a bifur
cation which eliminates the lower steady state. If Z remains high, the XY system flows 
to and remains at the remaining (high) steady state. Thereafter, if Z is lowered to 0, 
the system will remain in the upper stable state. In short, transient activation of Z .\ 
can irreversibly switch the XY system from the low steady state to the high one. 

These behaviors of a continuous nonlinear dynamical system are captured by the 
corresponding Boolean system. The variables X and Yactivate each other, and Y is 
also switched on by Z. If Z = 0, the XY system has two steady states: X = Y = 0 
and X = Y = 1. If Z = 1, then the low XY steady state disappears and the XY system 
remains in the high steady state. If Z is transiently 1, then the XY system irreversibly 
switches to the high steady state, X = Y = 1. The Boolean XY system remains active, 
X = Y = 1. Note that, as in Figure 5.4, the unstable intermediate steady state of the 
continuous XYZ system does not show up in the Boolean idealization. 
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Figure 5.5 Nullclines of a three-variable system in which two variables, X and Y, activate one 
another but one of the two is controlled by a third, independent variable Z. Note that, as the third 
variable changes from low to high to low, the bistable XY system can be switched irreversibly from 
one to the other steady state. 
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Dynamical behaviors such as these occur frequently in cellular and developmen
tal biology. For example, the activities of many receptor proteins and enzymes are 
controlled by phosphorylation and dephosphorylation cascades. Like the system in 
Figure 5.5, these cascades often have feedback loops with alternative stable main
tained patterns of phosphorylation which can be irreversibly switched into one of the 
patterns by an exogenous input. 

I In summary, logical switching systems capture major features of a homologous 

I class of nonlinear dynamical systems governed by sigmoidal functions because such 
systems tend to sharpen their responses to extremal values o[the variables. The log

I ical networks can then capture the logical skeleton of such continuous systems. How-
II ever, the logical networks miss detailed features and in particular typically cannot 
;! represent the internal unstable steady states ofthe continuous system. Thus Boolean 

networks are a caricature, but a good one, a powerful idealization with which to think 
about a broad class of continuous nonlinear systems as well as switching systems in 
their own right. I stress that it is now well established that switching systems are good 
idealizations of many nonlinear systems (see, for example, Glass and Kauffman 
1972; Glass and Pasternack 1978a, 1978b; Glass and Perez 1982; Hopfield and Tank 
1986a, 1986b). But characterizing the class of nonlinear systems which are homol
ogous to switching networks remains a large mathematical problem. 

The State-Space Dynamics 
of Autonomous Boolean Networks 'J ,.; 

Boolean networks are made up of binary, on-off variables. A network has N such 
variables. Each variable is regulated by some of the variables in the network, which 
serve as its inputs. The dynamical behavior of each variable, whether it will be active 
(1) or inactive (0) at the next moment, is governed by a logical switching rule, or 
Booleanfimction. The Boolean function specifies, for each possible combination of 
current activities of the input variables, the activity of the regulated variable at the 
next moment. For example, an element with two inputs might be active at the next 
moment if either one or the other or both inputs are active at the current moment; 
this is the Boolean "Or" function. Alternatively, the element might be active at the 
next moment only ifboth inputs are active at the present moment; this is the Boolean 
"And" function. 

Let K stand for the number of input variables regulating a given binary element. 
Since each element can be active or inactive, the number of combinations of states 
of the Kinputs isjust 2K. For each of these combinations, a specific Boolean function 
must specify whether the regulated element is active or inactive. Since there are two 
choices for each combination of states of the K inputs, the total number of Boolean 
functions F of K inputs is 

The number of possible Boolean functions increases rapidly as K increases. As we 
shall see, special subclasses of the possible Boolean functions are important for the 
emergence of orderly collective dynamics in large Boolean networks. 

If a Boolean has no inputs from outside the system, it is considered to be auton
omous and its behavior depends on itself alone. Such a network is specified by choos
ing, for each binary element, which K elements will serve as its regulatory inputs and 
assigning to each binary element one of the possible Boolean functions of K inputs. 



I 

SELF-ORGANIZA nON AND ADAPT A nON IN COMPLEX SYSTEMS 189 

Figure 5.6a shows an autonomous Boolean network made up of three elements. 
Each receives inputs from the other two. Element 1 is governed by the "And" func
tion; 2 and 3 are governed by the "Or" function. The simplest class of Boolean net
works is synchronous. which means that all elements update their activities at the 
same moment. To do so, each element examines the activities of its K inputs, con
sults its Boolean function, and assumes the prescribed next state of activity. This is 
summarized in Figure 5.6b. Here I have rewritten the Boolean rules. Each of the 23 

possible combinations of activities of the three elements corresponds to one state of 
the network. Each state at one moment causes all the elements to assess the values 

4 T T+ I 
I 2 :3 I 2 3 2 3 

i~~, 
0 0 0 0 0 0 0 0 0 
0 I 0 0 0 I 0 I 0 

0 0 0 I 0 0 0 I 
0 I I I I I 

"AND" I 0 0 0 I I 
I 0 I 0 I I 

I 2 :3 I :3 2 I I 0 0 I I 
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Figure 5.6 (a) The wiring diagram in a Boolean network with three binary elements, each an input 
to the other two. (b) The Boolean rules of (a) rewritten to show, for all 23 = 8 states at time T, the 
activity assumed by each element at the next time moment T + I. Read from left to right this figure 
shows the successor state for each state. (c) The state transition graph, or behavior field, of the auton
omous Boolean network of (a) and (b), obtained by showing state transitions to successor states con
nected by arrows. (d) Effects of mutating the rule of element 2 from "Or" to "And." 
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of their regulatory inputs and, at a clocked moment, to assume the proper next activ
ity. Thus, at each moment, the system passes from a state to a unique successor state. 
Over a succession of moments, the system passes through a succession of states called 
a trajectory. Figure 5.6c shows these trajectories. 

The first critical feature of autonomous Boolean networks is this: Since there is a 
finite number of states, the system must eventually reenter a state previously encoun
tered; thereafter, since the system is deterministic and must always pass from a state 
to the same successor state, the system will cycle repeatedly around this recurrent 
state cycle. These state cycles are the dynamical attractors of the Boolean network. 
The set of states flowing into one state cycle or lying on it constitutes the basin of 
attraction of that state cycle. The length of a state cycle is the number of states on the 
cycle and can range from I for a steady state to 2N. 

Any such network must have at least one state cycle attractor but may have more 
than one, each draining its own basis of attraction. Further, since each state drains 
into only one state cycle, the set of state cycles is the dynamical attractor of the sys
tem, and the cycles' basins partition the 2N state space of the system. 

The simple Boolean network in Figure 5.6a has three state cycle attractors (Figure 
5.6c). Each is a discrete alternative recurrent asymptotic pattern of activities of the N 
elements in the network. Left to its own, the system eventually settles down to one 
of its state cycle attractors and remains there. 

The stability of attractors to minimal perturbation may differ. A minimal pertur
bation in a Boolean network consists in transiently flipping of the activity of an ele
ment to the opposite state. Consider Figure 5.6c. The first state cycle is a steady state, 
or state cycle oflength I (000), which remains the same over time. Transient flipping 
of any element to the active state-for instance. to (100), (0 I 0), or (00 I )-causes the 
system to move to one of the remaining two basins of attraction. Thus the (000) state 
cycle attractor is unstable to any perturbations. In contrast, the third state cycle is 
also a steady state (III), but it remains in the same basin of attraction for any single 
perturbation (0 I I), (10 I), or (I 10). Thus this attractor is stable to all possible mini
mal perturbations. 

A structural perturbation is a permanent "mutation" in the connections, or Bool
ean ruTes-:-rri~tne Boolean network. In Figure 5.6d, I show the result of mutating the 
rule governing element 2 from the "Or" function to the "And" function. As you can 
see, this alteration has not changed state cycle (000) or state cycle (III) but has 
altered state cycle (IO I). In addition, state cycle (000), which was an isolated state, 
now drains a basin of attraction and is stable to all minimal perturbation, while ( III) 
has become an isolated state and is now unstable to all minimal perturbations. 

To summarize, the following properties of autonomous Boolean networks are of 
immediate interest: 

1. 

2. 

3. 
4. 

5. 

The number of states around a state cycle (called the length of the cycle). The 
length can range from one state for a steady state to 2' states. 

The number of alternative state cycles. At least one must exist, but a maximum 
of 2'" might occur. These are the permanent asymptotic alternative behaviors of 
the entire system. 

The sizes of the basins of attraction drained by the state cycle attractors. 

The stability of attractors to minimal perturbation, flipping any single element to 
the opposite activity value. 

The cascade of changes in dynamical behavior (called damage) caused by tran
siently altering the activity ofa single binary variable. 
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6. The changes in dynamical attractors and basins of attraction due to mutations in 
the Boolean rules. These changes will underlie the character of the adaptive land
scape on which such Boolean networks evolve by mutation to the structure and 
rules of the system. 

Boolean networks are discrete dynamical systems. The elements are either active 
or inactive. The major difference between a continuous and a discrete deterministic I 
dynamical system is that, in a discrete system, two trajectories can merge. To be con
crete, Figure 5.6c shows several instances where more than one state converge on the 
same successor state. 

Attractors carry strong biological implications and hence warrant our attention. 
Because many complex systems harbor attractors to which the systems settle down, 
the attractors literally are most of what the systems do. The remaining states in state 
space are visited only along transients leading to such attractors. Dynamical systems 
ranging from genomic cybernetic systems to immune systems, neural networks, 
organ systems, communities, and ecosystems all exhibit attractors. The alternative \ 
attractors in a genomic regulatory network, for example, can be interpreted as the 
alternative cell types in the organism (Kauffman 1969, 1974, 1986a, 1986c, 1986d; 
Chapter 12); the alternative attractors in immune networks correspond to different 
immune states (Jerne 1974, 1984; Kaufman, Urbain, and Thomas 1985; Farmer, 
Packard, and Perelson, 1986; Kaufman and Thomas 1987; deBoer 1988; Hoffman, 
Kion, et al. 1988; Kaufman 1988; Perelson 1988; Sieburg 1988); the alternative 
attractors in neural networks have been interpreted as alternative memories or cat
egories by which the network "knows" its world (McCulloch and Pitts 1943; Little 
1974; Hopfield and Tank 1986a, 1986b; Rummelhart and McClelland, 1986; Der
rida, Gardner, and Zippelius 1987; Kurten 1988a, 1988b); the alternative attractors \" 
in cardiac systems correspond to normal and abnormal rhythms (Mackey and Glass 
1988); the alternative attractors in ecosystems correspond to alternative stable pat- / 
terns of species abundances (May 1976). Thus the characteristics of attractors in 
complex systems with hundreds, thousands or millions of interacting elements are 
inevitably of basic importance in both development and evolution. It is just the 
expected characteristics of such attractors in complex systems which we can evaluate 
in ensembles of Boolean networks. 

Chaos and a Phase Transition to Order 
in Random Boolean Networks 

In the first chapter, I discussed the role of the second law of thermodynamics, statis
tical mechanics, and the gas model in tuning our intuitions about the need for outside 
work if systems are to achieve order. This model is conceptually connected with the 
idea that selection is the sole source of order in evolution. However, the second law 
really states that any system will tend to the maximum disorder possible, within the 
constraints due to the dynamics of the system. The dynamical laws of gases with per
fect elasticity ensure ergodicity. That is, the trajectory in state space wanders ran
domly all over state spaCe\viUiout collecting onto small attractors. An enormous 
amount of outside work must be done to box such a system into small subvolumes 
of its state space. If, by contrast, many other dynamical systems can have basins of 
attraction draining to small attractors, then such systems spontaneously box them
selves into small volumes of their state spaces. Such systems spontaneously exhibit 
order in the absence of outside work. Thus the possibility of the emergence of small 
attractors is of deep importance for biology. The order which might characterize 
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cell types, immune responses, categorization in neural networks, and stability in 
coevolving systems will lie at hand for further employment by natural selection. 

Boolean networks coordinating the mutual activities of thousands of elements can 
yield vastly ordered dynamics. Our intuitions have been wrong. Evolution has had 
unexpected order as the very groundstuffit might utilize from the outset. Here I sum
marize the behaviors of Boolean networks as a function of N, the number of elements 

;;, J,(\ ,in the net; K, the average number of inputs to each element in the net; and P, which 
"I'': X measures particular biases on the subset of the possible (22)K Boolean functions used 
1':-

in the net. We find that, as K decreases from N to 1, a phase transition occurs at K = 

2. For K > 2, behavior is chaotic. At K = 2, order crystallizes. The same phase tran
sition from chaos to order occurs as P is changed smoothly. Later we shall focus on 
the transition region between order and chaos. In this regime, complex dynamics 
arises. We shall find grounds for thinking that the ordered regime near the transition 
to chaos is favored by, attained by, and sustained by natural selection. Then the 
generic properties of complex parallel-processing networks in this regime will emerge 
as possible biological universals. 

In order to assess the expected influence of these parameters, I have analyzed the 
typical behavior of members of the ensemble of Boolean networks specified by any 
fixed values of N, K, and P. The first results I describe allow no bias in the choice of 
Boolean functions; hence Nand K are the only parameters. I further simplify and 
require that each binary element have exactly K inputs. 

To analyze the typical behavior of Boolean networks with N elements each receiv
ing K inputs, it is necessary to sample at random from the ensemble of all such net
works, examine their behaviors, and accumulate statistics. Numerical simulations to 
accomplish this therefore construct exemplars of the ensemble entirely at random. 
Thus the K inputs to each element are first chosen at random and then fixed, and the 
Boolean function assigned to each element is also chosen at random and then fixed. 
The resulting network is a specific member of the ensemble of NK networks. 

I therefore stress that random NK Boolean networks are examples of strongly dis
ordered systems (Kauffman 1969, 1984a, 1986a; Fogelman-Soulie 1984, 1985a, 
1985b; Derrida and Pommeau 1986; Derrida 1987a, 1987b; Stauffer 1987a, 1987b; 
Flyvberg and Kjaer 1988). Both the connections and the Boolean functions are 
assigned at random. Were any such network examined, its structure would be a com
plex tangle of interactions, or "input wires," between the N components, and the 
logical rule characterizing the behavior of one element would typically differ from its 

:'j'I'\,\.,,·/0 neighbors in the network. Such Boolean networks are spiritually similar to spin
,.rt Un. . /~ glasses and to the NK family of landscapes introduced in Chapters 2 and 3. Here, 
.~'" i"" ,:,; however, we generate networks with random wiring diagrams and random logic, and 
',,,illirt- ,fA'" k h h d I b h . as w et eror er y e aVlOremerges nevertheless. Note that such behavior is occur-
1'~ ~L ~<:~~t f""v"f.; : ring in a parallel-processing network. All elements compute their next activities at 

the same moment. Ifwe find order in random networks, then random parallel net
works with random logic have order despite an apparent cacophony of structure and 
logic. 

Table 5.1 summarizes the salient features for the following cases: K = N, K = 5, 
K = 2,K = 1. 

K = N: The Grand Ensemble. This ensemble of networks is maximally disordered. 
Since each element receives an input from all other elements, there is only one pos
sible wiring diagram. The Boolean function assigned to each element is chosen at 
random from among the 22N possible logical rules. Therefore, this ensemble corre
sponds to the largest possible ensemble of Boolean networks of N variables. Any 
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TABLE 5.1 Properties of Random Boolean Nets for Different Values of K 

K=N 
K>5 

K= 1 
K=2 

State cycle 
length* 

0.5 X 2N/2 

0.5 X 2BN 

(B> I) 

Number of state cycle 
attractors 

N/e 

I 
a = PUG - 2 

~onential in N 

Homeostatic 
stability 

Low 
Low 

Low 
High 

Reachability 
among cycles 

after perturbation 

High 
High 

High 
Low 

'Column 1: State cycle length is median number of states on a state cycle. Column 2: Number of state cycle attractors in 
behavior of one net. (a = PK - 1/2, where PKis mean internal homogeneity of all Boolean functions on K inputs; see text). 
Column 3: Homeostatic stability refers to tendency to return to same state cycle after transient reversal of activity of any 
one element. Column 4: Reachability is number of other state cycles to which net flows from each state cycle after all possible 
minimal perturbations, due to reversing activity of one element. 

ensemble with K < N or with constraints, for example, P, on the subset of Boolean 
functions is a subset of this grand ensemble. 

Since each element is assigned at random a Boolean function on N elements, the 
successor to each state in these maximally disordered sysetms is a completely random 
choice among the 2N possible states. For this reason, this ensemble is sometimes 
called the random-map model. Networks in which K = N have received increasing 
attention (Kauffman 1969, 1971a, 1971b, 1974, 1984a, 1986a, 1986c, 1986d; Wol
fram 1983, 1984; Gelfand and Walker 1984; Coste and Henon 1986; Derrida and 
Flyvberg 1987b; Derrida and Bessis 1988). In part, the interest reflects the analytic 
simplicity of this extremely disordered case, but in part it reflects the fact that even 
this maximally disordered system exhibits unexpected order. While attractors are 
very long and unstable to most perturbations, these systems have few alternative 
attractors. 

Chaotic behavior in these Boolean networks shows up in two major ways: the 
lengths of state cycles and sensitivity to initial conditions. Table 5.1 shows that the 
median expected length of state cycles is 0.5 X 2N/2. 

Showing that cycle lengths scale as \f2N, where 2N is the total number of states, is 
quite easy and instructive. Let 2N = M. Start with an initial state and pick its suc
cessor at random. The chance that the state picks itself as a successor and forms a 
loop is 1/ M. Thus the chance that the chosen successor state is some other state is 1 
- 1/ M. The chance that the second state chooses either the initial state or itself as its 
successor state and forms a state cycle is 2/ M. Hence the chance that the second state 
fails to form a state cycle and that the sequence continues to a third state is I - 2/ 
M. Therefore, over a succession of L steps, the probability PL that the sequence con
tinues without forming a state cycle is 

By an argument familiar from Chapter 2, as L increases, this product decreases 
and eventually falls below 0.5. At that value of L, half of such sequences will have 
closed upon themselves to form state cycle loops, and half will not have. The value 
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~l W 
~ of L is a median estimate of when cycles will form. It is easy to see that, when a cycle 
A does form, the feedback loop is as likely to end on anyone of the L states as on any 

other. Hence, on average the cycle will be about L/2. Some simple algebra leads to 
the result 

Median cycle length = o.s Vii = o.s V'Y' (S.S) 

State cycle lengths of O.S V'Y' = 2N~are vast as N increases. For N = 200, for 
instance, lengths average 2100 ~ 1030• At a microsecond per state transition, it would 
require about a billion times the age of the universe to traverse the attractor. Here is 
surely a "big" attractor wandering through state space before finally returning. I shall 
call such attractors, whose length increases exponentially as Nincreases, chaotic. This 
does not mean that flow on the attractor is divergent, as it is in the low-dimensional 
chaos discussed earlier. A state cycle is the analogue of a one-dimensional limit cycle. 

Networks in which K = N also exhibit maximum sensitivity to initial conditions. 
Because the successor to each state is randomly chosen, perturbing a state by flipping 
the activity of a single element will lead, a moment later, to a successor state which 
is totally random with respect to the successor state which would have followed the 
unperturbed state. Thus minimal changes yield enormous differences in activity pat
terns virtually immediately. 

Despite these signs of chaotic behavior, the random-map model exhibits one star
tling sign of order: The number of cycles, and hence the number of basins ofattrac
tion, are small, N/e. Thus a system containing 200 elements would have only about 
74 alternative asymptotic patterns of behavior. More strikingly, a system containing 
10 000 elements and chaotic attractors with median lengths on the order of 25000 

would harbor only about 3700 alternative attractors. This is already an interesting 
intimation of order even in extremely complex disordered systems. 

Two other features of K = N random-map models are important. First, the sizes 
of basins of attraction are not uniform. Rather, a few enormous basins drain to a few 
large state cycle,' and many small basins drain to smaller state cycles. Second, because 
successor states to each state are completely random, the stability of any state cycle 
to perturbations is just equal to the size of its basin of attraction. This equality implies 
that most attractors are unstable to many perturbations and that each attractor is 
next to all other attractors in the sense that some minimal perturbation, transiently 
reversing the activity of one binary element, will move the network from the first 
attractor into the basin of any of the other attractors. Thus the network can reach any 
attractor by minimal perturbations to each attractor. 

K ~ 5: Internal Homogeneity in Boolean Functions, the P Parameter, and a Mean
Field Approach. The main feature of K = N networks, a modest number of chaotic 
attractors, persists as the number of inputs per binary variable decreases to five and 
perhaps to three. Analytic results are available for networks with about five or more 
inputs per element. Numerical results are available for K = 4 and K = 3. The expo
nential rate at which attractors lengthen is small for small values of K and increases 
to N/2 as K approaches N. The analytic results depend on what physicists call a mean
field approximation. 

The expected lengths of state cycle attractors depend on the extent to which tra
jectories converge in state space. If two trajectories only rarely converge, cycles will 
tend to be very long. If there is high convergence in state space, attractors will tend 
to be shorter. This intuition can easily be made useful by defining the internal homo
geneity P of a Boolean function. 
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Any Boolean function of K input variables has 2K possible combinations of values 
for these variables. For each of these 2K possibilities, the function assigns a 1 or a 0 
value as the next activity of the regulated element. A Boolean function might have 
alII values (tautology), all 0 values (contradiction), or, more typically, about 50 per
cent 1 values and 50 percent 0 values. The internal homogeneityp of a Boolean func
tion is defined as the fraction ofthe 2K positions with 1 values or with 0 values, which
ever is greater than 50 percent (Gelfand and Walker 1984). For example, a Boolean 
function with an internal homogeneity of.8 has either 80 percent 1 values or 80 per
cent 0 values in the 2K positions specifying the function. 

Without loss of generality, consider a Boolean network with K = N but biased to 
P = .8 such that all functions have the 1 value in 80 percent of the 2N positions. Then 
clearly a specific central state (11111 ... 11111) is a preferred state. This state is the 
successor to very many states which therefore converge onto it. Indeed, the number 
of states which converge onto the central state is enormous: 

(5.6) 

These K = N networks are biased random mappings, biased by P. Given this fixed 
value of P = .8, we can obtain a lower bound estimate of median state cycle lengths 
as a function of Nand P by assuming that all states have convergence upon them
selves as high as the central state (Kauffman 1984a). Then an argument like that lead
ing to Equations 5.4 and 5.5 yields 

Let B = 
increases: 

Expected median cycle length = (0.5) ( )P) N (5.7) 

I/VP. Then, since B > 1, cycle lengths increase exponentially as N 

f' ,. '1) --'0''--'' "2. l S .~IJ S h---;- ?5'~ f"<.\ D - vll/'::C .j .~lr,: •. ' :C'. ,.~ ~ Iv .-
J.-. .J v _ .. Ill...., t\),~, 

Median cycle length = 0.5BN (5.8) 

A critical implication of Equation 5.8 is that no fixed internal homogeneity P, and 
hence no corresponding convergence in state space alone, will suffice to ensure that 
state cycles remain small as N grows large. (Here I mean by "small" that state cycles 
do not grow faster than, say, linearly as N increases.) 

The insights just gained can be extended from K = N networks biased by internal 
homogeneity P to unbiased networks with K ~ 5. The main idea is simple. If we 
consider Boolean functions of K = 1, K = 2, K = 3, K = 4, ... inputs, each defines 
a set of 22K functions. For each function, we can define its internal homogeneity P. 
Hence we can define the average internal homogeneity of all Boolean functions with 
K = 1, K = 2, ... inputs. It can be shown (Kauffman 1986d) that, as a function of 
K, the mean internal homogeneity P K is 

(5.9) 

Internal homogeneity reaches a peak at K = 2 and declines thereafter as K 
increases (Table 5.2). The reason is straightforward. In K = 2 networks, eight of the 
16 Boolean functions have either three 0 values and one 1 value or three 1 values and 
one 0 value. These functions have P = .75. As K increases, functions with such high 
values of P become rare, and so the mean value of P declines. 

Mean internal homogeneity PK as a function of K can be used to obtain a lower 
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TABLE 5.2 Internal Homogeneity P as a 
Function ofInputs K 

K P 

1 .5 
2 .6875 
3 .6367 
4 .5982 
5 .5699 
6 .5497 
7 .5352 

bound on expected median state cycle lengths in networks with random choices for 
Boolean functions of K variables. We know from Equation 5.8, where K = N, that 
a fixed P allows prediction of a lower bound on state cycle lengths. When K = N, the 
particular positions in any function where I or ° values occur are completely ran
dom, biased only by P. For K = 5 and N = 50, to take a concrete case, the positions 
where I and ° values occur in each function depend on the particular five input ele
ments to each element and hence are not random. But let us accept a rough argu
ment: When K;;. 5, the positions in the function, determined by random choices of 
the five inputs to each element, are nearly randomly scrambled. Then, using this 
rough mean-field approximation, we can use Equation 5.9 to calculate values of B 
(Table 5.3). Then, using these values of B in Equation 5.6, we can compute expected 
cycle lengths for values of K which are moderately large, up to K = N. The results, 
of course, show that, for any fixed K, K = 5 to K = N, state cycle lengths still increase 
exponentially as N increases. 

This argument is a mean-field approximation. It is therefore important that 
numerical simulations fairly strongly tend to confirm it (Figure 5.7) (Gelfand and 
Walker 1984). Note that, for K;;. 5, observed cycle lengths increase exponentially as 
N increases. Further, the expected lengths of state cycles predicted by the mean-field 
theory for N = 20 are reasonably close to observed results, shown in Figure 5.7 
(Table 5.4). When we use the mean-field approximation, the theory should be more 
accurate as K increases. Clearly the estimate is too high for K = 3; by K = 6 and K 
= 7, observed results are close to theory. 

The important result is this: Random Boolean networks with a modestly high 
number of inputs per element, say K = 5 or K = 10, and randomly chosen Boolean 
functions have state cycle attractors whose lengths increase exponentially as N 

TABLE 5.3 Exponential Growth Rate B 
of Attractors as a Function of K and N 

K B 

3 1.2565 
4 1.2929 
5 1.3246 
6 1.3487 
7 1.3669 
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Figure 5.7 LoglO median cycle lengths in random networks with K ranging from I to 7. Cycle 
lengths grow less than linearly for K = I and K = 2 but exponentially for K > 3. The slopes are 
predicted moderately well by the mean-field theory. (From Gelfand and Walker 1984) 

increases. The exponential rate of growth increases as K increases toward a limit of 
N/2. 

While state cycles are long for K > 5, disordered networks have few attractors. 
Fully random genomic systems with K = Nhave only N/ e distinct attractors. Recent 
analytic results strongly indicate that for N ~ K> 5, the number of attractors is at 
most a linear function of N and increases to N/ e as K approaches N. Letting a = P K 

- )j! (that is, a is the deviation of the mean internal homogeneity above -95), Coste ,;;:··0", ':J 

(reported in Kauffman 1986d) was able to obtain bounds on the number of attractor r 
cycles: 

log (t}- ) log (_I 1 ) 
z+a z-a 

N 2 ~ number of cycles ~ N 2 (5.10) 

For fixed K, the mean internal homogeneity is fixed and so cycle numbers increase 
roughly linearly within the bounds. For K = 2, Coste's approximation is wrong. As 

TABLE 5.4 Mean Field Predicted loglO 
Cycle Lengths as a Function of K 

K 

3 
4 
5 
6 
7 

LoglO cycle length for N = 20 

1.680 
1.928 
2.141 
2.297 
2.414 
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we shall see, for K = 2, the number of attractors increases less than linearly as N 
increases. 

In summary, random Boolean networks with K ~ 5 exhibit chaotic behavior. 
State cycles lengthen exponentially as N increases, the systems show sensitivity to 
initial conditions in the exact sense that initial minor differences in activity patterns 
increase over time, the number of attractors is roughly linear in N, and their stability 
to perfurbations is at best modest. These characteristics ofthe chaotic regime change 
drastically when K decreases to 2. 

K = 2: A Phase Transition to Order in Random Boolean Networks. It has now 
been known for over 20 years that Boolean networks which are entirely random but 
subject to the simple constraint that each element is directly controlled by K = 2 
elements spontaneously exhibit very high order (Kauffman, 1969, 1971a, 1971 b, 
1971 c, 1974). A number of workers have attempted to understand the order observed 
(Kauffman 1969, 1971a, 1971c, 1974, 1984a, 1986a, 1986c, 1986d; Cull 1971 ; Alek
sander 1973; Babcock 1976; Cavender 1977; Sherlock 1979a, 1979b; Thomas 1979, 
1984; Walker and Gelfand 1979; Atlan, Fogelman-Soulie, et al. 1981; Fogelman
Soul ie, Goles-Chacc, and Weisbuch 1982; Gelfand and Walker 1982, 1984; Fogel
man-Soulie 1984, 1985a, 1985b; Derrida and Ryvbjerg 1986; Derrida and Pomeau 
1986; Derrida and Stauffer 1986a, 1986b; Derrida and Weisbuch 1986, 1987; Hart
man and Vichniac 1986; DeArcangelis 1987; Hilhorst and Nijmeijer 1987; Stauffer 
1987a, 1987b, 1989; DeArcangelis and Coniglio 1988; Weisbuch 1989a, 1989b). 

Three approaches to understanding that order-two analytic, one numerical
have been taken. I shall begin with rather remarkable recent analytic work by the 
solid-state physicist B. Derrida and his colleagues (Derrida and Pomeau 1986). 

Derrida's approach is called the annealed approximation. The problem is to 
understand the behavior of deterministic Boolean dynamical systems sampled at 
random from defined ensembles specified by Nand K. Once the connections and 
Boolean functions are chosen for a particular net, they remain constant and define 
that network. Call such a fixed structure quenched. meaning fixed in place. Derrida 
and his co-workers have gained substantial insight into the emergence of orderly 
dynamics in quenched Boolean networks by making the drastic assumption that the 
entire structure and logic of the network change at each moment. That is, suppose 
that at each moment, after each state transition, the newly computed state is left 
intact and the identity of each of the N elements is left intact but the connections and 
the Booleanfunctions among the element are chosen at random again, specifying an 
entirely new network at each successive moment. This is the annealed model. The 
dynamics of the state transitions in this model bears a close relationship to that of the 
quenched model. 

In the quenched model, of course, after at most 2N time moments, the system must 
hit a state previously encountered and thereafter will cycle around a recurrent set of 
states on an attractor state cycle. In the annealed model, no periodic behavior can be 
expected, since the corrections and functions change at each moment. On the other 
hand, there is a deep connection between the quenched and annealed models. Con
sider a quenched network with very large N, say 100000, and K = 2. Focus on the 
behavior of a given element i. Start the network in some arbitrary state at time O. In 
order to calculate the state of element i at the next time moment T = 1, the values 
of its K = 2 inputs at T = 0 must be assessed. In order to calculate the state of i at 
time T = 2 as a function of the state of the network at T = 0, the T = 0 values of 
the total offour inputs must be examined. Specifically, the values of the four inputs 
to the two direct inputs to i must be examined. Thus, over successive moments, the 
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value of i as a function of the initial state at T = 0 depends on Kl, K2, K 3, K4 ... 
values of different element according to different Boolean functions. If N were infi- , 
nite, then after any finite number of state transitions, the behavior ofthe ith element \ 
would depend on exponentially increasing numbers of values evaluated at time T = I 
0, but always by a random new set of Boolean functions which changes as time I 
increases by each moment. This suggests that the annealed and quenched models are 
closely related in a number of respects. 

In particular, let us define the Hamming distance H between two different states 
of N elements as the number of positions in which the two states are different. Thus 
(1111111111) and (0111111110) overlap in eight of the ten positions and differ in 
two, so that the Hamming distance is 2. The overlap between two states is just the 
number of elements which have the same activity in both states. Overlap is just 
N-H. 

The question Derrida addresses is this: Do annealed Boolean nets tend to cause 
initially different patterns of activities among the N elements to converge to the same \ 
pattern of activity over time? Remarkably, the answer is "yes" for K = 2 annealed 
networks but not for K > 2. More precisely, Derrida shows that, for large N, the 
quenched and annealed models predict nearly the same time evolution in the overlap 
between two different initial states of the network over a sequence of states corre
sponding roughly to the transients flowing toward the state cycle attractors of the 
quenched model. 

The approach is this: Start with two randomly chosen states 1 and 2. Choose a 
random network in the NK ensemble. Place the network in state 1, and allow it to 
undergo a transition to a successor state I'. Place the network in state 2, and allow it 
to undergo a transition to a successor state 2'. Measure the overlap between the two 
initial states and that between the two successor states. Is the latter overlap greater or 
less than the former? Next, randomly rewire the network, and randomly assign to 
each element a new Boolean function on its K inputs. Use this new network to cal
culate, for states l' and 2', their transitions to their own successors 1" and 2". Cal
culate the overlap between 1" and 2". Keep repeating this procedure in order to 
determine whether the overlap between pairs of successor states increases to com
plete overlap in all the elements or approaches some fixed fraction of the N elements. 

It is simple to show that the answer tp Derrida's question depends on K. If the 
overlap between two states at time Tis Ma I2), then, after we divide by N, the frac-
tional overlap at the next moment is ' ~ -' 

adT + 1) = 1 + af2 
2 

(5.11 ) 

This may be derived as follows. If the overlap at time Tis Na d T), then some fraction 
of the N elements have all K of their inputs 1n the same value in both states 1 and 2. 
The expected number of these is just (N~12)' Each such element whose K inputs are 7 y p -0 

in identical values in states 1 and 2 at time 'Twill certainly be in the identical value 
in the two successor states I' and 2' at time T + 1. The number of sites at time T 
which have at least one of their Kinputs different is just N{l - [(adT)]K}. Each of - iif'''', 2 
these elements which have at least one input in different values in states 1 and 2 have 
a probabity of ~ of becoming the same at time T + 1. Therefore, ~ .. / ,.: t't' Il5 

which is Equation 5.11. 
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Equation 5.11 demonstrates a dramatic difference between K = 2 networks and 
K> 2 networks. For K = 2, over successive time moments, the difference Hbetween 
pairs of successor states decreases and vanishes at infinite time. That is, in the 
annealed model, for K = 2, the overlap between any two initial states increases 
between successors until it becomes essentially complete. For K > 2, the difference 
between successor state does not vanish. Rather, the overlap approaches a fixed frac
tion which depends on K. This difference between K = 2 and K > 2 networks is most 
readily seen in Figure 5.8, which shows the iteration of the mapping expressed in 
Equation 5.11. The 45" line represents those cases where the difference does not 
change over one time step. Therefore, the positions where the curves for the different 
values of K cross the 45° line represent the steady-state fixed points. For K > 2, there 
is a fixed point at a difference H" which is greater than 0; each of these curves crosses 
the 45° line at Hs from above for lower values of H at time T to below for higher 
values of H at time T. Thus if H is less than the crossing point Hs at time T, it 
increases at time T + 1; if H is more than the crossing point at time T, it decreases 
at time T + 1. Thus the point Hs where each curve crosses the 45" line, is a stable 
steady state which H approaches as time increases. This means that, for K > 2, any 
two neighboring initial states, no matter how close initially, will be expected to 
diverge to a mean Hamming distance H given by the steady-state value in Figure 5.8 
and to fluctuate around that value thereafter. This divergence of initially neighboring 
states for K > 2 demonstrates in another form sensitivity to initial conditions. It is 
somewhat similar to the sensitivity discussed earlier for flow on chaotic attractors. 

The behavior for K = 2 is radically different, for in this case there is no crossing 
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Figure 5.8 Recurrence relation showing the expected distance Dn J between two states at time T 
+ I after each is acted upon by the network at time T, as a function of the distance D-r between the 
two states at time T. Distance is normalized to the fraction of elements in different activity values in 
the two states being compared. That is, Hamming distance at time Tis HT = N[ I - ad T»), Dr = 
Hd N. For K = 2, the recurrence curve is below the 45° line, and hence distance between arbitrary 
initial states decreases toward zero over iterations. For K > 2, states which are initially very close 
diverge to an asymptotic distance given by the crossing of the corresponding K curve at the 45° line. 
Thus K > 2 networks exhibit sensitivity to initial conditions and chaos. not order. Based on annealed 
approximation. (From Derrida and Pommeau 1986) 
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Cq."Ilt 6t 
of the 45° line (Figure 5.8); the curve is beneath that line everywhere. Thus, remark-
ably, over time, the differences between successor states vanish! (More precisely, the J ty. (u:. 
fraction of sites which differ approaches zero.) This dramatic phenomenon is a phase 
transition. As K decreases from K = N to K = 2, in the annealed model, networks 
are initially in the chaotic regime but undergo a sudden transition to ordered behav-
ior when K = 2. Numerical simulations comparing the quenched model and the 
annealed model, for different values of K and reasonably large values of N, confirm 
Derrida's theory (Derrida and Weisbuch 1986). For the annealed model, the infinite 
N predictions are close to the quenched model even for N = 20 to 30. In the I 
quenched case, of course, the Boolean network is fixed and settles to a state cycle. 
Unless that cycle is a steady state and there is only one attractor, it cannot be the case) kl 
for any value of K that overlap between two arbitrary initial states increases to 100 
percent. Nevertheless, the annealed theory fits remarkably well the observed evolu-
tion of overlaps as a function of K along pairs of transient sequences of states flowing 
toward state cycles. Therefore, it seems clear that Derrida has found evidence for a 
phase transition between the behavior of K = 2 Boolean networks and K > 2 net
works. The evidence points in the right direction. There is indeed a phase transition 
when K decreases to K = 2. 

Numerical simulations of randomly chosen members of the ensemble of K = 2 
input networks in which N ranges up to 10 000 have been carried out (Kauffman 
1969, 1971a, 1971b, 1971c, 1974, 1984a, 1986d). The following are the dominant 
results: 

1. The expected median state cycle length is about VN . That is, the number of 
states on an attractor scales as the square root of the number of elements. A Bool
ean network with 10 000 elements which was utterly random within the con
straint that each element is regulated by only two elements would therefore have 
a state space of2 1O 000 = 103000 but would settle down and cycle recurrently among 
a mere '1110 000 = 100 states. Thus, in contrast to random Boolean networks J: 
with K ~ 5, where cycle lengths increase exponentially in Nand rapidly become . 
hyperastronomical, randomly assembled Boolean systems with K = 2 sponta- ""';V::(:fF b1 
neously confine their dynamical behavior to truly tiny subvolumes of their state 
space. A system of 10 000 elements which localizes its dynamical behavior to 
100 states has restricted itself to 10-2998 parts of its entire state space. Here is 
spontaneous order indeed. 

2. The distribution about this median is skewed. Most networks have short state f "wt,(-' 
cycles, while a few have very long ones. If plotted as the logarithm of cycle length, I """,.. J4;! 
the distribution remains skewed rather than becoming a familiar bell-shaped ~ o...,.,~, 
Gaussian distribution. 

3. The number of state cycle attractors is also about VN . Therefore, a random 
Boolean network with 10 000 elements would be expected to have on the order 
of 100 alternative attractors. A system with 100 000 elements, comparable to the \ 
!lUman genom!, would have about 317 alternative asymptotic attractors. 

4. If the stability of each state cycle attractor is probed by transient reversing of the I" 
activity of each element in each state of the state cycle, then for about 80 to 90 
percent of all such perturbations, the system flows back to the same state cycle. 
Thus state cycles are inherently stable to most minimal transient perturbations. 

5. When the perturbed system flows back to the same state cycle, it typically reaches 
that state on the state cycle which it would have reached in the same time interval 
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had the system not been perturbed. Thus if one thinks of position around a state 
cycle as carrying "phase" information, a perturbed system tends to return to the 

\ same cycle and maintain phase after the perturbation has ended. 

6. For perhaps 5 to 15 percent of the minimal perturbations transiently reversing 
the activity of a single element, the system leaves the state cycle from which it 
was perturbed and flows to another state cycle. 

7.1 A perturbed state cycle can directly change only to a small number of other state 
cycle attractors in the system. It follows that many of the 5 to 15 percent of the 
perturbations which cause the system to change from attractor A induce change 
to the same neighboring attractor B. In short, a variety of different stimuli acting 
on different elements in the system induce the same specific response. 

8. A large fraction of the N elements, typically 70 percent or more, fall to a fixed 
active or fixed inactive state which is identical on all the alternative attractors of 
the Boolean network. (I return to this shortly, for it tokens a new principle of 
collective order in massively parallel networks.) 

9. The mean difference in patterns of activity on different attractors is a few per
cent. 

10. Altering the activity of a single element transiently typically propagates and 
causes alterations in activity of a small fraction of the total number of elements 
in the system. In other words, "damage" is slight. 

11. Deleting any single element or altering its Boolean function typically causes only 
modest changes in attractors and transients. 

The results discussed here provide the conceptual framework of Chapter 12, 
where I shall interpret the binary elements as genes switching one another on and off 
and the Boolean network as the cybernetic genetic regulatory network. There I shall 
interpret a state cycle attractor of recurrent patterns of gene activity as a cell type in 
the behavioral repertoire of the genomic regulatory system. Then 

• The size of attractors maps to how confined a pattern of gene expression corre
sponds to one cell type. 

• The number of attractors maps to the number of cell types in an organism. 

• The stability of attractors maps to homeostatic stability of cell types. 

• The number of attractors accessible by perturbing the states of activities of single 
genes maps to the number of cell types which any cell type can differentiate into. 
Since this number is small compared with the total number of cell types in the organ
ism, then ontogeny must be, and is, organized around branching pathways of differ
entiation. 

• The overlap in gene activity patterns on attractors maps to the similarity of cell 
types in one organism. 

• The alteration of attractors by mutations maps to evolution of novel cell types. 

The spontaneous order we have just uncovered in K = 2 networks and their gen
eralizations described below underlie a serious hope to account for much ofthe order 
seen in the orderly, coordinate behavior of genetic regulatory systems underlying 
ontogeny in the absence of selection. "Random" genetic programs can behave with 
order. 
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K = 1: Networks in the Ordered Regime. In these networks, each element has only 
a single input. The structure of the network falls apart into separate loops with 
descendant tails. If the network connections are assigned at random, then most ele
ments lie on the tails and do not control dynamical behavior, since their influence 
propagates off the ends of the tails. On the order ofln NVN of the elements lie on Pd{('''7+~e5lJ? 
loops. The number ofloops scales roughly as (In N)/ e. Each loop has its own dynam-
ical behavior and cannot influence the other, structurally isolated loops. Thus such 
a system is structurally modular. It comprises separate, isolated subsystems. The 
overall behavior of such a system is the product of the behaviors of the isolated sub-
systems. As Table 5.1 shows, the median lengths of state cycles increase rather slowly 
as N increases (v;ri VN) (Jaffee 1988); the number of attractors increases expo-
nentially as N increases, and their stability is moderate. 

There are four Boolean functions of K = 1 input: "Yes," "Not," "True," and 
"False." The last two are constantly either active or inactive. The values in Table 5.1 
assume that only "Yes" and "Not" are utilized in K = 1 networks. When all four 
functions are allowed, most isolated loops fall to fixed states and the dynamical 
behavior is dominated by those loops with no "True" or "False" functions assigned 
to elements of the loop. Flyvberg and Kjaer (1988) and Jaffee (1988) have derived 
detailed results for this analytically tractable case. 

Percolation of Frozen Clusters: A New Principle of Order in 
Massively Parallel Boolean Systems 

What principles allow K = 2 networks to exhibit such profound order? The basic 
answer appears to be that such networks develop a connected mesh, or Jrozen core, 
of elements, each frozen in either the 1 or the 0 state. The frozen core creates span
ning, or percolating, walls of constancy which break the system into functionally iso
lated islands of unfrozen elements cut off from influencing one another by the walls 
of frozen elements. The formation of such functionally isolated islands by a perco- 1 
lating frozen core appears to be a sufficient condition for order in Boolean networks; 
conversely, failure of a frozen core to percolate and leave functionally isolated 
unfrozen islands is a sufficient condition for chaos. The boundary regime where a 
frozen core is just percolating and, more important, the unfrozen region is just break-
ing into unfrozen islands is the phase transition between order and chaos. 

Two related means of forming such percolating walls are now established. The 
first is calledJorcing structures (Kauffman 1971a, 1971 b, 1974, 1984a, 1986a; Fogel
man-Soulie 1984, 1985a, 1985b; Gelfand and Walker 1984). The second has as yet 
no specific name. I propose to call this mechanism internal homogeneity clusters. 

Forcing structures will be introduced here and discussed again in Chapter 12, for 
they appear to arise in genomic regulatory systems and crystallize orderly dynamics. 
Consider the Boolean "Or" function. This function asserts that, if either one or the 
other of the two regulating inputs is active at a given moment, then the regulated 
element will be active at the next moment. Notice that this function has the property 
that, ifthejirst input is currently active, that alone guarantees that the regulated ele
ment will be active at the next moment, regardless of the current activity of the sec
ond input. That is, this Boolean function has the property that, if the first input is 
active, the regulated element can beJully insensitive to variation in the activity of the 
second input. 

I define as a canalyzing Boolean Junction any Boolean function having the prop
erty that it has at least one input having at least one value (lor 0) which suffices to 

I 
I 



204 ADAPTATION TO THE EDGE OF CHAOS 

guarantee that the regulated element assumes a specific value (lor 0). "Or" is such 
a function. So is "And" since, if either the first or the second input is 0, the regulated 
locus is guaranteed to be 0 at the next moment. By contrast, the "Exclusive Or" func
tion, in which the regulated locus is active at the next moment if one or the other 
input-but not both-is active at the present moment, is not a canalyzing Boolean 
function. No single state of either input guarantees the behavior of the regulated ele
ment. A striking feature of known regulated genes is that virtually all are regulated 
by canalyzing functions in the Boolean idealization. Just this feature will allow us to 
deduce large-scale order in genomic regulatory systems underlying ontogeny. The 
order arises as a result of the formation of forcing structures. 

Consider a system of several binary variables, each receiving inputs from two or 
three of the other variables and each active at the next moment ifany one of its inputs 
is active at the current moment (Figure 5.9). That is, each element is governed by the 
"Or" function on its inputs. As shown in Figure 5.9, this small network has feedback 
loops. Now, the consequence of the fact that all elements are governed by the "Or" 
function on their inputs is that, if a specific element is currently in the 1 state, at the 
next moment all the elements it regulates are forced to be in the I state. Thus the 1 
value is guaranteed to propagate iteratively from .iny initially active element in the 
net to all descendents. But the net has loops, and so the forced 1 value cycles around 
such a loop. Once the loop has filled up with 1 values at each element. it remains in 
a fixed state with 1 at each element and cannot be perturbed by outside influences of 
other inputs into the loop. Further. the "fixed" 1 values propagate to all descendants 
of the feedback loop, fixing them in the 1 value as well. Such circuits are calledfcJrcing 
loops and descendant forcing structures (Kauffman 1971, 1974a, 1974b. 1974c. 
1984a, 1986a; Fogelman-Soulie 1984, 1985a, 1985b; Hartman and Vichniac 1986). 
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Figure 5.9 Forcing structure among binary elements governed by the Boolean "Or" function. The 
forcing 1 value propagates down the structure and around the forcing loop. which eventually is frozen 
into the forced state with I values at all elements around the loop. The loop then radiates fixed forced 
I values downstream. 
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Note that the fixed behavior of such a part of the network provides walls of constancy. ) 
No signal can pass through elements once they are frozen in their forced values. 

The limitation to the "Or" function is made here only to make the picture clear. 
There are (22)2 = 16 Boolean functions of switches with K = 2 inputs. In Figure 
12.16, I show a network with a forcing structure in which a 1 state at some specific 
elements forces a descendant element to be in the 0 state, which in turn forces its 
descendant element to be in the 1 state. The defining feature of a forcing structure in 
a Boolean network is that, at each point, a single element has a single value which 
can force a descendant element to a specific value regardless of the activities of other 
inputs. Propagation of such forced values occurs via the forcing connections in the 
network. In order for a connection between two regulated elements to be classed as 
forcing, the second element must be governed by a canalyzing Boolean function and 
the first element, which is an input to the second, must directly or indirectly (that is, ~1.tl 
via K = 1 input connections) be governed by a canalyzing Boolean function. Finally, 
the value of the first element which can be forced must be the value of the first ele- A\-..· 
ment which forces the activity of the second element. Thus an "And"-governed ele-
ment does not force an "oli" -governed element. Clearly a network of elements gov- -ry f 0 
erned by the "Or" function does meet these requirements. More generally, forcing is 
a transitive relation such that if A forces Band B forces C, then A indirectly forces C 
via B. Forced values must propagate down a connected forcing structure. 

Formation oflarge forcing structures suffices to account for the order seen in large 
random K = 2 networks. The forcing structures form a large interconnected web of 
elements which percolates across the entire network (Kauffman 1971, 1984a, 1986a, 
1986c, 1986d; Fogleman-Soulie 1985a, 1985b; Hartman and Vichniac 1986). ThiS} 
web falls to a fixed state, each element frozen in its forced value, and leaves behind 
functionally isolated islands of elements which are not part of the forcing structure. . 

The occurrence of walls of constancy depends on the character of the switching 
network and in particular on the number of inputs to each variable-that is, on the 
connectivity of the dynamical system. Large, connected forcing structures percolate 
spontaneously in K = 2 networks because a high proportion of the 16 possible Bool- ') 
ean functions of K = 2 inputs are canalyzing functions. If two elements regulated by 
canalyzing Boolean functions are coupled, one as the input to the second, then the 
probability that the connection is a forcing connection is .5. This means that, in a 
large network with all elements regulated by canalyzing Boolean functions, on aver
age half of the connections are forcing connections. 

The expected size and structure of the resulting forcing structures are a mathe
matical problem in random-graph theory (Erdos and Renyi 1959, 1960; Harary 
1969; Kauffman 1974, 1983, 1986). A mathematical graph is a collection of points, 
called vertices, connected either by lines or by arrows. If the vertices are connected 
by unoriented lines, the system is an undirected graph. If the vertices are connected 
by directed arrows, the system is a directed graph. In a random graph, the lines or 
arrows connecting vertices are assigned in some random way. The fundamental 
questions of interest in graphs concern the connectivity properties among the verti
ces. In particular, ru:rco1ationthresholds occur in random graphs and determine 
when large, connected webs of elements will form. Below the threshold, such webs 
do not form; above the threshold, they do. The percolation threshold for extended ') 
forcing ~tructures in a random Boolean network requires that the ratio of forcing 
connectIOns to elements be 1.0 or greater (Kauffman 1971 b, 1983, 1986), as dis
cussed more fully in Chapter 12. Thus in large networks using elements regulated by 
canalyzing functions on two inputs, half of the 2N connections are forcing. There-
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fore, the ratio of forcing connections to elements, Nj N = I, is high enough for for-

l' mation of extended large forcing structures. More generally, both for K = 2 random 
networks and for networks with K> 2 restricted to canalyzing functions, such forc

. ing structures form and crystallize a frozen state which induces orderly dynamics in 
: the entire network. 

Because percolation of a frozen component also accounts for the emergence of 
order due to homogeneity clusters (discussed just below), I defer for a moment 
describing how the frozen component arising from either forcing structures or homo
geneity clusters induces orderly dynamics. 

Percolation of Homogeneity Clusters: P > Pc 

Random Boolean networks exhibit three regimes of behavior: chaotic, ordered, and 
complex. Passage from chaotic to ordered behavior is a phase transition driven by a 
variety of control parameters. One such parameter is the connectivity K of the ele
ments of the network. Low connectivity is a sufficient condition for orderly behavior 
in disordered switching systems, but other parameters can drive the transition from 
chaos to order. These parameters tune the biases on the class of Boolean switching 
rules utilized in the network. 

The new control parameter is P, mentioned above, which is a measure ofthe inter
llill homogeneity of a Boolean function. Consider a Boolean function of four input 
variables. Each input can be on or off, and hence the function must specify the 
response of the regulated switching element for each of the 24 com binations of val ues 
of the four inputs. Among the 16 responses, either I or 0 might occur equiprobably, 
or else one of them may occur far more often than the other. Let Pbe the fraction of 
the 2K positions in the function with either a I response or a 0 response, whichever 
is the larger fraction. Thus P ranges from .5 to 1.0. If P approaches 1.0, then most 
combinations of activities of the four variables lead to a I or a 0 response. The devi
ation of P above .5 measures the internal homogeneity of the Boolean function. 

In Figure 5.10, I show a two-dimensional lattice of points, each of which is an on
off variable and each of which is regulated by its four neighboring points. Each is 
assigned at random one of the possible Boolean functions on four inputs, subject to 
the constraint that the fraction of 1 values in that Boolean function is a specified per
centage P, P > .5. 

Derrida and Stauffer (l986a, 1986b), Weisbuch and Stauffer (1987), and 
de Arcangelis (1987), summarized in Stauffer (1987a, 1987b) and in Weisbuch 
(1989a), studied two- and three-dimensional lattices with nearest-neighbor coupling I and found that, if P is larger than a critical value Pc, then the dynamical behavior of 
the network breaks up into a connected frozen web of points fixed in the I value, and 
isolated islands of connected points which are free to oscillate from ° to 1 to 0 but 
are functionally cut offfrom other islands by the frozen web. In contrast, if Pis closer 
to.5 than to P" then such a percolating web of points fixed in I values does not form. 
Instead, small isolated islands of frozen elements form, and the remaining lattice is 
a single connected, percolating web of elements which oscillate between 1 and ° in 
complex temporal cycles. In this case, transiently altering the value of one point can 
propagate via neighboring points and influence the behavior of most ofthe oscillating 

I elements in the lattice. Thus the critical value Pc demarks a phase transition in the 
I behavior of such a dynamical system. 

The arguments for the percolation of a frozen component for P > Pc do not 
require that the favored value of each on-off variable in the lattice be 1. The argu-
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FigureS.tO Two-dimensional lattice of sites, each a binary state spin which may point up or down. 
Each variable is coupled to its four neighbors and is governed by a Boolean function on those four 
inputs. When P is increased, the bias in favor of a 1 or a 0 response by any single spin leads, above a 
critical value Pc, to percolation of a frozen component of spins which spans the lattice and leaves 
isolated islands of spins free to vary between 0 and 1. (From Weisbuch and Stauffer 1987) 

ments carry over perfectly if half the on-off variables respond with high probability, 
P > Pc, by assuming the 1 value and the other half respond with P > Pc with the 0 
value. In this generalized case, in the frozen web in the lattice, each frozen value is 
frozen in its more probable value. Thus for arbitrary Boolean lattices, P > Pc pro
vides a criterion which separates two drastically different behaviors: ordered versus 
chaotic. 

The value of P for which this percolation and freezing out occur depends on the 
kind oflattice and increases as the number of neighbors of each point in the lattice 
increases. On a square lattice for K = 4, Pc is. 72 (Stauffer 1987a, 1987b, 1989). On 
a cubic lattice, each point has six neighbors and Pc is closer to 1 than on square lat
tices. 

Let me call such percolating frozen components for P > Pc homogeneity clusters 
to distinguish them from extended forcing structures. I choose this name because 
freezing in this case depends on the internal homogeneity of the Boolean functions 
used in the network. That the two classes of objects are different in general is clear. 
In forcing structllL~S, the characteristic feature is that, at each point, a single value of 
an eIemel'l.fsuffices to force one or more descendent elements to their own forced 
values, HOmogeneity clusters are more general: Elements might each be held in a 
frozen state by the joint activity of several elements. Thus consider two pairs of ele
ments-A 1, A2, B 1, and B2. Elements A 1 and A2 might receive inputs from both 
Bl and B2 as well as from other elements, while Bl and B2 receive inputs from Al 
and A2 as well as from other elements. But, because of the high internal homogeneity 
of the Boolean functions assigned to each (P > PJ, simultaneous 1 values by both 
A 1 and A2 might jointly guarantee that both Bland B2 be active regardless of the 
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activities of other inputs to Bl and B2. At the same time, simultaneous 1 values by 
both Bl and B2 might jointly guarantee that both A 1 and A2 be active regardless of 
the activities of other inputs to A 1 and A2. Once the four elements are jointly active, 
they mutually guarantee their continued activity regardless of the behavior of other 
inputs to them. They form a frozen component. Yet this homogeneity cluster is not 
a forcing component, since the activity of two elements, either A 1 and A2 or B1 and 
B2, must be jointly ensured to guarantee the activity of any single element. 

While there appear to be certain differences between forcing structures and homo
geneity clusters, those differences are far less important than the fact that, at present, 
the two are the only established means of obtaining orderly dynamics in large, dis
ordered Boolean networks. 

Whether percolation of a frozen phase is due to an extended forcing structure or 
to a homogeneity cluster arising from P > Pc, there are two main implications. First, 
if a frozen phase does not form and a percolating unfrozen phase does form, 

• The attractors in such a system are very large and grow exponentially as the num
ber of points in the lattice N increases. Indeed, the attractors are so large that the 
system can be said to behave chaotically. 

• A minor alteration in the state of the lattice propagates alterations in behavior 
throughout the system. More precisely, consider two identical lattices which differ 
only in the value of one element at a moment T. Let the two lattices behave dynam
ically according to their identical Boolean rules. Define the damage caused by the 
initial alternation to be the total number of sites in the lattices which, at the succes
sion of time moments, are induced to be in different states, 1 or O. Then for P closer 
to .5 than to Pc, such damage propagates across the lattice with a finite speed, and a 
large fraction of the sites are damaged (Derrida and Stauffer 1986a, 1986b; Weisbuch 

/ and Stauffer 1987; Stanley, Stauffer, et al. 1987; Stauffer 1987a; Lam 1988). Propa-
/ gation of damage from a single site difference implies that dynamical behavior is 

( highly sensitive to small changes in initial conditions. Thus chaotic behavior in Bool-
I ean networks, like that in continuous dynamical systems, shows this typical talisman 
" of chaotic dynamics. 

• Consequently, many perturbations by single alterations drive the system to an 
entirely different attractor. 

• Damage by deletion of an element or alteration of its Boolean function tends 
strongly to alter many attractors. Thus such systems adapt on very rugged land
scapes. 

Second, if the ratio of forcing connections to elements is greater than 1.0 or if P is 
closer to 1.0 than to Pc 

• A large frozen component and percolating walls of constancy do form, leaving 
behind functionally isolated islands which cannot communicate with one another. 

• The result is that attractors are small, typically increasing as the number of nodes 
to some fractional power (Kauffman 1969, 1974, 1984a, 1986a, 1986c, 1986d; Stauf
fer 1987a; Weisbuch and Stauffer 1987; Kurten 1988a, 1988b). This means that the 
sizes of attractors increase less than linearly as the number of points in the lattice N 
increases. Such attractors are small indeed, for the entire state space is the 2N possible 
combinations of the on-off values in the lattice. An attractor comprising fewer than 
N states is tiny compared with 2N. Thus the existence of a frozen component-due 
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either to forcing structures or to homogeneity clusters for P > Pc-implies that such 
systems spontaneously box themselves into very small volumes of their space and 
exhibit high order. 

• Further, damage does not spread. Transient reversal of the state of an element 
propagates alterations in behavior only locally if at all (Kauffman 1969, 1974, 1986; 
Stauffer 1987). This means that attractors tend strongly to exhibit homeostatic return 
after perturbation. 
• For frozen components resulting from either forcing structures or homogeneity 
clusters, the system is typically not much altered by mutations deleting single ele
ments or altering their Boolean rules. Any element buried in the frozen component 
cannot propagate alterations to the remainder of the network. A mutated element 
within one functionally isolated island communicates only within that island. Dam
age does not spread. Thus such systems adapt on highly correlated landscapes. 

To summarize: The percolation ofa frozen component yields disordered Boolean 
systems which nevertheless exhibit order. They have small attractors precisely 
because a large fraction ofthe variables remain in fixed states. Furthermore, because 
there is this frozen component in the lattice, minor modifications of connections in 
a Boolean function, or substitution of one for another Boolean function at one point, 
or alterations in other parameters lead to only minor modifications of dynamical 
behavior. Thus such networks have attractors which adapt on highly correlated land
scapes. This is not surprising; the properties of the system which give it small attrac
tors and hence homeostasis tend to make it insensitive to small alterations in the 
parameters affecting anyone part of the system. Selection for one of these connected 
set of properties is selection for all. Self-organization for one, bootstraps for all. 

ADAPTATION IN DYNAMICAL SYSTEMS 

In this section we turn from a description of behavior in dynamical systems in general 
and of Boolean networks in particular to the fundamental topic of the capacities of 
such systems to adapt by mutation and selection. This is the stuff of evolution. 
Whether we consider genomic regulatory networks, morphologies, immune systems, 
or organ systems, gene mutations directly or indirectly affect the dynamical systems 
engendering organic forms. Selection acts on the resulting phenotypes. We must ask 
that which Darwin did not broach: What kinds of integrated dynamical systems har
bor the ability to adapt? I begin the section by introducing the ideas of Ross Ashby, 
who first examined the concept of adaptation as an adaptive walk in the parameter 
space of a dynamical system toward parameter values corresponding to a dynamical 
system with "good" attractors. I then examine the adaptive capacities of random 
Boolean networks. The two central points to note are ( 1) that the m ultipeaked rugged 
landscapes seen in Chapters 2 and 3 remerge here and constrain adaptive evolution 
and (2) that landscape structure varies from correlated to very uncorrelated as Bool
ean systems pass from ordered to chaotic behavior. These twin features suggest that 
evolution may control landscape structure in part by controlling location on the 
order-chaos axis. 

At the beginning of this chapter, I introduced continuous dynamical systems and 
their parameter spaces. In particular, I discussed a hypothetical chemical system con
taining ten chemical species. If we choose to think of an ensemble of dynamical sys-
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terns as the set associated with all the different values of the parameters ofthe system, 
then we have the notion of a system and its neighbors within a small volume of 
parameter space. Then we can construct the idea of an adapti ve walk through param
eter space, a walk undertaken in order to achieve a dynamical system having desired 
properties. For example, it might be of interest to find parameter values such that the 
underlying dynamical system had at least one attractor which kept a subset of the ten 
chemical variables within some prescribed concentration bounds. This is precisely 
Ashby's fundamental image for the basic idea of adaptation in a system which exhib
its coordinated, integrated behavior. 

Ashby's Design/or a Brain is delightful, elegant, and extremely clear and simple, 
reflecting very great care on the author's part. He sets himself the task of attempting 
to capture the central problem of adaptation in a system with many interacting parts. 
He is thinking of physiological and neural adaptation, not evolutionary adaptation. 
He conceives ofa system (an organism) and an environment which are mutually cou
pled. He supposes that the system-cum-environment, hereafter written System, is 
deterministic. If released from any initial state, the System will flow to an attractor 
and remain there. The critical idea is to suppose that a subset of the organism's inter
nal variables constitutes essential variables, which must be maintained within cer
tain bounds. For example, the critical variables might be physiological ones, such as 
blood glucose level or body temperature. For an autopilot-airplane-air System, the 
essential variables might be those characterizing straight and level flight. 

From the idea of essential variables in an organism which must be kept in bounds, 
it follows that the System, after reaching an attractor, either does or does not keep 

(
the essential variables within bounds. Ashby's next essential idea is simple: If. the Sys
tem on the attractor keeps the essential variables in bounds, change nothing. If the 
essential variables are not kept in bounds, however, then make ajump change in one 
ofthe parameters in the organism. Making this change may alter the state transitions 
in the System and hence alter the basins of attraction. Consequently, the state which 
the System was in prior to the jump change may now find itself in a newly formed 
basin of attraction, and the System may flow to a new or modified attractor which 
keeps the essential variables within bounds. If the new attractor is successful in box-' 
ing the essential variables, stop changing the parameters. Ifnot, make another jump 

f 
change, at random, in some other parameter. Keep making random changes in 
parameters until a parameter setting is found such that the System keeps the essential 

L variables in bounds. 
This is the core of Ashby's idea. It works. In effect, Ashby was able to build a crude 

autopilot, called a homeostat, which learned to hold an airplane in straight and level 
flight prior to crashing despite being wired at random to the controls. This capacity 
was termed ultrastability. At the time Ashby wrote, the concepts of bifurcation the
ory were not familiar. Consequently, he focused on jump changes in parameters to 
obtain changes in the attractor structure ofthe corresponding dynamical system. In 
terms of bifurcation theory, however, his paradigm consists in walks in parameter 
space. Smooth changes in attractors occur within any single bifurcation volume in 
parameter space; sharp changes in attractors occur when bifurcation surfaces are I crossed. Obviously, the ruggedness of fitness landscapes is governed in part by how 

. 
closely intertwined bifurcation surfaces are. If they are closely interwoven, land
scapes are very rugged. 

Not only did Ashby first introduce the idea of adaptation as a walk in parameter 
space seeking good attractors, but in his efforts to understand the conditions which 
would allow parallel-processing networks of elements to adapt, he also introduced 
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the idea of percolating walls of constancy. The percolating frozen components which 
arise in Boolean networks in the ordered regime are precisely the kind of walls of 
constancy Ashby envisioned. We see next that the presence or absence of such walls 
alters the structure of fitness landscapes from smooth to rugged. 

Selective Adaptation of Integrated Behavior 
in Boolean Networks 

Ashby's paradigm is central to adaptive evolution. In the context of Boolean net
works, the essential variables correspond to any subset of the N variables. Keeping 
those variables in bounds corresponds most simply to holding them fixed active or 
fixed inactive. In the limiting case where all the variables are essential, holding them 
in bounds corresponds to a./ixed steady state a/the network as a whole, at which each 
element is fixed in the proper active or inactive value. Thus the parallel to Ashby's 
idea applied to Boolean networks is to mutate the connections and logic of networks tl " .... 't ~.,-,t 
and tune their attractors until a good attractor with the desired steady state is found. (';I f • ,_: ' 

Let me be clear about the question I want to ask. Boolean networks exhibit a wide 
range of properties. Among these, the attractors commend themselves to our atten
tion. A central question therefore is whether an adaptive process which is constrained 
to altering the input connections between elements in a network and the logic gov
erning individual elements can hill climb to networks with ~~t!ractors. 

Notice that, as in protein space, we again confront a space 0/ systems.lfere the 
space is the space of Boolean NK networks. Each network is a one-mutant neighbor 
of all those networks which differ from it by alteration of a single connection or by 
alteration of a single Boolean function. More precisely, each network is a one-mutant 
neighbor of all those which alter the beginning or end of a single input connection or 
which alter a single bit in a single Boolean function. 

In considering protein space, I defined a fitness landscape as the distribution over 
the space of proteins of any specific measurable property of those proteins. This def
inition led us to examine the statistical features of fitness landscapes, including their 
correlation structure, the number oflocal optima, the lengths of walks to optima, and 
the number of accessible optima. Similarly, in considering adaptation in Boolean 
network space, any measurable property of such networks yields a fitness landscape 
over the space of networks. Again we can ask what the structure of such landscapes 
looks like. 

For our current purposes, I shall define the fitness of a Boolean network in terms 
of a steady target pattern .9f activity and inactivity among the N elements. This target 
is the (arbitraiY) goal of adaptation. Any network has a finite number of state cycle 
attractors. I shall define the fitness of any network by the match of the target pattern 
to the closest state on any ofthe net's state cycles. A perfect match yields a normalized 
fitness of 1.0. More generally, the fitness is the fraction of the N elements which 
match the target pattern. 

In Chapters 2 and 3, I introduced and discussed the NK family of rugged land
scapes. There we encountered a number of general properties of rugged landscapes, 
including a universal law for long-jump adaptation. The waiting time to find fitter 
variants doubles after each fitter variant is found; hence the mean number of 
improvement steps S grows as the logarithm base 2 of the number of generations. We 
derived a complexity catastrophe during adaptation via fitter one-mutant variants, 
which leads, on sufficiently rugged landscapes, to an inexorable decrease in the fitness 
of attainable optima as the complexity of the entities increases. We found that in the 
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long-jump limit, a similar complexity catastrophe applies to an even wider class of 
rugged landscapes. There the fitness attained after a fixed number of generations 
dwindles as complexity increases. Finally, we found that some landscapes-those in 
which the number of epistatic interactions K remained small-retained high optima 

I as N increases. These landscapes have good correlation structures. Together, these 
/VI CI .. \JJSxproperties identified limits to selection as complexity increases. In smooth land-

('\J scapes, fitness differentials between one-mutant neighbors dwindle below critical val-
,,-v'!~ ues and selection cannot overcome mutation. The mutation error catastrophe sets 
, in. In rugged landscapes, adaptive search is trapped in local regions and the com

plexity catastrophe sets in. 
Here we are dealing with adaptation in the coordinated dynamical behavior of 

Boolean networks. It is not obvious that the same generic features and limitations 
exist, but they do. 

Long-Jump Adaptation in K = 2 Networks Confirms the 
Universal Law 

Figures 5.11 a and 5.11 b show numerical results oflong-jump adaptation in Boolean 
networks with N = 100 binary elements, each receiving K = 2 inputs. The popula
tion consists in 20 networks, located "at" the current fittest network found in the 
adaptive search process. At each generation, each of20 networks mutated 25 percent 
of the bits in its N Boolean functions (Figure 5.11 a) or 50 percent of the connections 
(Figure 5.11b). The attractors of the grossly mutated nets were tested for their match 
against a predefined target pattern. If a fitter net was found, the entire population of 
20 hopped to that fitter net and searched via long-jump mutations from that new site 
in network space on the next generation. If no fitter net was found on that generation, 
the search repeated with 20 new long jumps from the current best-fit network. 

Figures 5.11 a and 5.11 b compare numerical simulation data with the expectation 
from Chapter 3 that the cumulative number of improved variants should increase as 
log2 of the number of generations. The agreement is extremely close. 

( The range of applicability of the universal law for long-jump adaptation, closely 
t( related to the theory of records (Feller 1971), is not yet clear but seems to be broad. 

I 

The Complexity Catastrophe Occurs 
in Long-Jump Adaptation 

The complexity catastrophe occurs not only in NKlandscapes but also in long-jump 
adaptation in Boolean networks. That is, as N increases, long-jump adaptation 
achieves substantially less-fit networks at any fixed generation. To test this, adapta
tion was carried out in the long-jump limit in which half the connections among 
binary variables in K = 2 input nets were mutated in all members of a population 
except one left at the current best network. As N increased from 20 to 100, the fitness 
achieved after 100 generations declined from .88 to .67. The difference is statistically 
significant. Thus as N increases, fitness after a fixed number of generations clearly is 
falling. In principle, it falls toward .5, the mean fitness of networks in the space. 

This result is of considerable interest. As in the NKlandscape family and the trav
eling salesman problem, the rate of finding improved variants in Boolean nets 
depends on the mutant search range and how well it matches the correlation struc
ture of the landscape. Often, search via fitter two-mutant variants is better than via 
one-mutant variants. In the limit oflongjumps on rugged landscapes, however, the 
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rate of improvement slows to the log2 law and the complexity catastrophe sets in. 
1\ Thus long-jump adaptation is a progressively worse adaptive strategy as the com

plexity of Boolean networks increases. 

Boolean Network Space Is Full of Local Optima Which Trap 
Adaptive Walks 

In assessing the NK family ofiandscapes, we found that rugged landscapes have many 
local optima, which trap adaptive walks. In the current case, we are asking whether 
Boolean networks can adapt via mutation and selection to have as a steady-state 
attractor, a specific pattern of activities among the Nbinary elements. Note first that 
no mathematical constraint foredooms such an effort. Any network in which each 
element which is to be active in the target pattern is active for all input patterns while 
each element which is inactive in the target pattern is inactive for all input patterns, 
fills the bill. The constantly active rule is the Tautology Boolean function; the con
stantly inactive rule is the Contradiction Boolean function. It follows that adaptation 
by alteration of single bits in Boolean functions can in principle achieve such a net
work. 

In Figure 5.l2a I show the results of adaptive walks via fitter one-, two-, and five
mutant variants of Boolean networks. The number of mutants refers to the number 
of bits altered in the net's Boolean functions. As before, a population of 20 nets is 
adapting from the best net found in the current generation. Figure 5.12b shows sim
ilar phenomena when one, two, or five connections in the networks are mutated. 
Note the following general features: 

1. Improvement is rapid at first and then slows and typically appears to stop. Walks 
have arrested on local optima. The fact that improvement slows shows that the 
fraction of fitter mutant neighbors dwindles as optima are approached. 

2. Walks always stop at local optima well below the global optimum. Trapping is rife 
in network space. This has a critical consequence: adaptive walks typically cannot 
achieve arbitrary patterns of activities on attractors! Adaptation via fitter variants 
in network space becomes grossly hindered by the rugged structure of the land
scape. Walks become frozen into small regions of the space. Any intuition we may 
have harbored that mutation and selection alone could tune attractors to arbitrary 
patterns of behavior appears to be wrong. Such problems are very complex com
binatorial optimization tasks, and selection confronts enormous problems mov
ing successfully in such spaces. These limitations appear to be very important. 
Earlier in this chapter I described a number of examples in which the attractors 
of parallel-processing networks are interpreted in biological contexts ranging 
from memories in neural networks to cell types in genetic networks. In general, 
learning or adaptation is imagined to occur by alteration of couplings among the 
network elements in order to achieve desired attractors. These results suggest that 
this mechanism may typically be either extremely difficult or impossible. If so, 
then either alternative means of searching rugged adaptive landscapes in network 
spaces must exist or adaptation and learning do not achieve arbitrary attractors. 

3. Adaptation via two- and five-mutant variants is more rapid and reaches higher 
optima than adaptation via fitter one-mutant variants. Thus the correlation struc
ture favors search at slightly longer distances. Figures 5.13a and 5.13b show adap
tive walks for K = 10 networks. Because cycles are long, we studied small net-
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Figure 5.12 Adaptation via fitter one-, two-, and five-mutant variants in K = 2 networks. Mutation 
alters the bits within the Boolean functions in the networks ofthe adapting population. N = number 
of genes per network; P = population size; F = number of mutations in Boolean functions. (b) Same 
as (a), except that one, two, and five of the network connections were mutated. N = network size; 
P = population size; C = number of mutations in connections. 

works. The same basic features of trapping on local optima were found as 
occurred in K = 2 networks. 

Networks for which K = 2 adapt on a more correlated landscape than do K = 10 
networks. Figure 5.14 compares the ruggedness of fitness landscapes in K = 2 and K 
= 10 networks. The salient feature is that, in K = 2 networks, the fitness of the one
mutant neighbors of the best network is nearly the same as the fitness of the best 
network. In other words, the landscape is highly correlated. This impression is con
firmed by looking at the two- and five-mutant variants. The spread in fitness 
increases only slightly. In contrast, for K = 10 networks, the spread in fitness is wider } 
and increases rapidly as one- to five-mutant variants are examined. Thus K = 10 I 
networks adapt on a very much more rugged landscape than do K = 2 networks. ~i 

Also, K = 2 networks exhibit the complexity catastrophe, but only slowly. In 
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Figure 5.13 (a) As in Figure 5.12a, except that here K = 10. (b) As in (a), except that here connec
tions rather than Boolean functions were mutated. 

Table 5.5 I examine the fitness of optima attained after 100 and 200 generations of 
adaptation in K = 2 networks having N = 20 and N = 100 elements. The important 
result is that, as N increases, fitness appears to reach a local optimum after 200 gen
erations. Nevertheless, fitness decreases as N increases. This means that, even though 
K = 2 networks adapt on well-correlated, good landscapes, they cannot avoid the 
complexity catastrophe. Presumably, as N increases the fitness attained will ulti
mately be hardly better than chance, .5. On the other hand, comparison with long
jump adaptation for the same class of K = 2 networks suggests that the rate of 
decrease of fitness as N increases is faster in the long-jump limit. Thus adaptation via 
near neighbors on the correlated K = 2 fitness landscape does not fall prey to the 
complexity catastrophe as rapidly as would occur were the landscape fully uncorre
lated. 

A general summary of our results is that the features of adaptive landscapes found 
for sequence spaces and in the NK family of landscapes extend to adaptation in the 
integrated dynamical behavior Of Boolean networks. It was not obvious that the same 
features would be found, for sequence space and landscapes over proteins might be 
very different from fitness landscapes over spaces of dynamical systems with respect 
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Figure 5.14 Fitnesses of one-, two-, and five-mutant variants of the fittest network found after adap-
tive hill climbing in (a) and (b) K = 2 networks and (c) and (d) K = 10 networks. F = mutations in 
Boolean function bits; C = mutations in connections. 
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TABLE 5.5 Mean Fitness in K = 2 Networks Attained 
After 100 and 200 Generations for Networks Containing 
N = 20 and N = 100 Elements 

N 

20 
100 

Mean fitness 

After 100 generations 

.90 

.78 

After 200 generations 

.91 

.79 

to their attractors. Nevertheless, similar features are found. Landscapes are rugged 
and multipeaked. Adaptive processes typically become trapped on such optima. The 
long-jump law obtains. Importantly, as the complexity ofthe entities under selection 
increases (here the number of binary switching variables in a disordered Boolean net
work), the attainable optima again fall toward the mean ofthe space. We do not know 
at this stage just how general this complexity catastrophe limiting the power of selec
tion when operating on complex systems may be, but it appears likely to be a pow
erful factor in evolution. Finally, Boolean networks in the ordered regime, K = 2, 
and in the chaotic regime, K = 10, clearly adapt on radically different landscapes. 
Ordered systems encounter relatively correlated landscapes; chaotic systems adapt 
on very rugged landscapes. 

Landscape structure governs both evolvability and sustained fitness. Having 
investigated the basic behavior of parallel-processing networks with respect to 
dynamical behavior and capacities to adapt, I turn next to ask whether there may be 
a characteristic "poised" state of parallel-processing networks-located in the 
ordered regime but near the edge of chaos-which may simultaneously optimize the 
complexity of tasks such a network can perform and also optimize the capacity of 
the network to evolve. 

Selective Adaptation Toward the Liquid Region 
at the Edge of Chaos 

All the results of this chapter indicate that a phase boundary separates networks that 
exhibit frozen, orderly dynamics from those that exhibit chaotic dynamics. The exis
tence of this boundary leads us to a very general and potentially very important 
hypothesis: Parallel-processing systems lying in this interface region between order 
and chaos may be those best able to adapt and evolve. Further, natural selection may 
be the force which pulls complex adaptive systems into this boundary region. If so, 
we begin to have a powerful tool with which to examine the collaborative interaction 

,. between self-organization and selection. 
The analysis of Boolean networks indicates that several control parameters under-

\ 
lie this transition. Boolean networks can be characterized by N, the number of binary 
variables; K, the number of inputs per variable; and P, one choice of a parameter 
which reflects biases in the choice of Boolean functions utilized in the network. Hold
ing N fixed, we showed that K is a control parameter. For K = 2, networks crystallize 
order with percolating frozen components, state cycles are short and few, damage 
does not propagate, and such systems adapt on highly correlated fitness landscapes. 
For K ~ 5, networks are clearly in the chaotic regime. No frozen component forms, 
attractor sizes scale exponentially in N, damage propagates, and such systems adapt 
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on highly un correlated landscapes. Thus in passing from K = 2 to K ~ 5, a transition 
from order to chaos is passed. Theoretical results due to Derrida and Pomeau (1986), 
described above, powerfully indicate that K = 3 networks with randomly chosen 
Boolean functions are already chaotic. 

The P parameter introduced by Derrida and his colleagues, denoting the internal 
homogeneity of Boolean functions, is also a control parameter, as we have seen. Tun
ing P from near 1.0 toward 0.5 causes a system to pass from a regime having ordered 
dynamics due to frozen components to the chaotic regime. Similarly, biases in Bool
ean functions with respect to the use of canalyzing Boolean functions allow networks 
to pass from ordered dynamics to chaotic dynamics as a result of percolation of forc
ing structures. Thus the fraction of functions which are canalyzing is also a control 
parameter. 

Other features, such as the structure of the wiring diagram among the Boolean 
variables (whether a regular lattice, random, or distributed in other ways), are also 
control parameters. With P constant, for example, systems pass from ordered to cha
otic if the number of inputs per variable increases. Undoubtedly, further control 
parameters will be discovered. 

While the zoo of control parameters awaits full disclosure, a critical fact remains: 
Boolean networks, among the most general class of massively parallel-processing sys
tems, exhibit three broad regimes of behavior. Systems may lie in the ordered regime 
with frozen components, in the chaotic regime with no frozen components, or in the 
boundary region between order and chaos where frozen components just melt. 

The existence of this phase transition suggests that the boundary region might be "
a particularly interesting region for useful behavior in complex parallel-processing' , 
networks. This suggestion has been made by myself (1985c), by Packard (1988), by 
Langton (1986, 1990), and most recently by Crutchfield (private communication). 
The central idea is that, if a network is deep in the frozen phase, then little compu
tation can occur within it. At best, each small unfrozen, isolated island engages in its 
own internal dynamics functionally uncoupled from the rest of the system by the 
frozen component. In the chaotic phase, dynamics is too disordered to be useful. 
Small changes at any point propagate damage to most other elements in the system. 
Coordination of ordered change is excessively difficult. At the boundary between 
order and chaos, the frozen regime is melting and the functionally isolated unfrozen 
islands are in tenuous shifting contact with one another. It seems plausible that the 
most complex, most integrated, and most evolvable behavior might occur in this i 

boundary region. It is not yet unambiguously clear that this hypothesis is correct. I ,I 

describe next supporting reasons and, more important, an approach now under way , 
to investigate whether complex adaptive systems attain the edge of chaos. The pre- I 
liminary results are encouraging. 

Langton (1986, 1990) has considered simplifications of Boolean networks
specifically, two-dimensional lattices in which each site has eight possible states 
0, 1, ... 7. Each site is assigned a function determining its next state as a function of 
the current states of its four neighbors and itself. The same rule is assigned to each 
site. Systems of this kind are called two-dimensional cellular automata (Wolfram 
1983, 1984). Langton characterized his cellular automata rules by a lambda param- (\ i?c·t::: .' 
eter which is the analogue of the internal homogeneity parameter for Boolean func-I c)" v+·I.tr~ 
tions. Lambda measures the fraction of the input states which result in a 0 output. ()' 1 
Specifically, A is 1 minus the fraction of 0 output values; hence A = 0 means that all 
output values are O. As A increases, the fractipn of 0 outputs, or internal homoge- :1', ,1 l.1 ,1/1 

neity, decreases.' ," ' , ," .'. t (1 /:1 "~v' 'j J "'" r,.:'ty- I Co 

Langton finds three main ranges of A. When A is near 0.0, large frozen compo-
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nents, all of whose sites have value 0, arise and percolate across the system. At a crit
ical value A = .28-apparentlythe same percolation threshold as that found by Stauf
fer (1985, 1987a, 1987b, 1989)-the frozen component melts. As A increases further, 
the dynamical behavior becomes ever more chaotic in the senses described above. In 
analogy with the solid, liquid, and gas phases of ordinary matter, Langton calls the 
low-A frozen state "solid." The critical value of A where the frozen component just 
melts corresponds to the "liquid" phase. As A increases further and behavior 
becomes massively chaotic, the system passes to the "gas" phase. The analogy with 
three phases should not be taken too literally, however. Matter exhibits a true liquid 
phase. The boundary between order and chaos does not appear to be a distinct phase. 

Langton analyzes the dynamics in his two-dimensional cellular automation with 
a familiar measure of mutual iriformation between two elements in a network. 
Mutual information is the entropy of site 1 plus the entropy of site 2 minus the 
entropy of the pair of sites jointly. Here the entropy of a site is the familiar 
Y:.7=I(Pi log2 Pi) for the frequencies (Pi) of each site's values 0 ... 7. The entropy of 
the pair of sites is over the sum over the 8 X 8 = 64 possible pairs of site values. 
According to this measure of mutual information, if the behavior of the two sites is 
uncorrelated, the mutual information is O. Conversely, if the behavior of each site is 
very simple, its own entropy is near 0 and hence mutual information is again near O. 
In the gas phase, behavior is so chaotic that mutual information decreases to O. 
Knowing what occurs at one site carries no information about what happens at the 
other site. In the solid phase, where lattice sites are largely frozen, the behavior of each 
site is so simple that its entropy is low; hence the mutual information between the 
two sites is also low. Intuitively, one learns little new about site 2 by knowing the state 

11\ of site 1. In the liquid interface, however, where the frozen component is just melting, 
mutual information is maximized. The behavior is complex but sufficiently ordered 

. that mutual information is propagated throughout large regions of the system by con-

[
fined cascades of damage. Thus information processing within a parallel-processing 
network is maximized at the edge of chaos. Such systems should be able to -carry out 

I the most complex computations. 
Packard (1988) has found evidence that adaptation for the capacity to carry out 

complex computations may result in adaptation to the edge of chaos. He selected on 
one-dimensional cellular automata, which like other Boolean networks, follow state 
trajectories to state cycles. Packard carried out adaptation by mutation and selection. 
Each member of the population was a specific cellular automation. Its mutant neigh
bors were those which altered single bits in the Boolean function governing all sites 

'1 in the automation. Thefitness of the automation was defined as the capacity to dis
criminate initial states with .5 of the sites or fewer in the 0 value from those with more 
than .5 of the sites in the 0 value. Discrimination was achieved by flowing from the 
initial state to a terminal attractor either of 0 values at all sites or of" 1 " values at all 

,~ yV\ p\e,j 
./ • I 

sites. At each generation, a population of cellular automata was evaluated for the 
fitness of each automation, and the best were kept together with mutants to seed the 
next generation. 

Packard found that selection to accomplish this computational task induced an 
adaptive walk in the space of Boolean rules toward rules which lie on the boundary 
of chaotic dynamics. He surmises that this may be a very general feature of complex 
parallel-processing systems which have adapted to perform complex computation. 

Crutchfield and Young (1990) have considered symbolic dynamics. Here the idea 
is to characterize the behavior of a continuous dynamical system by dividing its state 
space into arbitrary regions. For example, if the state space is broken into two regions 
labeled 1 and 0, then any continuous trajectory of the continuous dynamical system 
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results in a sequence of I and 0 symbols reflecting the way the trajectory passes 
through regions I and 0 over time. If one chooses the two regions with care, the 
sequences of I and 0 values carry maximum information about the underlying con
tinuous dynamical system. But then comes the pretty addition. Since one has char
acterized the continuous dynamics by a symbol sequence of I and 0 values, the con
tinuous system can be modeled by a binary Boolean network of some sort. 
Crutchfield and Young argue that this procedure allows one to define the optimal 
(minimal) binary model for the continuous process. Furthermore, they find the same 
three categories of behavior-solid, liquid, gas-we find in analyzing Boolean net
works. The most complex and interesting dynamics again corresponds to the liquid 
interface. In short, there may be a generalization from these three classes of behavior 
in binary and other finite state systems to continuous dynamical systems. In all cases, 
the most complex computations may occur in the liquid region. 

These ideas are attractive. Orderly dynamics is due to the percolation of a frozen 
phase containing functionally isolated islands. Conversely, the chaotic phase has no 
percolating frozen clusters. Deep in the frozen, orderly phase, each functionally iso
lated island can perform its own computations but is unable to communicate with 
other islands. Conversely, in the chaotic phase, orderly computation seems improb
able since any slight perturbation will cause damage to spread exponentially. At the 
margin, normally isolated islands might be in tenuous contact with one another. 
Thus it is more than plausible that adaptation for complex behaviors in parallel-pro
cessing networks requires that the networks be close to the boundary of chaotic 
behavior. 

How Networks Play Games 

I consider next how we can investigate more fully whether natural selection generi
cally seeks and attains systems at the edge of chaos in order to perform complex com
putations. There are four subissues: 

1. The ability of an optimal parallel-processing network to perform some task or 
computation is governed by the task. If the task is very simple, a simple system 
will suffice. If the task is more complex, a more complex network will be required. 
Thus we need a means of generating tasks of differing complexity which we can 
ask parallel-processing networks to carry out. 

2. For any given task, we must characterize the network properties-in particular, 
the position on the order-chaos axis that optimizes the capacity of the network 
to carry out the task. Thus for simple tasks, networks either deep in the ordered 
regime or deep in the chaotic regime might perform as well as those near the edge 
of chaos. For complex tasks, networks near the complex regime might be clearly 
superior to both solid and gas networks. If for most tasks networks near the liquid 
region are superior, we have broad grounds for claiming that such networks are 
in general the most useful class. 

3. We must assess whether natural selection can achieve and maintain networks 
which are those best able to carry out a given task. If this is also typically true, then 
we have grounds for believing that selection has achieved such systems in the bio
logical world. 

4. We must assess whether organisms are characterized by the putative optimal class 
of parallel-processing networks. 
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A coherent approach to this set of issues makes use of game theory to set a range 
of tunably complex tasks for networks to carry out. The.~pplication of game theory 
to coevolution, introduced into evolutionary theory by Maynard Smith and Price 
('1"973) and Maynard Smith (1974, 1982), is the central focus of the next chapter. 
Here I describe its outlines briefly. In game theory, each player has a set of possible 
actions which it might take. When two players playa game, the payoff of each player 
depends on its own action and upon that of its opponent. Thus the payoff of each 
player is given by a payoff matrix showing the results the player obtains for each com
bination of its own action and that of its opponent. Each player's objective is to max
imize its payoff. Players may play only once or repeatedly. The main point to empha
size here is that a payoff matrix often has a payoff landscape like those we have 
already encountered in considering adaptive evolution. The game-theory analogue 
of a fitness landscape arises if each player has a set of actions in which there is a notion 
of distance between actions, such that some actions are near a given action, while 
others are far from it. If there is a distance between each player's actions, then if one 
player plays a constant action, the second player confronts a payoff landscape as that 
player moves to nearby or distant actions. Further, by moving to a neighboring 
action, the first player deforms the structure of the second player's payoff landscape 
to some extent. Therefore, given the concept of neighboring actions, payoff matrices 
can be characterized both by how multipeaked and rugged they are for a fixed action 
by the opponent and by how much the landscape deforms for each neighboring move 
by the opponent. Clearly, these two features tune how difficult a task each player con
fronts. 

The next step asks Boolean networks to carry out increasingly complex tasks by 
playing increasingly complex games. I describe next work with my colleague Sonke 
Johnsen which has just begun and has not yet yielded conclusive results. We are ana
lyzing the adaptive behavior of a population of 20 Boolean networks which play 
defined games with one another. Each network begins with N = 20 binary variables. 
The first six are defined as match sites. Networks play games with one another by 
matching their six match sites and obtain a score which depends on both the current 
activity states, 1 or 0, of their own six match sites and the activity of the six match 
sites of the opponent. Thus each player has 26 = 64 actions, each action is one move 
away from six other actions which differ in the activity of a single match site, and the 
payoff matrix is 64 X 64. The concrete game we are currently analyzing is a mis
match game. Each player receives a score given by the fraction of its match sites 
which differ in activity from its opponent's match sites. Thus (000000) versus 

I) :\. '~;\\., (000111) yields a score of% for each player. The mismatch game generates a simple 
, \' ,~{ ~ '. t payoff matrix lan~scape, with peaks for maximum mismatch and payoffs which fall 
f ~), <"' J off smoothly as mlsmatches decrease . 
.%liM .. ./ t"'re: This game is subtle ifthere are more than two players. With two players, each can 

optimize payoff by settling to a fixed pattern exactly opposite that of its opponent. 
With many players, a trivial constant strategy yields to each player a score of about 
.5. Achieving higher payoff requires that each network sense what the other network 
is currently doing at its match sites, such that each can alter behavior to increase mis
matches. To enable sensing, we let each match site also be an "eye" which looks at 
the current activity of the corresponding match site in its opponent via an input from 
that match site. To sense and react to its opponent, each player must play each oppo
nent more than once. In our simulations, opponents play one another ten times in a 
row. Between each of the ten plays, each network takes ten state transitions to 
"think" about its next response. Each network plays all the other networks in the 
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population. The fitness of each network is given by its mean score after playing all 
the other networks. 

To study the adaptive behavior of game-playing Boolean networks, we utilize the ~ /A 
standard population genetics paradigm. At each generation, a new generation is cre- \ _ '1 
ated by biased sampling such that the chance of having an offspring is proportional 
to fitness. After a new generation of networks has been created, different classes of 
mutations occur with differing probabilities in each network. In order of frequency, 
the Boolean function governing a site may be altered bit by bit, thereby changing the 
logic of the network; an input to or output from a binary element to another element 
in the network may be altered, thereby changing the wiring diagram of the system; 
or a binary element may be entirely deleted from or added to the network. This gen-
eral flexibility allows networks to change the values of P, K, and N. In addition, subtle 
sculpting ofthe basins of attraction and attractors can occur. 

Our early results show that networks can and do solve the mismatch game by , 
adapting toward the ordered regime near the edge of chaos. How often this solution J 
is sought is still not clear. We have studied systems begun deep in the frozen regime 
(K = 1), deep in the chaotic regime (K = 7), and for K values crossing the boundary 
region into the chaotic regime (K = 1,2,3,4,5, 7). We have analyzed the typical 
changes in K, P, and N and in a measure of convergence in state space defined below. 

Several results appear reliable. Networks do improve their mean scores well above I,} 
chance, K changes toward the boundary region, P changes toward the boundary 
region, and N increases. 

The first observation is important. Boolean networks do adapt and partially solve 
the mismatch game. Mean scores typically increase from .5 to about .6 to .7, well 
above chance. Thus changes in structure and logic during adaptation are in fact abet
ting improvement. 

Systems deep in the frozen regime (K = 1) typically increase the mean number 
of inputs per element to values between K = 2 and K = 3. Systems deep in the cha- ~ 
otic regime (K = 7) typically decrease the mean number of inputs per element to at (l')qfi-
~K=4. 

Simulations show that, in networks begun in the chaotic regime, P increases 
toward the boundary values. Similarly, in networks begun with K = 1, P moves 
toward the boundary region. 

The increase in N is interesting, for it suggests that, typically, larger, more complex 
networks can solve the mismatch task better than smaller networks. 

Although these results suggest that networks are adapting toward the boundary 
region between order and chaos, these measures do not adequately characterize 
whether Boolean networks are in the solid, liquid, or gas regime. Two improved mea
sures concern 91ean convergence in state space and the 9QD)plexi1I of state transition 
behavior whiTe playinga game:Unly the first measure, described next, has begun to 
be employed. The second measure, based on Crutchfield's measure of the complexity tr, in, ~',(; _') . 
of a stream of 1 and 0 symbols in terms of the simplest finite automation which can J -, 
generate that sequence, might prove useful. 

In the chaotic regime, nearby states diverge from one another. In the ordered \ \ 
regime, nearby states converge. This suggests that we should measure average con
vergence in the state space of a Boolean network as a function of how far apart initial 
pairs of states are. The measure is analogous to the recurrence mapping in Derrida's 
annealed approximation, described above. The convergence measure is obtained by 
considering pairs of states which differ in one site value, in 10 percent of their site 
values, in 20 percent of their site vitl"tleS: and so forth. For each pair, the normalized 
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Hamming distance Dr between the pair is calculated, the successor to each state in 
the pair generated by the Boolean network is determined, and the normalized Ham
ming distance between the successor states Dr + I is determined. If the two initial states 
are on diverging trajectories, DT+l > D T. If the trajectories are converging, DT+l 
< D T• To obtain reliable statistics, 100 randomly chosen pairs of states at each initial 
distance were sampled. The recurrence mapping, with DT+ I plotted as a function of 
DT, is essentially identical to that derived by Derrida for the annealed model (Figure 
5.8). For K = 3 networks, the recurrence curve is above the 45° slope for small values 
of D T; hence DT+ I > DTand nearby states diverge. The system is chaotic. In contrast, 
for K = 2 networks, the recurrence relation is below the 45° line; hence states at all 
initial distances lie on trajectories which converge. The system is ordered. 

If adaptation in Boolean networks is associated with a resculpting of trajectories 
toward the ordered regime near the boundary of chaos, then we might expect to see 
initially chaotic networks alter their recurrence curve from above the 4SO line to 
below it. Visualization of changes in the recurrence relation is aided by a slightly 
altered graphing procedure, which plots, at each time moment during the adaptive 
process, for each initial normalized Hamming distance 1, 10 percent, 20 percent, ... 
80 percent, the ratio DT + dDT. If this ratio is greater than 1.0, states are on diverging 
trajectories; if the ratio is less than 1.0, states are on converging trajectories. 

Figure 5.15 shows results for populations of networks initiated in the ordered or 
in the chaotic regime playing the mismatch game. Each curve in each figure corre
sponds to a unique value of Dr. The topmost curve at the zeroth generation repre
sents the minimal, or one-neighbor, distance. Lower curves correspond to DT = 10, 
20, ... 80 percent. The results suggest that networks adapt toward the edge of chaos. 

These results are preliminary. They require extension to obtain more data both 
for Boolean networks playing the mismatch game and for Boolean networks playing 
a variety of other harder and easier games. The preliminary results support the 
hypothesis that adaptation seeks the edge of chaos. The avenue of investigation is 
obvious, and further supporting evidence has been found (Kauffman 1993). 

Solid, Liquid, and Gas: The Implications 
for Landscape Structure and Evolvability 

If there are grounds to suppose that parallel-processing networks near the boundary 
of chaos can perform the most complex computations, there are also beginning to 
emerge reasons to think that the fitness landscapes of such systems may optimize the 
capacity to evolve. The analysis of Chapters 2 and 3 demonstrates that the structure 

Figure 5.15 Results of evolution experiments in which 20 Boolean networks play the mismatch 
game against one another. All networks begin with N = 20 binary variables. Different populations 
begin with different numbers of inputs per variable: (a) K = I; (b) K = 5; (c) K = 7. The K = I 
networks begin deep in the ordered regime, K = 2 networks are near the boundary of order and 
chaos, and K ~ 3 networks begin in the chaotic regime. Figures plot a measure of convergence or 
divergence in state space DT + II DT against generations elapsed, for different initial distances DT. Top 
curve in each figure at generation 0 corresponds to DT = I site different; second curve from top at 
generation 0 corresponds to DT = 10 percent; third curve corresponds to DT = 20 percent, and so 
on. The value DT+IIDT = I is the boundary between divergence and convergence. As expected, 
states which are initially distant, DT > 50 percent, always converge in all networks, ordered or cha
otic. States which are initially close (top two curves) may diverge or may converge. Over adaptation 
time, initially chaotic systems become more ordered. Deeply ordered (K = I) and deeply chaotic 
(K = 5, K = 7) systems appear to approach the boundary between order and chaos. 
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of fitness landscapes depends critically on whether or not the adapting system is mod
ular. For example, in the NK landscape model, for K = 0, each site makes a fitness 
contribution which is independent of the contributions of all other sites. That is, the 
fitness contributions are made by independent modules. Consequently, the fitness 
landscape is very smooth and often single-peaked. Modular construction in parallel
processing Boolean networks can be attained in two very different ways. First, the 
network may be constructed of structurally independent modules. The K ;:; I"Bool
ean networks exemplify such construction. These networks fall apart into structur
ally isolated feedback loops, each with a descendant set of elements controlled by the 
loop. Each loop plus its tails is structurally independent of all other loops. Mutations 
altering one loop have no affect on the behaviors of other loops. Adaptation occurs 
on relatively smooth fitness landscapes. 

The second way to achieve modularity is radically different. It rests on the per
colation of a ·ffozen component, leaving behind functionally isolated islands unable 
to influence one another. Thus Boolean networks in the solid ordered regime are 
inherently functionally modular. Behavior within anyone island may be simple or 
chaotic, but such systems adapt on relatively smooth fitness landscapes. Mutations 
altering the behavior of one island in useful ways can accumulate without altering 
the behavior of other islands. 

In contrast, landscapes are very rugged in the chaotic regime. This ruggedness is 
a direct consequence of the fact that damage spreads widely in networks in the cha
otic regime. Almost any single mutation will dramatically alter landscape structure. 
But the transformation of landscape structure as networks pass from the ordered to 
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the chaotic regime again focuses attention on the boundary regime, where single 
mutations cause a wide variety of changes in dynamical behavior, from minor to 
major. This distribution parallels the power-law distribution of damage which 
spreads after transient alteration in the activity ofany single element for networks at 
the phase transition. Recall from Chapter 3 our discussion of NK landscape models 
with a hierarchy of K values. Alteration of sites which influence the fitness contri
butions of many sites leads to adaptation on very rugged landscapes. Alteration of 
sites which epistatically affect few sites results in adaptation on smooth landscapes. 
Recall that this hierarchy yields a deep buffering in the adapting system. If the land
scape deforms dramatically, highly entrenched sites affecting many other sites tend 
to alter. If landscapes deform only slightly, slightly entrenched sites preferentially 
change. But precisely the same features hold true for Boolean networks near the edge 
of chaos. Many mutations cause minor changes in behavior, and some cause massive 
changes. Although we have concentrated on adaptation on fixed fitness landscapes, 
we shall see in the next chapter that fixed landscapes are a fiction. Real landscapes ) 
deform as a result of coevolutionary effects and alterations in the abiotic world. Based 
on this reality, it is eminently plausible that Boolean networks in the ordered regime 
but near the boundary of chaos may harbor both the capacity to perform the most 
complex tasks and the capacity to evolve most adequately in a changing world. 

Are parallel-processing networks performing complex tasks poised at the edge of 
chaos? The answer is unknown. However, the simple overview summary of Chapter 
12, which discusses the emergence of ordered behavior in genomic regulatory sys
tems, is that genomic systems are in the solid phase, poised near the edge of chaos. If 
true, this is remarkable. First, it provides a kind of statistical mechanics of genomic 
regulatory systems and hence a theory for the structure, organization, behavior, and 
capacity to evolve in such systems. But in addition, if genomic systems of plants to 
animals, separated for the past 600 million years, are all poised near the edge of chaos, 
then we would virtually have to conclude that selection has achieved such a poised 
state. If true, this finding would provide striking evidence that parallel systems with 
nearly melted frozen components possess the construction requirements which per
mit complex systems to adapt. Hence such features might be quasi-universals in 
complex adaptive systems. 

Implications for Neural-Network Models 

The results we have discussed on the behavior of disordered Boolean networks may 
have an important bearing on neural networks: Attractors in neural networks will be r 
chaotic in the absence of some further ordering principle. Learning may be that prin- I 
ciple. 

Since McCulloch and Pitts (1943) introduced the "formal neuron" as an on-off 
idealization of real neurons, it has been clear that neural networks can be modeled 
as complex networks of binary switching elements. Neurons receive excitatory and 
inhibitory inputs from other neurons. McCulloch and Pitts realized that this mech
anism could be captured by utilizing a special subclass of Boolean functions called 
threshold functions. A formal neuron with many excitatory and inhibitory inputs 
fires at any moment if the sum of the excitatory activity from its active excitatory 
inputs minus the sum of the inhibitory activity from its active inhibitory inputs 
exceeds a threshold. The Boolean "Or" function is such a threshold function. If the 
synaptic weight on each of two inputs is 1.0 and the element has a threshold of .5, it 
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will fire if either or both inputs were active at the previous moment. If the threshold 
is 1.5, the element will be active only ifboth inputs were active and hence compute 
the "And" function. 

Current models of neural nets, which may use a sigmoidal output response from 
the neuron to the input activity level rather than an ruf-or-none output from the neu
ron (Hinton, Sejnowski, and Ackley 1984; Hinton and Sejnowski 1986; Hopfield 
and Tank 1986a, 1986b; Grossberg 1987), often seek to model pattern-recognition 
capacities and associative memories by these parallel-processing networks in terms 
of the attractors of such networks (Hopfield 1982a, 1982b; Toulouse, Dehaene, and 
Changeux 1986). For example, the attractors might be thought of either as memories 
held by the neural network or as concepts. Then such networks are naturally content
addressable. This phrase means that, if released in the basin of attraction of a specific 
memory or concept, the system will flow under the dynamics of the network to that 
attractor. Hence partially correct information, releasing the system in the correct 
basin of attraction but not yet at the attractor, can lead to recovery of the proper 
memory or concept. Note that a system with attractors naturally classifies and gen
eralizes. All initial states in the same basin converge to the same attractor and hence 

} 
are classified as identical. In order that this classification be "natural," however, it is 
reasonable to suppose that similar things are typically classified as the same. But this 
property is not an inevitable property of systems with attractors. In chaotic Boolean 
or neural networks, nearby initial states typically flow to entirely different attractors. 
There is no natural sense in which similar states are classified as similar in such net

r works. Thus the capacity to classify similar things together via flow to the same 
attractor requires that the state-space flow of the classifying dynamical system be 
quite ordered. Nearby states must typically flow to the same attractor. In short, sen
sible classification requires that the dynamical behavior of the network not be cha
otic. This requirement suggests that natural classification requires neural networks 
to be either in the solid phase of orderly dynamics or at the edge of chaos. But can 
this be expected? And if so, on what basis? 

The central problem raised by the results we have reported on disordered Boolean 
networks is that networks with a large number of inputs per element and randomly 
chosen Boolean functions tend overwhelmingly to have chaotic attractors. Thus it is 
important to ask whether the same chaotic behavior occurs in networks with ran
domly chosen threshold functions on many inputs. The answer is "yes." Consider 
binary networks with equally many excitatory and inhibitory inputs per element, 
and let each element have a threshold of 0.0. Numerical simulations show that the 
lengths of attractors increase exponentially as the number of model neurons 
increases (Kauffman 1984a; Kurten 1988a, 1988b). Based either on the theory of per
colating forcing structures or on the theory of homogeneity clusters, this is what we 
should expect. When the threshold value is near 0.0, the corresponding Boolean 
threshold functions have nearly equal numbers of 0 and 1 outputs on their 2K input 
patterns, and K is large. Therefore, a frozen component does not percolate. Con
versely, if the threshold is much higher or lower than 0.0, then the output of the neu
ron is biased sharply toward 0 or lover the set of input states, and one might expect 

, internal homogeneity clusters to percolate and thus create a frozen component. 
Results from Derrida (1987c) and Weisbuch (1989a) show that, in order for such a 
frozen component to percolate in networks in which the K inputs to each binary neu
ron are chosen randomly among the N neurons, the threshold must be greater than 
V Kin K when the synaptic weights are randomly chosen to be + 1 or - 1 for each 
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of the K inputs to each neuron. When the number of input neurons is large, this crit
ical threshold is a reasonably small fraction of K. Thus alteration of the threshold 
levels of elements in model neural network can convert a parallel-processing system _ 
with chaotic attractors to one with orderly attractors. \ 

Learning in neural-net models occurs by tuning of the synaptic weights which gov- ' 
ern how strongly one input neuron affects the postsynaptic neuron (Rummelhart and 
McClelland 1986). Insofar as it is imagined to achieve useful attractors, learning is a 
walk in synaptic weight space seeking good attractors. Presumably, such a walk 
would be extremely difficult for chaotic attractors. Some general mechanism must 
temper such chaos and corral it into order. 

Learning itself may be the fundamental mechanism which converts chaotic 1 
attractors to orderly ones. The postulated "Hebbian synapse" increases the synaptic J 

weight between pre- and postsynaptic neurons if they fire at closely correlated times. 
This alteration in synaptic weight increases the probability that the presynaptic neu
ronfires the postsynaptic neuron. Thus it increases P toward Pc and correspondingly \ 
increases the probability that homogeneity clusters will percolate. Indeed, Kurten 
(1988a, 1988b) has shown, both for this learning rule and for a variety of similar 
rules, that these alterations in synaptic weight convert networks from chaotic to 
ordered attractors. He analyzed model neural networks having three inputs per neu
ron and allowed the networks to tune synaptic weights as a function of their own 
spontaneous firing patterns. His results are clearly related to those of Weisbuch 
(1989a), for altering synaptic weights relative to a fixed threshold is related to holding 
weights fixed and altering the threshold. In either case, transition from a chaotic to 
an ordered regime occurs. Indeed, a difficulty with most versions ofthe Hebbian syn
apse is that the system tends to dig itself into a Hebbian hole deep in the solid regime. 
Attractors tend to become too deeply grooved into the system. This embedding may 
inhibit flexible learning by trapping the system too readily in suboptimal responses. 
It remains to be seen whether or not, under modified learning rules that couple anti- ))) 
Hebbian and Hebbian rules in order to suppress Hebbian holes, complex learning is 
better achieved near the edge of chaos. 

Another implication of our general analysis of networks and landscapes is impor
tant. Models of neural networks utilize the attractors of such networks as either inter
nal memories or categories. In the context of neural networks one seeks training pro
cedures such that a network may come to have the desired attractors. The attractors 
in turn, depend on the synaptic weights in the network. The problem is whether there 
are procedures tuning the synaptic weights, hence moving in synaptic weight space, 
which can move a neural network with an initial set of attractors to one with the 
desired attractors. With the exception of the Hopfield model (l982a, 1982b) where 
weights can be calculated beforehand to ensure the structure of a potential surface 
leading to desired point attractors, learning is thought to occur by some form of 
updating of synaptic weights to mold attractors to match more closely those which 
are desired. Back propagation, a procedure which corrects synaptic weights in differ
ent layers of a network by calculating backward from the difference between output 
and desired outp,u!.(Rummelhart and McClelland 1986) works well in feedforward 
layered network/tS'far more difficult in networks whose neurons are coupled in rich "T-/ / -) 
cyclic webs (Pineda 1987). 

Recall our results from a previous section attempting to mold state cycle attractors 
in Boolean networks by mutating connections and/or Boolean functions. The land
scapes are very rugged. We were unable to begin with an arbitrary network and hill 
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climb to a network with an arbitrary steady-state pattern of activities. That is, we 
were unable to hill climb to an arbitrary attractor. All the phenomena discovered for 
the NK family of rugged landscapes-trapping on local optima, freezing, the com
plexity catastrophe, and so forth-were found again. There is no reason to believe 
that the same problems will not typically amict the attempt to achieve arbitrary 
auraetors of binary neurons from initial neural networks by successive modification 
and hill climbing in synaptic weight space. 

Similar trapping problems evolving in synaptic weight space can be expected to 
arise in model neural networks which use continuous sigmoidal kinetics rather than 
binary elements. Rugged landscapes in synaptic weight space should exist. Rum
melhart (private communication) has pointed out a particularly interesting way in 
which learning in continuous neural networks is related to landscape ruggedness. 
Learning in such networks begins with all synaptic weights near zero. This level cor
responds to firing activity levels at the midpoint of the sigmoidal response curve, far 
from the upper or lower asymptote. By construction, the sigmoidal response function 
is nearly linear in this middle region. As learning begins, synaptic weights begin to 

: change slowly from zero and so move away from the midpoint of the response curve. 
In this linear region, however, a gradient search method minimizing the difference 
between the desired attractor and the actual attractor is solving a linear problem. The 
corresponding landscape in synaptic weight space has only a single peak with smooth 
sides, just as in the NK landscapes for K = O. In short, the landscape is very smooth 
for small synaptic weights, and hence the optimum is easily sought. As synaptic 
weights increase, the system is driven farther from the midpoints of the sigmoidal 
response functions into the nonlinear regions near the asymptotes, and landscapes 
become progressively more rugged. Trapping on suboptimal peaks occurs. The 
importance of Rummelhart's observation is that continuous sigmoidal systems may 
afford a means of exploring a relatively smooth landscape early in the adaptation 
process, thereby locating a good region of weight space. Thereafter, as synaptic 
weights diverge from 0, the landscape becomes increasimgly rugged and the system 
becomes trapped. 

A final feature of networks and adaptation on rugged landscapes may bear on 
characteristic learning curves in neural networks. The number of directions uphill 
dwindles in characteristic ways as local optima are approached. Iflearning in neural 
networks is a search process in synaptic weight space, then we might expect similar 
generic features to apply and have implications for the rate oflearning as a function 
of the number oflearning trials. We saw in Chapter 2 that, for a wide range of K 
values in the NKlandscape model, the resulting landscapes had the property that the 
number of ways uphill dwindled by a constant fraction after each step uphill. For 
example, on completely random landscapes, the number of directions uphill drops 
by half after each improvement step. In contrast, for very smooth landscapes-for 
example, the K = 0 additive landscape-the number of directions uphill dwindles 
by a constant number (here by one) at each adaptive step. Thus on reasonably rugged 
landscapes, the cumulative number of improvement steps taken increases-rapidly 
at first, then more gradually-as the logarithm of the number of trials. On smoother 
landscapes, the cumulative number ofimprovement steps increases even faster than 
this initially, then slows. 

Remarkably, many learning curves in psychology and even economics follow just 
such curves (Herrnstein, private communication; Newell and Rosenbloom 1981). 
Perhaps all these phenomena are near-universal consequences of the structure of 
complex combinatorial optimization landscapes. 
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Means of Tuning the Correlation Structure 
of Fitness Landscapes 

I conclude these considerations by summarizing a variety oemeans. of tuning the 
structure of fitness landscapes. 

We have already focused on 1},1odularity. Familiar examples include the domain 
structure of proteins, which allows new proteins to evolve by recombination between 
different structural genes, assembling new combinations offunctional domains. The 
same principle is found in the combinatorial building of antibody molecules, in 
operon behavior, in the construction of tissues from cellular modules, and perhaps 
in the metameric segemented character of many organisms, where each segment can 
be modified independently of the others. 

In richly coupled parallel-processing networks, such as Boolean or neural net
works in the ordered regime, functionally isolated, unfrozen islands resulting from 
percolating frozen components are a related secondfundamentainleans of achieving 
correlated fitness landscapes. Indeed, the isolated islands provide functional modu
larity. 

A third means lies in. structural stability, due to the general fact that, for most I 
':> 

familiar continuous dynamical systems, small changes in parameters typically , ,~--l,. 'I.: 
do not cause bifurcations but only small changes in the behavior of associated '\ _' 
dynamical systems. That is, most neighboring dynamical systems behave J 

similarly and hence exist in a correlated landscape (Thom 1972; Hirsh and Smale 
1974). 

A fourth means lies in the diversity of time scales operating in real complex sys
tems (Goodwin 1976). System variables which change on a very fast time scale 
exhibit only their averages to variables which operate on a slower time scale. An 
enzyme population "sees" the average concentration of its substrates; conversely, the 
current pattern of gene transcription making new enzymes may change so slowly on 
the time scale of a catalyzed reaction that those transcription rates are slowly altering 
parameters for the enzyme system. Thus, in general,,.iline scales break up a system 
into functionally independent subsystems having similar response times and damp 
out sma1tiluctumionsl"il faslervaria.bleS, while slower ones continue to change 
smoothly. 

A particularly important means of tuning landscape structure lies in how com
pressed a system's description of itself is. For example, consider an algorithm to gen
erate a particular computer output. One measure of the complexity of an algorithm 
is the minimal program length which yields the desired output. The more minimal 
an algorithm is, the less redundancy it contains. Consequently, minor modifications 
of minimal programs grossly alter the output of the algorithm. In contrast, minor 
alterations of highly redundant algorithms modify output only slightly. In short, 
compression of an algorithm increases the ruggedness of the landscape it adapts 
U"pon. The mllllmatprognnu..wm!ld adaptonllll!!!Y_r:.and_ofi1la!!CI:§~~e.lhe ana
logue of compression arises in parallel-processing networks. Consider specifying a 
subset of the variables as input and output variables, while the remainder are "hidden 
units," or internal control variables. In this context, compression lies in reducing the ,;; 
number of hidden units. As this number is reduced, the input-output mapping • 
adapts on a more rugged fitness landscape. I suspect that this form of compression, 
favored because it reduces redundancy and construction costs but increasingly harm-
ful as landscape ruggedness approaches a fully un correlated limit, plays a major role 
in evolution in tuning landscape structure and evolvability. 
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A Bold Hypothesis: Knower and Known, Life Adapts 
to the Edge of Chaos 

We have now seen that the transition region between order and chaos gives rise to 
the most complex dynamics. In addition, tentative evidence supports the hypothesis 
that parallel-processing systems coevolving to carry out complex tasks, such as the 
mismatch game, do in fact evolve both from the ordered regime and from the chaotic 
regime toward the edge of chaos. Thus we are led to a bold hypothesis: 

Living systems exist in the solid regime near the edge of chaos, and natural 
selection achieves and sustains such a poised state. 

Such a conjecture may well be overstrong, but the analysis in this chapter renders 
it more than slightly plausible. Boolean systems, and by extension some large family 
of homologous nonlinear dynamical systems, with nearly melted frozen components 
can carry out the most complex, yet controllable behavior. Such poised systems are 
also highly evolvable. They can adapt by accumulation of successive useful varia
tions precisely because damage does not propagate widely. Useful alterations in the 
behavior of one functionally isolated island can accumulate with useful alterations 
in another island. Furthermore, evolvability is high in networks near the order-chaos 
boundary because here many mutations cause minor changes and some mutations 
cause major changes. In a changing environment, this range of responses provides 
adaptive buffering: If the abiotic or coevolutionary world changes dramatically, large 
useful changes due to single mutations can be found rapidly; if the world changes 
only slightly, minor useful changes in behavior lie to hand. 

In contrast, systems deep in either the ordered regime or in the chaotic regime are 
probably neither capable of complex behavior nor highly evolvable. Deep in the 
ordered regime, islands are small and functionally isolated. Complex behavior can
not propagate across the system. Here, virtually all mutations cause only minor 
changes in behavior. While landscapes are smooth, achieving large alterations in 
behavior is cumbersome. Further, in the absence of a range of effects of single muta
tions, the system can respond to large deformations of its fitness landscape only with 
small changes in behavior. Adaptive buffering is not present. Deep in the chaotic 
regime, slight changes in structure almost always cause vast changes in behavior. 
Complex controllable behavior seems precluded. Such deeply chaotic systems must 
also adapt on very rugged landscapes. Thus it is plausible that systems in the solid 
regime near the edge of chaos possess the internal organization which permits, and 
may be required for, subtle and successful computation and adaptation. 

But it is also plausible that systems poised at the boundary of chaos have the 
proper structure to interact with and internally represent other entities of their envi
ronment. In other words, complex living systems must "know" their worlds. 
Whether we consider E. coli swimming upstream in a glucose gradient, a tree man
ufacturing a toxin against a herbivore insect, or a hawk diving to catch a chick, organ
isms sense, classify, and act upon their worlds. In a phrase, organisms have internal 
models of their worlds which compress information and allow action. An old philo
sophical skeptic puzzle due to Hume is "Why is the future like the past?" It is not an 
answer to Hume, but neither is it beside the point to notice that all organisms live in 
worlds which require practical action. Such action requires that the world be suffi
ciently stable that the organism is able to adapt to it. Were worlds chaotic on the time 
scale of practical action, organisms would be hard pressed to cope. But how do organ-
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isms know their worlds? Again, no adequate theory exists, but our examination of 
Boolean systems may provide part of the answer. 

Consider a system-neural, genetic, molecular, even logical-characterizable as 
a Boolean network. For any such system, its information about the other entities in 
its world and about other aspects of its environment can be thought of as connections 
from the other entities or the environment to the binary variables within the system. 
Then the system is driven through its own dynamical behavior in part by its internal 
states and in part by the barrage of data arriving from its world. What does it mean 
for such entities to know one another, and how might that knowing depend on 
whether the system is in the solid, liquid, or gas regime? My best guess is that systems 
in the solid regime near the boundary of chaos can best know one another. 

A central part of this problem considers the criteria for natural classification. The 
capacity to know a world requires that sufficiently similar states of that world be able 
to be classified as "the same." Consider E. coli and a receptor for glucose. Because of 
the way receptors bind ligands, a family of similar ligands is typically bound by any 
given receptor. All members of the set ofligands bound by the receptor are, roughly, 
classified as "the same." (I permit myselfthe word "classified" because we may imag
ine that the bacterium responds more or less identically to any ligand binding the 
receptor, be it glucose or some other molecule.) Of course, further molecular evolu
tion allows modification of the receptor and hence permits discriminating among 
ligands formerly classified as the same. 

But Boolean networks classify as well. As described earlier, the current enthusiasm 
for connectionism and for parallel-processing neural networks is precisely that any 
such systems almost inevitably classifies. Any such network has internal dynamics 
whose attractors represent alternative asymptotic states of the network. The alter
native attractors in a fixed environment from which the network receives inputs can 
be thought of as alternative classifications of the same environment. Similarly, alter
native environments which map to the same attractor can be seen as classifications 
of those different environments as "the same" by the network. Thus such networks 
inevitably classify and have internal models of their worlds. 

Nevertheless, the classes formed by arbitrary Boolean networks are not necessarily 
natural, useful, or evolvable. The sensible image underlying connectionism is that 
similar states of the world are classified as the same. Yet just that property is absent 
in networks whose behavior is chaotic. In such networks, arbitrarily nearby points in 
state space map to arbitrarily different attractors. Attractors cannot readily be para
digmatic cases of a class of similar objects. Nor can such classes be achieved readily 
by altering the structure and dynamics of a network in the chaotic regime. Con
versely, just this property is present in networks in the solid regime. Indeed, three 
important properties are present in solid-regime networks. First, similar states typi
cally flow to the same attractor and hence are classified as the same. Second, minor 
alterations in network structure and logic can cause nearby states which formerly 
flowed to the same attractor to flow to two different attractors; hence discrimination 
can be achieved. Third, states along trajectories flowing to the same attractor con
verge on one another. Organisms undoubtedly know and respond to their worlds not 
only by reaching attractors and then responding, but also by responding while on 
transients. Yet the same issues of control arise. In chaotic systems, nearby initial 
states diverge from one another even before reaching attractors. Minor alterations in 
initial conditions inevitably imply drastic change in response. Conversely, for 
ordered systems, nearby initial states converge along transients. Similar conditions 
elicit similar responses. 
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These points are obvious. They suggest that organisms and other entities which 
interact with their worlds are likely to couple to those worlds in such a way that 
smooth classification occurs, and the world is seen as relatively stable. Then the 
"knower" should not be chaotic, nor should its classification, the "known," be. It is 
a reasonable guess that both the knowing system and the known world are in the solid 
regime, perhaps near the edge of chaos. 

The bold hypothesis will undoubtedly prove oversimple. Yet it does point in a 
direction. We may ultimately form a theory of evolving entities which optimize how 
they know their worlds by adapting under the aegis of natural selection to the edge 
of chaos. Strikingly, we see in the next chapter that coevolving entities may also 
achieve the edge of chaos. 

SUMMARY 

This chapter's overarching purpose is to seek the .£Q!1S1ructionreQuirements which 
permit adaQtation in complex systems. Our broad question is whether there may be, 

In such complex systems, nearly universal principles of construction. If so, we might 
suppose that selection achieves such systems. 

In pursuing this broad objective, we have introduced the concepts of dynamical 
systems theory, state spaces, trajectories, simple and complex attractors, parameter 
spaces, and structural stability. Most biological systems confront us with vast num
bers of connected elements. Typically we are ignorant of the details of structure and 
"logic" by which the elements of such systems are coupled. And in the evolution of 
genomic regulatory networks, molecular adaptation during immune responses, or 
learning in neural networks, the very structure and logic of the system are being mod
ified, indeed scrambled, due to either mutations or their analogues. To study the 
behavior and evolution ofthese systems, we need a new kind of statistical mechanics, 
one which defines ensembles of dynamical systems and seeks generic behaviors in 
distinct ensembles. The generic properties then become the macroscopic observables 
expected from the theory. 

It is just such a new statistical mechanics we have broached. I have done so in 
terms of defined ensembles of random Boolean networks. These are massively par
allel-processing systems linking the activities of thousands or millions of variables. 
Boolean networks exhibit three regimes: ordered, complex, and chaotic. The ordered 
regime arises because a largefiiCtion of the elements fall to fixed active or inactive 
states. These fixed elements form a connected, percolating,frozen component which 
spans the system. The frozen component leaves behind functionally isolated islands 
of unfrozen elements, free to fluctuate in activities in complex ways. In the chaotic 
regime, the unfrozen elements form a connected component which percolates across 
the system, leaving isolated frozen islands. The border between order and chaos
the complex regime-is a phase transition when the frozen component is just per
colating and the unfrozen region is just breaking into islands. 

,. In the chaotic regime, attractors are very large and scale as an exponential func
tion of the number of binary variables in the system. Transient alterations in the 
activity of any single variable unleash a cascade of alterations which propagate to 
many or most other elements in the network. Thus such systems exhibit sensitivity 
to initial conditions. 

I In the ordered regime, attractors are small, boxing behavior into localized regions 
\ of state space. Further, because the frozen component percolates across the system, 
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transient or structural alterations in the network do not cause cascades of damage to 
propagate throughout the system. Systems in the ordered regime therefore adapt on i 
correlated fitness landscapes. In short, such systems literally crystallize order. We I 

have found that tuning such simple construction parameters as the mean number of 
elements which act as inputs to each variable suffices to drive massive dynamical sys
tems into the ordered regime. Random NK Boolean networks with K = 2 inputs to I 
each of 100 000 binary elements yield systems which typically localize behavior to 
attractors with about 317 states among the 2100 000 possible alternative states of activ-l 
ity. Whatever else you may mark to note and remember in this book, note and 
remember that our intuitions about the requirements for order in very complex sys
tems have been wrong. Vast order abounds for selection's further use. 

Having marked to note that complex systems exhibit spontaneous order, mark a 
second, bold and fundamental possibility: Adaptive evolution achieves the kind of \ 
complex systems which are able to adapt. The lawful property of such systems may 
well be that they abide on the edge of chaos. This possibility appears to me to be , 
terribly important. The thought that selection achieves systems able to adapt leads! 
ultimately to the question of whether there may be attractors ofthat selective dynam- ' 
ics. If it is the case that systems poised between order and chaos are indeed the natural I 

culmination of selective evolution, we shall have found deep laws indeed. But cau- i 

tion obviously is required about so large an issue. We do not yet know the range of 
tasks for which systems in the complex regime are the optimal solution. Nor most, 
important, do we know with conviction what biological systems, if any, abide at the I 

edge of chaos. Adaptation to the edge of chaos may ultimately become a general prin
ciple in biology. At present, it must be held as a working hypothesis. 





CHAPTER 6 

The Dynamics of Coevolving 
Systems 

The true and stunning success of biology reflects the fact that organisms do not 
merely evolve, they coevolve both with other organisms and with a changing abiotic 
environment. If in the preceding chapter we began to explore the requirements for 
order and the capacity to evolve in parallel-processing networks, in the present chap
ter we must take up the very deep issues of how organisms ~oevolye with one another. 
It is not at all obvious that such a process should often permit its participants event 
the most rudimentary success. Thus we seek overarching principles which may per
mit and govern the emergence of entities capable of coevolving with one another. 
Since, we may suppose, selection is critical in this emergence, we must seek to under
stand the ways in which selection attains systems able to coevolve. 

In the preceding chapter we found evidence that parallel-processing, nonlinear, 
dynamical systems-in particular, Boolean networks-crystallize order. Notably, 
we found evidence that a phase transition occurs between frozen "solid" and chaotic 
"gas" behaviors. Between these two extremes lies a "liquid" region with nearly 
melted frozen components, poised at the edge of chaos. Such systems appear able to 
carry out the most complex computations and yet may harbor sufficiently ordered 
fitness landscapes that the systems are able to evolve well. Quite strikingly, we shall 
uncover evidence that natural selection, in a selective metadynamics, may drive 
coevolutionary systems to a liquid state poised on the edge of chaos. At present, it is 
an attractive hypothesis that complex coevolving systems ultimately tend to a state 
in which each system internally is poised at the edge of chaos and that all such systems 
may coevolve to the edge of chaos as an "ecosystem." 

We can make a rough distinction between evolving complex systems and 
coevolving complex systems. In the former, the components of the system do not 
replicate, and hence selection cannot act directly on them. Instead, selection acts 
only on the system as a whole. In the latter, the components of the system replicate, 
and so selection may act on the level ofthe parts of the system as well as on the system 
as a whole. 

The simplest example of coevolution may be the hypercycle model for the origin 
oflife, which we address in detail in Chapter 9. In th~el,putative template rep-
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licating RNA molecules are coupled cyclically such that each molecule helps its 
neighbor around the cycle to replicate better. The system is symbiotic. Selection may 
act on individual template-replicating RNA sequences or at a higher level: on the 
cyclically coupled system as a whole. Multicellular organisms also exhibit coevolu
tionary processes, for the cells of the organism must mesh their behaviors for the good 
of the whole organism. As in the hypercycle model, multicellular organisms exem
plify the fact that selection works at many levels. When the initial multicellular 
organisms formed, individual cells, which might have had eternal futures on their 
own, gave up the propensity for direct cellular descendants in order to take part in 
the body, or soma, of the organism. Only the gametes pass their genes to the future. 
Buss (1988) in particular has argued that the emergence of individual multicellular 
organisms having distinct cell lineages giving rise to soma and to gametes was a 
major step in evolution. The most familiar examples of coevolutionary processes 
occur in ecosystems. Flowers and insects have coevolved. The flower evolves to 
attract the insect, which acts to pollinate; the insect evolves to harvest food from 
the flower. 

There is a fundamental difference between simple adaptive evolution and coevo
lution. Evolution on a fixed fitness landscape, as discussed in Chapters 2 to 5, is sim
ilar to the behavior of a physical system on a well-defined potential energy landscape. 
In both cases, the attractors of the "adaptive" process are local optima which are sin
gle points. In a coevolutionary process, however, the adaptive landscape of one actor 
heaves and deforms as the other actors make their own adaptive moves. Such 
coevolving systems may not in general have a potential function. Thus coevolving 
behavior is in no way limited to attaining point attractors which are local optima, 
nor is it even clear that coevolving systems must be optimizing anything whatsoever. 
This mathematical issue parallels long-standing debates in evolutionary theory about 
what, if anything, evolution is optimizing. 

The topic of coevolution is far too large for this book. In the present chapter I 
summarize some current views of coadaptation at the ecological level. In particular, 
I describe the game theoretic framework introduced into evolutionary theory by 
Maynard Smith? 19821 I then explore what the NK landscape model implies about 
the success of such coevolutionary processes. This analysis is carried out by thinking 
of coevolution as a process which couples the NK landscapes of different "species" 
such that adaptive moves by one species deform the landscapes of its partners. We 
seek conditions on landscape structure and coupling such that coevolution can lead 
to improvements rather than to chaotic fluctuations in fitness as landscapes twitch 
spasmodically. Discovering such conditions will lead us to identify possible selective 
processes which tune the structure of a coevolving system such that its members typ
ically are able to adapt successfully. I shall also extend these results to preliminary 
work applying the NK model to ecosystems which exhibit an analogue of the frozen 
components seen in Boolean networks: Some coevolving species may exhibit stasis, 
while their partners continue to change. Finally, our results will hint at the possibility 
that selective tuning of landscape structures and the couplings between landscapes 
underlying coevolution may achieve a kind of poised state which optimizes sustained 
fitness of the partners and is characterized by nearly melted frozen components. 
Instabilities causing local breakdown of the frozen components of ecosystems may 
underlie bursts of speciation and extinction events which propagate through the sys
tem to various extents. The size distribution of these avalanches of change may also 
account for the size distribution of extinction events in the fossil record. 
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In this chapter we consider coevolution cast in the framework of game theory. This 
framework was introduced by Maynard Smith and Price (1973) and Maynard Smith 
(1974, 1982). The core image of such a coevolutionary process envisions a set of play
ers, which might be members of a single species coevolving with other members of 
the same species. In addition, the game theoretic framework also extends to inter
specific coevolution, where the players are members of different species in an eco
system. Each encounter between each pair of phenotypes results in a payoff to each 
of the players. The payoff is interpreted in terms of Darwinian fitness. The process is 
governed by a payoff matrix showing, for each phenotype of each player, its fitness 
in an encounter with each of the other possible phenotypes. 

An oversimple model of coevolution, developed in discussion with economist 
John Miller, will help introduce the central ideas of game theory. The model consists 
in a slight reinterpretation of the NK landscape model introduced in Chapter 2. 
Recall that the NK model consists of N sites, each with A alternative states, or alleles. 
Each site receives epistatic inputs from K other sites chosen among the N. The fitness 
contribution of each site for each of the AK + I combinations of alleles of itself and the 
K other sites is assigned at random from the uniform interval between 0.0 and 1.0. 
Thus given any genotype for the N sites, the fitness contribution of each site in the 
context of its K inputs can be calculated. The fitness of the entire genotype is the 
mean of the fitness contributions of its N sites. 

In our simplified version of a coevolutionary game, let each site now be inter
preted as an independent "agent." Let each of the N agents be coupled, exactly as in 
the NK landscape model, to K other agents. Let each have two possible actions: 1 or 
O. As in the NKlandscape model and the discussion just above, assign a random pay
off between 0.0 and 1.0 to each of the 2K + I combinations of actions of the K + 1 
agents whose action, 1 or 0 bears on a given agent's payoff. The payoff shows how 
well the agent does with that specific action when played in the context of the 0 or 1 
actions of the K agents who affect it. 

To complete a simple NK coevolutionary game, let each agent at each moment 
assess the current action of itself and its K inputs, assess its payoff matrix, and change 
to whichever action maximizes its payoff under the assumption that the K other 
agents do not change action. This is an extreme myopic strategy. From the evolu
tionary perspective, it amounts to an adaptive step to a currently fitter phenotype in 
the context of the phenotypes of the other species in the ecosystem under the assump
tion that the other species are not changing. From a game theoretic perspective, it is 
an action exhibiting no foresight with respect to possible moves by other agents. 

Note that an action by one player to improve its own fitness may simultaneously 
lower the fitness of the players with which it is coupled. Successive moves by the play
ers, each attempting to improve its own fitness, may drive the coupled system to ever
lower fitness. In other words, the overall process need not proceed uphill. Thus such 
a coevolutionary process is not occurring on a potential surface. 

Under these assumptions, an NK Boolean game (Boolean because each agent has 
only two actions) is exactly equivalent to a random NK Boolean network, as 
described in Chapter 5. The equivalence can be seen trivially. Let the K connections 
among the N agents be set, say at random. The payoff matrix for each agent for each 
of the 2K + 1 combinations of actions of itself and the K agents which bear on it is ran-
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domly assigned a value between, say, 0.0 and 1.0. Thus for each fixed combination 
of actions of the K other agents, the preferred myopic action which the agent should 
take to maximize its payoff is, as randomly specified by the payoff matrix, either 0 or 
I. Since this is true for all combinations of actions of the other K agents, the NK 
Boolean game, played myopically, specifies at random a given Boolean function for 
each agent with respect to its K inputs. At each step of the game, each agent acts to 
maximize its payoff while assuming the other agents do not change. All agents act 
simultaneously at each clocked moment. Players are restricted to pure strategies; that 
is, for each combination of actions of the K agents bearing on it, any agent must play 
either a I or a 0 with probability 1.0. (In contrast, games with mixed strategies allow 
a player to play 0 with probabiliy P and I with probability I - P.) Over time, the 
trajectory of this myopic coevolutionary process describes a flow through the state 
space, or strategy space, of the N agents. In this limit of pure strategies, the dynamics 
ofthe myopic coevolutionary game is identical to that of a random Boolean network. 

With the restriction to pure strategies, this identification between an NKBoolean 
game and a random NK Boolean network helps yield intuition about such a simple 
coevolutionary process. Suppose the NKBoolean game has a fixed steady state where 
all agents do not change over time-in other words, a steady-state attractor. Then, 
the action of each agent currently maximizes that agent's payoff under the assump
tion that no other agent deviates from its current action. Thus a steady state in the 
game corresponds to a pure-strategy Nash equilibrium (Nash 1951). A Nash equilib
rium is a combination of actions by a set of agents such that, for each agent, granted 
that the other agents do not alter their own actions, its action is optimal. As we see 
shortly, Maynard Smith (l982) extended the idea of pure or mixed Nash equilibria 
to an evolutionary stable strategy, or ESS. 

Analysis for NK Boolean networks with K = 2, or for larger numbers of input, for 
the canalyzing ensemble or for those with high internal homogeneity shows that such 
networks typically form a frozen component. This frozen component is percolating, 
partial pure-strategy Nash equilibrium in the NKBoolean game interpretation of NK 
Boolean networks. A percolating cluster of agents is at a local mutual optimum and 
is myopically frozen into that state, even though other agents continue to oscillate 
through their own myopic actions. This frozen component is a first hint of the pos
sibility that in an ecosystem some species may be frozen, while others continue to 
evolve. I return to this possibility below, for we shall find the same phenomenon with 
more complex models of coevolution. 

In contrast to Boolean games having a frozen component, analysis of NKBoolean 
networks shows that, for N large and K > 2 and with no other constraints on the 
Boolean functions, such networks generically have no steady-state attractors. Thus 
with very high probability, NK Boolean games with K > 2 couplings among agents 
have no pure-strategy Nash equilibria. If the agents are limited to pure strategies, the 
coevolving system will oscillate. Such oscillations are similar to the children's game 
of "rock, paper, and scissors," in which players select one of the three actions and 
then rock breaks scissors, scissors cuts paper, and paper covers rock in a cycle with 
no stable pure equilibrium. 

For readers not familar with game theory, and hence with its implications in 
coevolution, it is important to stress that a Nash equilibrium is merely a local com
bination of actions or strategies such that each agent is locally happier as long as other 
agents do not deviate from their own fixed strategy. But there is no general claim that 
such an equilibrium is particularly good for the players caught in its local sway, either 
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Figure 6.1 Payoff matrix for the prisoner's dilemma (1 = collaborate, 0 = defect). Left number in 
each cell is row player's payoff; right number is column player's payoff. 

relative to the set of possible alternative equilibria or, more dramatically, relative to 
possible chaotic flow in the space of actions. That is, it is easy to construct cases in 
which the Nash equilibria are, for all players, oflower fitness than alternative behav
iors. A simple example is the "prisoner's dilemma" (Axelrod 1984, 1987; J. H. Miller 
1988), whose payoff matrix is shown in Figure 6.1. Here 1 means "collaborate," 0 
means "defect" for each of two prisoners, and the payoff matrix shows the malicious 
consequences. Ifboth players collaborate, each is paid 3. If one collaborates and the 
other defects, the defector is paid 5 while the collaborator is paid O. If both defect, 
both receive 1. The only Nash equilibrium is when both players defect. This equilib
rium is stable, since either player is better off defecting rather than collaborating, 
given that the other player is defecting. But clearly the best choice, both collaborate, 
is not an equilibrium because it pays either player to defect assuming the remaining 
player continues to collaborate. The prisoner's dilemma has been subjected to con
siderable analysis to determine the conditions under which collaboration can emerge 
(Axelrod 1984, 1987; J. H. Miller 1988). 

In short, it is a general and interesting question to study the conditions under 
which Nash equilibria are both better than most alternative actions and attainable. I 
return to this question below in analyzing coevolution in terms of coupled NK land
scapes. 

Order in Boolean Networks Predicts Order 
in NK Landscapes 

Let me return for a moment to the puzzle seen in Chapter 2, where for the NK land
scape model with K = 2 we found that the highest optima were nearest one another. 
We have just seen that, for A = 2 actions, NK models are equivalent to random NK 
Boolean networks. For K = 2 Boolean networks, the percolating frozen component 
reflects a set of mutually nonfrustrated agents in the network. Each agent is myopi
cally maximizing its payoff in a way which is held in place by the other agents in the 
percolating web. This same frozen component implies that, in the NKlandscape with 
K = 2, the high optima will share an equivalent frozen component. The high optima 
will therefore be identical to one another with respect to that component and hence 
near one another. Thus the emergent order seen in random Boolean networks plays 
back upon the order seen in NK landscapes. 
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COEVOLUTION IN ECOSYSTEMS 

Consider an ecosystem. Each kind of organism has, as parts of its environment, other 
organisms of the same kind and of different kinds. As is now clear, adaptation by one 
kind of organism alters both the fitness and the fitness landscape of the other organ
isms. Two alternative pictures have emerged. In the first, coevolution is viewed as 
resulting in an unceasing evolutionary process in which all species continue to 
change. Both the fox and hare must run faster and faster in order to maintain the 
same relative fitness. This model has variously been called the Rat Race (Rosenzweig 
1973) and the Red Queen Hypothesis (Van Valen 1973). The alternative class of 
models has led to the idea of evolutionary stable strategies (ESS) (Maynard Smith 
and Price 1973), in which the phenotypes of the coevolving species stop changing at 
a balance which is stable in the sense that any other mixture of phenotypes attempted 
by any species in the system would be less fit. That is, an ESS is a stable, optimum 
mixture of phenotypes for the coevolving species and has the property that it is not 
invadable by any other mixture of phenotypes. 

There has been considerable effort among evolutionary ecologists to distinguish 
the conditions under which the Red Queen behavior obtains from the conditions 
under which settling down to an ESS occurs. For example, Rosenzweig, Brown, and 
Vincent (1987) suggest a broader formulation of adaptive evolutionary games in 
which one considers standard kinds of ecological models, such as predator-prey 
interaction systems, where predators encounter prey at some frequency, eat them, 
and convert them to more predators, while prey run from predators and produce 
more prey when unmolested. To these familiar models, these authors add the idea 
the each species can adapt-for example, by running faster-and include the critical 
idea that, in such adaptive processes, constraints within the organism exist. Thus the 
prey's capacity to run faster means that its basal metabolic rate may increase; thus a 
price is paid elsewhere for running faster. For the predator, running faster may mean 
less capacity to search thoroughly, and so on. By assuming that some traits are con
strained in this way while others can increase without bound, the authors show that 
the constrained traits in each species coupled in the ecosystem tend to fall to ESS 
values, while those which can increase or decrease indefinitely tend to become 
trapped in Red Queen races wherein the coevolving species keep relative position 
while their properties evolve continuously. 

The NK Model Again: 
Generalized Epistatic Fitness Landscapes 

That traits which are subject to constraints and tradeoff within each organism reach 
stable values, while traits which can increase without bonds evolve continuously, is 
a curious conclusion to reach. In real organisms, no feature can increase without 
bounds; all are constrained. 

Part of our difficulty in thinking about fitness in organisms is that the ways differ
ent traits in one organism combine to contribute to fitness, and the constraints and 
tradeoffs among those traits with respect to fitness, are very complex. Thus manu
facture of a given insect-repelling substance may aid the fitness of a plant but cost in 
drain ofa substrate needed in metabolism. The simultaneous presence of the insect
repelling substance and rough bark may help repel insects and more than offset the 
energetic cost of producing both the substance and the rough bark. In general, any 
trait might be involved in tradeoffs with some unknown number of other traits in 



THE DYNAMICS OF COEVOLVING SYSTEMS 243 

arbitrarily complex ways. We encountered this problem in Chapter 2. The problem 
is that of epistatic linkages either among traits or among the genes controlling them. 
In general, those linkages may be extremely complex and reflect an elaborate diver
sity of conflicting constraints. 

I introduced the NK family of rugged fitness landscapes in Chapter 2 to describe 
landscapes engendered by arbitrarily complex epistatic constraints, recalled this fam
ily oflandscapes immediately above in defining NKBoolean games, and recall it now 
to think about rugged fitness landscapes where each organism has N traits, present or 
absent. 

In the context of a whole organism with N traits, the NK model assigns, to each of 
the N traits, the K traits among the N which are epistatic inputs to that trait, assigns 
random fitness contributions to each trait in the context of all the combinations of 
states of itself and its K inputs, and defines the fitness of any "genotype," or combi
nation of the states of the N traits, as the mean of the fitness contributions of its N 
sites. Recall that the fitness values defined over the N-dimensional Boolean hyper
cube yield a fitness landscape. For K = 0, each trait makes an independent fitness 
contribution and the fitness landscape is highly correlated about a single global peak; 
for K = N - I, the landscape is fully uncorrelated and has many local peaks. More 
generally, as K increases, the number of local peaks increases, the steepness of the 
sides of the peaks increases, and the mean fitness of local optima decreases. These 
features reflect the increasing number of conflicting constraints as K increases rela
tive to N. Bear in mind these three features as K increases relative to N. In the ensuing 
model of coevolution, they appear to be fundamental to the attainment of a state 
poised on the edge of chaos. 

Coevolving Species and Coupled Dancing Landscapes 

Consider an ecosystem with S species. For simplicity, let us imagine that each species 
is homogeneous-that is, all organisms in the species are identical; hence the species 
currently occupies a particular combination of its N traits. Then an NK landscape 
represents the fitness landscape of one homogeneous species. This assumption cor
responds to the limit discussed in Chapters 2 and 3, due to Gillespie (1983, 1984), in 
which mutations in an adapting population are infrequent relative to the fitness dif
ferences between initial and mutant forms. Recall that, under these conditions, the 
population encounters advantageous mutants on a long time scale and moves as a 
whole on a short time scale to the new fitter variant. Thus in these limiting cases, the 
population can be approximated as homogeneous. With a higher mutation rate or 
under other conditions, a species is not homogeneous. It is possible to extend the 
model to allow the population representing one species to be a cloud distributed over 
its landscape, in which frequency-dependent and density-dependent coevolution 
within the species occurs. 

In a coevolutionary system, we need to represent the fact that both the fitness and 
the fitness landscape of each species are a function of the other species. Thus, in gen
eral, it is necessary to couple the rugged fitness landscapes for each species, such that 
an adaptive move by one species projects onto the fitness landscapes of the other 
species and alters those fitness landscapes more or less profoundly. Over time, each 
species jockeys uphill on its own landscape and thereby deforms the landscapes of its 
ecological neighbors. Any such move by one species may increase or decrease the 
fitness of each neighbor on the latter's landscape and alter the uphill adaptive walks 
accessible to that neighbor. 
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In the context of the NK model, the natural way to couple landscapes is to assume 
that each trait in species 1 depends epistatically on K other traits internally and on C 
traits in species 2. More generally, in any ecosystem with S species, each trait in spe
cies 1 will depend on K traits internally and on C traits in each of the Si among the 
S species with which it interacts. It is also natural to assume symmetry. If species 1 
is in the niche of species 2, then species 2 is in the niche of species 1. 

To represent the effect of the C traits from species 1 which are coupled to each 
trait in species 2, we expand the fitness tables defining the landscape of species 2 to 
incorporate these C traits. Hence, for each of the N traits in species 2, the model will 
assign a random fitness between 0.0 and 1.0 for each combination of the K traits 
internal to species 2, together with all combinations of C traits in species 1. In short, 
we expand the random fitness table for each trait in species 2 such that the trait looks 
at its K internal epistatic inputs and also at the C external epistatic inputs from spe
cies I. Given these expanded tables, the fitness landscape of species 2 is a function of 
the current location of species I on species I 's fitness landscape. Therefore, as species 
I adapts, it both changes the fitness of species 2 and deforms 2's fitness landscape. In 
turn, each trait in species I must be coupled to C traits in species 2, and the fitness 
values for the N traits in species I must be expanded similarly. This procedure cou
ples the two landscapes; each species is in the niche of the other. 

In a system of S species, the interactions can be represented by a web of such pro
jections. By representing the interactions in this way, we have at our disposal a choice 
of(1) the number and identity of the traits Cwhich couple from one species to each 
single trait in another species, (2) the number and identity of other species among 
the S which project onto each species, and (3) the number of species S in the ecosys
tem. 

In the first part ofthe ensuing discussion, I shall assume that each species in an S
species system is coupled directly to all other species. This richest coupling is 
undoubtedly unrealistic. A vast literature studies the hierarchical structure of food 
webs (Pimm 1982). In a sense, the completely coupled ecosystem is probably the 
worst possible case for achieving coevolutionary progress. In a more limited web, the 
links are fewer and each partner's "dancing" has a direct effect on only a few neigh
bors. I return to this limited-web situation below. 

I shall also assume a second worst-case condition-that, in an S-species ecosys
tem, there is no similarity between the species and hence the effects of species I on 2 
and of 3 on 2 are randomly assigned. In reality, rabbits and hares probably look much 
the same to a fox. Similarity of species presumably can be thought of as reducing the 
number of effectively different species with which each species interacts. 

I shall also initially consider a case that is naive from an ecological standpoint
that each coadapting partner interacts at each moment with all other partners. In the 
next section, I shall extend this NK coevolutionary model to a more formal ecological 
context in which species are represented by populations which are coupled to one 
another by the familiar Lotka-Volterra class of equations, which model both popu
lation growth reflecting density-dependent inhibition within a species and mutual
istic or competitive interactions between species. The results of the present section 
extend to these population models. 

Landscape Ruggedness and Couplings Between Landscapes 
Tune Coevolution 

The game theoretic models which have been explored to study coevolution have not 
as yet been built to take account of three issues: the statistical ruggedness of the land-
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scapes of the coevolving partners, the richness of coupling of those landscapes, and 
the implications of those features on coevolution. But surely, these three issues are 
major aspects of the problem. The NK model affords tunably rugged landscapes 
whose richness of coupling can also be tuned; hence we can study the influences of 
these factors on coevolution. 

Simulations of coevolving systems were carried out under the assumption that 
each species acts in turn, in the context of the current state of the other species. On 
its turn, each species tries a random mutation and moves to that mutant variant if 
the variant is fitter; if the variant is not fitter, the species does not move. Thus any 
movement by a species at least transiently increases the fitness ofthat species but may 
increase or decrease the fitness of its coevolving partners. In addition to this random 
dynamics, we also examine two alternative cases. In the fitter dynamics, each species 
in turn examines all its single-mutant variants and chooses at random one of the fitter 
variants, if any exist. In the greedy dynamics, each species in turn chooses the fittest 
single-mutant variant. 

Nash Equilibria 

In general, such a coevolutionary process admits of two behaviors. Either the part
ners keep dancing or the coupled system attains a steady state at which the local opti
mum of each partner is consistent with the local optimum of all the other partners 
via the C couplings. Such a steady state is the analogue of a pure-strategy Nash equi
librium in the current context. I use the word "analogue" for the following reason. 
A true Nash equilibrium assumes that each agent can, at each moment, choose any 
one of its possible actions. In the present context, this wide choice range corresponds 
to each species, in a single moment, altering its current genotype to any of the 2N 
other possible genotypes. In assuming that each species is able, at each moment, to 
mutate a single gene or trait, I am constraining the range of alternative genotypes, or 
actions, locally accessible to the species. Thus the steady states we shall find are sim
ilarly constrained. In the remainder of this chapter, I shall use the term "Nash equi
libria" with the understanding that such equilibria are with respect to the mutant 
search range. 

A second caution is required. The concept of an ESS is a further refinement ofthe 
concept of a Nash equilibrium, in which the condition of noninvadability by a 
mutant at an initial low frequency in the population is analyzed. In the simplified 
dynamics used here, where the whole population moves in an instant to a fitter vari
ant, I have not analyzed invadability. Initial studies with fuller population dynamics 
(see below) which do include analysis of invadability confirm the simpler dynamics. 

Simulations were carried out between pairs of coevolving species, each modeled 
as a single organism on an independent NKlandscape. In addition, simulations were 
carried out for larger numbers of species S. The first major result is that Nash equi
libria are encountered. It is not obvious that this should occur, for each species has 
2N genotypes among which it is evolving. An S-species system has the product of 
these genotypes in its joint strategy space. 

Figure 6.2 shows eight species coevolving over 2500 generations. Here, then, each 
site within one species is epistatically affected by 13 other sites within that species and 
by one site in each of the seven other species. Over eight generations, each species in 
turn tries a random mutation and moves to that new genotype only if it is fitter than 
the current genotype in the context of the current genotypes of the other seven spe
cies. At each generation, the fitnesses of all species are recalculated in the context of 
the genotype of each and their couplings. As can be seen, for the first few hundred 
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Figure 6.2 Coevolution among eight species, each governed by an NK landscape. Each of the N 
traits in each species is affected by C = 1 trait in each of the seven other species. System reaches a 
steady state about generation 1600. Note that mean fitness in the absence of selection is .5. 

generations, the mean fitness of the whole set of species increases, rapidly at first, and 
then more slowly. Increasingly long intervals with no change occur, reflecting the fact 
that, as fitness increases, the waiting time to fitter variants increases for each partner. 
Sudden bursts of change by many species, however, are instigated by occasional 
changes by a single partner. By about 1600 generations, a Nash equilibrium has been 
found such that each species is locally fitter than all one-mutant variants, granted that 
the other species do not change. 

Waiting Time to Encounter Nash Equilibria 

In order to examine how N, K, and C bear on the waiting time to encounter a Nash 
equilibrium, simulations were carried out between two species. For each value of N, 
K, and C tried, 100 coevolving pairs were released. Over generations, a successively 
larger fraction of the coevolving pairs will have encountered Nash equilibria and 
hence stopped evolving (Figure 6.3). The main point to note in Figure 6.3 is that, as 
K increases relative to C, the waiting time to hit a Nash equilibrium decreases. Thus 
as the ruggedness of landscapes increases (K increasing), the expected waiting time 
to find Nash equilibria is decreasing. Presumably, this decrease in waiting time 
reflects the increased number of local optima in NK landscapes as K increases for 
fixed N. When K> C, Nash equilibria are found rapidly. When K < C, Nash equi
libria are still found, but the mean waiting time becomes very long. In short, for a 
pair of species which are coevolving, K = C is a crude dividing line separating these 
two regimes. 

Similar studies as N increases for fixed K and C show that the waiting time to hit 
Nash equilibria increases, presumably because the density oflocal optima decreases. 
Since N is a crude measure of the complexity of the coevolving entities these results 
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Figure 6.3 Fraction of 100 coevolving pairs of species which have not yet encountered a Nash equi
librium and hence are still walking, as a function of generations elapsed. 

suggest a general tradeoff in complex adapting systems: Higher complexity may have 
advantages but be paid for in part by delays in reaching Nash equilibria. 

Coevolution When Two Interacting Species Have Different 
K Values 

It is of considerable interest to study the outcome of coevolution in which partners 
are on landscapes of different ruggedness. Figure 6.4 reports the results of simulations 
in which pairs of species have K values of 2, 4, 8, 12, and 16 for C values of 1, 8, and 
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Figure 6.4 Coevolution among 200 pairs of species for 250 generations. Various C and K values. 
In all cases, N = 24 and the dynamics is random. Upper three grids correspond to cases where Nash 
equilibria were encountered. Each cell contains three numbers. The numerator of the fraction is the 
mean fitness of the row player. The denominatoris the mean fitness of the column player. The num
ber in the lower right corner shows how many ofthe 200 pairs encountered a Nash equilibrium. The 
middle three grids show cases where no Nash equilibrium was encountered in 250 generations. The 
three numbers in each cell are the same as in the upper grids except that here the fitness values cor
respond to mean fitness over the last 85 generations. At each generation a random mutant was tried; 
the species moved to that variant only if the variant was fitter. The lower three grids show the total 
mean sustained fitness obtained for each cell by averaging the cell values from the upper and middle 
grids. 
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20. These three values of C were chosen to lie below, in the middle, and above the 
range of K values. For each set of parameter values, 200 pairs of coevolving species 
were released and evolved for 250 generations. By that time, a Nash equilibrum 
either had or had not been encountered. Thus after 250 generations, some fraction 
of the 200 pairs had encountered Nash equilibrium and some were still coevolving. 

Figure 6.4 shows a number of interesting features: 

1. For all values of K, the fraction of coevolving pairs which encounter Nash equi
libria in 250 generations decreases as C increases. Conversely, for any fixed value 
of C, the fraction of pairs encountering Nash equilibria increases as K increases. 
This reexhibits the phenomena of Figure 6.3: High K leads to more rugged land
scapes, and Nash equilibria are encountered more rapidly. 

2. When C> 1, the fitness at Nash equilibria is higher than the corresponding fitness 
when the partners are still oscillating. 

3. As C increases, the fitness of both coevolving partners during the oscillatory phase 
before encountering Nash equilibria decreases for all pairs of coevolving K values. 
Presumably, this decrease in pre-Nash fitness reflects the fact that, for high values 
of C, a single move by one partner sharply lowers the expected fitness of the 
remaining partner. 

4. When C is high (C = 20), high-K players have higher mean fitness during the 
oscillatory period before hitting Nash equilibria than do low-K players. More 
strikingly, in playing against a second player with a fixed K value, the first player 
would increase mean fitness during the oscillatory period by increasing its own 
value of K. That is, a K = 4 player does better against a K = 2 player than would 
a K = 2 player, while a K = 8 player does even better, and so forth. 

5. Equally remarkably, when C is high (C = 20), a low-K player achieves higher 
mean fitness during the pre-Nash oscillatory period ifit plays against a species of 
high K. That is, a K = 2 player has higher fitness against a K = 4 player than 
against another K = 2 player. A K = 2 player fares even better against a K = 16 
player. Thus when C is high, increasing the K value of one partner helps both 
coevolving partners. 

6. This tendency seems to be reversed when C = 1. Hence, during the oscillatory 
period, low-K players seem to fare better than high-K players. 

7. At the Nash equilibria encountered, the fitnesses of low-K players are clearly 
higher than those ofhigh-K players for each value of C, and indeed seem roughly 
independent of C. 

8. Finally, when C is high, overall average fitness is highest when K is high. When C 
is low, overall average fitness is highest when K is low. Thus fitness in coevolving 
systems would be enhanced were K able to adjust to match C or, more broadly, 
were K and C themselves evolvable. 

Similar studies were carried out using the fitter and greedy dynamics. The main 
results are the same. A major difference arises in the greedy dynamics. Here, for any 
genotype, there is generically a unique best-fit one-mutant variant in the context of 
the other species. Thus if each species plays in a deterministic order, each changes to 
a unique next genotype and the set of coevolving species can enter a recurrent cycle 
in the total space of S genotypes. When K < C, such periodic attractors arise rather 
frequently. 
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The analysis above is based on mutating one site, gene, or trait at a time in each 
coevolving species. Figure 6.5 shows the results of coevolution as the mutation rate 
or, more accurately, the number of traits randomly mutated in each species increases 
to 2, 4, 8, 16, and 24 for coevolving pairs of species on increasingly rugged landscapes. 
As the number of genes mutated simultaneously increases, the number of local 
optima on a fixed landscape dwindles; hence the probability that the coevolving pair 
reaches a local Nash equilibrium falls. Thus the fitness seen in the coevolving pair 
reflects fitness during the pre-Nash period. Figure 6.5a shows that, for all values of 
K, as the number of mutations increases, the maintained fitness reaches a maximum 
for two or four simultaneous mutations and falls thereafter. The decrease in main
tained fitness is greatest for small K values and less marked for large K values. Figures 
6.5b and 6.5c show that, in general but not uniformly, the optimal mutation rate 
decreases as C increases. These results suggest that there may typically be an opti
mal-and typically low-mutation rate for maintaining fitness in coevolutionary 
processes. 

These results are also interesting from the general game theory perspective. Lower 
fitness with increasing search range (here number of sites mutated) presumably 
reflects search beyond the natural correlation length of a fixed landscape, plus the 
fact that each landscape deforms more ifthe other players change more dramatically. 
Thus if each species makes a large change by changing many sites in an attempt to 
climb uphill, that change dramatically deforms the landscapes of the species' partners 
and can lead to lower sustained fitness for all partners. In the general context of game 
theory, ifit is assumed that all players can change at each instant to any action, these 
ideas do not apply. These ideas do arise, however, in any context where each player 
can search only its local strategy space-for example, because there is some cost to 
searching-and where the distance moved in strategy space by one player is related 
to the deformation in the payoff landscape of the other players. In such contexts, 
myopic play, as is typical of biological evolution, may typically lead to higher sus
tained fitness-or payoff-than nonmyopic play. 

Possible Coevolutionary Dynamics 
of the Coevolutionary Parameters 

The results we have seen make a number of intriguing suggestions. All point to the 
possibility that a coevolving system of species may collectively tune the parameters 
governing its own coevolution. The fundamental parameters-N, K, C, and S-may 
conspire under selection to lead to coevolving systems which couple landscapes in 
such a manner that the partners coevolve well. If so, the point is far from trivial, for 
it is clear that coevolution can cause coupled landscapes to heave so erratically that 
no partner can long maintain a fitness much above that which is merely average in 
the space of systems and attainable even without selection. I discuss these suggestions 
first with respect to completely coupled ecosystems. Then I extend them to structured 
ecosystems in which each species interacts with a few neighboring species in an eco
system web. 

Figure 6.5 Effects of increasing mutation rate on mean fitness maintained in coevolving species. 
Both coevolving species randomly mutate I, 2, 4, 8, 16, or 24 of the N = 24 genes at each moment. 
Figure plots average fitness over last third of250 coevolutionary steps as a function of mutation rate. 
Note that, for most K values, maintained fitness increases and reaches a maximum for two- or four
mutant search ranges. For most values of K, maintained fitness falls for greater mutation rates. 
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First, there may well be selective processes which match K to C in order to opti
mize the coevolutionary capacities of the coevolving partners. For instance, K 
"should" increase when it is low relative to C and decrease when it is high relative to 
C. As shown in Figure 6.4 for the biologically most plausible case in which each spe
cies tries random mutations and moves to a variant if that variant is fitter, if C is high 
relative to K, any player increases its fitness by increasing its own K value. When C 
is high, increasing Khas two beneficial effects. First, Nash equilibria are encountered 
more rapidly at higher K values and are fitter than the prior oscillatory period. Sec
ond, fitness during that prior oscillatory period is higher than it is at lower K values. 
Thus it is advantageous to any player to increase Kin a high-C environment. Perhaps 
equally remarkably, in the biologically reasonable case of random mutations (Figure 
6.4), such a move by one species also helps the second species. Each has higher pre
Nash fitness and finds Nash equilibria sooner. Conversely, suppose K is high relative 
to C. Then, as is clear from Figures 6.3 and 6.4, Nash equilibria are encountered very 
rapidly. Thus the fitness in the pre-Nash oscillatory period is ofless importance when 
K is high, and the fitness of Nash equilibria is more important. But local optima at 
Nash equilibria are higher for low-K players than for high-K players. Thus if K is too 
high relative to C, it should be advantageous to decrease K. In short, at this group 
level of coevolving species, it seems clear that there are reasonable selective advan
tages to a species as a whole to tune K to match C. At that match, given a fixed C, 
Nash equilibria will be encountered rapidly and will be highly fit, a condition that 
optimizes mean fitness during any pre-Nash periods, minimizes the mean duration 
of those periods, and maximizes the fitness of the Nash optima attained. 

The analysis above is based on the idea that it is advantageous to the species as a 
group to increase K. In order to avoid positing group election mechanisms, we should 
seek selective conditions acting on individual members of a species which might 
increase K in members of that species and hence in the coupled ecosystem. Within 
the framework of the NK model, a change in K would naturally be envisioned as a 
mutation which altered the epistatic coupling between traits or genes such that a trait 
or gene now depended on either one more or one fewer epistatic inputs. That is, we 
must let K evolve. In this framework, the natural way to express the consequences of 
such a mutation which increases K is to expand the fitness table for that trait such 
that the table looks at the new trait as well as at the K traits it initially looked at. That 
new epistatic connection, in the context of the current genotype in which the new 
connection is formed, might increase or might decrease the fitness of the current 
genotype. Thus we can envision three ways in which selection on an individual level 
may allow an increased K value at one genetic locus to spread throughout a popu
lation: 

1. The new epistatic link, when it forms, causes the genotype to be fitter and is 
selected and hence spreads. 

2. The new epistatic link is near neutral and spreads through the population by ran
dom drift. 

3. The new link not only has a direct effect on the fitness of the current genotype, 
but also increases the inclusive fitness of the individual and its progeny. This long
term effect is due to the increased fitness of those progeny in the coevolutionary 
process, which in turn is due to increased rapidity of finding Nash equilibria and 
higher fitness during the pre-Nash oscillatory period. 
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These considerations suggest the possibility of a coevolutionary dynamic which 
optimizes K relative to C in an ecosystem, such that partners maintain high mean 
fitness. 

We turn next to consider the coevolution of S in the coupled ecosystem. A clear 
process will tend to limit the number of species (but see below). Consider coupled 
landscapes with fixed K and C couplings. Let S increase, under the assumption that 
each species is C-coupled to all other species. When K > S X C, all the coevolving 
partners encounter a Nash equilibrium rapidly. When K < S X C, the coevolving 
partners do not encounter a Nash equilibrium for a long time. I stress that the exact 
relation between mean waiting time to encounter Nash equilibrium and K, S, and C 
is unknown. As a rough guide, we can use K = S X C as a rough division between 
the two regimes. 

Numerical results are shown in Figure 6.6 for three values of S. In Figure 6.6a, S 
= 4 species are coevolving. Thus each species senses C = 2 inputs to each of its genes 
from each ofthe four species. Each species in turn randomly mutates and tries to find 
a fitter variant. Over 2000 generations, mean fitness increases and the four species 
find a Nash equilibrium. In Figures 6.6b and 6.6c, the number of species increases to 
8, and then 16. Data to 2000 generations are shown for the 8- and 16-species cases. 
No Nash equilibrium was found for 8000 generations in these cases. 

Note the following features in Figure 6.6: 

1. As the number of species S increases, the waiting time to encounter a Nash equi
librium increases. 

2. As S increases, the mean fitness of the coevolving partners decreases. 

3. As S increases, the fluctuations in fitness of the coevolving partners increase dra
matically. 

Thus for the four-species case, mean fitness increases rapidly and achieves fairly high 
Nash equilibria. For the 16-species case, the entire system fluctuates about a mean 
fitness slightly above average, .5, with dramatic excursions below .4. 

These results show that, as the number of mutually coupled species in the system 
increases, the mean fitness falls and fluctuations to very low fitness increase. There
fore, if we may assume that fluctuations to low fitness are associated with an 
increased chance of extinction of the unlucky species, these results suggest that, if S 
is too high, the coupled ecosystem will fluctuate dramatically and lead to the extinc
tion of species, thereby lowering S. In turn, as S is lowered, the ecosystem behaves 
less chaotically and mean fitness of all partners improves both during the pre-Nash 
period and because Nash equilibria are encountered more rapidly. The remaining 
system coevolves well despite the fact that landscapes are coupled and deform as each 
actor moves. 

Finally, it is interesting to consider that C may evolve. For example, prey may try 
to reduce C, while predators try to increase it. Further C, may not be freely variable 
with respect to K but instead may be some more or less fixed fraction of K. That is, 
it is not implausible that the epistatic couplings of a trait within a member of one 
species to other traits within the organism will be greater than the couplings to traits 
in organisms of other species. Even without ecological considerations, K should be 
larger than C. 

In short, with clear hesitations and heralded caveats, this framework begins to sug-
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gest the possibility that the coevolutionary parameters governing the ruggedness of 
landscapes, the couplings among landscapes, and the number of coevolving partners 
might themselves coevolve without group selection, to continuously re-create well
formed ecosystems which are able to coadapt successfully. No mean feat, this, for as 
Figure 6.6c makes clear, coevolution among coupled species can lead to chaotic fluc
tuations with no accumulation of improvement. If one wishes a Red Queen, here is 
one to reckon with. 

STRUCTURED ECOSYSTEMS AND SELF-ORGANIZED 
CRITICALITY: COEVOLUTION TO THE EDGE OF CHAOS 

Real ecosystems are not totally connected. Typically, each species interacts with a 
subset of the total number of other species; hence the system has some extended web 
structure. We now extend our own results to such ecosystems. The supposition that 
selection can act on a coevolutionary system to control its connectivity, and therefore 
its dynamics, points in a very interesting direction. It might be the case that coevolv
ing ecosystems tend toward a state of "self-organized criticality" in which parts of the 
ecosystem are frozen for long periods, such that the species in the frozen component 
do not change, while other species continue to coevolve. Avalanches of changes ini
tiated at local points in the ecosystem web may propagate to various extents through
out the ecosystem. Such avalanches may trigger speciation and extinction events. 
Furthermore, the endogenous dynamics of the coevolving system acted on by selec
tion may tend toward this poised state in which such avalanches can propagate on a 
variety of size scales with a power-law distribution between sizes of avalanches and 
their frequencies. Indeed, the theory comes close to predicting the size distribution 
of extinction events in the evolutionary record. 

The term "self-organized criticality" was coined by physicist Per Bak (Bak, Tang, 
and Wiesenfeld 1988) to refer to a quite generic pattern of self-organization. Bak asks 
us to consider a tabletop onto which sand is dropped at a uniform rate. As the sand 
piles up, it begins to slide off the edges of the table. Eventually, the system reaches a 
steady state at which the mean rate of dropping sand onto the pile equals the mean 
rate at which sand falls over the edges. At this stage, the slopes from the peak to the 
edges of the table are near the rest angle for sand. Bak asks the following question: If 
one adds a single grain of sand to the pile at a random location and thereby starts an 
avalanche, what will the distribution of avalanche sizes be? He finds a characteristic 
power-law distribution relating the frequencies and sizes of avalanches, with many 
tiny avalanches and few large ones. He argues that this distribution is characteristic 
of a wide range of phenomena, including distribution of earthquake sizes and other 
examples. The argument requires that the system under investigation attain and 
maintain a kind of poised state able to propagate perturbations-avalanches-on all 
possible length or size scales. 

There are at least two ideas derived from Bak's theory which seem interesting in 
the coevolutionary context. First, avalanches of perturbations, made up of "packets" 
of coevolutionary change and having a characteristic relation between size scale and 

0( 

Figure 6.6 Coevolution among (a) four, (b) eight, and (c) 16 species. Note that, as the number of 
species increases, the mean fitness decreases and the variance in fitness increases. For (b) and (c), no 
Nash equilibrium was found in 8000 generations. 
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frequency, may propagate through an ecosystem. This possibility requires some part 
of the ecosystem to be at rest while other parts change. Second, the propagating 
changes are likely to be associated with fluctuations to low fitness, which may engen
der both extinction and speciation events. Extinction events would be expected 
because oflow fitness. Speciation events might be expected at low fitness because the 
number of directions of improvement is increased and because isolated subpopula
tions would form. If the probability of branching speciation is proportional to the 
number of directions of improved fitness, then low fitness episodes should trigger 
speciation events. Thus the propagation of avalanches through the system would be 
linked to speciation and extinction phenomena. We shall see that these properties 
are likely to be associated with the existence of nearly melted frozen components in 
ecosystems. I discuss these ideas next. 

Fluctuating Frozen Components: Nash Equilibria Extended 
to Lattice Ecosystems 

A first hint that the ideas derived from Bak's theory may apply to ecosystems was 
found in the simplified NKBoolean games described above. Recall that these models 
are formally identical to NKBoolean networks. A frozen component of players, each 
a single site which has optimized its 0 or 1 choice in the context of its K inputs, can 
form across the network. Thus the frozen components seen in Boolean networks in 
the solid or liquid regions, as described in Chapter 5, are already versions of simple 
ecosystems with many players frozen at a Nash equilibrium while other players con
tinue to change. 

The second hint that Bak's ideas may apply to ecosystems arises in extending the 
coevolving NK model to structured ecosystems in which each species interacts with 
only a few other species: Here, too, parts o/the system may be fixed at Nash equilibria 
while other parts continue to coevolve. 

To investigate the behavior of structured ecosystems, my colleague Sonke John
sen and I have carried out simulations on "square" ecosystems, in which each inte
rior species interacts with its four neighbors. Corner and edge species interact with 
two and three neighbors, respectively. Model ecosystems have varied from 3 X 3 = 
9 species to lOX 10 = 100 species. In addition to square ecosystems, which have 
corners and edges, we have investigated toroidal ecosystems, in which the square is 
first folded into a cylinder by joining left and right edge species and then bent into a 
torus by joining top and bottom species. We have also investigated randomly con
nected ecosystems with similar general results. 

Figure 6.7 shows 12 successive times in the temporal coevolution of a 10 X 10 
ecosystem. At each time moment, one of the 100 species plays and greedily chooses 
the fittest one-mutant variant if any is fitter than its current genotype. Each species 
plays in turn, and thus 100 plays constitute an ecosystem generation. After each eco
system generation (hereafter "generation"), any species may have changed its geno
type or remained the same. If the species changed, we color it white; if it remains 
unchanged, we color it black. The simulation was run over 200 generations, and Fig
ure 6.7 represents moments from a period in the middle of the 200 generations. 

The first question to ask is, Can frozen regions and changing regions coexist in the 
ecosystem? The salient features to note are these: 

1. A large fraction of the species are frozen over single generations. 

2. Some regions remain frozen over very many generations. In Figure 6.7, species in 
the upper left and lower left corners remain frozen over about 48 generations. 
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N = 24 K = 10 C = I S= 100 Greedy • = Frozen O· Unfrozen 

II 

Figure 6.7 Twelve successive time moments, each four ecosystem generations apart, in a 10 X 10 
= 100 species ecosystem wherein each species plays with its immediate neighbors. Thus comer spe
cies coevolve with two immediate partners, edge species with three, and interior species with four. 
As time passes, frozen regions (black), where species are not changing genotype at that generation, 
emerge, expand, and contract over the distributed ecosystem. If all species stop changing, the entire 
ecosystem is frozen, each species at a local Nash equilibrium. 

3. One or more unfrozen regions may exist. 

4. Over time, the location of the frozen region changes and the size waxes and wanes. 
That is, afluctuatingJrozen component can exist and extend throughout some or 
much of the ecosystem. 

5. In the simulation carried out here, ultimately, the frozen region encompasses the 
entire ecosystem (not shown in Figure 6.7). That is, the ecosystem comes to rest 
at a combination of genotypes which are local Nash equilibria for all 100 species. 
In the absence of exogenous perturbations, the system will remain in this frozen 
state thereafter. 

6. In many simulations, particularly those using the greedy algorithm, the coevolv
ing ecosystem encounters a limit cycle. Typically in these cases, a fraction of the 
system remains permanently frozen, while the remainder oscillate through a 
recurrent set of genotypes. 

These results show that one region of an ecosystem can be frozen, while other 
regions continue to coevolve. One region persists in something like an ESS, while 
adjacent regions in the same ecosystem persist in Red Queen antics. These results 
echo the frozen components discussed in an earlier section concerning Boolean net
works and partial percolating Nash equilibria in the NKBoolean games. This behav
ior in itself is very interesting, since the existence of a frozen component in Boolean 
networks appears to be a requirement for orderly dynamics and the capacity to 
evolve. Therefore, it seems important to ask, What are the general principles under 
which frozen components emerge on higher scales, such as these complex, gamelike 
contexts? Note that the NK Boolean games and the NK models of coupled ecosys-
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tems are remarkably similar. In the former, each site is an independent myopic agent. 
In the latter, defined collections of sites correspond to each agent. In all cases, sites 
within one agent are coupled to sites in other agents such that the payoff to each agent 
depends on the actions of all the other agents. The only difference between NK Bool
ean games and NK coevolutionary models is the number of sites which collectively 
correspond to each independent agent. The emergence of frozen components sug
gests that some kind of scaling laws in N, K, C, and S, in ecosystem structure, and in 
the number of sites corresponding to each independent agent will govern the emer
gence offrozen components. 

One approach to scaling behavior for the emergence of frozen components has 
been taken by W. Fontana and Alan Kaufman and deserves brief mention. We con
sider a square lattice of sites, each coupled to its four neighbors, according to the 
familiar NK rules. We can define each site to be an independent species adapting on 
a landscape which deforms as the four neighbors of the species change. This re-creates 
the NKBoolean games discussed above. Such systems will, of course, be chaotic, with 
no frozen components, since random K = 4 Boolean lattices are in the chaotic 
regime. Alternatively, we can define the entire SQuare lattice to be a single species and 
recover the fixed NK fitness landscapes discussed in Chapters 2 and 3. Here the sys
tem has local peaks as point attractors. While the system is climbing to such a peak, 
more and more of its traits will become frozen into either the I or the 0 state, and 
finally the system will stop changing entirely at a local peak. 

Since chaos emerges when each site is a separate species but frozen components 
emerge when the entire lattice is one species, it must be the case that, as the size of 
the sublattice which counts as each species grows from one site to the entire lattice, 
a phase transition occurs at which frozen components begin to percolate. Thus let 
the lattice be broken into nonoverlapping sublattices, each constituting a single spe
cies. Each species senses the species adjacent to it across the common boundary sep
arating them. The adaptive moves by each species are now constrained by the bound
ary-site values of its neighbors, which are now like the C couplings between species 
discussed above. Hence each species coevolves on a fitness landscape which is 
deformed as the neighbors of that species move on their own landscapes. 

Our preliminary results show that, as the size of the sublattice which counts as a 
single species increases, there is a critical size at which frozen components begin to 
emerge both within and between species. The critical size appears to be closely related 
to the local range in which each site is coupled to nearby sites on the lattice. Once 
each sublattice is large enough to include one site and all its immediate neighbors via 
the couplings between sites, frozen components emerge. This critical state presum
ably corresponds to Bak's critical state with a power-law distribution of avalanches. 
A study of the critical sublattice size, and of how it changes with lattice size and with 
K couplings, should yield the scaling laws we seek. 

In addition, three related ideas are appealing: 

1. Subregions of a lattice which count as species, and hence coevolve with one 
another, create an interesting analogue of temperature in a physical system with 
a complex potential surface. A sufficiently high fixed temperature keeps a physical 
system from settling down into a local minimum. Coevolutionary dynamics, as a 
result of deforming landscapes, tend to keep each coevolving species from settling 
down at a local fitness optimum. The persistent deformations oflandscapes in a 
coevolutionary setting are thus at least crudely analogous to temperature in a 
physical system. 
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2. A selective coevolutionary dynamics might optimize the size of sublattices which 
count as individuals, a process that is analogous to finding, for a physical system, 
a fixed temperature which optimizes energy over a given time scale. For any rug
ged potential surface and fixed time that the physical system is allowed to explore 
the landscape, there is an optimal fixed intermediate temperature at which the 
system minimizes its energy over that time scale. If the temperature is too high, 
the system does not stay in good minima long enough. If the temperature is too 
low, the system because trapped in poor local minima for too long. As the time 
scale permitted for exploration increases, the optimal fixed temperature 
decreases. Therefore, the second intriguing possibility is that the fitness achieved 
over a fixed time scale may first increase and then decrease as the size of subre
gions which count as an organism increases. Thus there may be an optimal size 
grouping of sites which count as a single organism in a species for sustained fitness 
over a given time scale. The time scale would be set by the rate at which abiotic 
or biotic influences alter the coevolutionary system. 

3. As the size of the grouping changes, the surface-to-volume ratio of the entity 
changes. Couplings to other entities are across the boundary surface. The surface
to-volume ratio is a crude measure of the extent to which adaptive moves by one 
partner deform the fitness landscapes of other partners-deformation is high if 
the ratio is high and low if the ratio is low. If there is an optimum grouping size 
which corresponds to an organism, we might imagine an evolutionary process 
whereby an organism evolves the ratio of its surface boundaries with other organ
isms versus its volume, to optimize sensitivity to its coevolving partners for sus
tained fitness. I return to these rough ideas below. 

Might There Be a Coevolutionary Adaptive Process Leading 
Toward a Self-Organized Critical State with a Percolating 
Frozen Component? 

The results in the previous section concerning unstructured ecosystems suggest that 
a coevolutionary dynamics might tune the parameters of coevolving species such 
that the species coevolved well. Here I discuss results suggesting that these ideas may 
extend to structured ecosystems. Species may selfishly tune both the K values and the 
number of species with which they interact, such that the coupled system as whole 
coadapts well. At the optimal state, a frozen component percolates across and covers 
the ecosystem rapidly. 

Figures 6.8a and 6.8b show the results of simulations of 5 X 5 square ecosystems 
in which the average fitnesses of corner, edge, and interior species are accumulated. 
For each value of K, 50 ecosystems were analyzed over 200 generations each. The 
figures reveal the following features: 

1. For all interspecies connections-two for the corner species, three for the edge 
species, and four for the middle species-there is an optimum value of K at K = 
8 to 10 which optimizes sustained mean fitness. For lower or higher values of K, 
the average fitness declines. 

2. Mean fitness increases as connections to other species decreases. 

If there is an optimal value of K for sustained fitness in coevolving systems, then 
selective effects might pull K values of coevolving partners toward this optimum. 
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Figure 6.8 (a) Mean sustained fitness in 5 X 5 ecosystems as K varies from 0 to 22. In all cases, N 
= 24, C = I. Corner species are connected to two others (top curve), edge species to three others 
(middle curve), interior species to four others (bottom curve). Note that sustained fitness first 
increases and then decreases as K increases. Random dynamics was used. (b) As in (a), except that 
here fitter dynamics was used. (c) Selection force toward Kopt value of K = 8 to 10. Two experimental 
species located adjacent to the central species in the 5 X 5 ecosystem were constructed with a K value 
that was different from that of the remainder of the ecosystem. In all cases, deviation of the K values 
of the experimental pair (e) toward Kopt increased the sustained fitness of the experimental species 
relative to the unperturbed ecosystem (0) and relative to the control species (_) in the perturbed 
ecosystem. 
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This intuition is confirmed in Figure 6.8c. Here we investigate how increasing and 
decreasing K affects the fitness of two test species, located adjacent to the center of 
the ecosystem. To sample the rest of the ecosystem fairly, we monitored the fitness 
of two control species, also adjacent to the center of the ecosystem. Figure 6.8c shows 
that the presence of two test species had little effect on the fitness of the two control 
species. More critically, if the rest of the ecosystem had suboptimal K values, 0 or 2, 
or above-optimal K values, 14 or 23, then deviations of the K values of the test species 
to or toward the optimal values of K = 8 to 10 increased the fitness of the test species. 
Conversely, if the ecosystem is at the optimal values of K = 8 to 10, then deviations 
of the K values of the test species away from the optimal values decreases the fitness 
of the test species. In short, there is a selective force toward the optimal value of K = 
8 to 10 which can act on single species, presumably via individual members of that 
species, and pull each toward the jointly optimal K value. 

These results support and extend those for completely connected ecosystems, dis
cussed above. There we found evidence that it was advantageous for a single species 
to increase or decrease K toward an optimal value relative to C. The results in Figure 
6.8c are a powerful indication that a previously unexpected kind of selective meta
dynamics may very well tune K, the ruggedness oflandscapes among coevolving spe
cies, toward a joint optimum where all partners coevolve well. The efficacy of such a 
metadynamics, however, remains to be established. 

Optimization of Sustained Fitness by Optimization of 
Landscape Ruggedness Yields Ecosystems with Nearly 
Melted Frozen Components 

The optimal ruggedness of fitness landscapes K = 8 to 10 achieved by selective tun
ing of the ruggedness by adapting species, as shown in Figure 6.8c, corresponds to 
coevolving systems which have achieved the poised transition regime between order 
and chaos. As shown in Figure 6.9, the rapidity with which the lattice ecosystem 
becomes frozen at a Nash equilibrium increases as K increases. For values of Kless 
than and including K = 8, no freezing ofthe ecosystem occurs over 200 generations. 
Such systems are in the chaotic regime. For K = 10, entire ecosystems freeze at Nash 
equilibria gradually over the 200 generations. For K > 10, ecosystems freeze rapidly. 
Such ecosystems are well into the ordered regime. The optimal value of ruggedness 
oflandscapes K = 8 to 10 occurs just at that value where freezing begins. Thus model 
ecosystems optimize coevolutionary fitness when frozen components are tenuously 
extending across the ecosystem, when the system is in the transition region between 
order and chaos. 

A New Hypothesis: Ecosystems Coevolve 
to the Edge of Chaos 

The results discussed above lead to a new and perhaps startling hypothesis: In coevo
lution, organisms adapt under natural selection via a metadynamics where each 
organism myopically alters the structure of its fitness landscape and the extent to 
which that landscape is deformed by the adaptive moves of other organisms, such 
that, as ifby an invisible hand, the entire ecosystem coevolves to a poised state at the 
edge of chaos. I state this hypothesis in bold form. If true and general, it would con
stitute a powerful new framework to understand evolutionary biology. In the remain-
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Figure 6.9 Fraction of 5 X 5 ecosystems which have not yet become frozen in an overall Nash 
equilibrium plotted against generation. Note that for K ~ 8, none of the ecosystems attained a frozen 
Nash equilibrium in the time available. For K;;;. 10, some or most systems freeze at Nash equilibria 
and do so more rapidly as K increases. 

der of this chapter, I discuss further current evidence bearing on this hypothesis. The 
data currently supporting such an hypothesis are these: 

1. In the current coupled NK lattice ecosystem model, optimization of K, governing 
the ruggedness oflandscapes with respect to a fixed value of the couplings between 
landscapes C, does optimize mean fitness of the coevolving partners. 

2. More surprisingly, Figure 6.8c shows that selection can act on each species inde
pendently to pull it toward and hold it at the optimal value of K. Thus each spe
cies, via an increase in the inclusive fitness of members of that species, can adapt 
myopically to alter the structure of its fitness landscape; yet the consequent 
achievement of the poised state benefits all. 

3. Control of the number of species with which any species interacts helps control 
whether a model ecosystem is in the chaotic regime or the ordered regime, or is 
poised between them. As discussed below, species in ecosystems do regulate the 
number of species with which they interact. Thus the means to tune this aspect of 
coevolution actually occurs. 

4. We will see that at the poised state, coevolutionary avalanches of change propa
gate through the ecosystem with a power-law distribution of avalanche sizes. Such 
avalanches might be expected to lead to extinction events. The actual distribution 
of sizes of extinction events in the evolutionary record appears close to a power
law distribution. This suggests that ecosystems across the past 600 million years 
may be in the ordered regime near the edge of chaos. 

5. Finally, an independent model of coevolving entities, self-reproducing programs 
coevolving in a computer core, also creates an ecosystem which exhibits a power
law distribution of extinction events. Thus this model ecosystem of myopic adap
tive agents appears to coevolve to the edge of chaos. 
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In presummary, the present evidence is suggestive, not conclusive. However, I 
believe that the hypothesis, if true, is very important. Indeed, if it is generally true 
that myopic adaptive agents that can modify the games they play with one another, 
each to its own myopic advantage, universally coevolve to the edge of chaos, then the 
hypothesis has implications ranging from biology to economics and beyond. Adam 
Smith's "invisible hand," slightly reworked, may span many domains. 

Coevolving Species Control Their Mutual Connections 

Clearly, species can tune coevolution not only by tuning the ruggedness of their own 
landscapes, but also by tuning how many other species impinge on them. For exam
ple, in the present model, as shown in Figures 6.8a and 6.8b, fitness is in general 
increased by decreasing the number of other species to which a species is coupled. 
Similar results arise in completely connected ecosystems, where fitness increases as 
the number of interacting species decreases (Figure 6.6). Thus these results suggest 
that coevolutionary fitness may be optimized if the couplings among species are 
sparse. In reality, such decoupling cannot be complete, since predators need their 
prey to survive. These food-web requirements are not explicitly part of the current 
model but are readily incorporated into it. The question becomes, Do organisms reg
ulate the species connectance of ecosystems? 

Connectance is, in fact, controlled in food webs. Good evidence suggests that the 
number of connections in food webs is adjusted such that each species maintains 
roughly a constant number of connections to other species, regardless of the number 
of species in the web. Sugihara, Schoenly, and Trombla (1989) summarize recent 
data on more than 100 food webs-terrestrial, freshwater, and marine. A number of 
properties-such as lengths offood chains; connectance; ratios of top, intermediate, 
and bottom species; ahd ratios of predators to prey-appear to be stable and scale
invariant, both with respect to the number of species in the web and with respect to 
the aggregation of "guilds" of similar species into single "trophic species" or the 
aggregation of similar species into higher taxonomic units. The observations suggest 
that each species remains coupled to three or four other species. In short, real food 
webs do evolve couplings among species to maintain connectance as the number of 
species in the system increases or decreases. 

Avalanches of Coevolutionary Changes in Coupled 
Ecosystems and the Distribution of Extinction Events 
in the Fossil Record 

The edge of chaos also corresponds to a poised self-organized critical state with 
respect to coevolutionary avalanches. As seen above, as K decreases from above K oPt' 

the frozen component ofthe species at a Nash equilibrium melts. We investigate next 
the implications for coevolutionary avalanches and find that, at the optimized state 
for sustained fitness, avalanches propagate on all length scales in a power-law distri
bution. 

Alterations in the species at one site in an ecosystem can often cause neighboring 
species to undergo coadaptive changes. Thus changes at one point may propagate to 
various extents throughout the ecosystem. Such avalanches of changes are the analog 
of Bak's sand-pile avalanches and also of the propagation of damage in Boolean net
works. 

To investigate such avalanches, Johnsen and I modified the ecosystem model to 
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allow each species to be affected not only by its neighbors in the ecosystem but also 
by its external world. As described in Chapter 3, the external world of each species 
consists in a binary vector of length N. Each site in the species is coupled to W sites 
in its world. The fitness table of each site is augmented to look at the K internal sites, 
the C sites in each of the species impinging on the species being examined, and the 
W sites in that species' world. Thus alteration in the world of one species deforms the 
fitness landscape on which that species is coevolving. Typically, such alterations 
lower the fitness of the species enough to make its current genotype less fit than one 
or more of the one-mutant neighbor genotypes. If so, the species changes and may 
then unleash an avalanche of coevolutionary changes which propagates through the 
ecosystem. 

The simplest avalanches of changes to visualize are those which are perturbations 
from the frozen state in which all species are at local Nash equilibria. In our modified 
model, we first used simulations with fitter-move dynamics to find the frozen state 
and then changed the world of a random member of the ecosystem. At the end of 
each generation, each species may have remained the same or may have altered its 
genotype. After the onset of such a change, coevolutionary changes continue until 
the system returns to a (perhaps new) frozen state with all species at local Nash equi
libria. At that point, the avalanche has died out. 

We used two measures ofthe size of such an avalanche: (I) total number of species 
caused to alter genotype, which measures the total number of species in the ava
lanche which have changed genotype at least once, and (2) total number of species 
which have changed at each generation from the start of the avalanche until the ava
lanche stops. Thus the second measure includes both the number of species affected 
and the number of generations in which each is affected. We denote this measure as 
species X time). The results are shown in Figures 6.10, 6.11, and 6.12. 

We might expect a relationship between K and avalanche size. Intuitively, the fro
zen state is readily attained and solid when K is sufficiently large but becomes more 
tenuous as K decreases. When the frozen state is very solid, avalanches are not likely 
to propagate far. When the frozen state is nearly melted, any perturbation is likely to 
propagate farther. This is entirely in accord with the fact that, as K decreases from 18 
to 12, the mean avalanche size increases and so does the variance. It also appears, at 
least crudely, that, as K decreases, the distribution of avalanche sizes approaches a 
power law. Such a power-law distribution will appear as a straight line in the In-In 
plots of Figures 6.10 through 6.12. The data for the 5 X 5 ecosystems of Figure 6.10 
are convex for K = 20 and K = 14 but approaching linear for K = 10, the optimal 
value of K for sustained fitness in these ecosystems. The results for the lOX 10 eco
systems (Figure 6.11) are similar. The linear slope in Figure 6.11 c is an artifact arising 
because only two sizes of avalanches, one-species and two-species, occurred. Figure 
6.12 shows that the In-In plots for K = 18 and K = 14 are clearly convex (hence not 
a power law) but may be approaching a power-law linear relationship by K = 12. 
Note that, as K decreases to 10 in the 5 X 5 ecosystems or to 12 in the 10 X 10 
ecosystems, the spectrum of avalanches spreads out to an ever-greater range oflength 
scales. 

) 

Figure 6.10 Avalanche size distribution in 5 X 5 ecosystems: natural logarithm of number of ava
lanches plotted as a function of natural logarithm of avalanche size (species X time) for (a) K = 10, 
(b) K = 14, and (c) K = 20. Note that, as K approaches the optimal value of K = 10, the avalanche 
size distribution appears to approach a power law. In all cases, N = 24, C = I, W = 20, S = 25. 
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In sum, the following features are of interest: 

1. On both measures of avalanche size, there are more small than large avalanches. 

2. On both measures, as K decreases from above the optimal value of K, KoPt' the 
mean and median size of avalanches increases, the variance increases. 

3. The distribution of avalanche sizes is clearly not a power law when K is much 
larger than Kopt but appears to be approaching a power law on both measures of 
avalanche size as K decreases toward a critical value at which waiting times to 
encounter Nash equilibria diverge. 

During coevolutionary avalanches, species fall to lower fitness and hence are more 
likely to become extinct. Thus the distribution of avalanche sizes may bear on the 
distribution of extinction events in the evolutionary record. Raup (1986) has ana
lyzed the intensity of extinction events at the family level during each of the 79 stages 
of the Phanerozoic. On average, each stage lasted about 7 million years. Figure 6.13a 
shows Raup's histogram of the number of extinctions per stage (intensity) graphed 
against the number of stages exhibiting that intensity. Clearly, there are many more 
small extinction events than large events. Raup makes the point that the distribution 
is also clearly continuous. Figures 6.13b replots Raup's data in In-In form. Although 
the data are obviously too weak to place much weight upon, the In-In plot is clearly 
convex, suggesting that the observed distribution is not quite a power law. 

What conclusions are warranted by these results? A first general conclusion is the 
insight that coevolutionary avalanches propagate through ecosystems, that such ava
lanches have characteristic frequency-versus-size distributions which change 
depending on the parameters of the system. In particular, the distribution of ava
lanche sizes depends on how solid the frozen state is. Ifwe tentatively accept Raup's 
data as weak evidence, the frozen state is modestly firm. Using Raup's data and 
improved evidence, we may ultimately be able to build a theory linking both ecosys
tem structure and extent of external perturbations to the size distribution of coevo
lutionary avalanches and to such phenomena as the distribution of extinction events. 

A second and critical result is this: Perturbations of the same initial size can 
unleash avalanches on a large variety of length scales. This conclusion is clear and 
important. In these simulations, the perturbation in each case is a change in the exter
nal world of a single randomly chosen species in the ecosystem. If we may tentatively 
assume that avalanches can be linked to extinction events, then these results strongly 
suggest that uniform alterations in the external world during evolution can cause a 
diversity of sizes in extinction events. This possibility stands in contrast to the gen
erally held hypothesis that small and large extinction events are associated with small 
and cataclysmic changes in the external world. Since the external environment has 
almost certainly undergone changes on a variety of scales, I do not wish to assert that 
high variability in extinction sizes does not in part reflect a heterogeneity in intensity 
of causes. But these results place part ofthe responsibility for extinction-size diversity 
on the dynamics of coupled ecosystems and on the ways in which damage propa
gates. 

But the third conclusion is the most important: Raup's data suggest that ecosys
tems do coevolve to the edge of chaos. More precisely, the data suggest that ecosys
tems are slightly within the frozen regime. Thus we ourselves hover on the edge of a 
new view of coordinated coevolutionary processes among interacting adaptive enti
ties. Here is a candidate universal law which warrants investigation. 
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Coevolutionary Intermittence and Punctuated Equilibrium 

An important general feature of these results, whether on fully connected or on 
extended ecosystems, is that coevolutionary changes tend to occur in bursts followed 
by periods of quiescence. This unevenness is more notable in the random model than 
in the fitter and greedy models, but it occurs for all three. It is very tempting to asso
ciate these patterns with the general pattern of morphological stasis and bursts of 
punctuated change which appear to occur in the evolutionary record. One of the puz
zles about such stasis is that it is normally accounted for as stabilizing selection which 

40 

en 
Q) 30 01 
0 -C/) .... 
0 20 
~ 
Q) 

..Q 

E 
::J 10 z 

0 
0 40 80 120 160 

a 
Extinctions per Stage 

3.61 
en 
C 
Q) 

> w 
c 
0 .+= 
u 
c .+= 
x 
w .... 
0 ... 
Q) 

..Q 

E 
::l 
Z 
E 

OL--'----'-----L_<--.L.---'----'-----L---'= 

230 501 
In Size of Extinction Events 

b 

Figure 6.13 (a) Raup's data for the sizes of extinction events versus the number of events at that 
size. (b) Replot of Raup's data in natural logarithm form. 
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holds a phenotype at the optimum, in a stable environment. But as noted in Chapter 
1, one of the problems is that the niche of an organism includes other organisms. 
Change by one alters the niche of others. How, then, can stabilizing selection opt for 
the same maximally adapted phenotype in a changing niche? Our results suggest an 
answer. Frozen components imply that species within or on the boundaries of such 
components have an unchanging optimal genotype and phenotype, despite changes 
in some of their coevolutionary partners. Thus familiar stabilizing selection can sus
tain the same phenotype in stasis, despite changes in the niche. 

Inclusion of Density-Dependent Population Dynamics 

Our analysis has relied on the use of a simplified population dynamics. Each species, 
at each generation, tries a mutant variant and moves there as a whole if the mutant 
is better. Each species interacts at each moment with all its immediate neighbors in 
the ecosystem. The natural extension of this class of models considers a population 
for each species, subject to population growth characterized by familiar ecological 
models. Such models are based on Rand K factors, where R reflects the intrinsic 
growth rate of each population by itself and K reflects density effects resulting 
from the carrying capacity of the environment, which limits each population's 
increase to a standing abundance and includes possible competitive, mutualistic, 
and predator-prey interactions among species (May 1976; Roughgarden 1979; 
Pimm 1982). 

To generalize our NK coevolving model, Johnsen and I defined the fitness of each 
genotype of each species in isolation from all other species in order to obtain its R 
value and then assessed, for each species i, the effect of a pairwise interaction with a 
member of each of the other species} connected to i. We defined R j as the fitness of 
the species in isolation minus .5, the mean fitness in the space of genotypes. This 
definition allows a species to be either an autotroph, R j > 0, or an obligate hetero
troph, Rj < 0. We defined aij to be the fitness of species iwhen it interacts with species 
} minus .5. This definition allows interactions to be either mutualistic, aij > 0, or 
competitive, aij < 0. We assumed that each species had the same carrying capacity 
K. Then, for each species, we utilized the familiar logistic equation 

dXj = X (R _ Xj I:a;):J) 
dt "K + K 

where X j represents the population number of the ith species. In the absence of inter
actions with other species, each species will attain the stationary population X j = 
R;K. Positive and negative interactions with other species, regarded as mutualism 
and competition, will in general alter the population· attained by each species. In 
studies which allowed species to mutate, we first confirmed that a mutant form which 
was initially present at low frequency relative to the wild type and which increased 
in abundance more rapidly than the wild type continued to do so until the wild-type 
population was replaced. Having confirmed this capacity to invade and take over the 
initial population under a number of conditions, we substituted a simpler evolution
ary dynamics: If a mutant form initially increased in abundance more rapidly in the 
current coevolutionary context than did the wild type, then the whole population 
moved to the mutant form. 
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Analysis of these population dynamics models appears to confirm the results 
based on the simpler dynamics discussed above but allows us to extend our results to 
look at the dynamics of population abundances as well as changes of genotypes. We 
analyzed 5 X 5 ecosystems in which interior, edge, and corner species interact with 
four, three, or two nearest neighbors, as above, and also modified 5 X 5 ecosystems 
in which each interior species interacted with its eight nearest neighbors (adjacent 
and diagonal), each edge species interacted with its five nearest neighbors, and each 
corner species interacted with its three nearest neighbors. The major results are sim
ilar for the two types of systems. The major differences are that ecosystems tend to 
be more volatile as the number of species connected to a given species increases, that 
easy attainment of Nash equilibria requires higher K values, and that consequently 
the optimal K value for maximal population size increases. Table 6.1 summarizes 
the data. Note that K = 4 yields the optimal sustained population size, the highest 
mean aij coupling, the highest fraction of mutualistic couplings, and the highest mean 
R" and, in mutations accepted, corresponds to a sharp drop from the value at 
K = 2. We see next that K = 4 is near the phase transition to order. 

Figure 6.14 examines the onset of frozen components in 5 X 5 ecosystems in 
which each species interacts with eight, five, or three neighbors, by examining the 
number of mutations which are accepted among all 25 species at each generation. 
Note that when K is minimal relative to C (a), the species continue to mutate persis
tently throughout the run. Thus the system never attains a Nash equilibrium. In con
trast, when K = a(b) or K is much larger than C (c), most species stop finding fitter 
mutants after a few hundred generations and hence the ecosystem is largely frozen 
and unchanging. Since here we use random rather than fitter or greedy dynamics, it 
is not entirely certain that the systems have attained true Nash equilibria. 

Figure 6.15 examines the emergence of mutualism in these models. Each species 
grows on its own and hence can be thought of as an autotroph. In addition, however, 
each species might be helped or harmed by its interactions with other species. The 
NK model, via the C couplings, permits the possibility that each species can change 
its genotype such that it is helped by its coevolutionary partners. Table 6.1 shows that 
mean aij values are greater than 0 in all cases. Thus mutualism emerges in these sys
tems. Note also in Table 6.1 that the aij values first increase and then decrease as K 
increases. Figure 6.15 shows the details. For K = 0, massive fluctuations occur in aij 
values as coevolutionary changes propagate through the unfrozen ecosystem. The 
fluctuations keep the aij values low. For K = 4, fluctuations are sporadic and cease 

TABLE 6.1 5 X 5 Square Ecosystems 

K Population aij Fraction mutualistic R; Mutations per species 

0 1593 .009 .506 .158 47.4 
2 2103 .077 .600 .205 38.2 
4 2264 .138 .657 .210 14.0 
8 2064 .090 .599 .196 10.2 

16 1276 .027 .522 .158 5.3 

Note: Interior species are each connected to eight neighbors; edge species, to five neighbors; and corner species, to three 
neighbors. Population is mean sustained population density of a species in the ecosystem, aij is mean value ofthis measure 
of mutualism among the 25 species of the ecosystem, fraction mutualistic is fraction of the couplings into each species for 
which aU > 0 (hence the fraction of the couplings between species which are mutualistic to some degree), R; is mean self
growth rate (autotrophic ifpositive) of the 25 species, mutations per species is the number of mutations accepted per species 
over the simulated coevolutionary period. 
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after about 2400 generations, and the fraction of connections which are mutualistic 
is maximal. For K = 16, ecosystems freeze easily but the fraction of connections 
which are mutualistic has fallen and mean au values have decreased from the opti
mum. Mutualistic interactions appear harder to attain when K is large, perhaps 
because each system harbors more conflicting constraints. Thus an intermediate 
value of K, K = 4, appears to optimize the ease offorming strong mutualistic inter
actions. 

Figure 6.15 also gives (1) a dramatic view of the periods of quiescence and bursts 
of change which propagate through these model ecosystems and (2) for K = 4 and 
K = 16, clear evidence of the attainment of a Nash or near-Nash equilibrium. 

Figure 6.16 shows the population dynamics for these conditions. Note that for the 
highest value of K, K = 16, population abundances increase smoothly to their car
rying capacity. As K decreases, the population behavior becomes more erratic. Geno
typic changes show up as discontinuities in the rate of population change. For K = 
0, it appears that several species decrease monotonically in abundance during the 
run. As emphasized in Table 6.1, the total abundances of all species first increases 
and then decreases as K increases, reaching a maximum at K = 4. Thus there is an 
optimal intermediate of K that optimizes mean sustained fitness, as in the simpler 
dynamics studied above. Here, however, fitness is explicitly expressed as population 
abundance. 

The results both for the coevolving ecosystems without population dynamics and 
for those with population dynamics are a first serious hint that selection may achieve 
coevolutionary systems with jointly optimized structures that optimize the capacity 
to evolve successfully and that the optimum structure is at the edge of chaos. It is 
quite amazing that such model systems approach a poised self-organized critical 
state. The deep questions concern how general such phenomena might be. The 
answers, of course, are unknown. Nevertheless, the general idea is plausible. In over
view, the reasons for such a process in the NK landscapes appear to be that, as K 
increases relative to N, the fitness of local optima decreases, while the numbers of 
local optima and the steepness of sides of peaks increase. It is the balance of these 
opposing forces which dictates that an optimal value of K relative to C and S should 
exist and be attainable by coevolutionary processes tuning landscape structure and 
coupling. These properties may be very widely found in rugged landscapes, for 
increasing K relative to N merely captures the idea of increasing the conflicting con
straints in complex systems. If in general fitness landscapes become more rugged and 
multipeaked as a result of such conflicting constraints, then coevolution to a poised 
state on the edge of chaos may turn out to be a near-universal feature of coevolution. 
Such a general result would be exciting indeed, with potential implications in many 
areas of the biological, social, and perhaps physical sciences. 

Artificial Life at the Edge of Chaos: A Power-Law 
Distribution of Extinction Events in Tierra 

An entirely independent investigation, carried out by ecologist Tom Ray, also sug
gests that coevolving systems create ecosystems which attain the poised edge of chaos. 
Briefly, Ray has begun studying model ecosystems in which the organisms are self
reproducing computer programs that live and spawn within the confined world of a 
computer's memory core. Ray seeds his world, Tierra, with a single type of self-repro
ducing computer program which literally copies itself into a neighboring region of 
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core. During this process, mutations to the code can occur. The resulting variety of 
model organisms compete with one another for access to computer time to carry out 
instructions. A "reaper" eliminates organisms which reproduce slowly. Ray's major 
interest in his intriguing system is to study the emergence of functional interactions 
among these model organisms. Indeed, many such functional roles emerge. Many 
are surprising. Many are even humorous. Inevitably, Ray's critters jointly create an 
ecosystem in which each makes its living-often by cooperating with, often by steal
ing from, its coevolving partners. But Ray's organisms also go extinct. Is there evi
dence for the edge of chaos? 

I asked Ray to investigate the distribution of sizes of extinction events which occur 
in Tierra. His results are shown in Figure 6.17. The data are a power law except for 
very large extinction events. This fall-off presumably reflects finite size effects in the 
model which place an upper bound on the size of avalanches. While these data sug
gest that Ray's system is at the poised state, it shall be necessary to study his system 
in more detail to confirm this impression. If the results withstand further analysis, 
the importance seems great. Ray's model organisms are explicitly coevolving myopic 
adaptive agents that mutually construct the world they inhabit. Is the poised edge the 
general attractor of such a dynamics? It is hard not to notice that the slightly convex 
curve in Figure 6.17 is hauntingly like Raup's data for extinction events in the evo
lutionary record. Both hint, but do not yet prove, that complex ecosystems univer
sally approach the edge of chaos. 

I close this discussion of coevolution by raising the issue of the linking of specia
tion and extinction events into the evolution of ecosystem webs. 
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defined short intervals. (Courtesy of Tom Ray) 
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An endogenous coevolutionary process may trigger bursts of speciation and extinc
tion as well as the integration of new species into the ecosystem. The issue is simple 
to state: Speciation events and extinction events, quite as much as changes in the 
external world, can cause alteration in the structure of the web and unleash ava
lanches of fluctuations in fitness which lead to further speciation and extinction 
events. Thus not only external shocks due to changing physical environments but 
also an endogenous dynamics may regulate speciation and extinction as a function 
of the current structure of the ecosystem. For example, suppose a speciation event at 
some point in the web leads to an incipient species connected to all the same other 
species as the parental species. As we saw in Figure 6.6, as the number of interacting 
species increases, the waiting time to encounter Nash equilibria increases, mean fit
ness during the pre-Nash period decreases, and the amplitudes of fluctuation in fit
ness increase. Thus emergence of an incipient species at a point in an ecosystem web 
locally increases the connectance of the web and should locally tend to melt the fro
zen component. This melting will lead to a lapse from the frozen Nash equilibrium 
for those few adjacent species. In turn, this lapse should be followed by increased 
fluctuation in fitness of all the species in that part of the web and lowered fitness (since 
fitness is typically lower during the pre-Nash fluctuations than at Nash equilibria). 
We have already supposed that fluctuations to lower fitness may increase the prob
ability of extinction events, but during such fluctuations to lower fitness, the number 
of directions which are improved variants increases. Thus fluctuations to lower fit
ness should increase the probability of speciation events as well as the probability of 
extinction events. (The relationship between fitness and speciation is undoubtedly 
complex. Reduced population size leaves fewer explorers of new genotypes. Con
versely, in sexual populations, reduced population size increases the number of 
peripheral isolates and hence increase speciation rates. And, on more familiar argu
ments, speciation rebounds are likely to follow extinction as a result of reduced com
petition.) In short, avalanches of coevolutionary changes are likely to be associated 
with both speciation and extinction events propagating through the system. In turn, 
the speciation and extinction events alter the structure of the ecosystem web and 
thereby may ease propagation of the avalanches. In addition to speciation and extinc
tion events, migration of new species into or out of an ecosystem changes the struc
ture of the system. The problem is to develop insight into the behavior of such a 
coevolving web as its members, their connectance to one another, and the structure 
of their adaptive landscapes change. At present, obviously, we have no such theory. 

At least the following components seem requisite: 

1. New species, resulting from either speciation or immigration, may adapt to a local 
increase in connectance either by increasing K or by reducing, through niche dif
ferentiation, the degree to which they are coupled to neighbors. Species may also 
lower effective coupling by interacting with an intersubstitutable group of species 
which are similar to one another, as perhaps the fox interacts with rabbits, hares, 
and squirrels. Such diffuse interaction lowers the sensitivity to alterations in any 
single coevolving partner. 

2. The balance between speciation and extinction probabilities seems critical. If, as 
fluctuations to lower fitness deepen, speciation were always more probable than 
extinction, then local melting of the ecosystem web would increase fluctuations 
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and could lead to runaway speciation in which increasing connectance in the eco
system might cause the entire system to melt. This extensive melting could cause 
the entire system to fluctuate wildly, driving yet further speciation. Indefinite run
away speciation, however, is implausible, if only because total biomass is limited 
by solar energy intake, and each of very many species with few members is likely 
to be subject to rapid extinction. Thus, ultimately, extinction must be more rapid 
than speciation. For this or other reasons, speciation and extinction rates should 
eventually come into rough balance. Such a balance is observed in the evolution
ary record, where speciation exceeds extinction for the Cambrian and early Pha
nerozoic but the two rates are nearly the same for most of the rest of the Pla
nerozoic (Raup 1986). 

3. Relative time scales are important. If speciation or immigration is slow relative to 
the speed of altering connectance among species, or K values, then a small excess 
of speciation plus immigration over out-migration and extinction might not melt 
an ecosystem. If these processes come into balance, the stability of the frozen state 
will depend on how rapidly old members leave and new members are accom
modated into the structure versus how rapidly that structure can shift. 

These rough considerations make it clear that we need to develop one theory that 
relates all four phenomena: the balance between speciation and extinction, the bal
ance between immigration and out-migration, the integration of members into eco
system, and the propagation of avalanches through the ecosystems. Stenseth (1985) 
has considered some of these issues but without the concept of frozen components. 
The perspective discussed here, noting the role offrozen components, suggests that 
ecosystems may generally coevolve to a self-organized critical state having a frozen 
component that is firm enough to withstand the rate of integration of new members 
into the system, the loss of old members from the system, and external shocks from 
the physical environment. 

Note finally that these themes lead again to a theme from Chapter 3. There we 
encountered the problems of homoplasy and of the rates of branching divergence and 
convergence on fixed or deforming fitness landscapes. The richness oflandscape cou
pling, the number of coevolving partners, and the structure of the ecosystem tune the 
rate of coevolution. During such coevolution, each partner may speciate and diverge 
and converge on the deforming landscapes. Therefore, the parameters of coevolu
tion, here, N, K, C, and S, and the structure of the ecosystem must tune the diver
gence and convergence which will occur on such landscapes. Thus if we can see our 
way to a theory which relates the stationary structure of coevolving systems to the 
numbers of species, to speciation and extinction rates, and to ruggedness and cou
plings of landscapes, we might ultimately have a framework for linking divergence 
and convergence to the endogenous dynamics of coupled coevolving systems. 

COEVOLUTIONARY CONCLUSIONS 

We have examined coevolution in the limited context of coupled NKlandscapes and 
without explicit consideration either of population flow on each landscape or of the 
behavior of coevolving ecosystems subject to invasions by new species (Roughgarden 
1979; Pimm 1982). Further sophistication in these directions is certainly needed. 
Nevertheless, the approach we have used has the virtue of focusing attention on the 
relationships among landscape structure, landscape coupling, the number of 
coevolving partners, and the structure of the ecosystem in the overall dynamics. The 
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NK family appears to be the first family oflandscapes which readily allows these ques
tions to be posed. While the NK family oflandscapes is just one family of correlated 
landscapes, it is critical to emphasize that the image of coupled landscapes is very 
general. It applies to many systems of coevolving components where each agent has 
many alternative actions, each with a fitness which depends on some analogue of a 
payoff matrix. If each agent must explore its own action space by more or less local 
moves. then that agent is attempting to hill climb on its own more or less rugged 
landscape. As it does so, it will cause its partner's landscapes to buckle and deform. 
While the structure and couplings of such coevolving systems are unknown, they 
surely exist. We have sought here some of the conditions necessary for coevolving 
systems to be able to accumulate successes and increase fitness to some maintained 
and fairly high level. 

We may have found some of those necessary conditions. Landscapes must be 
tuned such that the richness of epistatic coupling within each species is roughly equal 
to the product of the coupling between species times the number of other species each 
species interacts with. This statement is rough but open to further investigation. It 
affords a jumping-off point for thinking about how landscape structure and coupling 
influence coevolution. Further, we may have identified selective forces acting at the 
individual level which can mold coevolution such that those remaining in the eco
system fare well. 

We have found evidence, hardly surprising, that the structure of an ecosystem 
governs coevolution. More surprising, we have found evidence for frozen compo
nents in ecosystems, and have raised the possibility that instabilities in the ecosystem 
web may propagate speciation and extinction events. Most important, the structure 
of fitness landscapes on which organisms adapt and the couplings among organisms' 
landscapes are themselves open to selective modifications which increase the inclu
sive fitness of each organism. Organisms jointly evolve the games they mutually play. 
The surprising result may be that each modifies its game so that the whole coevolving 
ecosystem attains the edge of chaos. 

It bears repeating here that we have now encountered two quite different cases in 
which high K values may be better than low K values. In Chapter 3 we saw that high
K landscapes can lead to higher sustained fitness in the face of modest mutation rates, 
despite harboring lower local optima, because the sides of fitness peaks are steep 
enough to offset mutational dispersion. Here we have seen that, in fitness landscapes 
that are deforming rapidly as a result of strong coupling between landscapes, species 
with K high relative to C can coevolve to higher sustained fitness and attain Nash 
equilibria more rapidly than those with low K, despite the fact that optima are lower 
on high-K landscapes. Again, this is likely to reflect the fact that, as K increases, the 
sides of fitness peaks become steeper, allowing the species to respond more rapidly 
to deformations in its landscape as its partners move. 

SUMMARY 

The previous chapter discussed the conditions necessary for the emergence of order 
and for the capacity to adapt in complex parallel-processing systems; the present 
chapter has discussed coevolution. Both point in the direction of a new working 
hypothesis. Organisms which are internally constructed such that they are in the solid 
regime but near the edge of chaos appear to be best able to perform complex tasks 
and to adapt. Coevolving systems whose members have tuned the structure of their 
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fitness landscapes and couplings to other members such that the entire ecosystem is 
poised at the edge of chaos appear to sustain the highest fitness. Thus we may adopt 
the hypothesis that selection attains systems which are poised both internally and 
collectively. If so, we have an important tentative result: Selection optimizes the 
capacity to evolve thanks to an attractor of the selective dx.~mics, a generalized 
poised state. Let us look at this in more detail. 

The capacity to coevolve successfully is not trivial, for mere chaotic twitchings of 
the angry Red Queen may occur. The results we have obtained suggest some tentative 
conclusions about the requirements for successful coevolution. Fitness landscapes 
need to be of sufficient ruggedness to offset the richness of couplings between land
scapes and the number of partners whose moves impinge on each landscape. Oth
erwise viewed, to avoid the Red Queen, epistatic couplings within each member of a 
species need to be large enough to counterbalance epistatic couplings to the coevolv
ing partners. 

We have identified possible selective forces which may tune these parameters such 
that coevolution is typically successful. Selection, in a kind of selective metadyn
amics and as ifby an invisible hand, may act on individual members of a species to 
alter the statistical structure of their fitness landscapes and the richness of their cou
plings to other partners so as to attain ecosystems poised at the phase transition 
between order and chaos. These structured ecosystems harbor nearly melted frozen 
components, optimize sustained fitness, and permit propagation of avalanches of 

! coevolutionary change, ringing out the old species and ringing in the new. The result
ing characteristic power-law distribution between the size and frequency of such ava
lanches offers one hypothesis for explaining the size distribution of extinction events 
in the fossil record. Caution, however, is necessary. The range of coupled landscapes 
that exhibit a phase transition from an ordered to a chaotic regime is unknown. The 
generality of the claim that the phase transition affords the highest fitness is 
unknown. The efficacy of selection to achieve and sustain the edge of chaos against 
drift is unestablished. The applicability to real coevolving systems is untested. 

These results on the requirements for successful coevolution must bear on the 
internal structure and logic of adapting systems. If successful ecosystems coevolve to 
the edge of chaos, selection will have achieved this state by acting on the organisms 
within the system to tune (1) the ruggedness of their fitness landscapes, (2) the rich
ness of couplings between organisms, (3) the sensitivity of one organism's fitness 
landscape to changes in the abundance of phenotypes or other organisms, and (4) the 
number and variety of other organisms in each species' niche. Our study of parallel
processing networks of Boolean elements revealed several major ways in which selec
tion can alter the ruggedness of fitness landscapes. First, networks in the ordered 
regime adapt on very smooth landscapes, those in the chaotic regime adapt on very 
rugged landscapes, and those in the complex regime near the edge of chaos adapt on 
mixed rugged landscapes. In the complex regime, some mutations cause massive 
alterations in behavior, while most cause minor alterations in behavior. This mixture 
provides buffering against large and small deformations in fitness landscapes. A ready 
response lies near to hand for most such changes. Thus evolutionary tuning of an 
organism's position on the order-chaos axis tunes ruggedness of its landscape. In 
addition, we noted that compression of algorithms, via reduction in the number of 
variables which are "hidden units" lying between inputs and outputs in parallel-pro-

\ 

cessing networks, increases ruggedness oflandscape structure ... If. organisms typically 
adapt to the complex regime in order to be capable of complex behaviors, then within 
the complex regime,Juggedness of landscapes can be fu!1h~rtuned by controlling 
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compression Since these factors control landscape ruggedness, they are candidates I 
for being optimized to achieve coevolving ecosystems which are collectively poised 
near the edge of chaos. 

In short, frozen components, the requirements for order, the capacity to adapt, 
and adaptation to the edge of chaos through natural selection may reappear at many 
levels in complex adapting and coadapting systems. A generalized poised state may 
prove to be the ultimate attractor of an evolutionary dynamics. 

This chapter is the last of five (2 to 6) which have attempted to sketch some of the 
major features of adaptive evolution in simple and complex evolving and coevolving 
systems. In the ensuing three chapters, we turn to the wonderful question of the ori
gin oflife. 





PART II 

The Crystallization of Life 





The second part of this book, Chapters 7 to 10, explores a heretical possibility: The 
origin of life, rather than having been vastly improbable, is instead an expected col
lective property of complex systems of catalytic polymers and the molecules on which 
they act. Life, in a deep sense, crystallized as a collective self-reproducing metabolism 
in a space of possible organic reactions. If this is true, then the routes to life are many 
and its origin is profound yet simple. 

This view is indeed heretical. Most students of the origin of life hold that life must 
be based on the self-templating character of RNA or RNA-like molecules. Because of 
such self-templating, any RNA molecule would specify its base pair complement; 
hence a "nude gene" might reproduce itself. After that, according to most thinkers, 
these simplest replicating molecules built up around themselves the complex set of 
RNA, DNA, and protein molecules which constituted a self-reproducing system coor
dinating a metabolic flow and capable of evolving. 

Chapter 7 un/aids this new view, which is based on the discovery of an expected 
phase transitionfrom a collection of polymers which do not reproduce themselves to 
a slightly more complex collection of polymers which do jointly catalyze their own 
reproduction. In this theory of the origin of life,j!.E..!!:!!i.!!:£.cessary that anY_l}1;Qlecule 
reproduce itself. Rather, a collection of molecules has the property that the last steplil' 
the/ormation of each molecule is catalyzed by some molecule in the system. The 
phase transition occurs when some critical complexity level of molecular diversity is . 
surpassed. At that critical level, the ratio of reactions among the polymers to the num
ber of polymers in the system passes a critical value, and a connected web of catalyzed 
reactions linking the polymers arises and spans the molecular species in the system. 
This web constitutes the crystallization of catalytic closure such that the system of 
polymers becomes collectively self-reproducing. 

While heretical, this new body of theory is robust in the sense that the conclusions 
hold for a wide variety of assumptions about prebiotic chemistry, about the kinds of 
polymers involved, and about the capacities of those polymers to catalyze reactions 
transforming either themselves or other, very similar polymers. It is also robust in 
leading to a fundamental new conclusion: Molecular systems, in principle, can both 
reproduce and evolve without having a genome in the familiar sense of a template
replicating molecular species. It is no small conclusion that heritable variation, and 
hence adaptive evolution, can occur in a self-reproducing molecular system lacking a 
genome. Since Darwin's theory of evolution, Mendel's discovery of the "atoms" of 
heredity, and Weismann's theory of the germ plasm, biologists have argued that evo
lution requires a genome. False, I claim. 

Also, this new body of theory is fully testable. If correct, sufficiently complex sys
tems of RNA or protein polymers should be collectively autocatalytic. 

In Chapter 8 these new concepts are extended to the crystallization of a connected 
metabolism. I strongly suspect that, rather than having formed piecemeal, a con
nected metabolism, like a self-reproducing set of catalytic polymers, emerged spon
taneously as a phase transition when a sufficient number of potentially catalytic poly
mers were mixed with a sufficiently complex set of organic molecules. In this 
condition, a critical ratio of number of catalyzed reactions to number of molecular 
species present is surpassed, and a connected web of catalyzed transformations arises. 
Life began whole and integrated, not disconnected and disorganized. 

Chapter 9 compares my new view with more standard hypotheses and attempts to 
place all into a coherent picture. In this integrated view, a self-reproducing metabo
lism involving catalytic RNA and perhaps peptides arose first, and then evolved an 
RNA polymerase, itself most readily supposed to have been a catalytic RNA sequence, 
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or ribozyme. The presence of such a ribozyme polymerasefrees an autocatal]!tiCJ?o.ly
mer system of the requirement for collective catalytic closure and hastens further 
molecular evolution, leading ultimately to-aSeleclive iransition to a code translating 
between polynucleotides and polypeptides. 

Finally, Chapter 10 extends the new view of the origin of life to what 1 shall call 
!..andom-gramma~~. Here, instead of polymers acting on polymers to form new 
polymers under the laws of chemistry, we have symbol strings acting on symbol strings 
to form new symbol strings under the "laws" specified by a particular random gram
mar. Chapter 10 is, in a sense, a conceptual culmination of both Part I and Part II of 
this book. Such grammar models afford a new framework for thinking about the 
emergenceoffunctionally integrated systems which interact with, represent, and know 
their worlds. These systems provide models for the emergence of competition and col
laboration between self-reproducing molecular systems and perhaps even functional 
integration and transformation in economic and cultural systems. Indeed, grammar 
models are natural testbeds for understanding the interweaving of historical contin
gency, with its avalanches of consequences cascading from frozen accidents, and the 
dominion of law, in biology and other deeply historical sciences. 

Part I seeks the principles of organization in complex systems which permit the 
systems to adapt. It ends with the hypothesis that such systems attain the edge of 
chaos, both internally and in their coevolution. Knower and known, life is at the 
boundary of disorder. Yet provocative though such an hypothesis may be, it derives 
from mathematical theory which is silent on the deepest issues: What does it mean 
for Escherichia coli to "know" its world? How is such knowing naturally represented 
in the dynamical models explored in Part I? The disturbing answer is that such know
ing is not naturally represented in the models. Even in models of neural networks 
whose attractors are taken to be memories of external events, it is we the inventors of 
the networks who mandate that the attractor represent the input pattern. The network 
represents nothing to itself. But consider autocatalytic polymer systems, perhaps com
prising sets of RNA sequences mutually reproducing themselves. Let two such systems 
interact by exchanging RNA sequences. A sequence injected by the first system into 
the second might poison that second system such that it no longer is able to reproduce 
itself. Heritable variation and natural selection-Darwinian evolution-might lead 
to the development in each system of defensesfor warding offharmful sequences emit
ted by the other. Indeed, even the evolution of exchange of those sequences which are 
mutually helpful might occur. In short, autocatalytic polymer systems are primitive 
examples of a kind of agency, the locus of survival and death, the locus of integrated 
response to the environment. Given proliferation and Darwinian selection, we have a 
clear notion of what is "good" for such a system, and hence also of the functional 
import of any process to the system's proliferation. Such systems, in the same sense 
that holds for E. coli, come to know their worlds. If so, the principles may be very 
general. Perhaps IBM and E. coli know their worlds in much the same way. 



CHAPTER 7 

The Origins of Life: 
A New View 

In the next three chapters we turn our attention to the wonderful problem of the 
origin of life. What more awesome problem could invite our attention? To many 
recent scholars-Wald (1954), Hoyle and Wickramasinghe (1981), and others
improbable features of current organisms imply improbable origins. If the probabil
ity that a protein catalyzes a given reaction is 10-20 and if a minimal contemporary 
organism such as a pleuromona-like organism has on the order of 1 000 or 2000 
enzymes, then the probability of their joint occurrence by chance is, say, 10-40 000. 

More likely that, as Hoyle says, the whirlwind assemble a 747 from scraps in a junk
yard. Yet here we are, in quite clear contravention to Hoyle's unhappy conclusion. 
We the lucky, or we the expected? 

In the present chapter I shall develop a body of theory, tied to current experimen
tal data, which argues that life is not improbable. On the contrary, I believe it to be 
an expected, emergent, collective property of complex systems of polymer catalysts. 
Life, I suggest, "crystallizes" in a phase transition leading to connected sequences of 
biochemical transformations by which polymers and simpler building blocks mutu
ally catalyze their collective reproduction. This theory is heterodox, as we shall see, 
but fully testable. 

In the first section ofthe chapter, I describe the historical background and current 
status of experimental work in the field. I review data concerning (1) the abiotic ori
gin of the small organic molecules which are the building blocks oflife, (2) the famil
iar hypothesis that DNA or RNA was the first "living" molecule, (3) the current sta
tus of research on RNA catalysts called ribozymes, including efforts to construct a 
ribozyme polymerase able to replicate itself, and (4) the alternative familiar hypoth
esis that the first living molecules were proteins. In my view, all contemporary 
accounts are inadequate. All have failed to note the phase transition to collectively 
autocatalytic sets of polymers which lies at the base of the theory I discuss. Not only 
is such a collectively reproducing polymer system relatively probable, I argue, but it 
is likely to have been the nexus from which polymers able to copy themselves, such 
as a ribozyme polymerase, later evolved. Further, I argue, collective self-reproduc-
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tion in sufficiently complex polymer systems implies that life at the outset required 
a minimal complexity and has always been graced by an innate holism. 

In the second section, I develop the mathematical theory showing that autocata
lytic polymer sets, made up of RNA sequences, polypeptides, or both, are expected 
to form spontaneously. In the third section, I consider sets of polymers that are 
potentially infinite both in terms of polymer lengths and in terms of kinds of poly
mers. The phase transition to autocatalytic sets implies, in such potentially infinite 
sets of polymers, a phase transition between mathematically finite, or subcritical, cat
alytic sets and mathematically infinite, or supracritical, sets. We find critical values 
of the underlying parameters of the theory characterizing this phase transition. Fur
ther, among other implications, there is a characteristic distribution relating num
bers of kinds of polymers in the set and the lengths of those polymers. As we shall see 
in Chapter 8, this size distribution comes close to fitting the size distribution of 
organic molecules. It is a candidate ahistorical universal in biology. 

In the fourth section, we examine the capacity of collectively autocatalytic poly
mer systems to evolve without a genome and find that such evolution is to be 
expected. The final section discusses experimental consequences. Most notable, the 
successes of applied molecular evolution, discussed in Chapter 4, imply that attain
ably complex mixtures of single-stranded RNA sequences and/or peptides should be 
collectively autocatalytic. Experiments to test for the in vitro creation of self-repro
ducing biochemical systems are described. 

BACKGROUND OF THE ORIGIN OF LIFE PROBLEM 

In the present section, I briefly review the three standard theories ofthe origin oflife: 
(I) self-reproducing polymers which replicate by virtue of template complementar
ity, typically with advocacy of RNA or RNA-like polymers; (2) collectively self
reproducing sets of catalytic polymers, typically with advocacy of proteins; and (3) 
self-reproduction by clays or other minerals. 

Any account of life's origin necessarily includes answers to the question of the 
origin of the simple organic molecules whose traffic became metabolism. The stan
dard answers, not disputed here although now doubted by some workers, involve 
appeal to an early reducing atmosphere on the primitive earth coupled with a variety 
of energy sources, a combination which rendered formation of covalent bonds ener
getically favorable. The famous Miller experiments sending electrical discharges 
through a mock primitive atmosphere containing hydrogen, nitrogen, and simple 
carbon compounds and producing a mixture of organic molecules with a number of 
amino acids are the progenitor of all later work in this direction. As is well known, 
Miller obtained modest yields of glycine and alanine and lower yields of many other 
amino acids-some among the standard 20 in present coded proteins, other not 
(Miller 1953, 1955, )957). The results have been repeated and extended by many 
workers (Lawless and Boynton 1973; Miller, Urey, and Oro 1976; see Orgel and 
Miller 1974). Experiments in a similar spirit have shown that the fatty acid building 
blocks of lipids (Lowe, Rees, and Markham 1963) and the building blocks of RNA 
and DNA can be formed under presumptive primitive abiogenic conditions (Oro 
and Kimball 1961, 1962; Lowe, Rees, and Markham 1963; Ferris, Sanchez, and 
Orgel 1968; Schwartz and Chittenden 1977; summarized in Ferris 1987 and in Miller 
1987). It is important to stress, however, that conditions allowing formation of the 
sugars, nucleosides, and nucleotide bases that are the building blocks of RNA and 
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DNA are less thermodynamically and kinetically favorable than those allowing syn
thesis of amino acids. 

It should also be stressed, as Shapiro (1986) has done, that the argument for the 
abiogenic synthesis of the building blocks of life has a certain air of theater about it, 
with rapid scene changes as needed to advance the plot: Conditions A yield a modest 
amount of product X; then X plus Y, the latter obtained, in low yield, under quite 
different conditions B, can be joined in high concentrations under conditions C to 
obtain product Z. As Shapiro points out, the abiogenic conditions used for modest 
yields of many organic molecules differ from one type of molecule to another. Thus 
it behooves our caution when thinking that all transformations might take place 
under common conditions abiogenically. If not, then the congregation of these pre
cursor compounds may be problematical. Be that as it may. Let us accept the sym
pathetic view: Let there be an abundance of small organic molecules in the promised 
dilute, or perhaps not dilute, early ocean, tidal pool, geyser basin, atmospheric drop
let. This is not the problem I want to attack. 

The problem I do want to attack is this: How hard is it to obtain self-reproducing 
systems of complex organic molecules capable of a metabolism coordinating the flow 
of small molecules and energy needed for reproduction and also capable of further 
evolution? Contrary to our expectations, the answer, I think, is that it may be sur
prisingly easy. In particular, I shall try to show that any sufficiently complex system 
of peptide or RNA polymers capable of catalyzing the formation and cleavage of new 
polymers either from other peptides or RNA polymers or from their monomeric 
building blocks can be expected to contain self-reproducing subsystems capable of 
metabolism and evolution. 

The core of the theory is this: As the complexity of a collection of polymer cata
lysts increases, a critical complexity threshold is reached. Beyond this threshold, the 
probability that a subsystem of polymers exists in which formation of each member 
is catalyzed by other members of the subsystem becomes very high. Such sets of poly
mers are autocatalytic and reproduce collectively. Thus the new view I shall propose 
is disarmingly simple. Life is an expected, collectively self-organized property of cat
alytic polymers. 

DNA or RNA First 

There are two dominant views of the origin of life, once beyond the origin of small 
organic molecules. The overwhelming majority of workers favor the view that either 
DNA or, more probably, RNA is the primordial molecule oflife. The loyal opposi
tion holds that proteins were first, and sufficient. The remaining party to the discord 
is championed by Cairns-Smith (1982), who supposes that clay surfaces were able to 
replicate, by templating, specific "imperfections," or electronic arrangements, on 
successive layers and used such arrangements to catalyze subsequent reactions 
among organic molecules to invent a metabolism, proteins, and eventually genes. 

Any DNA-or-RNA-first theory has two central and powerful arguments in its 
favor. First, all life is now based on DNA or RNA as the stable storage form for 
genetic information. Second, double-stranded DNA and RNA are beautiful exam
ples of Schrooinger's aperiodic crystals, which are also point-point local templating 
complements. Since Watson and Crick remarked, with uncertain modesty, that the 
base pair rule associating A with T and C with G on complementary strands of the 
double helix carried obvious suggestions about how the genetic material might rep
licate, any sensible person considering the problem of self-replicating molecules must 
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be drawn to the beauty of nature's apparent choice. The base pair sequence along 
each strand specifies the precise complementary sequence along the remaining 
strand. That one strand specifies the other is not an accident; it reflects the remark
able shape identity of the hydrogen-bonded AT and CG pairs which allows an undis
torted double helix to form. Thus the two strands are, as just intimated, local shape 
complements. The complementarity holds at each base along the nucleotide chain. 

Contemplation of the precision of double-stranded DNA or RNA engenders one 
of two opposing responses: either "how fortunate that such self-complementary 
molecular forms are occasioned by the laws of chemistry and physics" or "how 
unfortunately special and untypical is this almost miraculous self-complementary 
structure; are we really to think that life based on carbon chemistry requires such 
symmetry?" 

While the obvious self-complementarity of DNA or RNA is a persuasive argu
ment in its favor as the preeminent candidate for the first replicating molecule, two 
equally persuasive, perhaps overwhelming difficulties assail the hypothesis. First, 
compared with the abiogenic synthesis of the amino acid precursors of pep tides and 
proteins, the abiogenic synthesis of RNA or DNA precursors is, respectively, hard 
and harder (see, for example, Schwartz and Chittenden 1977). Orgel (1987) points 
out that there is only one plausible prebiotic synthesis of ribose: the polymerization 
of formaldehyde. In this reaction pathway, ribose is formed as one ofa large number 
of sugars and never as the major product. Similarly, the condensation of adenine or 
guanine with ribose leads to complex isomeric mixtures containing relatively small 
amounts of the natural nucleoside. Prebiotic synthesis of pyrimidine nucleosides is, 
Orgel suggests, even more difficult. And the possibility that the accurate replication 
of an oligoribonucleotide could occur directly in an unfractionated, racemic pre
biotic soup seems remote (Joyce, Schwartz, et al. 1987; Orgel 1987). Second, no 
uncatalyzed replication of arbitrary sequences of single-stranded RNA or DNA has 
yet been attained (Joyce 1987; Orgel 1987). The experimental facts surrounding this 
present failure require attention. 

Orgel and his co-workers have carried out extensive experiments aiming to 
achieve nonenzymatic template replication of arbitrary RNA or RNA-like 
sequences. Typical experiments utilize either single-stranded homopolymers of a sin
gle base-poly(U), poly(C), or poly(A)-or else copolymers of two or more of the 
four bases as a preformed "template" (Joyce, Inoue, and Orgel 1984; Chen, Inoue, 
and Orgel 1985; Joyce and Orgel 1986). The specificity of Watson-Crick pairing is 
used to bind monomers at complementary sites along the preformed template. Then, 
with the help of a suitable condensing agent, the adjacent template-bound monomers 
can be joined to form oligomeric products. The fundamental difficulty is that only 
preformed templates which are preferentially rich in C work well. Thus even when 
nonenzymatic synthesis leads to a complementary single-stranded RNA molecule of 
reasonable size, that molecule is preferentially rich in G rather than C. Hence the new 
molecule is unsuitable to act as a template to re-create the initial C-enriched RNA 
polymer (Joyce 1987). Templates rich in A, U, or G are unsuitable for different rea
sons, each of which appears difficult to overcome. For example, G-rich polymers 
tend to fold back upon themselves in stable secondary structures with hairpin loops. 
Additional problems concern formation of the proper 3'-5' bonds between adjacent 
residues rather than the more common 2'-5' bond. Thus using poly(U) as a template 
and activated A (adenosine 5'-phosphorimidazolide, ImpA), the overall yield of 
poly(A) is 18: 1 in favor of 2'-5' bonds rather than 3'-5' bonds (Lohrmann and Orgel 
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1978). At present, the best results have been achieved with C-rich templates and 
another activated form of the monomers (2-MeImpG, A) in the presence of Zn2+ 
(Inoue and Orgel 1983). 

As Joyce (1987) points out, the difficulty is severe and rests on the following cen
tral ideas: (I) RNA is to act as the carrier of genetic information; (2) such information 
requires arbitrary sequences of bases in the replicating RNA strands; and (3) repli
cation of RNA strands is to be carried out, without an enzyme, by a polymerase-like 
function. Polymerases act to add successive monomers to a growing RNA chain, 
where the position of each new monomer is specified by the (arbitrary) base in the 
corresponding position in the preformed template. As Joyce notes, "In a nonenzy
matic system ... nucleotide polymerization should be regarded as consisting of 16 
different reactions, involving the addition of anyone ofthe four activated monomers 
to an oligomer terminated by anyone of the four nucleotides. It will not be easy to 
find a reaction system that allows all 16 of these reactions to proceed at an acceptable 
rate." Note also that the proper 3'-5' bonds, rather than 2'-5' bonds, must be formed. 
Obviously, current difficulties do not mean that polymerase-like replication of arbi
trary single-stranded RNA sequences without enzymes is impossible. Current work 
is beginning to focus on RNA-like polymers which are chemically simpler than RNA 
and yet may allow template-directed replication by successive addition of monomers 
complementary to an arbitrary sequence (Joyce, Schwartz, et al. 1987; Orgel 1987). 
If successful, the transition from simple polymers to RNA and DNA will require an 
account. 

The recent discovery of highly efficient catalysis by RNA (Kruger, Grabowski, et 
al. 1982; Zaug and Cech 1985; Cech 1986a, 1986b, 1987; Szostak 1986; Been, Bar
fod, et al. 1987; Kay and Inoue 1987; Orgel 1987) has increased enthusiasm for the 
hypothesis of an RNA world (Buzayan, Gerlach, and Bruening 1986; Darnell and 
Doolittle 1986; Gilbert 1986, 1987; Gilbert, Marchionni, and McKnight 1986; 
Hutchins, Rathjen, et al. 1986; Orgel 1986) in which RNA molecules both carry out 
template replication and act as catalysts, including acting as polymerases for tem
plate replication of arbitrary RNA molecules. Specifically, eukaryotic genes are orga
nized into two types of fragmented segments: exons, which code for parts of a specific 
protein, and intervening introns, which do not and are spliced out during maturation 
of messenger RNA (mRNA) molecules prior to their transport from the nucleus to 
the cytoplasm. It has now been shown that certain introns can catalyze their own 
exicison from single-stranded RNA. More exciting, the same RNA sequences can 
catalyze anyone of three possible reactions: transesterification reactions which lead 
to elongation of one of the two RNA polymer substrates by one monomer, ligation 
of two independent single-stranded RNA molecules, or cleavage of one independent 
RNA sequence into two smaller sequences. 

The ribozyme-catalyzed dismutation reaction described by Zaug and Cech (1986) 
is an example of the first kind of reaction. Here two five-carbon polymers are trans
formed to a four-carbon polymer and a six-carbon polymer. The reaction produces 
no new internucleotide bonds, however. It is encouraging because it leads to poly
mers that are longer than those present in the substrate molecules. Hence it may be 
a prototype for a polymerase-like activity in a ribozyme. But as Orgel (1987) points 
out, the ribozyme differs from a true polymerase in that the former utilizes an inter
nal template specific for the substrates to be manipulated rather than an arbitrary 
external template. That is, the ribozyme acts by binding specific substrates and medi
ating a specific transesterification reaction. In this respect, the ribozyme is like pro-
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Hexanucleotlde template 

d ( 3 o-PIIc:~.G.~.G.~.C p G.~.C.~.C.r:: 5" ) . .. . .. 
d (S"MoC·:C~Gj,·3") d{ ;"·C~·G~·Gpo-PhCI3") 
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Trideoxynucleotide substrates 

d ( J" o-PhC'p G pG p C pG pep C Me 5" ) . . . . . . . . . . . . 
d ( 5 MeG p cpG pCp G pGp o-PhC,J" ) 

Figure 7.1 Autocatalytic replication of an RNA hexamer which specifically aligns with and ligates 
its component trimers. (From Joyce 1987) 

teolytic enzymes (to be discussed below), which break proteins at specific sites and 
religate the fragments into new combinations in specific ways without creating new 
peptide bonds. 

Given the difficulty of attaining template replication of arbitrary single-stranded 
sequences by a progressive addition of monomers to an arbitrary single-stranded 
template, it is very interesting that the autocatalytic replication of specific small oli
gonucleotides by a template mechanism has been demonstrated. At present, there 
are two examples. Both involve a self-complementary template. The first utilizes two 
trideoxynucleotide substrates and a hexanucleotide template (von Kiedrowski 1986) 
(Figure 7.1). The substrates are bound to the template by base pairing and, in the 
presence of a condensing agent, condense to form a new template molecule. The tem
plate-template complex can dissociate to yield two free template molecules, each 
able to bind additional substrate and begin a new round of synthesis. Thus this sys
tem is autocatalytic. The second example involves modification of the 3' -OH of 
ribose to increase reactivity and use of a tetranucleotide template and two dinucleo
side substrates (Zielinski and Orgel 1985) (Figure 7.2). Again, this specific template 
replicates autocatalytically given activated dinucleoside substrates. 

I wish to stress an important feature of these two reactions. In each case, the tem
plate can be considered to be acting as a specific ligase. That is, the template molecule 
acts as a specific "enzymatic" site which holds and orients two substrates in prox
imity such that a condensing agent can create a bond between them. The template is 
not arbitrary; rather, it is specific for the pair of substrates which are joined. In this 
regard, the template functions as a specific ligase in the same sense as do proteolytic 
protein enzymes which recognize specific amino acid sequences within proteins and 
cleave or religate the protein substrate at specific sites. In the major part of this chap
ter, I shall attempt to show that complex systems of polymers mediating such ligation 
and cleavage reactions can be collectively autocatlytic. Thus I believe it is important 
to focus on the fact that even small RNA sequences can act as specific ligases. 

Tetranucleotide template 
3" N.~ P NH~ PNHq P NHq 5" . . . . 

5" G· NH P C·NH, 3" 5" p·G NH p·C N. 3" 

~ 
COl 

Dinucleotide substrate!> 

3" N. C P NH G P NH C P NH G 5" . . . . . . 
5" G NH peNH p G NH peN, 3" 

Figure 7.2 Autocatalytic replication of an RNA tetramer which specifically aligns with and ligates 
its component dimers. (From Joyce 1987) 
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I should make a terminological point. I shall use the term "ligase" in a general 
sense to refer both to ligation mediated by a hexamer, as described above and based 
on simple base pairing, and to ligation mediated by ribozymes, where base pairing is 
part of the catalytic mechanism in aligning the substrate sequences but other mech
anisms may also playa catalytic role in the reaction. 

The ligase activities of small RNA templates would be expected to be less efficient 
than those oflarger RNA enzymes, on the same general basis that one expects small 
peptides to be less efficient enzymes than larger proteins. In both cases, the larger 
molecule can bring higher specificity and more binding energy to the reaction. In 
general, the known ribozymes, derived from type II and type I introns, are reasonably 
large, consisting of several hundred nucleotides. That ribozymes can catalyze cleav
age and ligation reactions on exogenous RNA has now been established for the self
cleaved L-19 IVS RNA from Tetrahymena pre-rRNA (Been, Barfod, et al. 1987). 
The fragment acts as a sequence-specific endoribonuclease, cutting other RNA mol
ecules at specific sites and capable of religating the two cut fragments. Furthermore, 
mutation of the binding site on the ribozyme alters the substrates upon which it acts 
in predicted ways (Zaug et al. 1986). Doudna and Szostak (1989) have shown that 
the Tetrahymena ribozyme can ligate multiple oligonucleotide sequences lined up 
on a complementary RNA sequence. At present, attempts are under way to generate 
a ribozyme able to act as a polymerase and efficiently replicate any arbitrary single
stranded RNA sequence, including, of course, itself. Such an effort may succeed and 
would be a tour de force but faces the difficulties noted by Joyce above and by others 
enumerated below. 

In summary, to date no means have been found to achieve template-directed rep
lication of arbitrary RNA sequences by sequential addition of monomers to an arbi
trary external template. Such mechanisms may be found, of course, and may obtain 
without ribozymes or with ribozyme polymerases. In the meantime, it is clear that 
specific RNA sequences can act as template ligases or as true ribozyme ligases to 
ligate small RNA sequences, or to cleave and ligate exogenous RNA sequences, as 
well as to mediate transesterification reactions. These established facts suggest that 
complex mixtures of RNA sequences are strong candidates to achieve collective self
reproduction. Ribozyme polymerases, rather than arising de novo and sustaining 
themselves in evolution against mutational degradation from Eigen and Schuster's 
(1977) error catastrophe, might then plausibly evolve from such stable, collectively 
autocatalytic RNA polymer systems. 

Beyond the deep problems of achieving self-replication of arbitrary RNA mole
cules by template mechanisms lie other fundamental issues. Suppose a replicating 
double-stranded RNA molecule existed. Such a molecule, a nude gene, has as yet no 
capacity to gather about itself the rich, complex, interwoven web of chemical trans
formation we call a metabolism. This brief statement parses into two quite different 
sets of problems, one commonly commented upon, the other not. 

The catalytic machinery of the cell is overwhelmingly due to proteins, which are 
the primary enzymatic effector mechanisms facilitating reactions and funneling met
abolic flow down specific corridors of transformations. DNA carries out no direct 
catalytic activities; it is remarkably inert. While the discovery of the first examples of 
catalytic capacity in single-stranded RNA is obviously very intriguing, cells never
theless do use proteins. Thus any theory of the origin oflife based on self-replicating 
DNA or RNA must include a description of a mechanism by which DNA or RNA 
molecules can be coupled to the synthesis of proteins capable of catalyzing not only 
metabolic reactions but also the replication of the DNA or RNA. In contemporary 
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cells, of course, the relationship between DNA and protein is mediated by the enor
mously sophisticated mechanisms of coding and translation. The key element in 
translation of a gene to the corresponding protein is, in fact, carried out by specific 
proteins which catalyze the attachment of the proper activated amino acid residues 
to each transfer RNA (tRNA). More precisely, DNA is transcribed to complemen
tary single-stranded RNA, perhaps processed to excise introns and so on, and then 
translated. Translation is carried out by tRNA molecules, each with (I) an anticodon 
site which is complementary to and thus specific for a given base pair triplet and (2) 
a site to bind a specific corresponding activated amino acid. Binding of that amino 
acid is carried out by a specific protein synthetase enzyme. Thus the effective trans
lation of the genetic sequence of base triplets constituting the coded information for 
the linear sequence of amino acids in the protein rests on the synthetase. Proteins 
translate genes into proteins. Any DNA-or-RNA-first theory confronts the origin of 
the code. The conceptual obviousness of replication by self-templating RNA or DNA 
here gives way to confusion about how such a system might emerge: Its emergence 
seems to require its prior existence. One elegant body of ideas about the onset of cod
ing as a self-organized process, due to Bedian (1982), will be discussed in Chapter 9. 

The coding problem, intense as it is, is really a fragment of a larger problem: How 
would a nude gene gather a coupled metabolism about itself? This, too, I believe, is 
a very deep problem. It can be examined in a different form, a form which has 
received very little attention. The simplest free-living entities, the pleuromona-like 
organisms, are on the order of 0.1 the size of a bacterium, have a very simplified cell 
boundary with a simple bilipid layer, and have a genome which encodes perhaps 
1000 to 2000 proteins; these proteins play the usual structural and enzymatic roles 
in a coupled metabolism. Viruses can be as simple as RNA or DNA strands encoding 
perhaps a dozen proteins. But viruses are not free-living entities; they are obligate 
parasites forced to usurp the machinery of their host cells in order to carry out their 
own replicative life cycle. Viruses are highly sophisticated parasites which have vir
tually certainly managed to simplify their metabolic system because of that present 
in the host. Thus it is an observed fact that all free-living organisms exhibit a minimal 
and substantial level of complexity. The deep question is, Why? 

It is not trivial that the DNA-or-RNA-first theory-in which we envision a single 
RNA molecule capable of self-replication-gives no obvious answer to this question. 
We have no conceptual problem in supposing populations of replicating RNA or 
DNA molecules, each competing with the other, such that the most rapidly replicat
ing molecule plus its family of related sequences wins the Darwinian selection race. 
Indeed, this is exactly the picture developed by Eigen and Schuster and described in 
Chapter 3. 

U sing this fundamental theory, how might we account for the observed minimal 
complexity in free-living entities? We cannot assert that complexity is requisite for 
life. By hypothesis, simple complementary strands of DNA or RNA suffice for attain
ing evolving families of similar replicating molecules. The very simplicity of self-tem
plating isjust the conceptual virtue needed to help us see that life might have started 
without unduly improbable combinations of rare events. But such a "pseudospecies" 
family of sequences has, as yet, no collaborative metabolism, nor need it have a 
greater complexity. 

The remaining alternative, starting with nude genes-for example, a self-repro
ducing ribozyme polymerase-is to assert that the original living molecules gradually 
gathered about themselves the increasingly complex machinery of catalysis and 
metabolism, thereby increasing the amount of information able to be stored in the 
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DNA or RNA genetic material without mutational degradation, all this a result of 
increased precision of replication under enzymatic control. In turn, this increased 
complexity gradually ensured the competitive advantage of the more sophisticated 
over the less sophisticated. Undoubtedly, this is the dominant view, and it does have 
merit. Yet its only answer to why we now observe a given minimal level of complex
ity is historical accident. Entities having the complexity of pleuromona-like organ
isms happen to be the simplest free-living survivors. Why do we not observe systems 
as simple as viruses, or even simpler, living in Darwin's shallow pond? Because, we 
respond, such hapless forms would soon be outcompeted by present-day organisms. 

In short, the replicating-RNA theory, ribozyme polymerase or otherwise, offers 
no theory on why free-living organisms "must" exhibit a minimal complexity. We 
have another evolutionary just-so story. Like other just-so stories in evolution, of 
course, it may be true. 

In summary, the nude gene theory holds fast to the idea that life started simple, 
with simple replicating molecules, and gradually learned to be complex. I hold just 
the opposite view. I shall argue that life started as a minimally complex collection of 
peptide or RNA catalysts capable of achieving simultaneously collective reflexive 
catalysis of the set of polymers (hence replication of an autocatalytic set of polymer 
catalysts) and a coordinated web of metabolism. Thus one of the virtues of the body 
oftheory I shall develop is that it inherently accounts for the fact that free-living enti
ties exhibit a minimal complexity. 

Protein First 

The alternative dominant strand in considering the origin of life proposes that pro
teins were the first living molecules. Any protein-first theory has several immediate 
advantages but a number of stellar problems. The advantages include the following. 
First, prebiotic experiments reliably show that it is quite easy to obtain many amino 
acids in moderate to low yields in a variety of plausible circumstances. Further, the 
spectrum of yield abundances, highest for alanine and glycine, closely mimics the 
spectrum of abundances in known proteins. Second, formation of peptides or of pro
teinlike polymers of amino acids, called proteinoids, under plausible prebiotic con
ditions has been demonstrated (Fox, Jungck, and Nakashima 1974; Fox and Dose 
1977; Fox 1980, 1981; Fox and Nakashima 1980; Fox, Nakashima, et al. 1982). Per
haps the most critical advantage of the protein-first hypothesis is the fact that even 
small abiogenic peptides, as well as Fox's large proteinoid material, readily exhibit a 
wide variety of catalytic activities. While we are used to thinking of enzymes as highly 
adapted, well-perfected catalysts, which indeed they are, it appears to be the case that 
attaining at least weak catalytic activity is "easy" with peptides. Thus a number of 
simple tripeptides with amino acids having a ring structure, such as tryptophan, as 
the middle member appear rather readily to catalyze cleavage of depurinated DNA 
(Behmoaras, Touline, and Helene 1981a, 1981b; Pierre and Laval 1981). The tri
peptide leu-lys-leu catalyzes its own self-condensation to form leu-lys-leu-leu-lys-Ieu. 

Recognition that abiogenic peptides typically exhibit a spectrum of weak catalytic 
activities is not new. Cavadore (1971) synthesized large populations of random pep
tides having a mean of 50 amino acids per peptide. Such complex mixtures catalyzed 
numbers of reactions. Given the complexity of such mixtures, it has been impossible 
to discern whether many members catalyze the target reactions poorly or a few cat
alyze the reactions very well. The same observations were made repeatedly by Fox 
and his co-workers. When proteinoid material is placed in water, it forms hollow 
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vesicles called microspheres, made up of a proteinoid shell surface and an aqueous 
interior. Suspensions of microspheres can carry out a variety of catalytic activities, 
albeit weakly. It is particularly important that proteinoid material can catalyze the 
formation of additional peptide bonds, often coupled with the degradation of A TP to 
ADP. Knowing this fact might lead to the expectation that formation of proteinoid 
material might exhibit an autocatalytic component. As the material forms, it might 
help catalyze further peptide bond synthesis to generate yet more proteinoid. If so, 
the rate of formation of proteinoid should be an accelerating function of time. This 
has been observed (Fox and Dose 1977; Fox 1980). In fact, proteinoid material also 
catalyzes the formation of nucleotide bonds, coupled with the degradation of A TP 
to ADP (summarized in Fox and Dose 1977). 

Fox's microspheres exhibit a number of other remarkable properties. Because 
microspheres are closed vesicles, Fox has long suggested them as protocells, able to 
enclose an internal environment. In a mother liquor rich in proteinoid material, 
microspheres exhibit "budding" by an accretion mechanism, followed by "division" 
to form two independent microspheres. They exhibit selective diffusion of some 
small molecules across the peptide "shell" and even appear to support a trans-shell 
electrical potential reminiscent of that seen across lipid bilayer membranes of con
temporary cells. 

Protein-first theories become substantially more plausible if there are grounds to 
believe that the peptides and polypeptides which might have been utilized in early 
organisms were quite short. Very interesting evidence supporting this has been raised 
by Longberg and Gilbert (1985). These authors argue that contemporary RNA mol
ecules contain clues to the earliest catalytic polypeptides, which might have typically 
been made of between 30 and 40 amino acids. Later proteins would evolve by recom
bination and divergence of relatively few molecular themes. A length of 30 to 40 
amino acids is in the same size range as that explored by Cavadore. Naturally, evi
dence that primitive catalytic polypeptides were 30 to 40 units long neither proves 
nor disproves a protein-first theory. An RNA-world theory would want short pep
tides to be catalytic as well; otherwise, evolution of coding and the specificity to syn
thesize long proteins would be even more difficult to understand. 

Protein-first theories confront significant difficulties. Foremost among these is the 
difficulty in envisioning how a protein might replicate itself. Large proteins are often 
globular, with hydrophobic groups on the interior and hydrophilic groups on the sur
face. Unlike RNA, where an intellectually simple and satisfying local point-point 
homology links complementary positive and negative strands by AU and GC base 
pair rules, no such local point-point complementarity is known for a protein. Thus 
there is no obvious way for a peptide or protein to specify its linear structure by 
a template-like mechanism. This conclusion is so transparent that it has stood 
as the dominant objection to a protein-first theory. There are other problems, 
however. 

Suppose we conceive, even demonstrate, some mechanisms such that one or a 
collection of peptides or proteins is able to replicate autocatalytically. It is not obvi
ous that such a single molecule or such a collection would be capable of further evo
lution. We are used to considering the fruits of selection as "stored" in the DNA. 
Where would these fruits be stored in an autocatalytic protein or set of proteins? In 
the structure of some single replicating protein? In the collective dynamics of an 
autocatalytic collection of proteins? Might such systems undergo selective adapta
tion, or even random drift, to form "new" autocatalytic systems? And if these and 
still further questions could be answered, the following arises: Just as a DNA-first 
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theory must invent a code and proteins, any protein-first theory must invent trans
lation and the genes. 

A Double Origin7 

Before continuing, it is very much worth a pause to ask the following. Suppose auto
catalytic sets of polymers made of catalytic peptides and catalytic RNA sequences, 
coupled with the subsequent evolution of peptide or ribozyme polymerases and 
hence template-replicating RNA or DNA, are possible? Then we are entitled to imag
ine the coevolution and symbiosis oftwo primitive life forms: collectively autocata
lytic systems and template-replicating systems. It is hard to avoid the thought that 
this dual existence would make life, forgive the craven, a lot easier. I shall return to 
this possibility in Chapter 9, but it is intuitively obvious that if autocatalytic sets of 
peptides and catalytic RNA can coexist and then couple to arbitrary template-rep
licating RNA or DNA sequences, the way is open for the evolution of protein coding. 
It is no longer necessary to solve the chicken-egg problem, which arises with the nude 
template-replicating RNA molecule, that useful proteins must first exist in order to 
code for themselves. 

Protein-First Colleagues 

The central conceptual problem with a protein-first view, as just stressed, is to under
stand whether and how either a single protein or a set of proteins might be able to 
reproduce. The first person to tackle this problem, to my knowledge, was Calvin 
(1969). He proceeds by first pointing out the well-established, but less well-known, 
fact that a number of peptides in contemporary bacteria and higher organisms are 
synthesized entirely by enzymatic means, rather than by coding. Examples include 
glutathione, which is a tripeptide in mammals, and several antibiotics, such as gra
macidin, which is a peptide ring structure with Land D amino acids synthesized by 
bacteria. He then suggests two alternative pictures of replication in proteins. He ima
gines a single peptide which autocatalytically adds a succession of specific amino 
acids to one end. Thereafter, he imagines that the initial peptide cleaves the newly 
grown tail from the initial peptide seed. If the tail is the same as the seed, the polymer 
has replicated. This image is at least conceivable. It is hard to picture, however, how 
such a remarkable molecule could evolve to mutant forms which retained that 
remarkable property. Further, such a molecule replaces the nude RNA gene with a 
nude protein. That is, it is hard to imagine such a peptide gathering around itself a 
connected metabolism. 

In his second alternative, Calvin supposes a set of peptides having the property 
that each member had its formation catalyzed by one or more members. Thus it is 
the set of peptides which is collectively autocatalytic by virtue of reflexive catalysis 
among its members. Calvin briefly postulates this possibility but carries the analysis 
no further. What is interesting is that Watson (1965), in attempting to demonstrate 
that replication necessarily is based on the point-point complementarity of RNA or 
DNA, also considers reflexively autocatalytic sets of peptides but dismisses the pos
sibility as too complex. On the other hand, serious attempts have been made in arti
cles by Kauffman (1971b, 1986b), Rossler (1971, 1974, 1983), and Cohen (1988), 
and in a delightful book by Dyson (1985) modeled after Schrooinger's What Is Life? 
(1944). My own view of the best formulation of an autocatalytic polymer set theory 
is presented next. 
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AUTOCATALYTIC SETS OF CATALYTIC POLYMERS 

Building a Theory of Emergent Collective Autocatalysis 
Among Catalytic Peptides or Catalytic RNA 

The remainder of this chapter discusses the theory of autocatalytic sets of polymers. 
It is important to emphasize that the theory applies equally to peptides with catalytic 
properties and to catalytic RNA. This is no small point. We noted above that tem
plate replication of arbitrary RNA sequences has not been attained without a poly
merase. In contrast, ligase reactions by RNA catalysts are well known and even occur 
with small, specific template RNA sequences. Ribozyme polymerases may prove 
chemically possible, but highly unlikely to form de novo and evolutionarily unstable 
to Eigen and Schuster's error catastrophe. Thus, as noted above, a body of theory 
which shows that the formation of collectively autocatalytic sets of RNA sequences 
that catalyze ligation and cleavage reactions may be better able to account for repli
cation among RNA catalytic sequences than does ribozyme-polymerase-mediated 
template replication of arbitrary RNA sequences. Indeed, if both peptides and RNA 
can catalyze reactions involving the other kind of polymer, there is no reason not to 
envision mixed polymer systems. Some indication that ribozymes can act on other 
kinds of polymers has been reported by Shvedova, Korneeva, et al. (1987), who find 
that a specific RNA molecule containing many modified bases is the catalytic com
ponent of a polyglucan branching enzyme. 

The theory we develop here, coupled with the discussion of ordered dynamics in 
Boolean networks in Chapter 5, is a step toward a deep theory of homeostasis. 
Homeostasis may be an expected dynamical property of complex systems of reflex
ively catalytic organic molecules. It is a direct consequence of molecular specificity: 
Dynamical systems in which each variable is affected by few other variables sponta
neously are homeostatic. But low connectivity in a dynamical system, such that each 
variable is affected by few others, is just a renaming of high molecular specificity of 
catalysis and ligand binding in chemical systems. In other words, I hope to show that 
self-reproduction and homeostasis, basic features of organisms, are natural collective 
expressions of polymer chemistry. 

Some Requirements for Autocatalysis 
in Sets of Peptides or Ribozymes 

In order for autocatalytic sets of pep tides or RNA molecules to exist, at least the fol
lowing are necessary: 

1. Peptides and polypeptides must be capable of catalyzing the formation and cleav
age of peptide bonds; ribozymes must be capable of catalyzing the formation and 
cleavage ofinternucleotide bonds. 

2. In order for autocatalytic sets of peptides or RNA molecules to have played a role 
in prebiotic evolution, it is necessary that abiogenic formation of such polymers 
capable of catalyzing formation and cleavage of peptide and phosphodiester 
bonds be feasible. 

3. In order for reactions to occur effectively, the reactants must be confined to a suf
ficiently small volume. 

4. An anabolic flux synthesizing larger peptides from some maintained "food set" 
of amino acid monomers, small peptides, or other molecules must be thermo-
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dynamically feasible; an anabolic flux synthesizing larger RNA polymers from a 
food set of nucleotides, small oligonucleotides, or other molecules must be ther
modynamically feasible. 

5. Catalytic "closure" must be achieved and maintained. That is, it must be the case 
that every member of the autocatalytic set has at least one ofthe possible last steps 
in its formation catalyzed by some member of the set, and that connected 
sequences of catalyzed reactions lead from the maintained food set to all members 
of the autocatalytic set. 

The main focus of the model I shall present is on this last item, the conditions 
required for catalytic closure. Nevertheless, the first four issues in the list above are 
of basic importance and require at least brief discussion here. 

1. It is perfectly familiar that proteins can catalyze the cleavage and synthesis of pep
tide bonds. Trypsin, the well-known gut enzyme, is merely the best-studied case. 
An enormous variety of proteases have been analyzed, from trypsinlike enzymes 
of relative low specificity to members of the clotting cascade which cleave essen
tially single target polypeptides. As noted, Fox's proteinoid material also catalyzes 
formation of peptide bonds. Our discussion of ribozymes above makes it clear 
that these catalyze the formation of specific 3'-5' phosphodiester bonds between 
nucleotides. 

2. As noted above, a variety of abiogenic origins of peptides and proteinoids are 
plausible (Fox and Dose 1977; Fox, Nakashima, et al. 1982), and such peptides 
and proteinoids carry out a variety of catalytic activities (Cavadore 1971; Beh
moras, Toulme, and Helene 1981a, 1981b; Pierre and Laval 1981). The recent 
discovery of catalytic antibodies (Pollack, Jacobs, and Schultz 1986; Pollack and 
Schultz 1987) and of mimetic and liganding peptides among random epitopes 
(Cwirla et al. 1990; Devlin, Panganiban, and Devlin 1990; Scott and Smith 1990) 
strongly supports the conclusion that sufficiently complex mixtures of peptides 
having chemical function will abound. Abiogenic formation of single-stranded 
RNA seems rather more difficult, as noted by Orgel (1987). However, achieving 
RNA sequences with catalytic activity need not require that all bonds be 3'-5', or 
that proper optical activity be maintained at each residue. The results of Tuerk 
and Gold (1990) and those of Ellington and Szostak (1990) discussed in Chapter 
4 suggest that the probability of finding RNA sequences able to bind arbitrary 
substrates is not excessively low. Presumably, achieving ribozymes is on the same 
order of difficulty. In short, it is reasonable to think that abiogenically derived 
peptides, RNA sequences, and related polymers are feasible and that a complex 
collection of sequences would be blessed with an abundance of chemical ligan ding 
and catalytic functions. 

3. I shall return below to the problem of confinement of polymers to a small enough 
volume to permit reaction. A number of suggestions are familiar, including Opar
in's coascervates, Fox's proteinoid microspheres, and even aerosol droplets. A 
hypothesis which I find congenial and discuss in the final section of this chapter 
is enclosure of amino acid monomers and polymers in hollow lipid membrane 
spheres called liposomes. Although synthesis of peptide bonds and of phospho
diester bonds is thermodynamically unfavored in aqueous media, we shall see that 
a kind of "osmotic drive" in liposomes may push the synthesis progressively as 
the reaction proceeds. A particularly interesting discussion of the possible routes 
to the origin of confining environments and initial cells may be found in Cavalier
Smith (1987). 
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4. Maintenance of an anabolic flux leading to the synthesis oflarger polymers from 
smaller peptides or larger RNA polymers from smaller ones forces us to focus on 
the thermodynamical problems associated with the possible existence of peptide 
or RNA autocatalytic sets. Because an enzyme merely speeds up forward and 
reverse reactions proportionally, it does not shift the equilibrium ratio of reactants 
and products. 

Focus for a moment on peptides. The free energy associated with a single pep
tide bond is on the order of 1400 calories. Peptide bond formation is associated 
with abstraction of a water molecule; thus the equilibrium is shifted in favor of 
cleavage by the presence of water. Simplifying with the assumption that the 
energy of anyone peptide bond is essentially the same as that of any other, regard
less of surrounding primary sequence structure, it follows that the rate of disso
ciation of a dipeptide to its constituent amino acids is higher than the reassocia
tion rate by a factor of about 10 when both reactants and products are present in 
1 M concentration. The consequence is that the equilibrium concentration of a 
specific peptide with N amino acids falls offby a factor of 10 as N increases by 1: 

(7.1 ) 

where K is the dissociation constant for a peptide bond, C is the molar concen
tration of a species of amino acid, and N is the length of the peptide. 

Equation 7.1 shows two things: (1) for polymers composed of a single type of 
amino acid, at thermodynamic equilibrium, most of the amino acids are present 
as monomers or very short polymers, while a very few are present as high-molec
ular-weight polymers and (2) any specific polymer of high weight is present at 
infinitesimal concentration. Dehydration of the reaction mixture such that the 
concentration of monomers increases shifts the equilibrium toward the synthesis 
oflarger polymers. Thus in the absence of other metabolic energy sources-such 
as A TP or pyrophosphate, which can "activate" the monomers to a higher energy 
state which then favors formation of peptide bonds as a downhill step-dehydra
tion is one major means of shifting the equilibrium mixture toward larger poly
mers. Adsorption onto a surface is a second means of shifting the equilibrium 
mixture toward large polymers. 

In their interesting discussion of the origin of enzymes, Dixon and Webb 
(1960) formulate Equation 7.1 and then note that if, in contrast to a system using 
a single kind of amino acid, one considers a system with A species of monomers 
at concentration C, then the equilibrium distribution becomes 

l:[PN] = A N[CN]K-(N-I) = (Aff K (7.2) 

(See also Flory 1953.) Dixon and Webb point out that, as A increases, the ratio 
A C/ K becomes larger than 1.0 and hence (A C/ Kt increases as N increases. This 
implies that, for a sufficiently high number of amino acid species, at equilibrium, 
the vast bulk of the amino acids are bound up in polymers of high molecular 
weight. Of course, the concentration of any specific high-molecular-weight poly
mer remains very small. 

The simple thermodynamic fact that dehydration shifts the equilibrium dis
tribution toward larger polymers is well illustrated by the plastein reaction (Was
teneys and Borsook 1930; Levin, Berger, and Katchalski 1956; Neumann, Levin, 
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et al. 1959; Silver and James 1980, 1981a, 1981b; Fruton 1982}. Ifacomplex mix
ture of large proteins is incubated with trypsin, the latter cleaves the proteins to 
small peptides. If the mixture is then evaporated slightly, the equilibrium shifts in 
favor of synthesis of peptide bonds, and trypsin catalyzes the formation of large 
polymers. If the large polymers are removed from the reaction mixture and the 
remainder is again concentrated, the reaction again runs in the direction of syn
thesis oflarge polymers. Among the interesting facts about the plastein reaction 
is that the synthesis of peptide bonds by trypsin requires no high-energy com
pounds such as ATP. It simply reflects a shift in equilibrium. 

This thermodynamic description and the plastein reaction argue that, in prin
ciple, thermodynamic considerations allow an anabolic flux of amino acid mono
mers to form a web of high-molecular-weight peptide and polypeptide polymers 
without the exogenous aid of a coupled metabolism linking degradation of high
energy phosphate or other compounds. Obviously, to maintain an anabolic flux, 
the system must be open via the influx of a food set of amino acids or small pep
tides and the efflux of waste products. 

These considerations with respect to the formation of peptide bonds carry over 
directly to the formation of phosphodiester bonds between nucleotides to gener
ate polynucleotide RNA sequences. In the absence of other energy sources, in 
principle, dehydration or adsorption to a surface shifts the equilibrium toward 
larger polymer species. Note that in practical experiments carried out by Orgel 
and his co-workers, however, activated forms of nucleotides plus a condensing 
agent are used (Joyce 1987). 

I shall base initial discussion of the model of autocatalysis in sets of peptide and/ 
or RNA polymers,jor simplicity only, on the severe hypothesis that an autocatalytic 
polymer system be required to be composed purely of such peptide or RNA polymers 
and monomers. In fact, refusal to include couplings to additional energy sources 
which can abet the formation oflarger polymers markedly limits the maximum poly
mer size which can occur in modestly high concentrations in such autocatalytic sys
tems and hence limits their potential complexity and capacity to evolve. As we shall 
see in the next chapter, this restriction is unnecessary, since the same considerations 
which lead us to expect the formation of autocatalytic sets of peptides and RNA 
sequences also lead us to expect that such systems will automatically "crystallize" 
about themselves a connected metabolism whereby energy released from catabolic 
processes helps drive anabolic processes, such as polymer synthesis, which are ther
modynamically uphill. Thus the general body of theory will suggest that a self-repro
ducing coupled metabolism including RNA and/or peptide polymers plus a web of 
other organic molecules collectively crystallizes as a whole. 

Catalytic Closure: Autocatalytic Sets of Peptides 
or RNA Sequences 

The central problem to address is that of achieving catalytic closure in a set of cata
lytic polymers, either peptides or RNA sequences. We proceed in four steps: 

1. Consider the set of all possible polymers up to some maximum length M. 

2. Consider the set of all possible legitimate reactions by which these polymers can 
be formed from one another. 
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3. Consider simple models of the distribution, in the space of polymers up to length 
M, of the capacities to catalyze the different reactions among the polymers. 

4. Consider the resulting probability that the set of polymers contains a subset which 
is reflexively autocatalytic and show that, as the complexity of the polymer set 
increases past a sharp threshold, the probability that an autocatalytic set exists 
jumps sharply to 1. 

Consider first a set consisting of two monomer species-say, alanine and glycine 
or C and U-and polymers up to length M. Then the number of polymers oflength 
M is just 2M, and the size of the set up to length M is 2M + 1 - 2 ~ 2M + I. Thus as M 
increases, the number of polymers increases exponentially. If B = 20 amino acids 
are considered, the number of polymers of length M is 20M and the size of the set is 
slightly larger than 20M but not as large as 20M + I. Similar expressions hold for the set 
of B = 4 nucleotides. 

Peptides and RNA sequences are oriented polymers: Left and right ends differ. 
The simplest possible reactions among such polymers are (1) cleavage to two smaller 
fragments and (2) the reverse synthesis reaction. Consider a polymer oflength M. It 
contains M - 1 bonds and so can be synthesized by M - 1 different condensation 
reactions from smaller polymers making up its "left" and "right" termini. A polymer 
which is smaller than the maximum length M, say one of length L < M, can be 
formed by condensation of still smaller polymers in L - 1 ways. In addition, how
ever, the polymer oflength L can itself be a component oflarger polymers oflengths 
L + 1, L + 2, ... , M - 1, M. If the polymer of length L is either the left terminal 
residue or the right terminal residue, then it can be cleaved free from the larger poly
mer in a single reaction. A specific polymer L * can be cleaved from 2 X 2K larger 
polymers of length L + K, where L + K is less than or equal to M. Thus, the total 
number of ways to form L* is 

M 

RtJ. = L (2 X' 2i - L ) + (L - I) (7.3) 
i~L+I 

Summing over all polymers, the total number of reactions RT by which they can 
interconvert is 

RT = 2M(M - 1) + 2M-I(M - 2) + ... + 2M-(M-2)(M - (M - 1» (7.4) 

(This equation involves minor double counting of mirror symmetric polymers.) 
The critical issue to examine is the ratio of the number of reactions by which poly

mers can interconvert to the number of kinds of polymers, as the maximum length 
of polymers increases from M to M + 1. Since the maximum-length polymers, those 
of length M, can be formed in M - I ways, it is obvious that, as M increases, more 
new kinds of reactions arise than new kinds of polymers, at a marginal ratio of 
M - 1. Dividing Equation 7.4 by the total number of polymers up to length M 
(which is approximately 2M + I), it is simple to show that the ratio of reactions to poly
mers isjust 

MM' 
L~~M-2 
i~1 2 

(7.5) 

The critical implication of Equation 7.5 is that, as M increases, the number of 
polymer species increases exponentially, but the number of condensation and cleav-
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age reactions by which these species interconvert increases stilljaster, such that the 
ratio of reactions to polymers increases linearly in M. Simply put, as M increases, 
there comes to exist vastly more legitimate reactions by which polymers can inter
convert than there are polymers. Clearly, this imbalance reflects the simple combi
natorics of polymer strings made up of two monomer units. If we consider instead B 
> 2 monomer units, the same general results are found and the ratio of reactions to 
polymers tends to 2(M - 2) as B increases. 

Reaction Graphs and Centripedal Specific Reaction Density 

We encountered the concept ofa graph earlier: A graph is a set of points, called ver
tices, and a set of either edges (for undirected graphs) or arrows (for directed graphs) 
which connect pairs of points. The general concept of graphs can be applied to chem
ical reactions. Specifically, we can represent the forward synthesis reaction ligating 
two small peptides to form a single larger peptide, or two small RNA sequences to 
form a single larger RNA sequence, by representing the polymers as points and draw
ing arrows from the two smaller polymers to the single larger polymer, and repre
senting the reverse cleavage reaction by drawing arrows from the larger to the two 
smaller polymers. Alternatively, since the reactions are reversible, pairs of arrows in 
opposite directions can be replaced with a simple un oriented edge. Then one reaction 
is represented by a pair of edges from the two smaller to the single larger polymer. 
The set of all such edges among all polymers up to length M constitutes the reaction 
graph for this polymer system. 

Figure 7.3 shows reactions forming a polymer oflength M = 5 and one oflength 
L = 2. Clearly, the dimer (Figure 7.3b) is formed by more reactions than the pen
tamer (Figure 7.3a), since the dimer can be cleaved off the ends of many larger poly
mers. Specifically, from Equation 7.3, as L increases to L + 1, the ratio of the num
ber of reactions by which a specific polymer of that length can be formed decreases 
by about K Therefore, the reaction graph among polymers up to length M is strongly 
nonisotropic, with the numbers of ways to form polymers increasing centripedally as 
L become smaller. 

Models of the Distribution of Catalytic Capacities 
in Peptide and RNA Space 

Insofar as our central question is whether or not, and why, a set of polymers might 
become reflexively autocatalyic, it is natural to ignore the fact that condensation 
reactions forming peptide or phosphodiester bonds can occur spontaneously at a 
slow rate in the absence of catalysis. Such spontaneous reactions can only help our 
argument, but they are beside the point at issue; therefore, let us for the moment 
suppose that reactions do not occur unless catalyzed. (More realistically, we might 
suppose that spontaneous reactions occur on too long a time scale to matter. Later, 
consideration of spontaneous reactions will be needed.) This then leads us to our 
major experimental and theoretical question: What is the distribution of catalytic 
capacities in the space of peptides or RNA sequences? Enough has been said in pre
vious chapters about adaptive evolution of improved catalytic capacities, about cat
alytic task space, and about adaptive searches in statistically rugged landscapes to 
indicate how little is known about this fundamental problem. For the experimental
ist, this ignorance is a call to work creating or designing ways to explore sequence 
space. For the theoretician interested in whether autocatalytic sets of peptides or 
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RNA sequences are possible, the sensible approach in the face of our present igno
rance is to consider alternative simple models of the distribution of catalytic capac
ities in peptide and RNA space, assess whether these models lead to results allowing 
one to understand the conditions necessary to achieve reflexive autocatalysis, and 
then assess how robust the theoretical conclusions are with respect to the idealiza
tions used in building the initial models of the distribution of catalytic capacities. If 
the conclusions are robust, then it is at least plausible that the detailed distribution 
of catalytic capacities does not matter to the general conclusions. 

Begin, then, with the familiar. Proteases catalyzing cleavage and formation of pep
tide bonds range widely in specificities. If we are concerned with a set of B = 20 
amino acids, we might imagine 400 low-specificity, trypsinlike protoenzymes able to 
cleave a bond between anyone of the 400 possible pairs of amino acids, regardless of 
the position ofthat bond within a primary sequence. Because reactions are reversible, 
each such protoenzyme would catalyze the reverse condensation reaction, ligating 
any two smaller peptides ending with the appropriate carboxy and amino terminal 
amino acids. Such a hypothetical set of protoenzymes would be a kind of universal 
constructor set, able to catalyze all possible cleavage and condensation reactions 
among peptides made up of the 20 amino acids. 

If we consider RNA polymers and ribozymes able to catalyze cleavage and ligation 
at specific sites, exactly the same arguments apply. Were there a set of 16 ribozymes 
which recognized each of the 16 possible dinucleotide pairs regardless of remaining 
sequence context and either cleaved such sequences or ligated sequences ending in 
the given nucleotides, that set of 16 ribozymes would also be a universal constructor 
set able to catalyze all possible cleavage and condensation reactions among RNA 
sequences. Alternatively, 256 ribozymes recognizing all 16 X 16 possible pairs of 
dinucleotides terminating sequences and ligating them would be a universal con
structor set. I shall focus on peptides, but the general ideas carry over directly to 
RNA. 

Several comments are in order: 

1. If, for simplicity, the 400 protoenzymes all catalyze their respective reactions with 
the same velocities, this universal constructor set is merely a fancy means of flow
ing quickly to the thermodynamic equilibrium distribution of polymers in a 
closed system. 

2. The universal constructor set is reflexively and collectively autocatalytic in a triv
ial sense. The 400 protoenzymes catalyze the formation of all polymers; hence 
they catalyze their own formation as well. The concentration of each polymer will 
depend on details of flux through such a system when displaced from thermody
namic equilibrium. 

3. The idealization of 400 protoenzymes each specific for a given pair of amino acids 
utterly regardless of the context of that pair in the primary sequence is obviously 
false. Even trypsin exhibits significant sequence sensitivity. Consider what, 
roughly, occurs as sequence sensitivity increases. Then in the very much higher 
dimensional space of all cleavage and condensation reactions among discrimi
nated polymers up to length M, many but not all reactions are catalyzed. Holes 
begin to occur in the space of reactions, reflecting those reactions which are either 
not catalyzed or catalyzed only very inefficiently. The first immediate conse
quence of such holes is that the open system need not approach a distribution of 
polymer species at all like either the equilibrium distribution for a closed system 
or that for the equivalent open system when all reactions are catalyzed equally 
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well. Second, it mayor may not remain the case that the specific 400 protoen
zymes catalyze their own formation in the presence of uncatalyzed holes in reac
tion space. 

4. Let the specificity increase to the limit, such that any protoenzyme catalyzes 
cleavage or ligation of a specific pair of amino acids in a way which is so dependent 
on primary sequence that discrimination is infinite. Only one among the possible 
reactions is catalyzed by one protoenzyme. This extremely overstates the case in 
two ways. Most obvious, infinite discrimination is never achieved. An enzyme 
recognizes its substrates with finite precision; hence it always can catalyze reac
tions with a smaller or larger range of similar substrates. That is, any enzyme cat
alyzes a "ball" in catalytic task space. Less obvious, but as discussed in Chapter 
4, an enzyme can catalyze quite distinct reactions using the same active site 
because quite different organic molecules can have the same local chemical fea
tures. In other words, apparently different reactions can constitute the same cat
alytic task. Thus a realistic picture of an enzyme is that it catalyzes a local ball in 
catalytic task space; the size of the ball reflects the obvious fact that discrimination 
is imprecise and obviously similar substrates are acted upon. The subtler notion 
is that different sets of substrates are members of the same equivalence class, each 
set the cloud of similar substrates centered about a different best substance(s) for 
the "same" catalytic task. 

As just noted, in the limit of 400 protoenzymes catalyzing formation of peptide 
bonds between all possible pairs of amino acids, the trivial existence of reflexively 
autocatalytic sets of peptides is just that, trivial. An equivalent statement is that 16 
or 256 ribozyme ligases catalyzing all possible 3'-5' condensation reactions among 
RNA molecules are trivially autocatalytic. As specificity increases and uncatalyzed 
holes appear in the space of reactions, it is far from obvious that reflexively autocat
alytic sets of pep tides or ribozymes are to be expected. In particular, the limit ofinfi
nite discrimination offers the more difficult conditions for the emergence of reflex
ively autocatalytic sets. Thus for the purpose of developing an initial model of the 
conditions for the emergence of autocatalytic sets, I shall adopt this limiting ideal
ization. I shall, however, preserve the idea that such a protoenzyme can catalyze quite 
distinct reactions among different sets of substrates because they constitute the same 
task. I make a further assumption here for convenience but shall relax it later. It is 
realistic to suppose that catalytic capacities of peptides or RNA sequences are cor
related in some way with length. Small peptides or RNA sequences cannot fold to 
form efficient sites. On the other hand, small peptides and RNA sequences are known 
to exhibit catalytic activities, albeit weak ones, and weak suffices at the start. Thus in 
the initial development of the model, I shall assume that catalytic capacity is not cor
related with polymer length. 

These idealizations lead to an initial simple model of the distribution of catalytic 
capacities in the space of polymers. I shall suppose that any polymer has a constant 
probability P of catalyzing any reaction. This rule, in effect, represents a cloud of 
similar reactions by a single central reaction and a cloud of similar polymers able to 
catalyze that reaction by a single central polymer. It preserves the idea that the same 
polymer may catalyze quite different reactions constituting the same task. 

The Catalyzed Reaction Subgraph 

Consider again the set of polymers up to length M and the conjugate space of con
densation and cleavage reactions induced by that set of polymers. By the simple 
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hypothesis of a fixed probability P, we may now randomly assign to each polymer 
those reactions, if any, it catalyzes. That is, each polymer has a chance P of catalyzing 
the first reaction, the second reaction, and so forth. If a given reaction is catalyzed, 
we color the pair of edges representing it red. In addition, we can keep track of which 
reactions each polymer catalyzes by a pair of blue arrows emanating from that poly
mer and ending on the pair of red edges. When this simple game has been played for 
all the polymers in the space, some number of reaction edges may have been colored 
red. These red edges constitute the catalyzed reaction subgraph of the initial graph. 
The entire system of polymers, red catalyzed reactions, and blue arrows is called a 
hypergraph. The question to which we now turn is whether the polymers of the red 
catalyzed subgraph are expected to be connected to one another in such a manner 
that a reflexively autocatalytic set of polymers in the hypergraph is formed. Since we 
have utilized a simple probability P independently for each assignment of who cat
alyzes which reaction, the subgraph is a random subgraph of the initial graph. 
Whether that random subgraph is connected, and in what manner, turn out to be 
percolation problems in graph theory. 

Connectivity Properties of Random Graphs Exhibit 
"Phase Transitions" 

The central intuition I want next to communicate, already mentioned in Chapter 5, 
is that the connectivity properties of random graphs exhibit very sudden transi
tions-in effect, phase transitions-as the ratio ofthe number of edges to the number 
of points increases. The graphs of Figure 7.4 are isotropic random graphs in the sense 
that the probability an edge joins any pair of points is equal. A connected component 
of a graph is a connected set of points such that it is possible to walk from each point 
to every other point in the connected set via one or more edges. A tree is a branched 
acyclic component. Cycles of various lengths are obviously possible. The sequence 
of panels tunes our intuitions quickly. When the ratio of edges to points is low, say 
0.1, most points are isolated, a few pairs are connected, and a few small trees may 
form; hence there are many small components disconnected from one another. As 
the ratio increases toward 0.5, the sizes of connected components grow larger and 
their numbers decrease as small components become connected into larger ones. As 
E/ N increases past 0.5, Erdos and Renyi (1959, 1960) showed that a rapid transition 
occurs in which a single gigantic connected component containing most of the points 
emerges, leaving only a few isolated trees and points behind. Remarkably, cycles are 
not expected to occur until E/ N passes 1.0, when cycles of all lengths have a finite 
and equal chance of occurring (Erdos and Renyi 1959, 1960; Cohen 1988). 

Two intuitions must be borne away from this example. First as E/ N increases, an 
isotropic random graph crosses a threshold when the system passes from nearly 
unconnected to nearly connected. This is called the percolation threshold and is 
related to theories of pore density describing how water percolates through a con
nected set of pores in a solid (Stauffer 1985). Second, this kind of threshold property 
is rampant in graph theory. Component size, the existence of cycles, and so on, all 
show sharp transitions as discrete values of E/N. 

Erdos and Renyi initiated studies on isotropic random graphs. Their results do 
not directly apply to the connectivity properties of random catalyzed reaction 
subgraphs among peptide or RNA polymers, since those subgraphs are markedly 
nonisotropic, there being more reactions creating small polymers than reactions cre
ating large polymers. Nevertheless, the fundamental results on isotropic random 
graphs carry an obvious implication: as EjN increases, sudden changes in connectiv-
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ity properties are to be expected. Thus, in our present case, when the fraction of reac
tions which are catalyzed is high enough, connected sequences of catalyzed reactions 
are to be expected. 

The Main Idea 

The pieces are now in place to state the main idea, which in fact is simple. As the 
maximum length of polymer M increases, the number of polymers increases expo
nentially but the number of reactions by which these polymers might interconvert 
increases yet faster, such that the ratio of reactions to polymers grows linearly, as 
M - 2. Let each polymer be a catalyst for each reaction with a fixed probability P. 
Then as the ratio of reactions to polymers increases, it must eventually become large 
enough that the number of red catalyzed reactions is larger than the number of poly
mers whose formation requires catalysis. Thus, eventually, almost all polymers will 
have at least one last step in their formation catalyzed by some polymer in the system. 
More formally, as the ratio of catalyzed reactions to polymers increases, some thresh
old will be reached when a connected reflexively autocatalytic set of transformations 
will "crystallize." In short, almost any sufficiently complex set of catalytic polymers 
will be expected to be collectively autocatalytic. I turn now to a slightly more formal 
statement of the central idea and, in the subsequent section, attempt to characterize 
this threshold more precisely. 

The connectivity requirements allowing an autocatalytic set of polymers to exist 
are simply stated. Each member of the set must have its formation catalyzed by at 
least one member of the set. Furthermore, there must be connected catalysis path
ways leading from a maintained exogenous food set to all members of the autocat
alytic set. 

These requirements allow us a simple sufficient condition for a set of polymers to 
be reflexively autocatalytic. Consider the longest polymers of interest, those oflength 
M. Any specific polymer M* can be formed in M - 1 ways by condensation of 
smaller polymers. The chance iP that none of the 2M + I polymers in the set catalyzes 
any of these M - 1 reactions is just 

(7.6) 

where P is the a priori probably of one polymer species catalyzing any specific reac
tion. Ifwe require that iP be low, say 0.001, then we have stated a condition such 
that, with a probability of 0.999, the formation ofM* will be catalyzed by at least one 
member of the set. Equivalently, 0.999 of the 2M polymers oflength M will have their 
formation catalyzed by some member of the set. But consider smaller polymers, 
those of length M - 1. According to Equation 7.3, these smaller polymers can each 
be formed in about twice as many ways as polymers oflength M. Thus if 0.999 ofthe 
longest polymers will have their formation catalyzed, then 0.9995 of the 2M - I poly
mers oflength M - 1 will have their formation catalyzed, 0.99975 of the 2M - 2 poly
mers oflength M - 2, and so on. Therefore, the nonisotropic character of the under
lying graph ensures that essentially all smaller polymers will have a last step in their 
formation catalyzed by at least one member of the set, thereby satisfying the require
ment for connected catalyzed transformations leading outward to larger polymers 
from the monomers and small polymers in the food set. 

The central conclusion is now straightforward. The combinatorics of polymers 
and their reactions, coupled with a simple model of the distribution of catalytic 
capacities in peptide or RNA space, leads to the expected existence of collective 
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TABLE 7.1 Stringent Criterion for an 
Autocatalytic Set Using Only Ligation and 
Cleavage Reactions 

P M 2M +! 

10-4 11.85 7382 
10-5 14.83 58251 
10-6 17.86 475801 
10- 7 20.94 4.02 X 106 

10-8 24.05 34.73 X 106 

10-9 27.19 306.22 X 106 

Note: iP is the probability that no last step in the synthesis 
ofM·, a specific polymer oflength M, is catalyzed by any 
other member of the set of polymers. P is the a priori prob
ability of catalysis of any specific reaction by one polymer 
species. Noninteger values of M were used to obtain more 
precise estimates; M is the radius of the autocatalytic sys
tem, that is, the critical polymer length. 2M +! is the num
ber of polymer species in the set. 

reflexive autocatalysis due to the percolation properties of random graphs. We have 
the beginning of a theory for the minimum complexity required to achieve autocat
alytic closure. Below that minimum, disconnected subsystems exist. Above it, a con
nected whole emerges. 

Equation 7.6 allows us to calculate, as a function of the probability of catalysis, 
the expected number of polymers and their length distribution such that the set is 
expected to contain an autocatalytic system. Table 7.1 gives the results for P = 10-4 

to P = 10-9• 

We reach a new and fundamental conclusion: For any fixed probability of catal
ysis P, autocatalytic sets must become possible at somefixed complexity level of num
bers of kinds of polymers. The achievement of the catalytic closure required for self
reproduction is an emergent collective property in any sufficiently complex set of 
catalytic polymers. 

Exchange Reactions Make Achievement 
of Catalytic Closure Easier 

The size of polymer set required to achieve reflexive autocatalysis obviously depends 
on the ratio of reactions to polymers. The simplest reactions among polymers are 
ligation and cleavage. However, trypsin can catalyze more complex exchange reac
tions, cleaving a terminal fragment from one peptide and an internal bond on a sec
ond peptide, and then ligating the first fragment to either fragment of the second 
cleavage (Figure 7.5). Such a compound reaction is made up of at least three ele
mentary reactions. The critical point is that a single enzyme can catalyze this entire 
transformation. If the numerator of the reactions/polymers ratio is expanded to 
include exchange reactions as well as ligations and cleavages, the result is R = M22M. 
This ratio grows extremely fast, very much faster than M - 2, which is the ratio when 
we have ligation and cleavage alone. In addition, the reaction graph remains non-
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AABA + BBBB~AABB + A + BBB 
Figure 7.5 An exchange reaction involving cleavage of two old bonds and formation of one new 
one. 

isotropic when exchange reactions are included, with more reactions forming smaller 
than larger polymers. Thus, as M increases, the ratio of uncatalyzed reactions by 
which those polymers can interconvert to polymers grows expiosively. Maintaining 
the hypothesis that any polymer has a fixed probability P of catalyzing any reaction, 
one would expect that the size of the set needed to achieve autocatalysis is very much 
smaller when exchange reactions are included. This is indeed true, as Table 7.2 
shows. Note that now, for a probability of catalysis of only 10-9, a mere 18000 to 
19 000 polymers should achieve the critical minimum complexity necessary for col
lective autocatalysis! 

The exchange reaction described above has three elementary steps. If we consider 
simpler transpeptidation exchange reactions in which only a single peptide bond is 
broken and a new one formed, the ratio of reactions to polymers grows as 2M + I; hence 
these exchange reactions alone with ligation and cleavage reactions require some
what larger sets of polymers to achieve autocatalysis. 

Exactly the same considerations apply to ribozymes. Recall the ribozyme-cata
lyzed transesterification of two five-carbon units to yield a four-carbon unit and a 
six-carbon unit. This is of the same form as simple transpeptidation reactions cre
ating no new peptide bonds. Iftransesterification and ligation and cleavage by RNA 
polymer catalysts are considered, the ratio of reactions to polymers grows almost as 
2M + I. Thus, using the logic of Equation 7.6, it is easy to calculate the size of the system 
of RNA monomers and polymers which would be expected to be collectively auto
catalytic. 

We are led to the following conclusion. If random peptides or RNA molecules, or 
their less ordered analogues, can catalyze only cleavage and ligation reactions, then 
Table 7.1 gives an estimate of the complexity ofa polymer system needed to achieve 
catalytic closure. Estimates of the probability of binding or catalysis by random pep-

TABLE 7.2 Stringent Criterion for 
Autocatalytic Set Using Exchange Plus 
Cleavage and Ligation Reactions, Such that 
Almost A112M +1 Members ofthe Set Have 
a Last Step in Their Formation Catalyzed 
by at Least One Other Member of the Set 

i ~ e-P(M-IXI+2M+2x2M+I) = ~ < 0.001 

p 

10-4 

10-5 

10-6 

10-1 

10-8 

10-9 

M 

5.55 
7.01 
8.54 

10.04 
11.59 
13.15 

Note: i, P, and Mas in Table 7.1. 

94 
258 
944 

2105 
6165 

18179 



312 THE CRYSTALLIZATION OF LIFE 

tides and RNA sequences, based on data discussed in Chapter 4, range from about 
10-5 to 10- 10. While this range is wide, even 1010 sequences is a very small fraction 
of the possible peptide sequences oflength 20 or even of RNA sequences oflength 
20. Further, many copies of each of 1010 kinds of peptide or RNA polymers can be 
enclosed in very small volumes and hence interact. Given a midrange estimate that 
the probability that a polymer catalyzes a specific reaction is 10-8, Table 7.1 suggests 
that about 34 X 106 random polymers would achieve catalytic closure. On the more 
optimistic hypothesis that such polymers might equally well catalyze complex 
exchange reactions, the same estimated midrange chance of catalysis suggests that 
about 6200 polymers would achieve catalytic closure (Table 7.2). If this range of 
probabilities is correct, life may be far more probable than we have supposed. 

GROWTH ON THE INFINITE GRAPH OF POLYMERS 
AND THERMODYNAMIC BEHAVIOR 

Growth of the Catalyzed Reaction Graph: Supracritical 
Versus Subcritical Behavior and a Critical Size for 
the Food Set 

The emergence of catalytic closure in sufficiently complex sets of catalytic polymers 
is a phase transition which arises in the hypergraph of polymers and the catalyzed 
reactions among them. Connected webs of catalyzed transformations percolate 
across the set of polymers and are mediated by the polymers. But the set of potential 
polymers is infinite both in length and in kind. The phase transition seen in the crys
tallization of autocatalytic sets in the hypergraph is reexpressed in this infinite set of 
polymers by a phase transition between the two regimes. One is a finite, hence sub
critical, regime in which polymer catalysis of reactions that form polymers from 
some initial food set of monomers and small polymers can increase to produce only 
a finite number of kinds of polymers. In contrast, in the infinite, or supracritical, 
regime, polymer catalysis of the formation of polymers from an initial food set can, 
ignoring thermodynamic limitations, increase to produce an infinite number of 
kinds of polymers. We shall characterize this phase transition in terms of two major 
parameters of the underlying model: the probability of catalysis P and the complexity 
of the food set. We shall find that, in this two-dimensional parameter space, a critical 
line separates the plane into the supracritical and subcritical regions. 

It is important to stress that, for the moment, I shall entirely ignore considerations 
of thermodynamic forces and chemical concentrations. The questions we are posing 
concern the potential extension of the catalytic subgraph of the hypergraph among 
the infinite set of possible polymers. This subgraph may be either finite or infinite. It 
is a further fundamental question, in a given physical situation with defined concen
trations of the polymers, how many of the polymers which participate in the cata
lyzed hypergraph are formed in the system. In short, given that such a catalyzed struc
ture exists, our current questions concern the mathematical properties of the 
catalyzed subgraph and not the physical behavior of the polymers. Of course, I must 
and shall return to these thermodynamic considerations below and show that these 
potentially collectively autocatalytic systems are in fact expected to be autocatalytic. 

I turn now to a more detailed investigation of the catalyzed reaction graph and 
the minimal conditions such that a phase transition occurs and catalytic closure is 
attained. Let us recast the problem slightly. Suppose that we can maintain, at a con-
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stant high concentration, a food set comprising all monomer amino acid species as 
well as all small polymers out to some length Le. This set of molecular species can 
simultaneously serve as substrates for cleavage or ligation reactions and as potential 
catalysts for those reactions. Let us remove the restriction that the longest polymers 
under consideration are bound to be length Le or less, thus letting ligation reactions 
produce polymers of lengths ranging up to 2Le. If some of the possible reactions are 
catalyzed, then new polymers, larger than those in the food set and ranging in length 
from Le + 1 to 2Lc. may be formed. 

Ifligation reactions among the polymers in the initial food set can create new poly
mers longer than those in the food set, the new polymers become available as new 
substrates for new cleavage and ligation reactions. These new reactions may be cat
alyzed by the members of the initial food set. In addition, the new polymers are avail
able as potential new catalysts for both the original reactions among polymers of 
length Le or less and all the new reactions involving the new polymers either alone 
or together with the original polymers and monomers of the food set. Thus, consider 
what can occur on a second round. Both the old and the new first-round polymers 
may catalyze yet more reactions, leading to the formation of molecules ranging up 
to 4Le in length. These new second-round molecules may become substrates in new 
reactions which may be catalyzed by all existing polymers from the food set and the 
first round, and the new polymers from the second round may catalyze all previous 
and new reactions. Thus, over a succession of rounds, the catalyzed reaction graph 
may grow larger in two senses: The number of catalyzed reactions increases, and the 
number of kinds of polymers larger than those in the maintained food set up to length 
Le may increase. 

I note again that we are ignoring the polymer concentrations, which may in fact 
be infinitesimal. Therefore, we need to define the concept of a virtual catalyzed reac
tion graph, which shows all reactions catalyzed by monomers or polymers in the total 
system. Since the actual concentrations of such polymers are a function of the flux 
of material through the system, the boundary conditions, and thermodynamic issues, 
and since those concentrations may be infinitesimal, the virtual catalyzed reaction 
graph asserts that, were the substrates and catalysts present in sufficient concentra
tion, the reactions would proceed. In short, the virtual graph gives the catalytic struc
ture of the polymer system. As stressed above, the dynamical behavior of flux and 
concentrations are a further consideration. For the remainder of this section, I shall 
use the term "reaction graph" to refer to the virtual catalyzed reaction graph. 

The issue we are now concerned with is the growth of the number of polymers in 
the reaction graph over successive rounds. That growth is perfectly well specified 
algorithmically; it can exhibit only one of two alternative ultimate behaviors. Either 
over successive rounds, the number of newly added polymer species at each round 
dwindles to zero so that the graph stops growing and the number of different polymer 
species in the system remains finite, or at each round, a finite positive number of new 
polymer species are added to the system, in which case the reaction graph grows with
out bound and the number of kinds of polymers in the system is infinite. The former 
case is subcritical, the latter is supracritical. 

I emphasize the obvious: The existence of an infinite number of polymer species 
in the supracritical reaction graph applies to the virtual reaction graph as defined 
above. No real system of interacting polymers can be infinite. However, the behavior 
of a real polymer system may depend fundamentally on whether the underlying vir
tual graph is supracritical or subcritical. I return to this shortly. 

Because the growth properties of reaction graphs are either subcritical or supra
critical, it is to be expected that there is some relationship among the parameters 
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defining the way in which the graphs grow; this relationship constitutes a critical 
threshold condition. On one side of the threshold, graph growth will die out; on the 
other, it will blow up. The parameters which enter into the problem are the number 
of kinds of amino acids B, the maximum length of polymers in the maintained food 
set Lc> and the probability that any polymer catalyzes each reaction P. From these, 
it is possible to derive critical sufficient conditions such that graph growth is supra
critical (Farmer, Kauffman, and Packard 1986; Kauffman 1986b). The result for 
B = 2 monomers is 

(7.7) 

where L~ is the critical value of Lc dividing subcritical from supracritical behavior. 
Since the number of molecular species in the maintained food set is then 2L c+ 1, Equa
tion 7.7 asserts that the number of molecules in the food set must be on the order of 
V l/2P. If the probability of catalysis is 10-6, then about 1000 species must be main
tained in the food set if supracritical growth of the reaction graph is to occur. As B 
increases, the requisite number of molecules in the food set simplifies to 

(7.8a) 

(7.8b) 

The phase transition from supracritical to subcritical behavior is given quite accu
rately by Equations 7.7 and 7.8. Figure 7.6 shows numerical data testing Equation 
7.7 and its generalization as B increases. A computer program implementing reac
tion graph growth was written by my colleagues D. Farmer and N. Packard. The crit
ical threshold values of parameters separating subcritical and supracritical behavior 
were ascertained by fixing a value of Lc and B, and then tuning the probability of 
catalysis P. If a specific value of P gave supracritical growth and a second value gave 
subcritical growth, then a new trial value which was the mean of those two values of 
P was used. Successive iterations converge on the critical value of P for the specified 
values of Lc and B. As can be seen, the observed and predicted curves are close and 
parallel. The offset of the theoretical curve reflects the fact that Equation 7.7 is a 
slightly-more-than-sufficient condition for supracritical behavior. The fact that the 
slopes are parallel reflects the correct analytic result that the size of the mantained 
food set necessary for supracritical graph growth scales with the square root of liP. 
Figure 7.6b shows the correspondence between food set size and supracritical graph 
growth for B > 2, according to Equation 7.8b. 

Figure 7.7 shows the number of new polymer species added to the reaction graph 
at each round of growth. For subcritical values of the parameters, this number typi
cally dwindles to zero. For slightly supracritical values of the parameters, this number 
may behave erratically. For clearly supracritical values, the graph grows faster than 
exponentially. 

One intriguing feature of this new body of theory is that it predicts a relationship 
between polymer size and number of polymer kinds. The size distribution of poly
mers in the system is unimodal, with most polymer kinds having an intermediate 
length and fewer kinds being shorter or longer than this intermediate length. The 
underlying noncatalyzed reaction graph for polymers is inherently nonisotropic, 
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Figure 7.6 (a) Dependency of Peri" the probability of catalysis at the supracritical threshold, on Le• 
the maximum length ofthe molecular species in the initial food set. The food sets contain different 
numbers B of monomer species, as indicated; the line labeled T is from theoretical results for B = 2 
amino acids. (b) As in (a), except that Le is replaced by log N, where N is the total number of species 
in the food set. (From Farmer, Kauffman, and Packard 1986) 
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Figure 7.7 The number of new molecular species created at each iteration during the generation of 
a random catalyzed reaction graph. In all cases, B = 2 amino acids; Lc = 6 is the maximum length 
of polymers maintained in the food set, and t is the time, or iterations of graph growth. (a) Below the 
supracritical point, graph growth decays and stops. (b) Near the supracritical point graph growth 
behaves erratically. (c) Above the supracritical point, the graph increases without bound. Note the 
semilog scale. (From Farmer, Kauffman, and Packard 1986) 

always having many more reactions forming smaller than larger polymers. Indeed, 
for cleavage and ligation reactions, the number of polymer species formed falls by 
about ),f as length increases by one amino acid. Thus, as the graph grows, a larger 
fraction of the small polymers will have their formation catalyzed. At the same time, 
the number of possible kinds of polymers oflength L is BL and hence increases with 
L. When these two conflicting effects are considered together, the number of distinct 
polymers oflength L whose formation is catalyzed will be unimodal, starting low for 
small L, increasing to a maximum for intermediate values of L, and then dwindling 
as L continues to increase. 

Figures 7.8a and 7.8b show such curves of the distribution of numbers of polymer 
kinds as a function of polymer length. The distributions are indeed unimodal, 
increasing to a peak and then declining approximately exponentially as polymer 
length increases. Figures 7 .8c and 7 .8d plot the logarithm of the number of polymer 
species of each length as a function oflength. The declining tail is nearly linear, indi
cating a nearly exponential tail in the linear plots of Figures 7.8a and 7.8b. 

Unimodal distributions of organic molecules may be very general in biology. The 
fundamental point is that the centripedal, nonisotropic character of the underlying 
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Figure 7.8 Distribution of polymer species as a function oflength. (a) and (b) illustrate the action 
of one iteration of the graph update procedure. (c) Same as (b), but with a semilog plot indicating the 
exponential tail. (d) Length distribution for a system with only two amino acids used to form the 
monomers and dimers of the foot set, which causes a cycling, or increased abundance, at small mul
tiples of the maximum polymer length maintained in the food set. (From Farmer, Kauffman, and 
Packard 1986) 

uncatalyzed reaction graph leads to a quite characteristic unimodal distribution. This 
distribution is almost certainly insensitive to the detailed assumptions about the dis
tribution of catalytic capacities in sequence space. In the next chapter, I shall suggest 
that life originated with a connected metabolism which crystallized as a phase tran
sition occurred in the space of organic molecules. Thus very similar considerations 
apply to the distribution of numbers of kinds of organic molecules in a metabolism 
as afunction of atoms per molecule. Therefore, it is interesting that curves remark
ably like those of Figure 7.8 are known to relate the number of kinds of organic mol
ecules to the number of carbon atoms per molecule (Morowitz 1968). Indeed, I shall 
suggest that a distribution like that in Figure 7.8 may prove to be an ahistorical uni
versal characterizing any connected metabolism which might evolve. 

The parameter values which correspond to a phase transition from subcritical to 
supracritical behavior depend on the ratio of number of reactions to number of poly
mers present. Thus the phase transition will shift position if different classes of reac
tions are considered. Equation 7.7 reflects the constraint to consider only cleavage 
and ligation reactions. It yields the result that the critical number of maintained food 
species scales inversely as the square root of the probability of catalysis. If exchange 

d 

... 
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reactions are also used, the ratio of reactions to polymers grows much faster, and 
consequently a still smaller food set would be supracritical. No analytic results are 
yet available. Obviously, the critical values expressed in Equation 7.7 reflect the 
assumption that the probability of catalysis is independent of polymer length. How
ever, the general results are very robust to this assumption, as I shall comment on 
below. 

Thermodynamic Considerations 

We have now seen that a phase transition occurs from subcritical to supracritical 
behavior of graph growth and that this transition is correlated with the emergence of 
catalytic closure in atuocatalytic sets of polymers. It is now time to consider whether 
physically realizable autocatalytic sets will form when account is taken of the ther
modynamic and kinetic properties of real polymer systems. The fundamental point 
is that, under appropriate-and apparently realistic-conditions, the answer is 
"yes." I focus first on consideration of peptide systems; parallel considerations apply 
to RNA systems. Indeed, I suspect that the latter are more likely candidates to 
achieve collective reproduction in experiments carried out in the near future. Thus 
it should soon be possible to construct real collectively self-reproducing sets of poly
mers. 

The forward and reverse reactions between two monomers A and B ligating to 
form the dimer C plus water can be represented as 

A + B --- C + H 20; 

In an aqueous environment, where the water concentration is about 55 M, the energy 
of a peptide bond is 2 to 3 kcal/mol. Therefore, hydrolysis of the peptide bond is 
spontaneous, while polymerization is thermodynamically unfavored. These conflict
ing tendencies occur in a ratio determined by Boltzmann's formula e-tJ.GIRT, where 
t:.G measures the free energy change from reactions to products. For peptide bonds 
with t:.G = 3 kcal/mol, the formula yields e- 5 = 0.007 as the ratio of dimer to mono
mer. For peptide bonds with t:.G = 2 kcal/mol, the ratio is e-3.33 = 0.036 (Fox 1988). 

The energy of a peptide bond depends on which amino acids are joined. Dixon 
and Webb (1960) suggest that an overall useful approximate expression for the "typ
ical" peptide bond yields a dissociation constant of about 1 0 favoring smaller pep
tides produced by cleavage; hence in a closed thermodynamic system at equilibrium, 
the ratio of dimer concentration to each monomer concentration is about 10- 1 to 1. 
Similarly, the ratio of a trimer to a monomer is 10-2 to 1. Similar considerations 
apply to ligation and cleavage of single-stranded RNA molecules. The energy of a 
phosphodiester bond is about 5 kcal/mol (Fox 1988). The corresponding ratio of 
dimers to monomers is e-8.33 = 0.0002. Thus, as noted above, in an aqueous envi
ronment, formation of peptide bonds is substantially easier than formation of phos
phodiester bonds. 

The exponential character of the equilibrium distribution implies, as noted above, 
that the concentration oflarge polymers at equilibrium decreases exponentially with 
length. For Nlinkages at 3 kcal/mol, the ratio is e- 5N• Thus, assuming monomers in 
1 M concentration, for N = 20, the expected concentration of a specific polymer of 
length N is on the order of e- 1oo = 3.7 X 10-44 M. As Fox (1988) notes, organisms 
must use complex strategies to circumvent this fundamental difficulty. 

Autocatalytic behavior requires that the system be thermodynamically open to 
the flux of monomers and small polymers. In order for autocatalytic behavior to be 
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physically realizable, a collection of polymers at some finite concentration in a rea
sonably small volume must be able to be formed and sustained by addition of matter 
and energy from the outside. The concentrations of those formed polymers must be 
high enough to allow a sustained metabolic flux from the exogenous food set to all 
the members of the autocatalytic set, and the concentrations of the members of the 
latter must be persistently sustained at finite concentrations. From the dynamic sys
tems perspective, a plausible form for such an autocatalytic set to take is some kind 
of dynamical attractor, ranging from steady state or periodic orbit to chaotic attrac
tor. 

We consider next the simplest open system, driven only by influx of monomers 
and small polymers. In order that large polymers be formed, thermodynamic equi
librium must favor their synthesis. In contemporary organisms, this is achieved by 
the coupling of exergonic and endergonic reactions. In a first, simplest system, the 
only mechanism we shall consider for shifting equilibrium in favor of peptide syn
thesis is dehydration. In the simulations I report, we "tuned" the dehydration of the 
system to favor the synthesis of peptide bonds, drove the system at a fixed rate by 
adding monomers and small polymers, and assumed that only catalyzed reactions 
occur. The last assumption, consistent with those utilized in stating the model, cor
responds to assuming that the rate of catalyzed reactions is much faster than the rate 
of spontaneous reactions. Since the rate of spontaneous hydrolysis of a peptide bond 
in water is on the order of one per month (Fox 1988), a 1000-fold increase in reaction 
rate due to catalysis amounts to about one reaction turnover event per hour. 

We may use a chemostat as a concrete model of an open thermodynamic system. 
Monomers and small polymers are exogenously added to the chemostat at a fixed 
rate. The volume of the chemostat is kept constant by allowing overflow of excess 
material; such overflow removes monomers and all polymers at a rate proportional 
to their concentrations. Implicitly, such overflow leads to competition since poly
mers formed more slowly than their mean residence time in the system are diluted 
out. It is a simple calculation to show that, since the rate offood addition is constant 
but loss of food molecules and of more complex polymers is proportional to concen
tration, the chemostat will fall to a steady state in which the total number of mono
mers, either free or bound into polymers, is constant in time. Because the system is 
open to influx of food, however, the distribution of monomers into diverse polymers 
is not bound by the equilibrium distribution of a closed thermodynamic system and 
will reflect the kinds of catalytic activities present among the peptides in the che
mostat. These catalytic activities will channel the flux of material preferentially down 
particular pathways. Note again that-no matter whether the underlying virtual cat
alyzed reaction graph is subcritical/finite or supracritical/infinite-the mass of 
monomers plus polymers is finite and thus the number of kinds of polymers present 
in the system is finite. Restated, if an autocatalytic set is formed, it remains a/mite 
entity which may nevertheless "live" on an infinite virtual catalyzed reaction graph. 

Dynamics of Autocatalytic Sets in 
an Expandable State Space 

In order to show that autocatalytic polymer systems are expected to be physically 
realizable after taking account of thermodynamics, D. Farmer, N. Packard, and I 
implemented a computer program (Farmer, Kauffman, and Packard 1986). We 
defined a maintained food set, a chemostat, an input rate for food, an overflow rate, 
a probability of catalysis, and the number of monomer species. The following addi
tional features were required. 
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1. We had to specify a minimal concentration needed in order for a species to be 
considered present in the chemostat. For example, a 10-9 M solution corresponds 
to one molecule in the volume of a bacterium, while 10-23 M is about one mole
cule per liter. Therefore, choosing a minimal concentration amounts to scaling 
the volume of the chemostat. In the limit where this minimal concentration goes 
to zero, the system approaches the virtual graph. 

2. It was necessary to monitor the concentration of each reactant and product spe
cies and of the various bound forms of intermediates. We utilized a technical 
means to circumvent having to keep track of all the diverse intermediates without 
loss of rigor. 

3. We were forced to confront a novel feature of this class of models: The set ofvari
abIes in the system, and the dynamical equations coupling them, are open and 
evolving. This is new. Conventionally, the set of variables in a dynamical system, 
and the dynamical laws coupling the change of each variable as a function of the 
variables, are fixed at the outset, thereby specifying a fixed state space of the sys
tem. Recall from Chapter 5 that a state space has coordinates that are the different 
variables of the system. The current state of the set of variables is represented by 
a point in this space. The system's dynamical trajectory over time is shown as a 
trajectory through the state space. As described in Chapter 5, typically, such a sys
tem either settles down to an attractor such as a steady state (in which case the 
representative point does not move) or enters a sustained oscillation in which the 
representative point travels either around a closed orbit in the state space or 
around a more complex attractor in which the point falls onto the surface of a 
torus or of a more complexly folded object called a strange attractor. 

In the present case the set of polymers which will constitute the variables of the 
system is not specified ahead of time. Rather, we specify an algorithm which decides, 
at each moment in the temporal evolution of the system, whether the reactions cat
alyzed among the existing monomers and polymers are forming new species of poly
mers and whether such new polymers have increased in concentration above our 
defined threshold and so count as present. Any new polymers that do count as pres
ent are added to the system. These new polymers may participate in new reactions 
either as catalysts or as substrates, while all monomers and old polymers may partic
ipate in the new reactions either as catalysts or as substrates. Therefore, the algorithm 
decides by chance, according to a fixed probability of catalysis P for each polymer 
with respect to each possible reaction, which new reactions and old reactions are cat
alyzed by the new and old species present at above-threshold concentrations. These 
newly catalyzed reactions are installed in the catalyzed reaction graph of the system. 
Subsequently, the reaction dynamics of this new, altered system is followed over an 
interval of time. Still more new polymers may increase above the concentration 
threshold and so count as present. If so, they are added to the system and any newly 
catalyzed reactions are installed in the expanding graph. This process continues until 
the system settles into some attractor in which no new polymer species are being 
added. 

In short, the set of variables is itself open and variable in the potentially infinite 
space of possible polymers. 

Using this system, we confirmed that autocatalytic polymer systems are perfectly 
plausible after taking account of thermodynamic and kinetic questions. In particu
lar, we showed that the behavior of the system changes when the underlying virtual 
reaction graph passes from subcritical to supracritical, and, most important, that sta-



THE ORIGINS OF LIFE: A NEW VIEW 321 

ble autocatalytic sets with sustained concentrations of small and large polymers do 
form. 

Figure 7.9 plots total number of polymer species formed in the chemostat at 
steady state, as a function of probability of catalysis and of concentration threshold 
(Farmer, Kauffman, and Packard 1986). Given the values of the parameters-two 
amino acid species to form a food set of monomers and small polymers-the 
expected transition from finite to infinite virtual graph occurs when P is about 0.015 
and the threshold concentration is O. As expected, for low threshold values, as P 
crosses this critical value and the graph becomes infinite, the actual number of species 
of polymers explodes rapidly. Thus when the phase transition occurs and the virtual 
graph has become infinite, the diversity of the set of polymers present above the 
threshold concentration increases because the set is able to expand on the infinite 
graph. Restated, the fixed total mass of monomers and polymers spreads out on the 
infinite supracritical virtual catalyzed reaction graph to populate a larger variety of 
polymer species. 

Figure 7.9 also shows that, as the threshold concentration increases, the number 
of polymers in the chemostat at the terminal steady state declines. This is as expected. 
If the threshold were chosen to be larger than the maintained concentrations of the 
food set, then obviously no polymers would be allowed to catalyze any reactions at 
all, and the system would remain the food set alone. 

Both dehydration and an increase in the rate of food addition can drive the phys
ically realized system from nonautocatalytic to autocatalytic. By construction, this 
polymer system is innocent of any metabolism coupling breakdown of high-energy 
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metabolites to the synthesis of peptide bonds. Consequently, the only way to shift the 
equilibrium to favor synthesis of large polymers is to dehydrate the system and 
increase the concentrations of all species. Then, like the plastein reaction and Dixon 
and Webb's argument, the bulk of the mass shifts from being in monomers and small 
polymers to being bound in high-molecular-weight species. Since a polymer must be 
present above a minimal concentration in order to count as present and have a 
chance to be a new substrate or catalyst, it is to be expected that shifting the hydration 
state of the chemostat will shift the number of kinds and sizes of polymers formed. 
Therefore, the qualitative effect of tuning the dehydration parameter is clear. When 
water is present in high concentration, only small polymers will be found in appre
ciable concentrations; larger polymers, ifformed, will be in too Iowa concentration 
to count as present in a defined volume. Therefore, even if the virtual catalyzed reac
tion graph is supracritical, the thermodynamically attainable polymer system may 
have too few components to achieve catalytic closure; no autocatalytic set will exist. 
As dehydration increases, more and more of the polymers longer than those in the 
food set will increase in concentration over the threshold. Eventually a sufficient 
number will be present to achieve catalytic closure, and an autocatalytic set will be 
present. 

For a similar reason, as the rate offood addition increases from a low level relative 
to a constant dilutional overflow rate from the chemostat, the total number of mono
mers and small polymers at steady state increases. Therefore, the attainable diversity 
of the set of longer polymers present above threshold increases. As that diversity 
increases and spreads out over the supracritical graph, eventually catalytic closure 
will be attained and an autocatalytic polymer system will be present. 

The most important conclusion derived from these studies is this: The model 
engenders sustained autocatalytic polymer systems. Figure 7.10 shows one example. 
This is a small system, allowing ready graphical presentation. Variation in thermo
dynamic terms, food set size, and probability of catalysis yields much larger systems, 
with hundreds or thousands of polymers present. 

More recent work by my colleagues Bagley, Farmer, and Fontana (1992) and Bag
ley (1991) shows that, by tuning the catalytic efficiency of polymers acting at different 
points in the autocatalytic system, it is possible to achieve a nearly uniform distri
bution of polymer concentrations as sizes range from monomers and dimers up to 
sequences with 15 to 30 residues. Thus even restricting ourselves to autocatalytic sys
tems lacking a coupling of exergonic and endergonic reactions, it is still possible, 
merely by dehydration, to achieve dynamically stable autocatalytic systems with high 
concentrations of some large polymers. Another simple potential mechanism for 
driving synthesis reactions beyond dehydration is coupling of high-energy pyro
phosphate to nonspecific phosphorylation and dephosphorylation cycles (Fox 1988). 

The Emergence of Autocatalytic Sets 
of Sequence-Specific RNA Ligases 

I now extend our results to show that sufficiently complex mixtures of single
stranded RNA, acting on one another by mediating template-specific ligation and 
cleavage reactions, are very likely to be collectively self-reproducing. If this suppo
sition is correct, direct demonstration of collective autocatalysis by catalytic poly
mers may soon be possible. 

In the first section of this chapter, I discussed the evidence showing that replication 
of arbitrary RNA molecules copying an arbitrary template without a polymerase 
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Figure 7.10 A typical example of a small autocatalytic set. The reactions are represented by points 
connecting cleavage products with the corresponding larger ligated polymer. Dotted lines indicate 
catalysis and point from the catalyst to the leaction being catalyzed. Monomers and dimers of A and 
B constitute the maintained food set (doubJe ellipses). 

appears to be very hard to achieve. In contrast, I noted evidence that some RNA 
sequences could act as ribozymes which cleaved or ligated other single-stranded 
RNA sequences. Such catalytic action is sequence specific and depends on the par
ticular base pairs at the active site in the ribozyme and upon template recognition for 
binding of the RNA substrates. In addition, we saw examples of autocatalytic repli
cation of a specific tetramer from two dinucleotides and a specific hexamer from two 
trinucleotides. In each case the larger molecule acts via base pairing as a specific ligase 
to orient and ligate the smaller molecules into a replica of itself. These results already 
demonstrate that autocatalytic sets, via a specific ligase, can occur. 

In addition, three exciting lines of evidence were noted in Chapter 4, all indicating 
that novel single-stranded RNA sequences having new catalytic properties might be 



324 THE CRYSTALLIZATION OF LIFE 

found. Recall that Joyce (1989) was able to evolve a ribozyme such that it came to 
catalyze a reaction involving a DNA rather than an RNA substrate. Tuerk and Gold 
(1990) screened about 65 000 stochastic RNA sequences for those able to bind a 
polymerase and found the wild type and a novel sequence. But most important, 
Ellington and Szostak (1990) passed a library of about 1013 stochastic 100-base-pair 
single-stranded RNA sequences over affinity columns and found about 100 to 1000 
able to bind specific organic dyes with fairly high affinity. Since the capacity to bind 
a dye is closely related to the capacity to bind to the transition state of a reaction and 
catalyze the reaction, these results suggest that the probability of catalyzing an arbi
trary reaction is about 10- 10• Since it is very much easier for an RNA molecule to 
bind its template complement than to bind an arbitrary organic molecule, the prob
ability that an RNA sequence can catalyze the ligation and cleavage of two other 
RNA strands ending in appropriate complementary base pairs may be much higher 
than 10- 10• 

We now ask whether the concepts underlying the emergence of autocatalytic sets 
in which each polymer catalyzes any possible reaction with a fixed probability P gen
eralizes to the case in which polymers must be the template shape complement of 
their substrates in order to have a chance of catalyzing a reaction between those sub
strates. The clear answer is "yes." I shall base my discussion on the concept that shape 
complementarity is afforded by template complementarity, as is familiar in RNA 
and DNA molecules. I confine discussion to model RNA sequences comprising two 
bases: "one" and "zero." Template complementarity then requires only one and 
zero bases to bond. The idea immediately generalizes to four bases. In fact, the idea 
generalizes to peptides whose generalized shapes must be complements in order for 
one peptide to have a chance of catalyzing a reaction involving the other. For the 
moment, the string models of polymers we consider stand for RNA sequences. 

The specificity of observed cases of hexamer- and ribozyme-catalyzed ligation 
rests on normal Watson-Crick base pairing. Sequence-specific recognition and bind
ing among RNA or DNA molecules therefore can require as few as four or, more 
plausibly, six base matches. Hybridization experiments with DNA and RNA have 
long demonstrated that over lengths of six to ten base pairs, binding may occur in the 
presence of occasional mismatches. Such mismatches lower the affinity of the bind
ing. 

My colleague R. Bagley and I have utilized these facts to implement a model to 
study the emergence of autocatalytic sets of specific "ribozyme" ligases. In reality, 
single-stranded RNA molecules fold to form secondary structures with stems, hair
pin loops, and so forth. Presumably the probability that any short region on such an 
RNA molecule is physically able to act as a prospective ribozyme catalytic site is cor
related with the length of the molecule. Larger molecules may form better, and more, 
potential catalytic sites. For example, such sites might be loops with free nucleotides 
or with unpaired tail regions. As RNA sequences become longer, and depending on 
the particular ratios of bases, the expected distribution of numbers of loops, sizes of 
loops, and numbers of unpaired tails within each folded RNA sequence shifts. In our 
simplified model, we assumed that the number of potential catalytic sites in a model 
RNA molecule was proportional to its length and that RNA molecules oflength six 
or more had at least one such prospective catalytic site. 

To model template complementarity, Bagley and I implemented a template
match rule. We assumed that any model ribozyme site had a defined length in nucle
otides drawn from some distribution. In the results I report, we assumed that each 
site was of length four or six. The match strength of a prospective catalytic site was 
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given by the number of nucleotides among the four or six which were the match com
plement to the substrates in question. Thus match strength might vary from 0 to 6. 
Since a ribozyme or another enzyme must recognize sites on both substrates to be 
ligated, we required that our model ribozymatic sites be the template complements 
of the left and right terminal two or three nucleotides of the two substrates to be 
joined. This template-match rule gives a strength, or affinity, to each possible match 
between each potential ribozymatic site and any pair of substrates. 

The remaining fundamental parameter we utilized was a probability of catalysis 
P, considered as a function of match strength. Concretely, we assumed that a perfect 
match corresponded to some maximum probability that the site was able to act as a 
catalyst of the reaction. Further, we assumed that, as match strength declined, the 
probability that the site catalyzed the reaction declined to zero. The assumption that 
even perfect matching corresponds only to a maximum probability that the site cat
alyzes the reaction models the fact that many features of prospective ribozymes and 
their potential substrates beyond template complementarity must be present before 
catalysis can occur. The assumption that the probability of catalysis drops to zero as 
or before match strength declines to zero models the idea that a ribozymic site must 
be a shape complement as a precondition to act as a catalyst. The existence of a finite 
range of match strengths with a positive probability of catalysis models the possibility 
that sites might catalyze reactions whose substrates have occasional mismatches to 
the catalytic site. 

Two features of this assignment of catalysts to reactions generate clouds in reac
tion space. First, consider a model ribozyme site oflength 4, required to match per
fectly two nucleotides at the ends of each of its two substrates. Consider a set of poten
tial substrates each having ten nucleotides. To match a specific potential ribozyme, 
two terminal nucleotides must be specified. But the remaining eight are free. Thus 
there are 28 = 256 "left" substrates and an equal number of "right" substrates which 
are the shape complement of the potential ribozyme site. Each possible pair of these 
left and right substrates might be joined in a reaction; thus there are 28 X 28 = 216, 

or about 64 000, potential reactions which this potential ribozyme site might cata
lyze. The 64 000 reactions constitute a cloud in reaction space. The reactions are 
highly similar, of course, in that all rely on the same pair of terminal dinucleotides. 
The situation is identical to restriction endonucleases which recognize specific four
base sequences. 

The second feature which plays on the cloud in reaction space is the allowance of 
mismatches. Such mismatches diffuse the cloud further. 

It is trivially obvious that this system can form autocatalytic sets under trivial 
assumptions. Thus if the probability of catalysis granted a perfect match is set to 1.0, 
then many model RNA sequences which are entirely a catalytic site (such as those 
shown in Figures 7.1 and 7.2) will ligate two substrates corresponding to their left 
and right parts into a replica. Such ligation corresponds to the observed autocatalysis 
of the tetrameric and hexameric sequence noted above. Further, it is obvious that, if 
the probability of catalysis is independent of match strength, this model reverts to the 
basic model already studied, in which each polymer has a fixed probability of cata
lyzing any reaction. 

The important fact is that the model yields autocatalytic sets of model ribozyme 
ligases under the plausible assumption that the probability of catalysis as a function 
of match strength is much less than 1.0. Specifically, Bagley and I have modeled four
and six-nucleotide ribozyme sites and required either perfect matching or only single 
mismatches between the ribozyme site and the terminal nucleotides on the two sub-
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strates it ligates. We considered a maintained food set of all possible polymers of 
length 6, 8, or 10. For each we found an approximate minimum probability of catal
ysis such that the resulting virtual catalyzed reaction graph grew supracritically. The 
fundamental result, therefore, is that this model definitely supports the growth of an 
infinite reaction graph. Despite the use of template-matching rules rather than a sim
ple probability of catalysis independent of shape matching, the two versions of the 
model belong to the same universality class, a term physicists use to describe a family 
of models all of which share some fundamental assumptions leading them to share 
a set of consequences. That the two versions are so similar implies that autocatalytic 
sets of specific ribozyme ligases are, in principle, possible. 

The minimum probability of catalysis for supracritical graph growth, given that a 
prospective catalytic site first matches its substrates, can be very low. A crude over
estimate of that probability can be seen from our consideration of the cloud of reac
tions which might be catalyzed by one potential tetrameric site acting on substrates 
oflength to. The number of potential reactions, about 64 000, grows as the square 
of the number of substrates which match one end of the site. Thus substrates oflength 
to offer 28 = 256 left or right ends, and the product of these, 216 = 64000, is the 
number of reactions the site might catalyze. Suppose the probability of catalysis were 
1/64000. Then each potential site would catalyze, on average, at least one reaction 
among the set of all possible substrates of length 10. In this case, a large number of 
novel polymers would be formed and might act as new substrates and potential cat
alysts for yet more reactions. Over rounds of graph growth, the catalyzed reaction 
graph will grow supracritically. 

The SQuare of the number of substrates matching a site leads to an overestimate 
of the minimum probability of catalysis which will support supracritical graph 
growth, since the condition that all potential sites catalyze at least one reaction is 
overstrong. All that is required is that some new reactions proceed and some new 
polymers be formed at each round. In fact, numerical simulations fortetrameric sites 
which allow a single mismatch, operating on a food set of all possible polymers of 
length 10, show that a probability of catalysis of only 5 X 10-6 suffices for supracrit
ical graph growth. 

Pause to focus on this result. It says that, if a collection of all 1024 possible model 
RNA molecules of length 10 was assembled in a vat, if potential ribozymatic sites 
were four units long, if any ten-unit polymer had at least one such potential site, if 
terminal dinucleotides in pairs of substrates must each match the ribozymatic site at 
least at one nucleotide, then if the probability that the site catalyzes the reaction is 
only 2 in a million, the system would generate supracritical graph growth. If ther
modynamic conditions were also satisfied, the system would become genuinely auto
catalytic. The vat in the computer contains a self-organized, collectively self-repro
ducing system of specific ribozyme ligases. 

The results generalize immediately to four nucleotides, since a pair of adjacent 
model nucleotides, 1 and 0, can be thought of as one off our possible true nucleotides. 
These simulations slightly strain the Cray system at Los Alamos; thus tracking the 
minimum probability of catalysis for supracritical graph growth is difficult. For the 
four-nucleotide case and four-base ribozyme sites, our overestimate utilizing 
the SQuare of the number of substrates matching one-half of the ribozyme sites 
implies that a set of all 47 ~ 16000 possible heptamers will become autocatalytic 
when the probability of catalysis granted a match is about 1 in a million. Clearly, if 
the probability of catalysis is lower, then a correspondingly larger set of small RNA 
oligomers would be required to achieve supracritical graph growth. 
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We noted above the data from Ellington and Szostak (1990) yielding, even with
out the advantages of template matching, a plausible estimate of 10- 10 for the prob
ability of catalysis. Thus an RNA polymer system having a sequence complexity of 
perhaps 105 to 106 and lengths of perhaps 20 to 40 nucleotides to allow folding and 
formation of stable active sites might well be collectively self-reproducing. I suggest 
below that such experiments are now fully feasible. Indeed, a sequence diversity of 
1012 or more can be utilized. 

I should remark that we have here considered only supracritical graph growth in 
the case ofligation and cleavage reactions, without yet considering the possibility that 
model ribozymes might also catalyze more complex exchange reactions. Precisely 
those more complex transesterification reactions are catalyzed by known ribozymes. 
As in the basic model discussed above, inclusion of exchange reactions will rapidly 
increase the ratio of reactions to polymers, hence markedly increase the ease of 
achieving supracritical graph growth. 

In summary, extension of the basic model of autocatalytic self-organization to the 
template-matching case strongly suggests that self-replication by sets of specific ribo
zyme ligases or by sets of specific peptide ligases is possible. 

Relaxing the Idealizations of the Model 

For ease of analysis, a number of idealizations were introduced in the formulation of 
these models for the self-organization of reflexive autocatalysis. In addition, some of 
the idealizations reflect our ignorance. It therefore becomes essential to investigate 
whether and where the main conclusions hold when the idealizations are relaxed. Is 
the model robust? We now see that it is. 

The basic model, with a fixed probability of catalysis P, assumes perfect recogni
tion. Does autocatalysis still arise if each polymer might catalyze a cloud of similar 
reactions? A fixed probability properly captures the possibility that one polymer 
might catalyze more than one quite distinct reaction because both reactions repre
sent the same catalytic task. But a fixed P erroneously requires infinite discrimina
bility such that the polymer may catalyze a given reaction but not catalyze any of the 
cloud of similar reactions whose substrates are almost identical to the substrate of the 
catalyzed reaction. More realistically, suppose any polymer catalyzes such a cloud of 
similar reactions. Then more of the reactions in the underlying reaction graph are 
catalyzed and hence are part of the catalyzed reaction subgraph. From the point of 
view of attaining a critical catalyzed connectivity, such additional catalyzed reactions 
only help. Thus inclusion of clouds abets the formation of an autocatalytic set. How
ever, it is equally obvious that such extraneous reactions may often induce flow down 
pathways to useless polymer products not needed in the autocatalytic set. But this 
recognition of nonproductive pathways is simply another way of seeing that auto
catalytic sets may live on supracritical virtual catalyzed reaction graphs. In any such 
system, as the mass of the open thermodynamic system increases, the system will 
spread out on the underlying connected virtual catalyzed reaction graph. Extension 
of the basic model to template matching as a requisite for potential enzymatic sites, 
coupled with allowed mismatches, captures one model of such clouds in a defined 
shape space. 

In the basic version of the model but not in the RNA version with minimum
length template match sites, I have assumed that even monomers might catalyze 
reactions. In fact, even the bifunctional histidine can play catalytic roles. However, 
it is plausible that, with increasing polymer length, it becomes easier to build a rea-
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sonable catalytic site. An extreme version of this hypothesis might suppose that all 
polymers less than some length have no catalytic activity, while all those above this 
threshold length have a constant probability of catalyzing any reaction. It is easy to 
show that this supposition makes little difference to the fundamental conclusion 
(Kauffman 1986b). The ratio of number of reactions to number of polymers present 
increases so rapidly that reasonable-size sets of polymers which are potential catalysts 
still form autocatalytic sets. Two important differences emerge, however. By this 
hypothesis, all smaller polymers are catalytically unactive. Thus the metabolic chains 
leading out to large catalytically active polymers are longer than otherwise; hence if 
too many extraneous reactions are catalyzed, the concentrations of catalytically 
active polymers may be too low to be sustained above the threshold value. No ana
lytic or simulation work has been done on this aspect of the problem. A related dif
ference is that the supracritical explosion of a critically complex food set of small 
polymers cannot occur since, by hypothesis, such small polymers are not catalyti
cally active. In the template-match version of the model, we have assumed that a 
minimum length is required to form a catalytic site and that the number of sites is 
proportional to polymer length. Since autocatalytic sets arise, the model is robust 
with respect to this assumption. In the RNA template model, the probability of catal
ysis is a function of total polymer length, such that long polymers, because they are 
likely to have more active sites, are more likely to be catalytically active than short 
polymers. 

The basic model, with a fixed probability of catalysis, does not yet make use of the 
implications of shape complementarity. The implications of shape matching, how
ever, suggest that achieving collective autocatalysis is easier than in the basic model. 
The basic model (without shape matching) assumes that the distribution of catalytic 
capacities is isotropic and unbiased, as generated by an independent probability of 
catalysis P. Thus the fact that peptide X catalyzes the cleavage of peptide Y carries 
no implication that Y may catalyze a reaction involving X as a substrate. Yet X acts 
on Y in part by virtue of shape complementarity; hence there should be an increased 
probability that Y also acts on X. We encountered this idea earlier, in the concept of 
a shape space. If Y binds X, then X binds Y. A similar point was made by Kenyon 
and Steinman (1969), who noted that the presence of N,N-dimethylformamide in a 
solution containing aspartic acid, serine, and dicyanamide increased the yield of (j'
aspartyl-serine, the dipeptide constituting the center of the active site in the protease 
chymotrypsin. They point out that a peptide bond is essentially an amide linkage. 
Thus, in the presence of an amide, an association between amino acids and the 
potential substrate increased the yield of that portion of the active site of a protease 
cleaving such bonds. Thus potential substrate could have served as a template about 
which protoenzymes evolved. In Kenyon and Steinman's felicitous phrase, the lock 
forms itself around the key. The implication of such shape complementarity, in 
either peptide or RNA sequence space, is a tendency toward symmetry in catalytic 
connectivity. Ifthe fact that X catalyzes a reaction involving Y implies that Y has an 
increased chance of catalyzing either a reaction involving X or a reaction involving 
peptides near X in peptide space, achieving catalytic closed loops should be more 
likely in the refined model than in the isotropic model with a constant, independent 
probability P. In short, since shape complementarity is a reality and not a mere 
abstract construct, reflexively autocatalytic sets should tend to be populated by poly
mers which bind one another and hence exhibit a complex web of complementary 
shapes. Among the reasons this web of complementary shapes is intriguing is this: 
Any RNA-or-DNA-first view of the origin oflife has as one of its dominant advan-



THE ORIGINS OF LIFE: A NEW VIEW 329 

tages the simplicity of point-point complementarity of complementary single
stranded molecules. If we set aside DNA and RNA for a broader look at catalytically 
active polymers, including peptides, we appear to recover a generalized shape-shape 
complementarity in a higher-dimensional shape space. In addition, shape comple
mentarity should show up in entropic measures of sequence symbol complexity in 
mutually catalytic collections of polymers, as noted in Chapter 10. 

The basic model ignores inhibition of catalysis. Inclusion of inhibition should per
mit the formation of autocatalytic sets having complex dynamical attractors. Alter
native attractors then become alternative protoorganisms inhabiting the same poly
mer world. In addition, inhibition of catalysis can cut off unwanted metabolic 
pathways. 

Once a reaction is catalyzed, that catalysis may be inhibited. Indeed, peptide acti
vators and inhibitors of prot eases are common in many prokaryotes and eukaryotes 
(see, for example, Carrell, Pemberton, and Boswell 1987). Because inhibition has 
been ignored in our model, the dynamics of the autocatalytic sets we have studied is 
relatively simple. So far, all have gone to a single steady state under fixed boundary 
conditions. If inhibition is included, the dynamics might instead exhibit sustained 
oscillations or more complex strange attractors. Preliminary analysis including inhi
bition in idealized Boolean models of such systems suggests that the main conclu
sions do not alter (Kauffman 1971 b). Reasonable-size autocatalytic sets still form. 
Once a more complex dynamics is allowed, due either to inhibition or to sigmoidal 
catalytic kinetics, it is intriguing to realize that each alternative dynamical attractor, 
steady state, limit cycle oscillation, and so on can be thought of as a distinct self
reproducing protoorganism living on the same virtual catalyzed reaction graph. 

Inclusion of catalysis inhibition is important for another reason. Such inhibition 
allows an autocatalytic set to begin to include polymers which inhibit specific reac
tions; hence the set can begin to cut off useless pathways to unneeded polymers. 

The stability properties of autocatalytic sets require examination. Since inhibition 
of catalysis is likely to open the door to complex attractors, the sizes of those attrac
tors and their stability properties become important with respect to the homeostatic 
properties of the systems, the ruggedness of their fitness landscapes, and their capac
ities to evolve. As discussed in Chapter 5, and as we shall see in more detail in Chapter 
12, systems oflow connectivity tend strongly to have small stable attractors. Later in 
this chapter, I give reasons to think that autocatalytic systems will evolve from sys
tems containing low-specificity, low-efficiency catalytic polymers to systems exhib
iting high molecular specificity and high catalytic efficiency. Since high specificity is 
the equivalent oflow connectivity, we may plausibly project that evolved autocata
lytic polymer systems in which the rate of synthesis of each polymer is influenced 
directly by rather few other polymers will exhibit small stable attractors and homeo
stasis. Collective self-reproduction and homeostasis may thus be emergent collective 
properties of polymer chemistry. 

EVOLUTIONARY CAPACITIES 
OF AUTOCATALYTIC SETS WITHOUT A GENOME 

In this section I discuss the capacities of autocatalytic polymer sets to evolve without 
possessing a genome in the familiar sense of the term. Since possession of a genome 
capable of heritable modification is considered by many to be the hallmark of Dar
winian evolution, this examination is not without general importance. Should the 
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generation of life through collective autocatalysis be demonstrated, we shall need to 
rethink our theories of heritable information. 

The model presented above for the spontaneous emergence of a collectively auto
catalytic set of organic molecules which transform to one another and catalyze the 
transformations in some statistically prescribed way is the first member of a new uni
versality class. The central ideas are simple, general, and, I believe, important not 
only in the sense that life on earth might have originated utilizing these principles but 
also in the sense that the results are robust and withstand a variety of modifications 
of the assumed distribution of catalytic activities. The combinatorics of the ratio of 
reactions to polymers is so overwhelming that the argument is insensitive to most of 
the details. If the model is correct, then the routes to life in the universe are broader 
than imagined, perhaps boulevards rather than twisted backalleys of thermodynamic 
improbability. Therefore, it is worth analyzing the issues naturally raised by this new 
universality class. Foremost among such questions must be the capacity of any pro
toorganism based on a reproducing "metabolism" to evolve in the absence of tem
plate replicating of arbitrary DNA or RNA sequences as the store of heritable prop
erties. Can such evolution occur? What might happen? What might the limits be? 

I discuss in outline these issues: 

• The surprising expected evolutionary behaviors of supracritical autocatalytic sets 
under selection 

• The capacity of finite autocatalytic sets to exhibit heritable variation and evolve to 
novel autocatalytic sets without harboring a genome 

• A selective transition from supracritical to subcritical autocatalytic sets 

• An implied historical supracritical-to-subcritical trend in metabolic evolution 

A surprising feature of supracritical autocatalytic sets is that they should be able 
to use as food essentially any molecular species presented to them. This lack of dis
crimination implies that such systems should evolve adaptively by tracking a chang
ing food set. This behavior, which appears paradoxical, is rendered less so when we 
recall from Chapter 4 the concept of catalytic task space and the conclusion that a 
finite number of proto enzymes is expected to be a universal catalytic toolbox. It fol
lows that such a collection of polymers, able to catalyze almost all reactions on a 
relevant size scale, would be able to "metabolize" any possible foodstuff. 

In a self-reproducing supracritical system, one or more members would be 
expected to catalyze at least one reaction involving almost any novel molecule pre
sented to the system. In turn, the products of that reaction would likely be subject to 
further catalysis by other members of the system, and those products in turn would 
be acted upon. Typically, at least some of the smaller fragments should be built up 
into preexisting components of the autocatalytic set. Thus those smaller fragments 
are serving as exogenously supplied food useful to the reproducing system. Further, 
the new products can exhibit catalytic activity and generate yet new possible reac
tions; hence they should meld into the set. 

This flexibility of supracritical autocatalytic sets suggests that a supracritical sys
tem should evolve adaptively from one to another autocatalytic set by tracking its 
food set as the latter alters as a result of environmental change. Here the system, 
which might be made purely of catalytic peptides, adapts without a genome to an 
altering environment. 

Adaptive tracking of the environment by a single changing autocatalytic set is one 
issue. But can more than one autocatalytic set live in the same environment, and can 



THE ORIGINS OF LIFE: A NEW VIEW 331 

one set evolve to a diversity of kinds of protoorganisms? We expect so for several 
reasons. In a finite autocatalytic system having finite concentrations of each polymer 
and living on an infinite virtual graph, waxing and waning of the number of kinds, 
concentrations, and rates offeeding should drive an adaptive evolution of the auto
catalytic set which shows hysteresis: As the total mass of the system waxes, the num
ber of kinds of polymers present should increase, blossoming outward on the graph. 
If the system then returns to the same poorer environment after a sojourn on more 
abundant and richer food sets, it may often yield an autocatalytic system different 
from that initially found on that same food set. If so, then more than one protoor
ganism can live in the same environment. 

In more detail, hysteresis implies that, in the same environment, the system can 
exist in more than one dynamical attractor or more than one stable behavior pattern. 
Each such pattern corresponds to a "different" autocatalytic set, or different pro
toorganism. There are at least several ways multiple attractors within the same envi
ronment might occur. A first is based on the stochastic behavior of self-reproducing 
metabolisms with small numbers of each kind of polymer in each spatially separated 
copy of the system. A second is based on sigmoidal enzyme kinetics in deterministic 
dynamical systems. A third is based on specific phosphorylation. I discuss these 
next. 

First, two major sources of stochastic behavior can be expected. On the one hand, 
we have included only catalyzed reactions in the model and have ignored the slowly 
occurring spontaneous reactions which are always possible. Farmer has pointed out, 
as discussed in Bagley (1991) and Bagley, Farmer, and Fontana (1992), that such 
spontaneous reactions are a means to create occasional mutant polymers which may 
then be added to the autocatalytic system. This addition may allow different copies 
of the system to diverge in different directions. If one considers spontaneous as well 
as catalyzed reactions and if, as we have now shown, an autocatalytic set with large 
polymers at high concentrations can sustain itself, then a kind of shadow set, or 
cloud, of nearby products will exist. This shadow set arises as a result of spontaneous 
reactions utilizing components of the autocatalytic set. (Here "nearby" means one 
or two reaction steps away from the autocatalytic set.) Clearly, if any such novel mol
ecule catalyzes its own formation from the initial autocatalytic set, it will be added 
to the set. More generally, if small collections of such spontaneously formed mole
cules which fluctuate to appreciable concentrations in the shadow set jointly permit 
their own catalysis from one another and from the original autocatalytic set, they 
may be added to the initial set. Conversely, addition of new polymers, particularly 
in the presence of inhibition, may lead to loss of old polymers. Thus, in general, spon
taneous reactions and the shadow set of polymers surrounding the autocatalytic set 
allow evolution to new autocatalytic sets. 

These ideas have now been confirmed by simulation. R. Bagley and W. Fontana 
at Los Alamos National Laboratories and the Santa Fe Institute have implemented 
a program which tests for the existence of "viable" mutant additions of clusters of 
new polymers in the spontaneous cloud surrounding the autocatalytic set. They find 
that such new clusters do exist and can be added to the set. Over a succession of 
moments, the set evolves by a succession of additions of clusters. These results clearly 
show that, in principle, autocatalytic sets without a genome can evolve in the space 
of polymers (Bagley, Farmer, and Fontana 1992). 

A further source of stochastic behavior arises from the analogue of cell division. 
Any beginning account ofthe origin oflife must describe how the protoorganism can 
segregate reactions into a small region and how it can defend its internal environ-
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ment. Suggestions here have ranged from Oparin's coascervates (1957, 1971) to 
Fox's microspheres (Fox and Dose 1977; Fox 1980) to liposomes (Hargreaves, Mul
vihill, and Deamer 1977; Deamer and Barchfeld 1982). By whatever mechanism of 
compartmentation may prove reasonable, the numbers of copies of any single poly
mer in one copy of a protoorganism will be modest, often small. If the protoorganism 
compartment is divided into two, the contents ofthe initial volume will be randomly 
distributed to the two daughter cells. Any polymer present in low abundance may be 
asymmetrically distributed to the two daughter cells. Thus, in general, the dynamical 
behavior of such systems will be governed by stochastic differential equations, and 
one expects that evolution to new autocatalytic sets will be possible in a population 
of dividing protocells. 

The evolutionary capacity of autocatalytic sets is even greater than discussed. This 
is because, in one environment, the same single pattern of catalytic connectivity may 
be able to perform in more than one stable and collectively autocatalytic dynamical 
mode; each alternative mode would constitute an alternative stable dynamical 
attractor, or protoorganism. Recall from Chapter 5 our discussion of systems in 
which the activities of enzymes are cooperative sigmoidal functions of the levels of 
substrates or allosteric modifiers. When biochemical systems whose components 
realize sigmoidal kinetics exist, the achievement of multiple steady states or multiple 
attractors is very easy indeed. Thus as soon as sigmoidal kinetics is included in our 
basic model of self-reproducing metabolisms, the occurrence of multiple protoor
ganisms in the same external environment becomes virtually inevitable. Such pro
toorganisms might each exhibit steady-state behavior, limit-cycle dynamics, or cha
otic attractors. Thus a single autocatalytic set might have a complex time structure, 
and more than one attractor might make collective use of the same set of polymers 
but with different time structures (Kauffman 1971 b). 

Third, the capacity to evolve in alternative directions is likely to be greater with 
the advent of specific control over thermodynamic flux by coupling of exergonic 
reactions to the endergonic reactions synthesizing specific large polymers. As noted 
above, Fox (1988) has suggested coupling overall pyrophosphate hydrolysis to pep
tide or RNA condensation reactions. Specific enzymatic control by polymers in an 
autocatalytic set in which peptides are activated by phosphorylation, and hence form 
peptide bonds rapidly, may allow much finer control of membership in an autocat
alytic set and therefore a larger diveristy of self-consistent autocatalytic sets in a single 
environment. 

Evolution without a genome raises novel questions which do not arise in molec
ular systems which reproduce arbitrary genomes via a promiscuous polymerase: 

1. Since an autocatalytic set reproduces by collective catalysis, only sets which 
achieve collective catalytic closure can survive. Therefore even in the infinite 
space of polymers, the number of collectively autocatalytic sets may remain finite. 

2. How many neighboring autocatalytic sets exist within some mutation distance 
from a given autocatalytic set? Here mutation distance must be measured in terms 
of the number of kinds of new polymers or monomers which must arise as a clus
ter to become incorporated into the system. 

3. What do the pathways of neutral evolutionary change-that is, change in the 
absence of selection-among such neighboring sets look like? This question seeks 
the graph of connections among neighboring autocatalytic sets in polymer space. 

4. Under given selection conditions-for example, a defined food set-some auto
catalytic sets will reproduce more rapidly than others and hence will have higher 



THE ORIGINS OF LIFE: A NEW VIEW 333 

Darwinian fitness. In short, a fitness landscape exists over the set of autocatalytic 
sets. Because of this landscape, an adaptive flow over the space of self-reproducing 
systems will show historically frozen accidents and hysteresis. Sets will climb to 
local peaks in a fixed fitness landscape and remain more or less trapped. If the food 
set or other parameters change, the system may never retrace its steps to an earlier 
optimal set when it revisits an old environment. What do such patterns look like? 

5. Coevolution of autocatalytic sets will occur. If multiple sets live in the same phys
ical environment and exchange molecular variables either by diffusion in a com
mon milieu or by attacking one another, then the polymers in one set may either 
help or poison a second set. As in Chapter 6, we must consider the coevolutionary 
dynamics of such systems as the Darwinian fitness landscape of each is deformed 
by the adaptive moves of its partners. 

Notice a point of central interest about coevolution in the current context. In 
Chapter 6 we used coupled NKlandscape models to study coevolution, but any given 
genotype had no natural internal dynamics or function. Here, we have a Darwinian 
notion of the fitness of any autocatalytic polymer system. In a real sense, any auto
catalytic system is a kind of agent; events and molecular inputs can be either useful 
or dysfunctional to its survival. A natural notion of function, therefore, derives 
directly from the underlying chemical and collective reproductive properties of the 
autocatalytic set. Using these properties, we can study the emergence of collaborative 
functional interaction between autocatalytic sets, such as mutualism and symbiosis, 
as they coevolve together and come, figuratively, to know one another. 

In summary, these evolutionary adaptive behaviors of autocatalytic systems are 
important. For here we have evolution without a genome. Information is stored not 
in a stable, inert structure such as template-replicating DNA but in the self-consistent 
web of transformations. But the particular web found is a function of the history of 
the environments to which the autocatalytic set has adapted. In Chapter 10, I shall 
generalize these ideas in terms of random grammar models of functional integration. 

A Selective Transition from 
Supracritical to Subcritical Autocatalytic Sets 

Physically realized supracritical autocatalytic systems are expected to contain poly
mers able to catalyze at least one reaction afforded by any novel food molecule and 
subsequently to catalyze reactions involving the products of that first reaction. Like 
a universal enzymatic toolbox, such systems would be able to metabolize any sub
strate in some fashion or another. But current organisms do not appear to be supra
critical. If life began with such supracritical sets, then a transition has occurred to 
subcritical systems. We examine this now. 

The model of autocatalytic sets was developed without formal use of the idea ofa 
catalytic task space. Of course, the proper statement of the problem is that an auto
catalytic set is a set having the property that each reaction needed to achieve catalytic 
closure is covered by a ball in catalytic task space and is catalyzed by some member 
of the set. An autocatalytic set is a self-consistent set of catalyzed balls and has the 
property that, for the proper substrates offered to each ball and for the proper prod
ucts of the corresponding reaction, the union of substrates and products catalyzes the 
same set of balls in task space. Evolution of autocatalytic sets is the concerted evo
lution of the corresponding set of polymer substrates and products and of the sizes 
and locations of the catalyzed balls, always maintaining the conditions of self-con-
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sistency. A supracritical autocatalytic set has the property that almost any incoming 
molecule affords at least one reaction which either alters that molecule or else com
bines it with some other molecule in the set and that this reaction is catalyzed by at 
least one member of the present set. For this reason, we expect that a supracritical 
autocatalytic set can cope with essentially any novel food molecule. 

Contemporary organisms, even those as versatile as bacteria, can act catalytically 
on only a subset of the molecular species presented to them. This is so well known 
as to be thought trivial but is not really so trivial. It implies that cell metabolism is 
not supracritical. If we want to imagine that life began as a supracritical, stochastic 
reproducing metabolism of polymers having rather weak, nonspecific catalytic activ
ity, then we have to ask how a transition to a subcritical system can have occurred. 

The immune network leads immediately to a suggestive image: Under selection 
for protoenzymes with increased catalytic efficiency, an autocatalytic collection of 
catalysts should simultaneously evolve enzymes with increased specificity. This 
increased specificity, in turn, will transform a supracritical autocatalytic set into a 
subcritical one. 

According to the immune network theory of Jerne (1974, 1984), antibody mole
cules have both paratopes (their binding sites) and epitopes (sites recognized by the 
binding sites on other antibody molecules). One picture ofthis network supposes that 
the degree to which a B lymphocyte which secretes an antibody which binds an anti
gen is stimulated to divide is proportional to the affinity of the binding. Conversely, 
a B lymphocyte whose antibody receptors (identical to the antibody it secretes) are 
bound by another antibody divides less frequently. The complex shape-space match
ing of epitope and paratope constitutes the idiotype network (Jerne 1974, 1984; 
Dwyer, Vakil, and Kearney 1986; Hoffman, Kion, et al. 1988; Perelson 1988). Loops 
ofB lymphocytes form, in terms of a cycle of binding and bound (Chang and Kohler 
1986; Perelson 1988). Ifstimulation of the binding cell is stronger than inhibition of 
the bound around such loops, each loop can act as a positive feedback loop. In theory 
(Perelson 1988), those linked loops, and tails, of B lymphocytes having the highest 
affinity for the antigen are stimulated the most-and hence grow fastest-and dom
inate the immune response by clonal selection. Subsequent somatic mutation to 
those cells presumably leads to modified but still coupled loop structures whose 
member antibodies match and recognize one another with much higher affinity and 
specificity than initially, and hence mutually stimulate one another more strongly 
and grow still faster. The looped structures thus might provide an internal memory 
of the initial antigen and are, in a real sense, autocatalytic structures which must 
maintain cyclic connection while new variant members increase mean affinity for 
the antigen. In addition, the successive ranks of antibodies form even and odd ranks, 
each the shape complement of its predecessor and successor. That is, such loops pre
sumably tend strongly to have successive shape-shape complements. In this picture, 
an initial imprecise loop structure whose members have modest affinity for the 
incoming antigen self-tunes to a focused system (typically one having less heteroge
neity of cells) in which the members have higher affinity for the antigen and for one 
another via generalized shape complementarity. 

This idea has a direct implication for autocatalytic polymer systems. We need a 
single postulate which is plausible, testable, and probably true. Let us suppose that, 
on average, an enzyme which binds its transition-state complex with higher affinity 
catalyzes the reaction with higher maximal velocity than an enzyme having lower 
affinity, and that this higher affinity, on average, implies higher specificity for sub
strate(s). That is, let us assume that, on average, higher specificity is correlated with 
higher maximal catalytic velocity. This average statement need not be true in indi-
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vidual cases. An imprecise site may contain a very reactive group. Presumably, how
ever, if the site became more specific for the transition state of a specific reaction, the 
affinity for the transition state would increase and the velocity of the catalyzed reac
tion would increase as well. Indeed, Kacser and Beeby (1984) argue on thermody
namic grounds that in general this relation holds. 

The natural consequence of this assumption is that, in a supracritical autocatalytic 
polymer system-say, in a chemostat with fixed influx offood and overflow-mul
tiple sufficiently connected autocatalytic subsystems are present, some of which cat
alyze their own formation more rapidly than others. Fixed boundary conditions 
imply that the total number of monomers free or bound into polymers is constant 
and thus constitutes selective conditions. Any autocatalytic subsystem which repro
duces faster than the other subsystems will outstrip the remainder by familiar Dar
winian selection. By the assumption linking specificity and velocity, however, the 
subsystems which will grow fastest will be those which simultaneously maintain the 
requirement of catalytic closure and have the most highly specific protoenzymes in 
the system. That is, the natural consequence of natural selection should be to pull 
such an initial imprecise supracritical autocatalytic system toward subsystems which 
remain autocatalytically connected but whose mean specificity of coupling and 
velocity of replication have increased. As this focusing occurs, the increased specific
ity of catalytic activities means that, simultaneously, extraneous side reactions not 
needed for autocatalytic closure and reproduction on the given food set are being 
trimmed away. Thus in this "simple" condition, selection toward minimally com
plex but still connected autocatalytic systems of ever higher specificity should occur. 

Cast onto the image of catalytic task space, under selection, an autocatalytic set 
remains self-consistent for catalytic closure. The balls grow smaller and the set of 
reactions and polymers moves across task space in some way, however, and the num
ber of molecular species dwindles toward the level found in minimally autocatalytic 
systems in which removal of any further polymer is lethal. 

But selection toward higher-specificity catalysts must be fundamentally limited. 
As a very supracritical system with very imprecise protoenzymes begins to undergo 
selection for slightly more specific and rapidly producing subsystems, these new sub
systems should initially remain supracritical. As selection pulls such a system toward 
more specific catalysts, the task of preserving catalytic closure must become ever 
more difficult. Less of catalytic task space is being covered, but the tasks accom
plished must keep one another mutually in view during the focusing process. At some 
point, the rate of finding a new polymer which enhances the rate of formation of the 
system and is itselfformed efficiently by the system becomes very low. Another way 
of saying this is that the selective process toward enzymes which catalyze their target 
reactions with increased maximal velocities simultaneously increases the specificity 
of those enzymes. This increase in specificity makes the balls covered in catalytic task 
space smaller and hence lowers the probability that the same enzyme catalyzes other 
reactions. At some point, if that probability is lowered enough and if the minimal but 
efficient autocatalytic set is small enough, the reaction graph generated by the set of 
high-specificity polymers may become finite rather than infinite. Then, under selec
tion, a transition has occurred from an imprecise supracritical finite autocatalytic 
system living on an infinite virtual reaction graph to a smaller subcritical finite sys
tem living on a finite graph. 

I summarize the picture we are led to. If there is a correlation between specificity 
and the velocity with which a protoenzyme catalyzes a reaction, as Kacser and Beeby 
(1984) have argued on thermodynamic grounds, then, in rapidly growing autocata
lytic systems that start from an imprecise supracritical system, natural selection 
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should lead to more focused autocatalytic systems which have increased the specific
ity of the mutually necessary connected cycles of enzymes, hence trimmed away use
less pathways, and perhaps gone subcritical. But selection for ever-increased speci
ficity and velocity is limited. As the system goes subcritical, maintaining catalytic 
closure becomes harder. Thus there will be a minimal efficient system attainable. 

A Supracritical-Subcritical Evolutionary Axis 

I close this examination of this new universality class of models by noting the impli
cations of a supracritical-to-subcritical transition in evolution. We are almost forced 
to believe such a transition occurred by the very picture that life, in the sense of a 
reproducing coupled catalytic system, arose as a supracritically complex system. We 
are not supracritical systems now; hence such a transition must have occurred iflife 
started, as here pictured, complex rather than simple. Then there must be a kind of 
secular evolutionary axis, driven by selection, tuning how supracritical or subcritical 
free-living entities are. Perhaps invention of the genetic code and DNA was needed 
not for reproduction and molecular replication but to free autocatalytic systems of a 
laborious search for catalytic closure each time a new RNA or protein was to be 
made. Perhaps the evolution of a code was easier than we have pictured it: Perhaps 
the code crystallized out during the transition from supracritical to subcritical, for 
supracritical catalytic systems may be astonishingly versatile compared with the sys
tems found in present organisms. Such supracritical systems are both chicken and 
egg. 

We may well ask how subcritical current metabolisms are. Three lines of evidence 
suggest that we may be surprisingly near the edge of supracritical behavior. First, we 
are now familiar with the potentially universal capability ofthe mammalian immune 
repertoire to recognize almost all possible shapes on some size scale, and perhaps to 
catalyze all possible reactions on the same size scale of active sites. Such a system is 
essentially supracritical. Second, bacteria and higher organisms evolve very rapidly 
to cope with an enormous variety of novel metabolic stresses. Bacteria often do so 
by importing a plasmid, or other vector, producing a novel protein able to deal with 
whatever agent is causing the stress. But the set of plasmids had to acquire genes cod
ing for proteins with the range offunctions required. These plasmid-borne genes may 
be thought of as a bacterial immune system shared between distinct cells rather than 
between cells of one organism. The bacterial immune system, too, appears to be 
nearly complete, nearly supracritical. Virtually any novel stress can be coped with 
either by an existing plasmid or by the rapid evolution of modified variants from the 
gene pool already available. And the same considerations apply to higher eukaryotes. 
Almost any stress will call forth some resistant strain after a modest interval. Thus 
the gene pool of a breeding population of, for example, fruit flies lies within a short 
mutational range of proteins or other polymers able to cope with an enormous vari
ety of novel molecular species. We come to the tentative conclusion that our own 
metabolisms are nearly universal. This thought, initially astonishing, becomes work
aday once we realize that a finite number of enzymes, on the order of 108 to 1012, 

ought to be a universal enzymatic toolbox. Our collective genomes as breeding pop
ulations within species are within range of that diversity. 

An Evaluative Summary 

I have now discussed a novel model for the origin of life among catalytic polymers 
based on collective self-organization. The model rests on a phase transition in the 
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hypergraph of polymers, on the reactions which couple them, and on the distribution 
of their capacities to catalyze the same reactions. Pause to note how simple and gen
eral it is. It contains the ideas of (I) a set of entities, (2) the transformations among 
those entities by which they convert to one another, and (3) the fact that the entities 
abet those transformations according to some statistically characterizable distribu
tion. A connected whole emerges as a collective property simply because the number 
of possible transformations grows faster than the number of entities, while the fre
quency of abetting transformations either stays constant or decreases more slowly 
than the ratio of transformations to entities increases. At some level of complexity, 
a percolation threshold is reached and collective autocatalysis emerges. 

In an earlier section we discussed the difficulty of achieving template replication 
of arbitrary RNA sequences. I have suggested that, since template molecules could 
act as specific ligases, as can ribozymes, reproduction by RNA molecules might be 
more easily attained by collective autocatalysis. In short, RNA molecules could 
achieve replication not by templating but by catalytic closure. Thereafter, polymer
ases able to catalyze replication of arbitrary RNA sequences might arise relatively 
simply. 

If the general ideas are right and truly robust with respect to the idealizations of 
the model, then the formation of autocatalytic sets of polymer catalysts-peptides, 
RNA, or otherwise-is an expected emergent collective property of sufficiently com
plex sets of such polymers. Perhaps the main feature of this model is something like 
a law of minimum complexity. To obtain connected catalyzed transformations as an 
emergent collective property, a sufficient complexity is needed. Smaller systems sim
ply fail to achieve catalytic closure. 

EXPERIMENTAL CONSEQUENCES 

The model of autocatalytic sets of peptides or RNA polymers opens up very large 
areas for experimental investigation. Foremost among the issues raised is distribu
tion of catalytic capacities in peptide or RNA space (approaches to this issue by clon
ing of entirely novel genes were discussed in Chapter 4 and will not be further dis
cussed here). Related to this issue is the mapping onto catalytic task space of peptides 
or RNA sequences considered as reaction substrates and products. Beyond these fun
damental issues, we must consider the experimental construction of autocatalytic 
sets of peptides or RNA ribozymes. I suspect this construction is feasible if we are 
bold enough to reach the needed complexity and meet the thermodynamic require
ments. 

Steps Toward Experimental Autocatalytic Sets 

If it proves to be the case that at least weak catalysis is widely distributed in peptide 
and/or RNA space, as now appears likely from the results noted in Chapter 4, then 
it may soon be possible to create experimental autocatalytic polymer sets. The fact 
that the basic theory extends comfortably to autocatalytic sets of specific model ribo
zymes suggests that it may be easier to create autocatalytic ribozyme systems than 
peptide systems. Either form would be marvelous. The main experimental implica
tion of the body of ideas in the present chapter is this: Start complex, not simple. The 
goal is a connected catalyzed set of transformations, preferably linking a food set to 
an autocatalytic set of peptides, RNA, or other catalytically active polymers. A min
imum critical complexity is surely necessary to nucleate a connected web. Practical 
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implementation of this possibility confronts three requirements: thermodynamic 
requirements to drive the synthesis of large polypeptides and polynucleotides from 
smaller components, the requirement to confine reactants to small volumes, and the 
requirement for catalytic closure. 

Osmotic Drive 

The model of autocatalytic sets discussed so far is based purely on polymer autoca
talysis and remains innocent of the coupling of exergonic and endergonic reactions 
in a coupled metabolism. Such coupling is discussed in the next chapter. Before 
doing so, it is useful to consider possible simple ways to drive synthesis ofhigh-molec
ular-weight peptides or possibly RNA molecules. Earlier in the chapter, I broached 
enclosure of peptides in liposomes. Such bilipid membranes are plausibly con
structed in prebiotic conditions and, under cycles of hydration and dehydration, can 
enclose macromolecules, including DNA and RNA (Hargreaves, Mulvihill, and 
Deamer 1977; Deamer and Barchfeld 1982). Consider peptide or phosphodiester 
bond formation among peptides or RNA sequences enclosed within a liposome. 
Each condensation reaction releases one water molecule, which diffuses quite rapidly 
across the semipermeable lipid membrane. The larger polymers do not diffuse across 
the membrane, however. If the liposome is placed in a hypertonic medium, the efflux 
of water, a product of the condensation reaction, should drive the reaction to the 
right, leading to the synthesis oflarger polymers. Conversely, ifthe liposome is placed 
in a hypotonic medium, then the influx of water should favor cleavage. Cyclic wet
ting and drying of the liposome might drive the synthesis, cleavage, and cyclic shuf
fling of peptide or RNA fragments in the liposome. 

A direct experimental approach to this problem would analyze the plastein reac
tion (Wasteneys and Borsook 1930; Fruton 1982) carried out inside liposomes. You 
recall that this reaction consists in cleaving large proteins with trypsin, then dehy
drating and observing resynthesis oflarge polymers from small peptides without the 
need for A TP or other high-energy compounds (Levin, Berger, and Katchalski 1956; 
Neumann, Levin, et al. 1959). It should be possible to test whether enclosure in a 
liposome exposed to hypertonic solutions causes a shift of the equilibrium toward 
synthesis, and whether cyclic wetting and drying drive cyclic condensation and cleav
age reactions. 

The physical consequences of such ligation and cleavage reactions are also of 
interest. Large polymers have colligative properties: If cross-linked, they form gels, 
extrude excess water, and thereafter act as distributed osmometers. Hydrodynamic 
and other mechanical forces would be expected to deform liposomes in possibly 
interesting ways. That is, such forces might lead to a Ii po some with a gel mass at one 
end and a sol state at the other end, yielding a pseudopod-like protrusion. Sol-gel 
transitions might even yield the progenitor of amoeboid movement in such a lipo
some. Finally, confining reactions to a surface in a variety of ways tends to ease the 
formation Oflarge polymers from smaller components for entropic reasons, and may 
prove a useful experimental tool. 

Autocatalytic Sets: Critical Complexity 

If synthetic peptides or RNA sequences show a variety of weak catalytic activities, 
then it may not be unsurpassingly hard to make autocatalytic sets of polymers. The 
first steps in any such program require investigating the probability of catalysis by 
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peptides or RNA sequences. Ellington and Szostak's results discussed in Chapter 4 
suggest that the probability for RNA sequences may be on the order of 10- 10 for arbi
trary organic reactions. Because of the ease oftemplate complementarity, it might be 
easier to catalyze cleavage or ligation by RNA sequences of other RNA sequences 
than to catalyze arbitrary reactions with RNA sequences. Thus the probability of 
catalysis may be much higher than 10- 10 among RNA sequences acting upon them
selves. 

One approach, iffocusing on RNA sequences, would generate a complex mixture 
of perhaps 1014 single-stranded RNA sequences ofa constant length, say 40 nucleo
tides, and incubate this mixture by itself in a small volume to ensure high molecular 
collision rates. If any cleavage or ligation reactions occur, single-stranded RNA 
sequences shorter or longer than 40 nucleotides will be generated. These can be size
separated on gels, amplified by a variety of techniques, and sequenced. Such sequenc
ing should confirm that sequences longer or shorter than 40 nucleotides have been 
generated. In Chapter 10, I shall discuss the concept of random grammars by which 
symbol strings act on and transform one another. RNA sequences catalyzing mutual 
reactions can be regarded as mediating such a molecular grammar. One measure of 
the way RNA sequences act catalytically on one another based on template recog
nition, ligation, cleavage, and splicing is the buildup of nonrandom sequence biases 
among nearby nucleotides. The resulting biases can be measured as symbol entropy 
and mutual information as a function of distance between nucleotides. These biases 
build toward an asymptotic distribution after a sufficient number of molecular rec
ognition events and catalytic transformations have occurred. What is important is 
that, while the size distribution of polymers may be sensitive to thermodynamic fac
tors, such as hydration conditions, the symbol-entropy and mutual-information 
measures appear to be grossly insensitive to thermodynamic factors but sensitive to 
site-recognition and sequence-substitution rules. Thus the time course of buildup 
and of asymptotic deviation from statistical independence as a function of internu
cleotide distance may yield information on the mutual sequence recognition and 
molecular catalytic grammar by which RNA molecules act on one another. 

The theory described above gives a first hint of the complexity needed in peptide 
or RNA sequences if these sequences are to contain autocatalytic subsets. Attempts 
to create autocatalytic sets would require exceeding the minimum complexity. Such 
experiments might be carried out in a chemostat fed by a rich mixture of organic 
molecules; pyrophosphate, ATP, and other energy sources; and many small and 
modest-size peptides or RNA sequences. Analysis of the spectrum of pep tides and/ 
or RNA sequences formed could be by column and two-dimensional gel analysis of 
peptides and polypeptides and by PCR amplification and sequencing of polynucle
otides, or by other procedures. If the polymer spectrum settled to a stable, self-regen
erating asymptotic state or to a stable core of sequences and a fluctuating periphery, 
one would surely be entitled to at least a small bottle of champagne, for one would 
presumably have generated a novel form oflife ab initio. 

If the general theory proves robust, then once such a system formed, the food set 
should be able to be gradually simplified and the system maintain itself. Rather than 
carrying out such experiments as spatially homogeneous reactions in a chemostat, 
work with liposomes may reveal that enclosure and confinement to a small volume 
drive cyclic ligation and cleavage oflarge polymers by cyclic hydration and dehydra
tion. In addition, work in a population ofliposomes, each containing a unique com
bination of polymers and perhaps each able to divide, may allow experimental evo
lution based on heritable variation in model protocells. 
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It may be the case that random peptide or RNA sequences exhibit catalysis so 
rarely that assembly of an autocatalytic set from unevolved polymers is possible in 
theory but impractical. A separate approach is based on use of antibodies and derives 
from the recent observation, described in Chapter 4, that antibodies against the tran
sition state of a reaction can catalyze that reaction. This is opening the door to the 
possibility, based on the capacity of antibodies to cover shape space, of finding anti
bodies to catalyze almost any desired reaction. In particular, such antibodies are 
likely to be abzymes cleaving or ligating specific peptide bonds. Since the specificity 
of an antibody molecule is due to its variable regions, consider utilizing entirely ran
dom DNA sequences cloned into the variable regions of antibody molecules to gen
erate antibody diversity in vitro. Known antibody diversity is about 108, and this level 
of diversity can be matched by use of random DNA sequences inserted into the vari
able regions of the heavy or light chains. If catalytic function of such antibody mol
ecules requires only reasonably small fragments of the entire molecule around the 
heavy or light V regions, then a sufficiently large number of such random abzyme 
fragments may prove to be autocatalytic, in a fashion reminiscent of the self-focusing 
presumed in the immune network. 

Finally, we might note that, if autocatalytic polymer systems are constructable, 
we might obtain selectable chemical factories, or parallel.processing chemical com
puters. If supracritical-to-subcritical transitions occur, then in principle, by requiring 
such a constructed system to evolve using Z as a food source, the system will couple 
Z, via a sequence of catalysis pathways, to a connected set of other molecules. Then 
the system will contain the weak enzymes needed to synthesize Z from those other 
molecules by reversing the flux down those pathways. 

SUMMARY 

This chapter has discussed a very general theory for the emergence of self-reproduc
ing systems of catalytic polymers, either peptides, RNA, or others. The theory rests 
on the combinatorial consequences of polymer chemistry. As the maximum poly
mer length in a system increases, the number of reactions by which polymers can 
interconvert necessarily rises faster than the number of polymers present. The result 
is that a sufficiently complex set of polymers has very many potential reactions lead
ing to the synthesis of anyone of those polymers. As a consequence, for many pos
sible distributions of catalytic capacity for those reactions among the same set of 
polymers, autocatalytic sets will emerge. 

This new universality class warrants serious exploration both theoretically and 
experimentally. It seems probable that such systems are capable of evolution in the 
absence of a genome. It also seems probable that such systems answer, in principle, 
the question of how peptides might be self-reproducing despite lacking the point
point complementarity found in DNA and RNA. Given the difficulty in achieving 
template replication of arbitrary RNA or RNA-like polymers but the existence of 
ribozymes mediating cleavage and ligation reactions, the formation of autocatalytic 
sets of ribozymes may be both feasible and a more probable route to the origin oflife 
than the familiar hypothesis of nude replicating genes. Indeed, a collective autocat
alytic system is a favorable environment from which a general RNA polymerase 
might have evolved and taken over an integrated metabolism. Further, the hypoth
esis that life is a collective emergent property of complex polymer systems seems 
likely to give a first answer to the question of why critically free-living systems exhibit 
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a minimal complexity. Further, whether composed of catalytic peptides, ribozymes, 
or both, it seems likely that collectively autocatalytic polymer systems recover a gen
eralized shape complementarity in a high-dimensional shape space. 

On the experimental front, autocatalytic polymer systems invite exploration, by ) 
cloning or other means, of the distribution of catalytic and ligand-binding capacities . 
in peptide space and in RNA space. Further, the theory suggests that achievement of 
catalytic closure requires a minimal complexity and hence that experiments must be .) 
bold enough to reach that complexity. Fortunately, the technological means to do so 
are just on the point of emerging. We may, in the not distant future, create life anew. 





CHAPTERS 

The Origin of a Connected 
Metabolism 

Metabolism is the connected flow of organic molecules through a web of transfor
mations linking exergonic and endergonic reactions by which an organism harnesses 
the energy needed to drive the synthesis of molecular species. Figure 8.1 shows part 
of the familiarly complex web of human intermediate metabolism. I find it impos
sible to view this vast intricate network without wondering what principles might 
govern its structure and its capacity to have evolved. Iflife began with a nude repli
cating gene, either RNA or DNA, how did such a connected web manage to evolve 
to clothe the nudity? Iflife were to begin again, would intermediate metabolism look 
much the same? If so, in what senses and why? 

In the present chapter, I shall briefly investigate whether the ideas from the pre
vious chapter on the collective emergence of autocatalytic sets of polymers may shed 
light on the emergence of a connected metabolism. As in the previous chapter, I shall 
suggest a heterodox possibility: In a sufficiently complex system of organic molecules 
mixed with a sufficiently complex set of potential catalytic polymers, a connected 
web of transformations among those organic molecules will inevitably "crystallize" 
due to a percolation of a catalyzed reaction network among the organic molecules. 
Such a metabolism will then couple exergonic and endergonic reactions into the 
autocatalytic behavior of the catalytic polymers and help drive that system's ther
modynamic capacity to reproduce. Thus again I suggest that life may have started 
with a critical complexity, then ~mp/ifi.eri under sele<;tion. After its simplification, it 
appears to us as a marvelously improbabiesysrem,a whole whose chicken-and-egg 
self-referencing necessity mistakenly mystifies us. 

Consider some unfamiliar questions. Organic molecules are complexes of 
CHNOPS-carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur-with 
small amounts of other elements. If we look at the known map of metabolism, one 
obvious if unfamiliar question is how many organic molecu!es with one carbon 
atom, two carbon atoms, ... N carbon atoms occur in metabolism? That is, what is 
the distribution of number of kinds of organic molecules versus their complexity. 
Whatever the answer may be, we may well ask, Why? Is this particular distribution 
an accident? Or, if metabolism were to evolve again, would the distribution be sim-

343 
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Figure 8.1 Representation of intermediate metabolism. Points correspond to metabolites, edges to 
chemical transformations. (From Alberts, Bray, et al. 1983) 

ilar? Metabolism is replete with branch points and cycles, with some distribution of 
distances between branch points and number of metabolites in each cycle, hence of 
cycle lengths. What governs those distributions? Would they recur if metabolism 
were to originate again? The most overwhelming question, however, is, how could 
such an integrated system of transformations have originated? As in other aspects of 
the origin oflife problem, we seem again to confront a self-referencing problem. In 
order to function at all, a metabolism must minimally be a connected series of cat
alyzed transformations leading from food to needed products. Conversely, however, 
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without the connected web to maintain the flow of energy and products, how could 
there ever have been a living entity to evolve connected metabolic pathways? 

It must not be thought that the requirement that a protometabolism be a func
tionally connected whole has gone without attempted answers. Indeed, concern over 
the emergence of such an integrated whole is what lies behind the efforts of Hoyle 
and Wickramasinghe (1981) and others to "nucleate" a working metabolism in one 
gigantic leap. You will remember the calculation arguing that the probability of find
ing a protein able to catalyze a specific metabolic step might be on the order of 10-20 

but that 2000 such enzymes were needed simultaneously to catalyze a specific met
abolic web; hence the probability of attaining a given specific metabolism is 
10-40000• By now, one error in this argument is patently obvious. It is not necessary 
to obtain a given specific metabolism; all we need obtain is some adequate connected 
metabolism. 

As noted above, the main purpose of this chapter is to suggest that the ideas 
derived in the previous chapter from an analysis ofthe conditions needed to achieve 
a complex web of catalyzed transformations might shed light on this problem as well. 
Connected metabolisms can literally crystallize. First, it is well worth noting the most 
plausible current orthodox answer. 

Horowitz (1945) suggested that metabolic pathways build up backward, propos- \ 
ing that protoorganisms lived in an environment extremely rich in metabolites and 
therefore initially required little by way of an intricate metabolism. Needed products 
lay to hand, were used, and then were broken down to waste products. However, 
gradually, Horowitz supposes, the abundance of exogenous metabolites was lowered. 
When the availability of any critical metabolite became too low, the evolving pro-I' 
toorganisms had to invent a means of synthesizing that metabolite. The protoorgan
isms would already possess enzymes capable of acting on that metabolite to produce 
waste products, however. Further, such waste products would not have been depleted 
from the environment. Therefore, both the products and the catalysts were available j' 
to synthesize the critical metabolite by driving the reaction in the reverse direction. 
This interesting hypothesis leads to the conclusion that metabolic pathways might 
have been built up backward, gradually over time. 1",4 > rP 

Horowitz's idea is perfectly sensible. Let us pursue the line of thought and, for the (,VTT'. ( 4-.vJ 
sake of argument, forgo the problem of the onset of translation. If one is picturing a ",t I. ~(f t J 

single replicating protein or gene as a model of the origin of life, then the problem b ..r(~ r 
arises about how such a single entity might come to catalyze a connected web of met- ~A i{ "'>1,,..,,1. 
abolic transformations. Borrowing from Horowitz, one possibility is at least plausi-
ble. Suppose a given enzyme catalyzes a specific reaction converting substrate Sn-l 
to product Sn. Then the binding site on the enzyme recognizes Sn-l. A nearby shape 
mutant of the binding site might therefore be able to recognize a nearby shape on a 
substrate Sn-2 and hence catalyze the transformation ofSn-2 to Sn-l. Thus, through 
a succession of gene-duplication and protein-differentiation steps, linked pathways 
among substrates resulting from a web of similar shapes might be built up from sim-
ple beginnings. 

I believe Horowitz's hypothesis is plausible because it explains the formation of 
linked transformations among organic molecules by the existence of successively 
neighboring substrate shapes along metabolic pathways. Yet the hypothesis has prob-
lems. Note first that, where adjacent metabolites are to be linked by a catalyzed trans- ,~ 
form.ati~n but structu~al s~ape si~i~arit~ is not rea~ily fou~d, a mechanism of gene ? 1ae;.," 
duplicatlOn and protem differentIatlOn IS not readIly applicable. Thus for the evo- t Iot~t- It.:J! -; 
lution of enzymes involved with substrates which are simple isomers of each other,rf~~. 
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Horowitz's idea may be very reasonable, but many reactions add or remove modest
size functional groups to or from substrates, or cause substantial changes in substrate 
conformation. It is hard to see how enzymes for such links in the metabolic web 
might evolve by protein differentiation. The hypothesis is also needlessly limited. 
Note that it utilizes the plausible idea that a cluster of similar genes/proteins catalyzes 
a cluster of reactions among similar substrates which therefore can form a linked 
web. The hypothesis I suggest extends this familiar idea to the crytallization of a 
linked web of transformations among organic molecules in a sufficiently complex 
system as a result of percolation of a catalyzed reaction graph. While I state the model 
without reference to shape similarity among organic lllolecules, such similarity pre
sumably should abet my general thesis. 

CRYSTALLIZATION OF A CONNECTED METABOLISM 
AS A PERCOLATION PROBLEM 

Let us make bold to start again and seek conditions under which a connected metab
olism would be expected to emerge. We saw in the previous chapter that a sufficiently 
complex set of polymers whose members are candidates to catalyze transformations 
among the polymers should become reflexively autocatalytic as a result of a perco
lation threshold in the underlying virtual catalyzed reaction graph. Once the set is 
complex enough, connectivity emerges as a collective property. Then the hypothet
ical autocatalytic set begins as a supracritical system of imprecise enzymes, each cat
alyzing a ball of related reactions weakly. We imagine this imprecise system, under 
selective conditions, focusing down to a tighter catalytic system whose enzymes are 
of higher specificity but persistently maintain mutual catalytic closure during selec
tion. Selection becomes harder as the system becomes more subcritical. 

The basic argument here rests on the combinatorial fact that, as polymer length 
increases, the number of kinds of polymers increases more slowly than the number 
of reactions by which they interconvert. It is a separate fact that the polymers are able 
to catalyze those conversion reactions which allows autocatalysis to set in above a 
threshold. Consider next the space of all possible organic molecules up to a fixed 
number of CHNOPS atoms per molecule, say M. As M increases, the number of 
kinds of organic molecules will increase, but the number of reactions by which they 
interconvert will also increase. If the ratio of reactions to kinds of molecules increases 
as M increases, then the more complex the set of organic molecules we consider, the 
more pregnant it shall be with respect to the formation of connected webs of cata
lyzed transformations. Then we have only to ask the question, How many peptides 
or RNA sequences, each a candidate to catalyze anyone of the many reactions, must 
be "tried" and be jointly present in order that the number of reactions catalyzed is 
sufficient for the emergence of connected webs of metabolic transformations? The 
detailed answer may be long in coming, but the general answer is obvious: A suffi
ciently complex system will spontaneously crystallize a connected metabolism. 

A simple example demonstrates this idea. We need only reinterpret polymers 
made up of two kinds of amino acid as organic molecules made up of two kinds of 
atoms. Thus a polymer of length M is now to be thought of as a linear organic mol
ecule made up of M atoms. It does not matter for the moment that these model 
metabolites be reasonable. It matters only that we can calculate the ratio of the num
ber of reactions by which these molecules intertransform to the number of kinds of 
molecules oflength M or less. As before, the ratio is M - 2. Then if we consider a 
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separate set of peptide or RNA polymers, each having an independent probability P 
of catalyzing any of the reactions among the metabolites, we can readily calculate 
how many peptides or RNA sequences must be tried and remain jointly present in 
the system in order to achieve a connected metabolism. 

More precisely, we can examine this general idea by defining a connected metab
olism as one which leads from a defined exogenous food set to a defined internal set 
of organic molecules. The most stringent requirement is that connected pathways 
lead from the simplest atoms, A and B, to almost all organic molecules in the set up 
to length M. But this is just the requirement invoked in the previous chapter as the 
first stringent criterion for the formation of an autocatalytic set, with the exception 
that, in that case, the peptides or RNA sequences catalyzed their own formation. The 
results here are almost the same. If we specify M as the complexity of hypothetical 
organic molecules, then we can calculate the number of pep tides or RNA sequences 
which must be tried at each probability of catalysis P to ensure that connected trans
formations lead from A and B to almost all metabolites oflength M or less. As before, 
this analysis bears on the structure of the virtual catalyzed reaction graph among 
organic molecules and does not yet address the flux of material along such pathways. 
Above a specific complexity, connected pathways of metabolic transformation crys
tallize (Table 8.1). 

It is critical to note that the crystallization of connected metabolic transforma
tions which emerges here does not yet rely on shape similarity of neighboring sub
strates. Instead, I have assumed the most difficult case, in which a peptide or RNA 
sequence which catalyzes one reaction has no increased probability of catalyzing a 
neighboring reaction which might involve a neighboring substrate. Thus also the 
nearby mutants of that peptide or RNA have no increased chance of catalyzing such 
a nearby reaction. Hence the shape similarity argument used to build up a linked set 

TABLE 8.1 Critical Number of 
Hypothetical Organic Molecules Made Up 
of Linear Chains of Atoms A and B 
Required for Crystallization of a Connected 
Metabolism 

iP = e-P(5000XM-l)(1+2M+2) = ~ < 0.001 
e 

P M 2M + 1 

10-' 1.965 8 
10-5 3.81 28 
10-6 6.25 152 
10- 7 8.98 1010 
10-8 11.85 7383 
10-9 14.83 58251 

Note: Number of potential catalysts present is 5000. Note 
that, if the number of potential catalysts increases above 
5000, a smaller number of hypothetical organic molecules 
would suffice for the emergence of a connected metabo
lism. Thus in a two-dimensional space whose coordinates 
are the number of catalysts and number of organic mole
cules in the system, each value of P determines a critical 
curve separating regions with and without connected 
metabolisms. 
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of metabolic transformations derived from Horowitz is not necessary for the emer
gence of a connected metabolism. Rather, such linkage emerges as a threshold prop
erty of even random reaction graphs. Presumably, shape similarity will only help in 
the formation of such connected webs. That intuition, however, remains to be inves
tigated carefully. 

A Critical Curve in a Two-Dimensional Parameter Space of 
Metabolite Set Size and Catalyst Set Size Separates 
Connected and Nonconnected Metabolisms 

A new property which arises in the problem of the emergence of a connected metab
olism is that there are twin thresholds, or, more properly, a critical curve in a two
dimensional parameter space consisting of the size of the set of organic molecules 
and the size of the set of potential catalysts. For afixed number of potential catalysts 
and a fixed probability of catalysis P, the complexity of organic molecules needed to 
achieve connectivity can be calculated. As P changes, so does the requisite number 
of organic molecules. Conversely, for a fixed number of organic molecules contain
ing up to M atoms per molecule and a fixed P, as the number of candidate peptides 
or RNA sequences increases, a threshold is crossed above which a connected metab
olism emerges (Table 8.1). Therefore, there is a two-dimensional space with one axis 
representing the organic molecules in the metabolic set and the other representing 
the peptides or RNA sequences in the set of potential catalysts. In that space, for each 
P, there is a curve dividing the space into two regions. Below the threshold, connected 
metabolisms are not expected; above it, they are expected. For fixed P, transition to 
a connected metabolism can take place parallel to either or both axes or at a number 
of oblique angles. 

Thus we arrive at a new point of view. The emergence ofa connected metabolism 
as a supracritical web requires a sufficient complexity of organic molecules and a suf
ficient complexity of potential catalysts. At that point, such a connected web is an 
inevitable emergent collective property of the chemical system. Fainthearted exper
iments with "clean" simple systems of a few components would never uncover these 
events. 

The Reaction Graph Associated with Real Organic 
Molecules: Unknown but Knowable 

Neither the number of organic molecules possible with a given set of atoms nor the 
number of reactions by which they might interconvert is known. In the present sec
tion, I give rough reasons to think that, as the number of kinds of atoms per molecule 
increases, the number of reactions linking organic molecules rises very much faster 
than the number of molecules present. 

Hypothetical organic molecules which are simple linear strings of two or more 
kinds of atoms have the virtue that the number of molecules possible and number of 
reactions by which they interconvert are easy to calculate. The task is very much 
harder for real molecules. Counting all the possible organic molecules up to some 
number of atoms per molecule is an unsolved task. Even the more limited task of 
counting the number of possible molecules having a specific empirical formula
C30H51N7015, say-is beyond current combinatorial techniques (Read 1976). Count
ing cyclic and heterocyclic compounds appears to be the hardest task (Dugundji, Gil
lespie, et al. 1976). Conversely, many acyclic compounds have been counted as a 
function of the number of carbon atoms per molecule (Read 1976). For example, 
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vastly many acyclic molecules with 25 or fewer carbon atoms exist. The total for only 
structural isomers, not optical isomers, is beyond 1011. Inclusion of mono cyclic and 
heterocyclic compounds will increase this total enormously. 

Consider the space of all organic molecules up to some number of atoms per mol
ecule M. Consider the associated reaction graph, showing for each molecule which 
reactions it may enter into, subject to the constraint that all product molecules have 
fewer than 2M atoms. That is, as in our considerations in the previous chapter with 
respect to supracritical graph growth, we again allow reactions to form molecules 
larger than those in an initial set. We then ask whether, if a fixed fraction of the reac
tions were catalyzed, a catalyzed metabolic web would grow indefinitely larger. As 
before, these considerations ignore thermodynamics. 

The reaction graph includes the analogue of ligation and cleavage reactions in 
polymers. In addition, all exchange reactions must be included. Familiar examples 
are transamination reactions and transfers of a methyl group from one hydrocarbon 
to another. Further, the graph will include reactions with two substrates and two 
products. Ifwe limit the complexity of reactions to two simultaneous substrates and 
two products, we can think of an extremely large two-dimensional space each of 
whose axes lists all pairs of organic molecules, including degenerate pairs in which 
only one of the two is present. Then any reaction converting one or two organic mol
ecules to one or two other organic molecules can be represented as an occupied cell 
in this two-dimensional space. The collection of occupied cells in this enormous 
space is the mapping ofsubstrate(s) onto product(s) by all legitimate reactions, sub
ject to the automatic constraint that the total number of atoms per product molecule 
is not more than 2M. 

Let us make the simple assumption that virtually any pair of organic molecules 
X and Y has the property that it can undergo at least one legitimate chemical reac
tion, producing one or two products via ligation, cleavage, or exchange. This assump
tion may sometimes fail, but, conversely, we would expect that most complex 
organic molecules, taken as pairs, would be subject to many more than one possible 
legitimate chemical conversion, since any molecule containing L atoms has at least 
L - 1 bonds which might be broken. Thereafter, its fragments might be joined to 
any of the fragments resulting from the cleavage of any of the at least K - 1 bonds 
in the partner substrate, which contains K atoms. The number of potential reactions 
is then roughly on the order of L X K» 1. 

Given our assumption, the number of possible legitimate reactions involving mol
ecules containing up to M atoms per molecule increases at least as the square of the 
number of molecules in the space of molecules containing up to M atoms per mol
ecule. This follows because we are considering pairs of substrates which might trans
form to pairs of products, and the number of pairs of substrates scales as the square 
of the number of molecules X up to length M: X X X = X2. Therefore, the ratio of 
the number of reactions to the number of molecules present is at least equal to the 
number of molecules present: X 2 / X = X. Each molecule might undergo on the order 
of X reactions. But we also know that, as M increases, the number of possible mol
ecules X explodes enormously rapidly. Thus as M increases, the ratio of number of 
reactions to number of molecules present also explodes very rapidly. 

The reaction graph almost certainly will be nonisotropic because, in the set up to 
M atoms per molecule, there will be more ways to make small organic molecules 
than large ones. This is expected from the fact that the number of larger molecules 
from which any small molecule can be cleaved is larger than the number of smaller 
fragments from which it can be assembled. The case oflinear molecules can be seen 
from Equation 7.3 and generalizes readily to acyclic branched molecules. 
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While the reaction graph among the extremely large number of organic molecules 
containing up to M atoms per molecule is unknown, these crude arguments strongly 
suggest that the ratio of reactions to molecules up to size M grows very rapidly and 
that the graph is nonisotopic, having more ways of forming small molecules from 
within the set than of forming large ones. It seems fully safe to conclude that supra
critical growth of a metabolic catalyzed reaction graph can occur if a sufficient num
ber of potential catalysts confront a sufficiently complex mixture of organic mole
cules. 

We turn next to think through a bit more the character of a crystallized connected 
metabolism. 

Crystallization of a Supracritical, Low-Specificity 
Connected Metabolism 

It seems plausible that a proto metabolism would crystallize in, integrate into, and 
support the reproduction of an autocatalytic polymer set. For a metabolism to form 
and nurture an autocatalytic system, it is necessary that there be formed a connected 
web of metabolism leading from some subset of readily available organic molecules 
to many others, some of use in the reproduction of small organic molecules and cat
alysts larger than the original catalysts. Thus we are led to the picture of a proto me
tabolism with low-specificity protoenzymes, perhaps peptides or ribozymes, emerg
ing spontaneously as a supracritical entity almost inevitably when a sufficiently 
complex set of organic molecules is brought together with a sufficiently complex set 
of potential catalysts. In fact, it seems likely that the ratio of number of reactions to 
number of organic molecules present explodes faster as the number of atoms per 
molecule increases than does the ratio of number of reactions to number of polymers 
present as the number of amino acids per peptide increases. Therefore, it should be 
easier to crystallize a connected metabolism than to crystallize an autocatalytic set 
of peptides or ribonucleotides. This implies, however, that a set of peptides or ribo
zymes complex enough to become reflexively autocatalytic would probably also have 
enough members to catalyze a connected metabolism among a reasonably complex 
set of organic molecules. Initially, both the metabolism and the autocatalytic poly
mer set would be supracritical. Each lives on an infinite virtual catalyzed reaction 
graph, and hence the distribution of organic molecules and polymers present in the 
system depends on boundary conditions. Since amino acids are readily made from 
simpler organic compounds even in the absence of catalysts, amino acid products of 
the proto metabolism could couple the metabolism to the autocatalytic peptide set 
and the two could coevolve. A similar story with ribonucleotides arises with the 
caveat that synthesis of ribonucleotide monomers is harder than synthesis of amino 
acids. 

The same considerations should apply to the coupling of exogenous energy 
sources into a protometabolism and to the coupling of exergonic and endergonic 
reactions such that the former help drive the latter. In turn, such couplings would 
help drive synthesis oflarge polymers in an autocatalytic polymer system. A coupled 
protometabolism would be a sprawling thing: imprecise, stochastic, and inefficient, 
with very many organic molecules coupled into the web of transformations. But 
many of the molecules-for example, those with ring structures and resonance
would be able to absorb photons and pass to an excited state. In turn, this excitation 
yields, as targets to couple with endergonic reactions in the supracritical web, the 
large number of exergonic reactions any such excited molecule might undergo. Alter-



THE ORIGIN OF A CONNECfED METABOLISM 351 

natively, Fox (1988) and Lipmann (1941) have suggested coupling cyclic redox reac
tions via iron-sulfur compounds to the synthesis of pyrophosphate in an early 
metabolism. More generally, many means of coupling redox cycles into such a 
sprawling proto metabolism might exist. In short, a supracritical protometabolism 
would be a large spider's web set to trap useful reactions. The connected whole. the 
entire coupled system, then must collectively coevolve. There is no mystery in the 
resulting holism. Torn into pieces, the system is dead. 

As in the previous chapter, we must envision, and need to test mathematically and 
eventually experimentally, that, under selection, the autocatalytic system will select 
out peptides, polypeptides, or ribozymes of increasing specificity and higher maximal 
reaction velocity and will also collect inhibitors of catalysis, thereby trimming away 
useless metabolic branches to leave a core coupled metabolism which is self-consis
tent: All needed transformations have catalysts of ever-increasing specificity. A 
metabolism using a specific pathway to form a specific predetermined metabolite Z 
required for present life, as requested by Hoyle, has not evolved; rather, one of an 
enormous number of alternative coupled, consistent metabolisms has been focused 
on collectively by parallel simultaneous selection on the entire integrated, if initially 
imprecise, autocatalytic system. After the fact, once a subcritical specific metabolism 
and the requisite enzymes to catalyze it have been achieved by selective focusing, we 
stand amazed at its integration and complexity. We are thence led to calculate the 
probability that a set of polypeptide or RNA catalysts would jointly catalyze just that 
metabolism and led to Hoyle's conclusions. It is the wrong calculation, the solution 
to the wrong problem. The details of my argument almost certainly are incorrect, but 
surely the invitation to consider the hypothesis that life began, not simple but impre
cise and complex and then became simpler by selective focusing to more specific cat
alysts, deserves serious attention. 

Statistical Universals? 

The distribution of number of kinds of molecules as a function of atoms per mole
cule, the connectivity features of metabolic webs, and other features of metabolism 
may prove to be biological universals. This possibility reflects the fact that these fea
tures must fundamentally be governed by the legitimate allowed reactions trans
forming organic molecules among themselves. 

Among the most obvious potential universals which might recur, as remarked on 
at the start of this chapter, is the expected distribution of numbers of kinds of organic 
molecules as a function of the number of atoms per molecule. If, as expected, the 
reaction graph is nonisotropic, so that more reactions are available to form smaller 
molecles than larger ones, then we expect a unimodal distribution. Figure 8.2 shows 
the distribution expected for linear polymers as discussed in the previous chapter. 
Because the number of linear polymers increases exponentially with M but the 
underlying graph favors synthesis of smaller polymers, the unimodal curve for a 
finite autocatalytic system living on an infinite virtual reaction graph starts low, 
reaches a peak at polymers of intermediate complexity, and then drops off exponen
tially as polymer length increases. Interpreting the entities A and B to be hypothetical 
organic molecules rather than the polymers of Chapter 7 allows us to view Figure 8.2 
as a crude guess at what the envelope of organic molecules should look like. 

Figure 8.3 shows an interesting tabulation by Morowitz (1968) of the number of 
known organic molecules as a function of carbon atoms per molecule. The curve is 
strongly similar to Figure 8.2. Morowitz constructed this graph from chemical index 



Isa 

123 

a 

L 

Figure 8.2 Number of kinds of organic molecules N(M) as a function of number of atoms per mol
ecule M. This graph is identical to Figure 7 .8b; there, however, the entities under consideration were 
polymers of various lengths rather than organic molecules in general. 
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volumes. It is open to obvious biases. In particular, the numbers of known larger 
organic molecules may falloff in part because oflack of interest on the part of chem
ists or because of difficulty of analysis. Further, we are not guaranteed that all these 
molecules are of direct organic origin. On the other hand, it is pleasing that the two 
curves are generally quite similar, and the mere fact that Morowitz has called such a 
distribution to our attention reminds us that there is some true distribution which 
his curve samples more or less well. We have never had a theory which seeks to 
explain such curves and now have at least the start of one. Seeing such a curve, it is 
hard not to wonder how universal the true curve is, and whether near variants would 
reemerge each time life evolves. 

Might the statistical connectivity features of metabolic webs under the action of 
selection afford universals? Figure 8.1 shows part of intermediate metabolism. Any 
connected metabolism will exhibit cycles and branch points, with distributions of 
distances between branch points and distributions of numbers of molecules per cycle. 
We know from the theory of random isotropic graphs that such properties have 
robust averages if the ratio of edges to points is given. Thus it becomes a serious the
oretical issue to study, as a function of the distribution of catalytic capacities in pep
tide or RNA space and of the underlying reaction graph of organic chemistry, 
whether transition from supracritical to subcritical metabolisms yields similarly typ
ical average connectivity properties. Thereafter, selection may attempt to modify the 
connectivity structure of a metabolic web but be limited by the connections afforded 
by organic chemistry as well as by the capacity to evolve enzymes capable of medi
ating those reactions. That the task now looms as extremely hard does not prevent 
us from supposing that robust statistical properties will be found. If so, they too might 
be universals which would be expected to recur in almost any evolving metabolism. 
It would be astonishing if, on closer understanding of the evolution of coupled 
metabolisms, many other statistical features were not uncovered. All of this then 
cries out in support of the idea that we must come to understand our particular 
metabolism as a more, or a less, typical member of the ensemble of coupled metab
olisms which might have evolved. The typical properties of that ensemble loom as 
potential ahistorical universals in biology. 

A Final Thought 

Autocatalysis by which more complex organic molecules emerge from simpler ones 
may have played a role in prebiotic chemical evolution. Small organic molecules can 
catalyze reactions among other organic molecules. Zinc, iron, other metallic ions, 
histidine, and coenzymes are familiar examples. Then we seem forced to consider 
the possibility that a sufficiently complex set of organic molecules may become 
reflexively autocatalytic. In the previous chapter, we explored the growth of the vir
tual catalyzed reaction graph from a maintained food set with up to Lc amino acids 
per polymer. We saw that, for ligation and cleavage reactions alone, the number of 
molecular species in the food set necessary to induce supracritical growth was only 
y'liP. Were the ratio of reactions to molecules higher, the number of initially main
tained molecular species needed for supracritical behavior would be even less. That 
ratio is almost certainly much higher for organic molecules than for polypeptides. 
Supracritical behavior of a system of small organic molecules would mean, among 
other things, that an initial small set of organic molecules might catalyze itself col
lectively into a complex system of many kinds of organic molecules of use in the later 
collective crystallization of protoorganisms and their metabolisms. Perhaps such 
processes occur even now in the organic oceans of Titan. 
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NEW EXPERIMENTS 

What kinds of new experimental work might these ideas portend? Two come imme
diately to mind: 

1. Measure how subcritical the metabolism of a free-living bacterium or other organ
ism is. 

2. Make practical use of these ideas in seeking sets of novel peptide or RNA enzymes 
which might catalyze coordinated sequences of chemical transformation. 

In effect, the first type of experiment asks us to measure the probability that an 
arbitrary organic molecule can be used as "food" by an organism or, more generally, 
the probability that the molecule will be catalytically transformed into some other 
products if present in the cell. Restated, the 3000 to 4000 enzymes in a contemporary 
bacterium cover some fraction of catalytic task space. Suppose we could map all reac
tions, where a reaction site is bounded by a relevant size scale, onto catalytic task 
space. Then if we knew the fraction of task space covered by the 3000 to 4000 
enzymes and the mapping from molecule substrates onto task space, we would know 
our answer. While the form of this question seems unfamiliar, it is really the same as 
asking of the immune system what fraction of arbitrary epitopes on a relevant size 
scale can be recognized. A fair fraction of task space must be covered for soil organ
isms to evolve so readily. 

Selecting Sets of Novel Peptides, Ribozymes, or Abzymes 
Which Catalyze a Connected Sequence of Reactions 

Among the implications to be derived from the present chapter is the idea that, if 
enough reactions are catalyzed, a connected sequence of catalyzed reactions should 
crystallize. This both is testable and has practical implications: Novel enzymes which 
catalyze a sequence of reactions can be selected. 

I have suggested (I) that connected metabolisms emerge because the ratio of num
ber of reactions among metabolites to the number of metabolites present increases 
as the number of atoms per metabolite increases and (2) that vast numbers of reac
tions constitute a target web to be catalyzed by potentially catalytic polymers. At 
some level of complexity, connected webs of catalyzed transformations crystallize. 
In such a system, very many partially alternative pathways lead from a sufficiently 
large set of building-block compounds to any target compound Z. In order that Z be 
synthesized by a connected catalyzed pathway, it is necessary not that anyone pre
specified pathway to Z be catalyzed but that at least one reasonably high-yield path
way among the many possible pathways be catalyzed. 

By this argument, it might prove easier to obtain, from a sufficiently large set of 
precursors, a set of novel peptides, ribozymes, or in vitro cloned abzymes catalyzing 
an entire sequence of reactions leading to synthesis of an arbitrary target compound 
Z than to obtain a polymer catalyzing even one prespecified reaction involving Z. 
For example, suppose the probability of catalysis of a specific reaction is P = 10-6• 

Then on the order of I 000 000 potential catalysts must be tried to find success. If a 
prespecified pathway leading to a desired target compound Z has L steps, then on the 
order of LXI 000000 potential catalysts must be tried if the search is carried out 
serially to build up the desired prespecified pathway to Z. Thus Ellington and Szos
tak's results (1990) suggest that the probability of finding a single-stranded RNA 
sequence which binds to an organic dye is on the order of 10- 10• Binding a dye is close 
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to binding the transition state of a reaction. Thus the chance of finding an RNA 
sequence acting as a ribozyme to catalyze a specific reaction may be about 10- 10• A 
set of L such screenings would be required to find L catalysts for a specified sequence 
of L reactions. 

Instead of building up a set of L enzymes to synthesize a target compound Z, 
search can be carried out in parallel. Many alternative pathways to Z exist from a 
properly chosen set of building blocks. What is logically necessary is (l) that a suffi
ciently large number of candidate catalytic peptides, ribozymes, or abzymes be tried 
simultaneously, by acting on a sufficiently large set of building-block precursors sev
eral steps from Z, and (2) that any small yield of Z be detectable. If the target com
pound Z can be detected, winnowing the initial mixture of candidate enzymes to the 
subset that yields the target compounds can identify the subset that catalyzes a path
way to the desired target. 

SUMMARY 

The present chapter has extended the ideas on the emergence of autocatalytic sets of 
catalytic polymers to the emergence of supracritical connected metabolic webs 
among organic molecules. The core ideas assert that life began complex, with an 
autocatalytic polymer system and a metabolic supracritical imprecise web grafted to 
it from the outset. Such a web would from the start be able to capture energy sources 
(photons hitting ring structures in organic molecules and inducing resonance,pyro-:
phosphate, cyclic redox reactions, and other possibilities) coupling exergonic 
and endergonic reactions. Subsequent selective sjm~ation by self-consistent 
focusing on more specific polymer catalysts covering smalleilJalls in catalytic task 
space, plus the advent of .inhibition of catalysis, would lead to a focused subcritical 
metabolism. --------

This hypothesis is, in a sense, a generalization of the classical idea that metabo- .\ 
lisms evolved by gene duplication and differentiation of enzymes to recognize sub
strates similar to those initially acted upon. Neighborhood relationships among the 
substrates then engendered linked catalyzed transformations. Our extension of these 
classical ideas recognizes that, even in randomly catalyzed subgraphs ofthe reaction 
graph of organic chemistry, connected metabolic webs will arise as a kind of phase 
transition when a sufficient fraction of the reactions are catalyzed. Thus the classical 
answer to the emergence of connected transformations is not logically necessary, _~ 
although still likely to help in the emergence of connected links in a protometabo
lism. 

It is very much worth noting that selection may often be able to change the kinds 
of entities on which it acts, yielding more or less correlated fitness landscapes. ItS) 
capacity to do so is very limited with respect to metabolism, however, for the con
nectivity features of metabolism are unmodifiable consequences of organic chern is- ) 
try. Therefore, more than in other areas, we may well expect that repeated evolution I 
of metabolism would have a good chance of revealing statistical similarities, or ahis- I 

torical universals. I 
The view offered in the last two chapters stands in the sharpest contrast to the nude 

gene hypothesis. The former asserts that, from the outset, life was holistic and criti
cally complex. Life self-organized with a coherent phenotype, on this view, and 
evolved to some extent without needing a genome. However, difficulties in main
taining autocatalytic closure would have seriously limited the capacity for evolution. 
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Coevolution of such a self-reproducing metabolism with RNA and DNA polymers 
and the evolution of a genetic code were presumably needed to open up wide evo
lutionary possibilities. We turn in the next chapter to consider models of the origin 
of life based strictly on RNA or DNA, of the evolution of a genetic code, and of the 
coevolution of self-reproducing autocatalytic metabolism, replicating RNA, and a 
code. 



CHAPTER 9 

Hypercycles and Coding 

This chapter considers in more detail the opportunities and difficulties in envisioning 
life emerging from nude replicating RNA molecules. The possibilities discussed in 
the previous chapters for the spontaneous formation of autocatalytic sets of peptide 
or RNA catalysts and of a connected metabolism, even if demonstrable, are no rea
son to ignore the possibility that template-replicating DNA or RNA was the pre
eminent precursor to life. We recall briefly from Chapter 7 the chemical obstacles to 
this point of view: 

1. Prebiotic synthesis of the components of a nucleotide is rather difficult, and their 
assembly is yet more difficult. 

2. Attempts to use single-stranded DNA or RNA as a surface catalyst to synthesize 
the complementary strand very often run into the problem that the proper 3'-5' 
bond between adjacent nucleotides is not formed; rather, the 2'-5' bond is 
formed. The latter is inconsistent with formation of a stable double-stranded 
helix. 

3. There is a marked tendency for some of the nucleotides to form hairpins, looping 
back on themselves as the second strand. 

4. Single-stranded RNA composed of G and C is preferentially C rich and can use 
activated monomers to form a second strand which then melts off, but this second 
strand is preferentially G rich and not suitable as a template (Joyce 1987). 

While these obstables may appear formidable, they cannot constitute proofthat nude 
single-stranded RNA or DNA cannot have acted with its complement as a template 
in a replication cycle or, if not RNA or DNA, then some similar but simpler POlymer,/'} 
as recently suggested by Orgel (1987) and Joyce (1987). 

THE LOGIC OF HYPERCYCLES 

The most systematic efforts to consider the problems which arise when starting with 
nude replicating RNA or DNA sequences have been carried out by Eigen and Schus
ter and their colleagues over a number of years (Eigen 1971; Eigen and Schuster 
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1977, 1978a, 1978b, 1979). Their model is driven by an internal logic worth follow
ing. In outline, Eigen and Schuster argue that complex genetic information cannot 
be built up in single RNA replicating strand pairs; instead, they argue, a cyclic cou
pling among such template pairs, creating a "hypercycle," is required to achieve the 
evolution of complex genetic information. 

Selection of a Fittest-Mutant Spectrum, or Quasi-species 

Eigen and Schuster begin by supposing that arbitrary complementary RNA strand 
pairs can serve as templates to catalyze each other's formation from free nucleotides 
by familiar base pairing. Then, as described in Chapter 3, these authors analyze the 
behavior of a population of template-replicating RNA molecules, taking account of 
the ideas that each sequence, via its complementary sequence, replicates at its own 
specific rate and that imprecision in replication substitutes nucleotides at each posi
tion with some frequency. Thus each sequence can give rise to a spectrum of mutants 
altered in one, two, ... positions. Eigen and Schuster suppose chemostat conditions 
of a constant influx of nucleotides and energy sources and an overflow rate that 
dilutes each sequence proportional to its concentration. Thus the system falls to a 
steady state with a fixed number of nucleotides, either as monomers or bound into 
polymers, in the chemostat. They then calculate the relative rate of growth of each 
sequence in the chemostat. For each sequence, this relative rate reflects absolute rate 
of replication, rate of dilution, and mathematical terms for formation of the 
sequence by mutation from similar sequences minus loss to such a spectrum of sim
ilar neighbors as a result of mutation of the sequence being monitored. The relative 
rate of growth of each sequence is then normalized over all sequences in the che
mostat. Consequently, only those sequences whose net growth rate is greater than the 
average growth rate increase in relative abundance. Over a period of time, the single 
fastest growing sequence-plus an inevitable mutant cloud it drags along with it, the 
"quasi-species"-comes to predominate in the chemostat. This is Darwinian selec
tion among replicating nude genes. 

The Error Catastrophe Again 

The next critical logical step is to show that, as the length of a nucleotide sequence 
increases, selection becomes too weak to pull the population of replicating sequences 
to a narrow mutant cloud surrounding the single best replicating sequence. As 
described in Chapter 3, Eigen and Schuster here extend a classical result from pop
ulation genetics in a new context. Consider an additive model in which the fitness
or the replication rate-of a sequence displaced from the best sequence by K mutants 
in N positions is proportional to the number of nonmutant nucleotides (N - K)/ N. 
Since the mutation rate per nucleotide is fixed but the proportional contribution to 
fitness declines as polymer length N increases, a complexity "error" catastrophe is 
reached at a critical value of N, Nc. Beyond this length polymer, No the mutant spec
trum associated with the best sequence spreads out widely and most members of the 
population have many mutants compared with the "canonical" best sequence. 

Eigen and Schuster generalize this idea. As described in Chapter 3, the error catas
trophe implies that, with a given accuracy of replication per nucleotide and a given 
fitness superiority of the currently fittest "master sequence" relative to the mutant 
spectrum around it, there is a maximum sequence length which selection can main
tain. Longer sequences degrade stored information. This maximum length is roughly 
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the reciprocal of the error rate per nucleotide. For plausible guesses at possible pre
biotic accuracy, this length maximum would limit sequences to 50 to 100 nucleo
tides, far from adequate to code for much of a concerted metabolism. 

Need for Hypercyclic Organization 

This central result leads Eigen and Schuster to their main suggestion: In order to 
build up systems of replicating RNA sequences which might surpass this error catas
trophe, when anyone template pair is limited by the catastrophe, conceive of linking 
a set of different template pairs around a closed cycle such that each pair aids in the 
formation of the next pair. Then the mutually cyclic connections among template 
pairs, which are themselves already autocatalytic, constitute a higher order hyper
cyclic coupling of such autocatalytic units (Figure 9.1). The central idea is that such 
mutual coupling allows a complex system of autocatalytic RNA pairs to coevolve. 
Each pair is limited by the error catastrophe, but the hypercycle as a whole is not. 

Given the logical structure of their statement of the problem, with replicating tem
plate pairs and the error catastrophe, surpassing its limits to accumulate complex 
genetic information appears to require hypercyclic organization. It then becomes 
reasonable to analyze (1) whether such hypercycles can behave with sufficient 
dynamic stability to accumulate such information and (2) how such stability depends 
on the details of the couplings among template pairs in the hypercycle. The basic 
result rests on the fact that, in such an hypercycle, the rate of concentration increase 
of any sequence depends on the highest power to which its concentration is raised in 
the differential equation that describes its concentration increase as a function of its 
concentration. In turn, this growth rate depends on how richly interconnected the 
hypercycle is. This dependence follows because the number of ways each template 
pair contributes to its own concentration increase is given by the number of closed 
loops that go from that pair through the other pairs in the hypercycle and back to that 
pair. For the concentrations of all the sequences in the hypercycle to increase stably 
without the concentration of one pair (or larger subsystem) increasing faster than the 
whole, thus ripping it apart, the hypercycle must be "homogeneous" in the sense that 
each component must be equally richly connected. Note that the capacity for a sub-

Figure 9.1 Instead of competing, N pairs ofreplicating RNA sequences h 12 ... IN cooperate in a 
hypercycle coupling. Each information carrier I; codes for a primitive catalyst E;, which aids repli
cation of the next sequence, 1;+1. (From Eigen and Schuster 1979) 
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system of one or a few template pairs to outgrow the rest of the hypercycle follows 
from the fact that each pair is, in its own right, an autocatalytic cycle of two comple
mentary strands able to replicate by itself. 

Minimum Realistic Hypercyc/e and Compartmentation 

Any such theory must make a choice about the mechanism which couples one strand 
pair to the next one around the cycle, by which the former helps catalyze the repli
cation of the latter. Eigen and Schuster suppose that each pair makes a product which 
serves as a specific replicase for the next pair. Further, they assume that the replicase 
is a protein or peptide. Thus they require that the hypercycle be able to specify at 
least crudely the synthesis of peptides by each pair to help replicate the next pair. In 
turn, then, they must suppose that these peptides somehow carry out a coding func
tion, specifying a minimally accurate translation from nucleotide sequences into 
peptide replicases. 

Finally, Eigen and Schuster suppose that compartmentation into protocells might 
have occurred later in the process. 

Some Lessons 

The Eigen and Schuster effort is a serious and sustained one. It honestly states and 
confronts many of the difficulties with a DNA-or-RNA-first view, albeit not all of 
them. Thus the requirement that all members of the autocatalytic hypercycle have 
exactly the same connectivity so that each proliferates at the same rate is a severe 
constraint. Granting the assumptions, however, a first question is this: Does the the
ory work? Niesert, Harnasch, and Bresch (1981) found three stability problems with 
the model. First, if a single RNA sequence, by mutating, replicates itself well but fails 
to catalyze the next member of the cycle, the replicating sequence can outgrow the 
system and will comandeer all mononucleotide resources. Second, a short-circuit 
catastrophe can occur when one sequence catalyzes a more distant sequence around 
the loop. The shortened loop may then grow faster than the overall hypercycle, and 
as a result the hypercycle will contract to a less complex form. Niesert, Harnasch, 
and Bresch found that these problems increase as the concentrations of molecular 
constituents increase. The third stability problem these authors found is that the con
verse catastrophe occurs at low concentrations: Some critical sequence, due to a fluc
tuation, drops to zero concentration and the hypercycle collapses. These problems 
suggest that hypercycles, conceived to surpass the limits due to the error catastrophe, 
may not behave with sufficient stability to surpass it by far. 

These three problems may not vitiate the general model. For example, Eigen and 
Schuster have considered only positive catalytic couplings around the hypercycle. 
Possibly a mixture of positive and inhibitory couplings would render the coupled 
system more homeostatically stable to short-circuiting and to selfish sequences and 
would offer redundancy with stability such that the concentration of anyone 
sequence could drop to zero and the system would still survive long enough to find 
another sequence to take its place. Perhaps the most important difficulty of the 
hypercycle model as initially stated is the implausibility of the requisite minimal real
istic hypercycle. From within the framework of the theory, it is very hard to see how 
such mutual coupling via specific replicases might have emerged coordinately. For 
all its rigor, the model seems caught in the familiar chicken-and-egg problem. To be 
extricated, from within the framework of the theory, one possibility is that the cou-
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pIing factors between successive sequences need to be something besides peptides
for instance, the RNA sequences might serve as specific replicases. A second possi
bility is that essentially random peptides having scant coded specificity, each of which 
is nevertheless "created" by one template pair, can serve as nonspecific replicases 
acting on a spectrum of "next" sequences to form a coupled hypercyclic system 
which, despite the sloppiness of coupling, behaves stably as a coevolving whole. This 
latter condition requires equal coupling for all pairs in order to achieve equal powers 
in the concentration equations. Even then, evolution of a coordinate metabolism 
does not follow easily, nor does the theory explain the minimum complexity 
observed in free-living organisms, beyond historical accident and selective just-so 
stories. 

A new approach to the emergence of hyper cyclic organization has been taken by 
Rasmussen (1989), an approach that in spirit is similar to the autocatalytic polymer 
set described in Chapter 7. Rasmussen considers template-replicating pairs of RNA 
molecules. Each such polymer pair may have the capacity to "catalyze" the replica
tion of some other pair. Rasmussen pictures such catalysis as a randomly chosen 
arrow from the first pair of strands to the second. Then, in a complex system of such 
replicating pairs, the emergence of a kind of hyper cyclic coupling is a question of the 
expected structure of the random directed graph among the replicating pairs. If the 
probability of catalyzing replication is high enough, the percolation threshold is 
passed and connected webs of RNA pairs are formed in which each pair is helped to 
replicate by others in the web. 

Two problems arise in Rasmussen's development. First, the directed graph struc
ture obtained seems typically to have some components receiving more catalytic 
inputs than others. Thus, as Eigen and Schuster have pointed out, such sequences 
will replicate faster than other components in the hypercycle and tear it apart. Sec
ond, in Rasmussen's theory, each replicating strand pair is a single target whose rep
lication is to be catalyzed by another polymer pair. Thus as the number of kinds of 
RNA strand pairs increases, the number of target reactions to be catalyzed increases 
exactly in proportion to the number of polymer species which might catalyze those 
reactions. In contrast, in the autocatalytic polymer theory developed in Chapter 7, 
the ratio of reactions to polymers increases as polymer length and density increase; 
thus the number of target reactions per potential catalyst increases far more rapidly 
in the autocatalytic polymer model. Therefore, emergence of catalytic closure is 
harder in Rasmussen's model than in the autocatalytic model. Note that collective 
reproduction in an autocatalytic system should not suffer the stability failures found 
by Niesert, Harnasch, and Bresch (1981) because subcomponents of the system are 
not themselves self-replicating. 

Symbiosis of Autocatalytic and Hypercyclic Systems? 

As stressed by Dyson (1985), any protein-first theory offers prospect of a dual origin 
of life in which invasion by parasitic replicating RNA and later symbiosis might 
occur. Note again that, if single-stranded RNA can act as a catalyst for ligation reac
tions, and if we wish to conceive of an autocatalyic set of RNA molecules based on 
such catalysis rather than on template replication, then a set of such RNA molecules 
is an autocatalytic set in the same universality class as an autocatalytic peptide set. 
Indeed, mixed polymer systems which are autocatalytic are not unthinkable. 

In Chapter 7, I stressed that evolution of a protein or ribozyme polymerase might 
well occur in an autocatalytic peptide-RNA system. For the moment, however, let 
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us assume, as the majority of workers do, that arbitrary RNA sequences can tem
plate-replicate. In that circumstance, how might the existence of autocatalytic poly
mer systems help create stable hypercyclic coupling? 

Consider an obvious idea. If a peptide binds to a hairpin loop formed by an RNA 
molecule, that peptide may help the double-stranded RNA melt to single strands. 
Peptides which bind to RNA hairpins are known in contemporary organisms. Con
versely, if an RNA binds two peptides at two loops, it confines their motions and thus 
helps catalyze their ligation. Then any sequence specificity in both directions allows 
an autocatalytic peptide system to coevolve with a replicating RNA system, such that 
peptides serve as specific replicases for RNA seqeunces, while the latter serve as more 
or less specific catalysts for the peptides. More precisely, if two peptides are confined 
by binding to one RNA molecule and then a third peptide catalyzes their ligation, 
this process converts a bimolecular collision of the substrates in a volume whose fre
quency varies as the products of the concentrations to an intramolecular rearrange
ment event whose frequency is independent of the substrate concentrations. Such a 
conversion always speeds up the reaction. 

This is not exactly the Eigen-Schuster hypercycle but is perhaps a quite felicitous 
marriage nevertheless. It grafts a going metabolic concern to a coevolving set oftem
plate-replicating RNA polymers. The details do not have to be right for the general 
idea to be right. Further, it is at least plausible that such RNA loop binding by pep
tides is a step in the direction of coding. The closer the loops are to one another, the 
more closely confined the peptide ends and hence the faster the ligation. In addition, 
the closer the amino and carboxy ends of the two peptides are to the loops, the more 
confined their relative motion and hence the faster the ligation. Thus one can envi
sion selective forces for RNA molecules which (I) have hairpin loops that are close 
to one another and (2) bind to peptides near their carboxy and amino ends, so as to 
juxtapose those ends closely. 

A critical step in the evolution of the genetic code must have been the onset of 
colinearity. Can we envision a plausible sequence of steps leading to at least rough 
colinearity of protein and RNA molecules from a start with pairs of RNA loops act
ing as surface catalysts? The first step is to free replication of RNA (or DNA) from 
specific binding to loops by peptides which are to be ligated. That is, we shall need to 
suppose the discovery of a general replicase-for example, a ribozyme polymerase
by the coevolving protein RNA system. Next suppose that RNA molecules with 
loops remain present in the system and remain able to bind peptides. It is easy to 
suppose that such loops, bearing attached amino acids or peptides, are free-floating 
and have a crude anticodon allowing attachment to complementary single-stranded 
RNA. Even nonspecific single-stranded RNA could, by binding two RNA loops to 
two peptides, serve as a surface catalyst to abet the ligation ofthe two peptides. Rear
ranged sequence specificity in the complementary RNA would bring the loops closer 
together, helping the ligation of each specific peptide pair so approximated. 

This is not yet coding. In fact, part of the important point about such a coevolving 
system is that coding is not needed for this stage to be reached. Transition toward 
colinearity requires that the peptides which become attached to any loop of RNA 
(which now become primitive transfer RNAs) become shorter; for such binding 
between loops and short chains to happen, enzymes which can catalyze the binding 
of such very short peptides must emerge because short peptides would presumably 
lose specificity for recognizing and binding to loops. That is, primitive synthetases 
for charging tRNA loops with very short peptides-and then eventually single amino 
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acids-must emerge. Finally, the proper complementary RNA sequences must 
come to be adjacent on the complementary crude messenger RNA. These steps 
toward colinearity would be the precursors of the onset oftrue coding. (Bedian's ele
gant model for the onset of coding, which begins with colinearity, is discussed below.) 

A slightly modified version of part of this picture has been suggested by Maizels 
and Weiner (1987). They suppose that the first tRNAs as well as tRNA synthetases 
(which add amino acids to the tRNA) arose prior to the evolution ofmRNA. Rather 
than using mRNA to locate charged tRNA-like molecules adjacent to one another 
and so aid peptide synthesis, these authors suppose that charged tRNAs carried 
amino acids to peptide-specific ribosomes, each with its own specific internal tem
plate. Base pairing between a specific internal template in such a peptide-specific 
ribosome and charged tRNA molecules would allow specific peptides to be synthe
sized. Further, these authors suggest that the persistent failure to isolate a ribosomal 
protein with peptidyltransferase activity catalyzing peptide bond formation is con
sistent with the hypothesis that contemporary ribosomes accelerate peptide bond for
mation primarily by aligning the amino-acid-charged tRNAs. They picture a prim
itive ribosome with two binding sites: The ribosome synthesizes a peptide longer than 
a dipeptide by forming a peptide bond, and then releases one tRNA and binds a third 
charged tRN A before the dipeptide disassociates; this reaction is followed by a second 
round of peptide bond formation. Over successive rounds, amino acids would form 
peptide bonds with the growing oligopeptide attached to the remaining tRNA, itself 
bound to the primitive ribosome. Binding ofthe amino acid to the tRNA would acti
vate the amino acid for peptide bond formation. Eventual spontaneous hydrolysis of 
the peptidyl-tRNA bond would release the free peptide. 

Maizels and Weiner suggest that each such peptide-specific ribosome would syn
thesize an amino acid homopolymer which would be functionally useful. I would 
raise the possibility instead that primitive tRNA-like molecules carried amino acids 
or small homo- or heteropolymer peptides to specific RNA sequences that, like pep
tide-specific ribosomes, helped form peptide bonds among the peptides of an auto
catalytic set of polymers. In this view, functional oligopeptides already existed in the 
autocatalytic set of polymers and coevolved with crude tRNA and crude ribosomal
like RNA, each initially helping the synthesis of the other toward a later day when 
mRNA and coding take over the task of specifying useful proteins. 

The origin oflife field is littered with idle speculation. It is therefore important to 
realize that the capacity to utilize cloning methods to generate very large numbers of 
novel peptides, as well as novel DNA and RNA sequences, means that the kinds of 
speculation I have allowed myself can be subject to real investigation. Thus if a pep
tide binds an RNA loop, can that peptide help melt the double-stranded form by 
affinity to the transiently forming hairpin formed by one strand? How hard is it to 
find a peptide which will bind a given RNA loop or to find an RNA loop which will 
be bound by a specific peptide? With what specificities? One can test the hypothesis 
that binding of two peptides by two hairpin loops on one RNA molecule favors liga
tion of the peptides. For example, such experiments might be carried out in variants 
of the plastein reaction in or out ofliposomes to help drive synthesis reactions. Can 
one show that proper distance between hairpin loops and binding ofthe peptides near 
the proper carboxy and amino termini abet this catalysis? Can one find novel pep
tides which carry out a charging function, binding specific small peptides to RNA 
loops? We may never recover the actual pathway of the genetic code's evolution, but 
we can hope to test experimentally the feasibility of plausible routes to that coding. 
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The Anderson-Stein Spin-Glass Model 

Another serious conceptual effort to think through systematically how a replicating 
system based on RNA might have developed is due to Anderson (1983), Stein and 
Anderson (1984), and Rokhsar, Anderson, and Stein (1986) and grows out of an 
attempt to avoid the limitation associated with evolution of a single pseudospecies 
mutant spectrum surrounding a single best replicating RNA sequence. As described 
in Chapter 3, spin-glasses are models of disordered magnetic materials (Edwards and 
Anderson 1975; Sherrington and Kirkpatrick 1975; Anderson 1985). 

Anderson (1983) and his colleagues (Stein and Anderson 1984; Rokhsar, Ander
son, and Stein 1986) draw on this universality class to create a picture of an RNA 
polymer system with very many alternative locally optimal replicating sequences. 
The basic ideas are simple. They imagine RNA replicating by templating but include 
overlapping fragments such that single-stranded tails overhanging at one or both 
ends of each double-stranded form allow many different double-stranded pieces to 
aid one another's replication. The serious work of the theory invokes a stability of 
each sequence which is a spin-glass-like random function of the detailed order of 
nucleotides within the sequence. One sequence will be highly stable; another-hav
ing only a single nucleotide changed-might be very much less stable and hence 
destroyed rapidly by the environment. In brief, the spin-glass-like theory induces a 
complex stability landscape over the space of sequences. Selection then has an expo
nential number oflocal fitness optima and thus can build up a very large diversity of 
locally maximally adapted sequences. 

In comparison with the Eigen-Schuster model, the Anderson-Stein model has the 
virtue of proposing a particularly complex fitness landscape and beginning to explore 
its specific consequences for the spectrum of sequences which might evolve. The 
Anderson-Stein model has two important limitations however. The first is that the 
model is still nude genes and requires a means of coupling these genes to a connected 
metabolism. This coupling mechanism could conceivably grow out of catalytic activ
ity of single-stranded RNA but should more plausibly link to generation of peptides 
with catalytic activity. Here the difficulty, as for Eigen and Schuster, is how to achieve 
sufficiently reliable correlated peptide synthesis by the replicating RNA so that a suf 
ficiently reliable set of active peptides capable of achieving a metabolism can coevolve 
with the RNA system. The second limitation is that coding is neither present nor 
obvious. 

The Anderson-Stein model could be married to autocatalytic peptide and/or 
ribozyme systems as readily as could the Eigen-Schuster model or the Rasmussen 
model. Since none of the models described in these chapters is correct in detail, there 
is no reason to be defensive about any or to be shy about borrowing the best sugges
tions and implications of each. 

BEDIAN'S PARADIGM FOR THE ONSET OF CODING 

The reader can hardly have missed the point that the onset of coding is a major prob
lem. The literature on the subject is substantial (for example, Crick 1968; Woese 
1972; Kuhn and Kuhn 1978) and, as usual in the origin oflife field, exceeds the facts. 
This does not mean that exciting and ultimately testable ideas are not available. I find 
the conceptual approach taken by Bedian (1982) particularly appealing. 
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First the framework. Translation, as noted, is mediated by the aminoacyl synthe
tases. These enzymes bind the proper activated amino acids to the proper tRNA mol
ecules, which in turn bind via their anticodons to the triplet codons in mRNA. The 
first formulation of the idea of an error catastrophe was based on the notion that, if 
an error were made in the translation of an aminoacyl synthetase, that error would 
charge the corresponding tRNA molecules improperly. In turn, these errors would 
cause further errors in translation, including errors in the synthesis of other amino
acyl synthetases. Errors in the latter would compound the translation errors, leading 
to a runaway translation error catastrophe (Orgel 1963). Subsequent analysis showed 
that this qualitative idea is wrong. Instead, there is a zone of tolerance for moderate 
errors of translation, which tend to die out rather than amplify. Outside that zone, 
or threshold fraction of errors, the translation system would indeed collapse to dis
order. Conversely, the onset of coding would appear to require crossing the threshold 
from below. This is just what Bedian supplies. 

The second part of the framework needed to understand Bedian's ideas is to real
ize that two strong competing ideas about the origin of the code have argued either 
in favor of biochemical necessity-that RNA or DNA triplets physically favor spe
cific affinities for specific amino acids-or in favor ofa frozen accident (Crick 1968). 
The former has declined in acceptance over the years. In part this reflects the fact that 
the amino acid binds tRNA at a site far from the anticodon site. Further strong affin
ity preferences have not been found experimentally. 

The point of departure taken by Bedian (1982) is to ask whether a system of RNA 
codons and peptides with the capacity to catalyze more or less random binding of 
amino acids to tRNA-like molecules can coevolve to a coded state. He begins by 
assuming template-replicating DNA or RNA. He makes the further very strong 
assumption that, somehow, synthesis of peptides from RNA is already colin ear. In 
fact, he assumes triplet codons, but that is not critical to his central question. Rather, 
his problem is this: Assume that a set of RNA molecules exists and generates, by 
colinear polymerization, a more or less random set of peptides. Assume that some of 
these peptides are capable of acting as crude synthetases, binding amino acids with a 
spectrum of preferences to some or all ofthe kinds of tRNA molecules. Ifthis binding 
is completely random, then the system is not coding. For the system to be coding, it 
must be the case that the peptides specified by the RNA coding sequences can (1) 
"read" the coding sequences and (2) act as specific synthetases to produce the same 
peptides. The relationships must be mutually consistent. 

Consider for simplicity two amino acid types and two triplet codons. Two coded 
arrangements are possible. Code 1 assigns amino acid 1 to codon 1 and amino acid 
2 to codon 2; code 2 assigns amino acid 1 to codon 2 and amino acid 2 to codon 1. 
If all four assignments are made equiprobably, no code exists, and random peptide 
copolymers are produced from any mRNA. 

Bedian proceeds by writing down two matrices. An S matrix gives the preferences 
of each peptide to carry out each of the four assignments; an M matrix shows, for 
each mRNA, the number of times each code assignment must be used to specify the 
peptide carrying out one of the present assignments. From these matrices and the 
assumption that a critical number of amino acids sites are needed for each high-spec
ificity assignment, he derives coupled equations for the joint efficiency with which 
the set of peptides and their crudely coding mRNA synthesize peptides conforming 
to code 1 or to code 2 or to random mixtures of the two codes in a noncoded way. 
By equating such efficiency with the idea of a selective advantage, Bedian is able to 



366 THE CRYSTALLIZATION OF LIFE 

show that such a system will often self-organize to one of the coded states. That is, 
synthetase variants which arise due to mutations and happen to carry out translation 
more efficiently will be sequentially selected. Thus the system hill climbs. Whether 
the system evolves to one of the coded states or remains stably in a noncoding state 
depends upon how fully random the initial preferences of the synthetases are and 
upon the initial distribution of codons in the quasi-random mRNA species. The cod
ing states and the noncoding state all drain sizable basins of attraction. This suggests 
that the chances of hitting a coded state are reasonably high from a randomly chosen 
initial state. While a single evolutionary attempt might fail, similar experiments from 
different initial states might be likely to have at least one ultimate success. 

The spirit of Bed ian's central result is that, given a population of random peptides 
synthesized by fairly random and noncoded colinear polymerization via something 
like tRNA molecules, and given that these peptides can charge amino acids to the 
tRNA molecules, selective coevolution of the peptides and underlying coding 
mRNA to a consistent coded state can occur. How restrictive the conditions are, in 
terms of the numbers of amino acids for which the code can evolve and so forth, 
remains to be analyzed. It should be stressed that, in starting with colinear synthesis 
and tRNA-like molecules, Bedian has already assumed a lot. Nevertheless, his con
ceptual framework is sensible and encouraging. It does not obviate the possibilities 
of physical affinity biases or of frozen accidents but attempts to describe conditions 
sufficient for coevolution of pep tides and RNA to a code. 

I find Bedian's analysis attractive for a direct reason: He has gone to the center of 
the conceptual problem in asking how a coded state could evolve from a crude set of 
peptides carrying out random charging functions. Note that, with the capacity to gen
erate very large numbers of novel RNA and peptide molecules now in hand, it is not 
beyond imagination to conceive of testing Bedian's ideas directly. 

SUMMARY 

In the present chapter, I have sketched briefly several alternative views of the origin 
of life based on template-replicating RNA or DNA molecules. We have followed 
Eigen and Schuster through the necessity for some kind of hypercyclic coupling 
forming a mutually catalytic community of replicating RNA polymers, given that 
the RNA polymers can replicate and individually suffer the error catastrophe. Ander
son and Stein follow a slightly different avenue, seeking a natural account of fitness 
landscapes with very many alternative optima. Their spin-glass-like model of poly
mer stability achieves this and is closely analogous to the NK family of rugged land
scapes discussed in Chapters 2 and 3. 

Hypercyclically coupled systems ofreplicating RNA polymers may have emerged 
more easily than Eigen and Schuster initially supposed, given the graph theoretical 
arguments of Rasmussen. As in the autocatalytic polymer theory, Rasmussen sug
gests that, if enough RNA polymers catalyze one another's replication, connected 
hypercyclic webs will emerge. However, the stability of such coevolving systems 

, appears to be delicate. Those with higher numbers of catalytic inputs replicate faster 
and therefore tear the coupled system apart. Such instability does not arise in an 
autocatalytic system of peptide or ribozyme polymers, since no single polymer indi
vidually replicates; all are jointly and collectively necessary to self-reproduction. 

I Thus we explored the pla~sible hypothe~is that autocatal~ic.polymer systems, pep
tide and/or ribozymes, might coevolve With template-replIcatmg RNA systems. Such 
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systems appear capable of some potential steps toward a coded state. Finally, we dis
cussed Bedian's elegant attack on the core problem of how a system of peptides with 
random synthetase activities and partially random mRNA might evolve to a coded 
state. 

A general feature of the topics and approaches in the three chapters on the origin 
oflife is the emergence of ordered properties in sufficiently complex systems of inter
acting polymers and organic molecules. This is a very new subject. While the details 
I have discussed may prove wrong, it is apparent that unexplored potential exists for 
emergent order in complex biochemical systems as a result of (1) crystallization of 
connected pathways of catalyzed reactions, (2) dynamic stability in complex reaction 
systems, and (3) selective modification of such systems by increase in the specificity 
and efficacy of catalysis. The theories presented are merely the beginnings of a new 
area of thought and investigation in biology, chemistry, and physics-perhaps even 
in economics and other areas of social sciences. I turn to such expanded topics in the 
next chapter. 

The spirit of all the ideas discussed in this and the previous two chapters is a kind 
of unrepentant holism and a sense of synthetic biology rather than the familiar reduc
tionistic analytic mold. The task here is to understand in detail not just what now is 
but the ways what now is might plausibly be expected to have arisen. We want such 
theories to be testable, we want them to be explanatory. If we were ever to synthesize 
an evolving autocatalytic peptide-cum -ribozyme-cum-metabolic-hypercycle system, 
synthetic biology would surely have much to say to complement analytic biology. 
We shall have to come to understand what "explanatory" might mean in this new 
context. 





CHAPTER 10 

Random Grammars: 
Models of Functional Integration 

and Transformation 

In this chapter I extend the basic model of autocatalytic polymer systems in an effort 
to develop a new class of models for functional integration, transformation, and 
coevolution in biological systems. The ideas appear far more general, however, and 
may well extend to social systems normally considered in fields such as economics, 
anthropology, and perhaps even history. The topics covered in this chapter are first 
efforts. Only further work will reveal whether the approaches I discuss will fulfill their 
apparent promise. 

The generalization of autocatalytic polymer systems is based on the realization 
that polymers can be regarded as strings of symbols. For example, a protein is a string 
of20 kinds of amino acids. The catalytic and other chemical rules governing the ways 
enzymes catalyze ligation and cleavage among proteins can be thought of as a kind 
of grammar. In this grammar, strings of symbols act on strings of symbols to yield 
strings of symbols. An autocatalytic set is a type of collective identity operator in this 
space of symbol strings, an operator which produces at least itself. Given this basic 
idea, we may generalize to random grammars. Each such grammar is a kind of hypo
thetical set of chemical laws. Each will yield a world of symbol strings and their joint 
transformations. Such symbol strings can be thought of as polymers in a prebiotic 
soup, molecules in an organism, goods and services in an economy, and perhaps even \1 
conceptual elements in a cognitive web or mythic elements in a cultural system. As t 
we see below, the kinds of compositional sets of symbol strings that emerge in systems 
in which strings act on strings to produce strings become models of functional inte
gration, transformation, and coevolution. 

Analysis of random grammars is one approach to the general problem which 
arises in investigating the capacities of complex systems to adapt. That problem lies 
in understanding both the functional and the dynamical order which integrates these 
systems. Escherichia coli "knows" its world. A wealth of molecular signals pass 
between a bacterium and its environment. The signals entering the bacterium are 
harnessed to its metabolism and internal transformations such that, typically, the cell 
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maintains itself, replicates, and passes its organized processes forward into history. 
Similarly, a colony of E. coli integrates its behavior. The organisms of a stable eco
system form a functional whole. The niches occupied by each organism jointly add 
up to a meshwork in which all fundamental requirements for joint persistence are 
met. Similar features are found in an $conomic system. The sets of goods and services 
making up an economy form a linked meshwork of transformations. The economic 
niches occupied by each set allow the producers of that set to earn a living andjointly 
add up to a web in which all mutually defined requirements are jointly met. Both 
biological and technological evolution consist in the invention of slightly or pro
foundly novel organisms, goods, or services which integrate into the ecological or 
economic mesh and thereby transform it. Yet at almost all stages, the web retains a 
functional coherence. Furthermore, the very structure and connections among the 
entities set the stage for web transformation. In an ecosystem or economic system, 
the very interactions and couplings among the organisms or among the goods and 
services create the conditions and niches into which new organisms, goods, or ser
vices can integrate. The web governs its own possibilities of transformation (Kauff
man 1988). 

Similar functional integration of roles, obligations, and institutions applies at 
societal levels. The revolution that occurred in Eastern Europe and the former Soviet Iunion in these anni mirabili was accompanied by a sense that the Soviet system was 
an integrated whole with the property that if one or a few features were removed or 
altered, the entire system must transform to something quite different-and whole. 
In June 1989 the Communist leaders in China tragically saw fit to kill their students 
in Tienamin Square. Why those leaders did so is clear: The students were demon
strating for increased democracy, and the government feared the consequences 
would transform Chinese Communism. In short, the puzzle is to understand not 
what China's leaders did, but what they knew. In a real and deep sense, the Chinese 
government knew that, were a few features of their system altered, the entire edifice 
stood in danger of dramatic transformation. What, indeed, did they know? 

In the biological and social sciences, we badly lack a body of theory, indeed even 
a means of addressing these issues: What is a functional whole and how does it trans
form when its components are altered? As remarked, a new approach to answering 
this question is based on the use of random grammars. The objects of the theory are 
strings of symbols which may stand for chemicals, goods and services, or roles in a 
cultural setting. Symbol strings act on one another, according to the grammar, to 
yield the same or other symbol strings. Thus the grammar specifies indirectly the 
functional connections among the symbol strings. It defines which sets of strings, act
ing on other sets of strings, produce which sets of output strings. These mappings are 
the functional couplings among molecular species in a proto-organism, among a 
population of organisms in an ecosystem, and among the linked production tech
nologies in an economy. Diverse grammars model diverse possible chemistries or 
possible production technologies. By studying the robust features of functionally 
integrated systems which arise for many grammars, we should find that grammars 
fall into a few broad "grammar regimes." Using these robust features, it should be 
possible to build towaro a newtheOryO"fintegration and transformation in biological 
and social sciences. Among the features we shall find are-f)has~tra~ between 
finite and potentially infinite growth in the diversity of symbol strings in such sys
tems. As we have seen, this phase transition may well underlie the origin of life as a 
phase transition in sufficiently complex sets of catalytic PolYl,lers. Similar phase tran
sitions may underlie "takeoff' in economic systems, such as the Industrial Revolu-
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tion, once the systems attain a critical complexity of goods and services that allows 
the set of new economic niches to explode supracritically, and may provide models 
for the conceptual explosion wrought by the redevelopment of science three centu
ries ago. 

The relationship between such random-grammar models and more familiar 
dynamical systems, such as those discussed in Chapter 5, must be made explicit. In 
familiar dynamical models, such as Boolean networks, the "meaning," "connec
tions," and "dynamical laws" governing the interpretation of each variable, its cou
plings to other variables, and how it changes as they change are all defined externally 
to the theory. That is, we have no underlying theory showing why a given pair of r 

variables are coupled. Granted the structure and equations for the dynamical system, ! 

its dynamical behaviors are studied as flows in its state space. Precisely because they 
offer no account of the ways couplings among the variables arise, such models cannot 
readily be models of functional integration. In sharp contrast, however, models based 
on grammars afford an underlying account of the particular couplings among symbol 
strings. Thus an entity such as an autocatalytic set of symbol strings announces its 
functional integration! The members of the system collectively make one another. It 
is injust this sense that random-grammar models allow us to begin to study the rela
tion between the structure of the grammar rules and the kinds of functional integra
tion and transformation that emerge in systems of symbol strings which act on one 
another according to those rules. 

The chapter is organized into three sections. In the first section, some of the kinds 
of finite or infinite sets of symbol strings which emerge as algorithmic transforma
tions of one another are described. In the second section, I suggest two approaches 
to studying a denumerably infinite space of grammars. One approach is based on 
infinite-dimensional Boolean networks; the second, on random grammars. The third 
section discusses applications to biological, neural, and social sciences. First, how
ever, the remainder of this introductory material describes briefly Walter Fontana's 
generalization of the models of autocatalysis in polymer systems to an "algorithmic 
chemistry" which, strikingly, yields autocatalytic sets of symbol strings. 

Fontana'5 AlChemy 

In Chapter 7, when discussing the emergence of autocatalytic sets of polymers, we 
considered two basic rules for the assignment of catalysis. The simplest was based on 
a constant probability P that any polymer catalyzed any reaction. The second, mod
eling RNA molecules, required that a putative RNA enzyme template match the 
right and left terminal nucleotides in its potential substrates; then that RNA sequence 
had a chance governed by its "matchstrength" to be an enzyme able to catalyze the 
reaction. In these models of the origin oflife, we are describing mappings of symbol 
strings into strings, mediated by strings. Thus, as remarked above, this mapping is 
some kind of algebraic or algorithmic transformation in which autocatalytic sets of 
symbol strings are certain kinds of collective identity operations of a cluster of the 
objects acting on themselves. The use of a constant probability of catalysis P and the 
matchstrength rules yields two specific grammars assigning transformations among 
symbol strings to the action of symbol strings. Such transformations are algorithmic 
in the precise sense that the action of one string on another is defined by the grammar 
and that recursive actions occur. Fontana devised a third grammar mapping strings 
into strings. 
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Walter Fontana (1990) borrowed a powerful algorithmic language derived from 
the lambda-calculus, invented to be as powerful as universal Turing machines, and 
the progenitor of Lisp. His idea is to exploit the general idea of strings acting on 
strings as algorithms. In this hypothetical chemistry, Fontana does not require that 
mass be conserved. Two strings collide; the first is the program, which acts on the 

\ second as an input. By construction, most strings are legal both as program and as 
, input. Thus most collisions between strings transform the second string into some 
; single new string. Fontana defines a "Turing gas" in which a random collection of 
I strings is placed in a "chemostat." After each productive collision between strings, 
. the number of strings has increased by one. To supply a selective condition, Fontana 

removes one string randomly chosen from all present, hence holding the number of 
\ strings in the chemostat constant. 

Fontana has carried out three kinds of numerical experiments. In the first, a set of 
700 strings is allowed to interact by random collisions. At first only new strings are 
generated, but over time more and more of the strings generated already have iden
tical copies in the chemostat. Eventually a closed set of strings, an autocatalytic set, 
emerges. In this first set of experiments, the autocatalytic set is dominated by a gen
eral replicase, which is a sequence that can copy itself and any other sequence. Such 
a replicase is equivalent to a ribozyme which might copy itself and all others. Har
kening back to our concern in Chapter 7 about nude replicating genes, here the rep
licating system based on a general replicase does not build up a complex metabolism 
about itself. It remains a simple system in string space. 

In the second set of experiments, Fontana disallows copying strings. Nevertheless, 
closed collectively autocatalytic sets of strings emerge. Thus one set contained 45 
kinds of strings which mutually transformed into one another. These sets are the 
direct analogue of the collective autocatalytic polymer sets discussed in Chapter 7. 

In the third numerical experiment, Fontana injected sets of 20 random strings 
into an evolving chemostat. He found that the terminal autocatalytic set differed 
from that which would have occurred without exogenous perturbation. Often a core 
metabolism is stable, while a penumbra of string types come and go under such per
turbations as the injection of new strings. 

JETS AND AUTOCATALYTIC SETS: TOWARD A NEW 
STRING THEORY 

Whether we are considering the transformation of molecules in a prebiotic soup or 
goods and services in an economy or a variety of other cases, it seems useful to con
sider the infinite set of binary strings as the objects under analysis. Then, in general, 
strings or sets of strings act on strings or sets of strings to yield strings or sets of strings. 
In general, such transformations are just mappings specified by a kind of grammar. 
The set of strings operated upon can be one or many. The set of strings carrying out 
the operations can be one or many. 

In general, the set of transformations will increase more rapidly than the set of 
strings. Thus the general question is this: For various kinds of random or nonrandom 
mappings of strings into strings, what kinds of sets of strings emerge? What we need, 
in general, is a way of generating families of grammars, or finite state automata which 
realize those grammars, and of discovering the kinds of functionally generative sets 
we obtain. I turn next to some intuitions about those sets, then return in the next 
section to consider ways of studying the space of possible grammars. 
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String Set Geometries: Jets, Lightning Balls, Mushrooms, 
Eggs, Filigreed Fogs, and Pea Soups 
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Consider first a Jet. Imagine a rule for polymer sets which states that any string can 
catalyze the ligation of two other strings only ifboth merging strings are larger than 
the catalyst string. Then, by construction, no feedback loops can form. All catalyzed 
transformations lead to ever larger strings. Let me define a Jet as a set oftransfor
mations among strings from some maintained 'founder" set of strings (analogous to 
the food set So) having the property that, under the algorithmic transformations 
among the strings, each string is produced only by a unique set of parent strings and 
is produced in a unique way. This definition is probably sufficient but more than 
necessary. In any case, it leads to a Jet of string productions which never cycles back 
on itself. 

Note that a Jet might be either finite or infinite. 
A Lightning Ball is a Jet cut free from its founder set, free to propagate through 

string space until it either dies out (if the Jet were finite) or propagate forever (if the 
Jet were infinite). Presumably a periodic or quasi-periodic Lightning Ball which 
orbits either back to the starting set of strings or back to near the starting set of strings 
is possible. The orbits in string space; defined as the succession of sets of strings in 
the Lightning Ball, might be periodic, raylike, chaotic, or ergodic. 

Let me define a Mushroom. The first example is an autocatalytic set of polymers 
growing forth from a maintained food set. First a set of transformations jets up via a 
kind of stem which is free of feedback loops, and then feedback loops begin to form, 
creating the head of the Mushroom. In effect, a Mushroom is a Jet from a maintained 
founder set, with feedback loops. 

Mushrooms are models of functional "bootstrapping." An immediate example is 
an autocatalytic peptide set with a sustained metabolism of coupled transformations 
from the food set. Perhaps another example is the technological evolution of 
machine tools. For example, the first tools were crude stones; then came shaped 
stones, which enabled formation of better tools, which could be used to dig ore for 
making metal tools, the ultimate development being machine tools which them
selves generate tools such as axes, chisels, and machine parts for other machine tools. 
Presumably the onset of agriculture among hunter-gatherers is a similar example. 
Many more must exist in economic and cultural evolution, as well as in organic evo
lution. 

Like Jets, Mushrooms can be finite or infinite. 
Next consider the Egg. The hexamer and trimer RNA sequences which reproduce 

only themselves in RNA sequence space (Chapter 7) are Eggs, whole in and of them
selves. Eggs are self-sufficient sets of algorithmic transformations with no need of a 
stem from a maintained founder set. In an egg, strings can produce arbitrary strings 
and hence can enter a closed set which finds only itself, free of all other strings. Let 
me reserve the term "Egg" for finite closed autocatalytic sets. An unchanging finite 
Egg is precisely an identity operator in the process algebra or grammar by which 
strings act on strings such that the collection of processes produces precisely and only 
itself. Eggs may prove to be useful models of self-confirming mythic or even scientific 
conceptual systems by which the outside world is parsed. They may also prove useful 
as models of cultural identity, integration, and wholeness. 

Presumably Eggs come in several types. We have already considered the Fixed 
Egg, which maps into itself. Eggs might move through string space, however, creating 
Traveling Eggs. Fixed Eggs correspond to autocatalytic sets which are closed and hold 
to a fixed set of consequences and transformations. Traveling Eggs are like Lightning 
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Balls but contain feedback loops and change composition in sequence space in var
ious ways. Presumably, Wobbly Eggs, which orbit among either a period or a quasi
periodic set of sequences, might be possible; so might Chaotic Eggs and Ergodic Eggs 
exist. The set of strings in an Ergodic Egg would wander randomly over string space 
as the Egg traveled. In addition, Hairy Eggs would be finite objects from which Jets 
or Mushrooms may extrude, perhaps stochastically if the production rules are acti
vated probabilistically. Fontana may have found such structures with a stable core 
metabolism sending out a fluctuating flare of other strings. 

The Filigreed Fog is an infinite supracritical autocatalytic set which either may 
have a stem to a sustained founder set or, like an Egg, may float free. Unlike an Egg, 
however, a Filigreed Fog is not bounded. Nevertheless, it is limited in that there are 
at least some strings which can never be generated by the set. 

Finally, there is the Pea Soup, defined as an infinite set which, in principle, will 
eventually include all possible strings. It is intuitively plausible that the autocatalytic 
set generated by the model in which each polymer has a fixed chance of catalyzing 
each reaction will form a Pea Soup if the set is supracritical. Ultimately all strings 
should have their formation catalyzed by some string. 

Evolution and Stability of Functional Sets 

Among the obvious questions about such sets are their stability and capacity to 
evolve. Consider an Egg. How many Eggs does the algorithmic set contain? A few? 
Many? Given a definition of one-mutant variants, is an Egg stable to all one-mutant 
variations in its composite strings? All two-mutant variants? Thinking of Eggs as 
attractors, how many are accessible from any other Egg, by how much of a mutation 
in the set of strings present? For example, Fontana began to study this question by 
injection of exogenous strings. Can one jolt an Egg to another Egg? Similar questions 
apply to all the kinds of structures depicted. Such questions bear on the stability of 
Jets, Mushrooms, and so on and on their capacity to evolve as a result of "noise." To 
return to a theme from Chapter 7, the capacity of such systems to evolve constitutes 
evolution without a genome. Hence such examples strike at an over-narrow view of 
the basis of heritable variation and the capacity for selective evolution based on DNA 
template complementarity. 

Note that transformation from one Jet to another, one Mushroom to another, one 
Egg to another, or from Jet to Egg or Egg to Mushroom and so forth begins to get at 
our intuitions that the Soviet or Chinese political system is fragile, that a few minor 
changes in the coherent structure must lead to the replacement of many or most 
functional linkages. 

Decidability Problems 

A number of issues may be undecidable. For example, whether a given set offounder 
strings in a given algorithm is subcritical or supracritical might be such an issue. It 
appears intuitively related to the halting problem: Will an algorithm halt with the 
answer or continue forever? Similarly, in a Filigreed Fog, it may not be formally 
decidable that the grammar cannot produce a given string from the initial set of 
strings. I suggest below in an economic context that, where strings are goods, such 
formal undecidability may map into the logical requirement for bounded rationality 
in economic agents and into an equal logical requirement for incomplete markets. 
Thus such models may invite modification of neoclassical economic theory. 
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Size Distribution of Avalanches of Change 

In autocatalytic polymer sets, addition of a new polymer may trigger the formation 
of many new strings and the elimination of old ones. In a technological web, addition 
of the automobile drove out the horse and many horse trappings. When Fontana 
injected random strings, a peripheral component of the autocatalytic metabolism 
tended to change. What is the size distribution of such avalanches? For example, in 
Chapter 6 I discussed the sand pile model and self-organized criticality ofBak, Tang, 
and Wiesenfeld (1988); at the critical state, there is a power-law distribution with 
many small and few large avalanches. In Chapter 5 we saw a similar distribution in 
Boolean networks at the edge of chaos, and in Chapter 6 we found the same distri
bution of avalanches in model ecosystems which have optimized joint fitness. Thus 
we are led to ask what such avalanches of "damage" or changes look like in our var
ious objects. For example, it might be that in finite Jets early avalanches are large and 
late ones are small. Or avalanches might show a common distribution regardless of 
when they are unleashed in the lifetime of a Jet. Similar questions arise with respect 
to Fixed Eggs and Traveling Eggs. Perhaps a power-law distribution obtains just at 
the phase transition when sets go supracritical. 

These questions may allow us to begin addressing such issues as the sensitivity of 
history to small perturbations. For history, too, is an unfolding of transformations 
among some indefinite set of possibilities. Similarly, the evolution of autocatalytic 
sets in a world of polymers, with coevolution among the sets, captures both historical 
accidents and a kind of entropic exploration of the world of the possible. 

Sets of Strings Acting on Sets of Strings: Aggregated 
Transformations as Machines Tune the Ratio of 
Transformations to Strings 

Consider Fontana's Turing gas. A thousand strings interact with one another by ran
dom collisions. This system parallels the studies on autocatalytic sets. Suppose that 
100 different types of strings are present. Then the chance that any specific string will 
undergo an ordered set of five of the transformations mediated by these strings is low. 
Consider instead, a "machine," by which I mean a complex made of a sequential 
aggregate of five kinds of strings, such that any string which encounters the machine 
undergoes sequentially all five transformations. Thus the machine, which is made of 
simple transformations, ensures a complex set of transformations. Since we are sup
posing 100 kinds of strings in the gas, there are 1005 = 1010 of these combined fivefold 
transformations. 

One implication of the use of an aggregate as a machine which acts on a single 
string or on a set of strings is that the number of machines is very much larger than 
the set of single strings. Since each machine carries out a compound transformation 
on an input string, construction of complex machines increases the ratio of potential 
transformations mediated by one machine to strings. Hence achieving phase tran
sitions to more complex supracritical sets becomes easier. 

Another implication is that coordination of five strings in an ordered way into a 
machine alters effective time scales. Thus we can think of the joining of primitive 
strings into aggregates, the invention of machines, as a means of mediating specific 
compound transformations at high frequencies. Clearly, the emergence of machines 
will alter the functional sets formed. This example makes it clear that time scales 
matter. The members of a set of strings interact by some dynamics, as in Fontana's 
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random-collision dynamics. Altering the probabilities of string interactions pro
foundly alters which sets of composite transformations occur and which sets of 
strings arise. 

The image is not a poor one. The machines in our economy form specific complex 
objects among a set of many other possible ones. 

Compound machines made up of sets of strings also afford models of downward 
causation. More lion proteins abound these days than do trilobite proteins largely 
because lions as whole organisms are now more abundant that trilobites. This abun
dance of leontine proteins reflects the recent success of lions as integrated wholes. 
Similarly, the abundance of pistons in landfills reflects the usefulness of motors as 
integrated functional wholes. Neither lion proteins individually nor pistons individ
ually vie for abundance in their respective historical records; it is the wholes embed
ding them that vie for abundance. 

From One Chemostat to Many: Coevolution 
and Phase Transitions 

By introducing a multiplicity of chemostats which operate on strings internally, and 
which may also exchange strings between chemostats, we can explore modC:~ of 
coevolution, the emergence of competition, mutualism, or symbiosis in biology, or 
trade between economic agents or units. In addition, phase transitions among the 
kinds of sets generated-Jets, Mushrooms, and so forth-may take place as a func
tion of the number of chemostats which come to interact. As that number increases, 
the joint complexity of strings being operated on can pass critical thresholds. Such 
transitions may model "takeoff" in an economy or even intellectual community. I 
now discuss this in more detail. 

The autocatalytic models and Fontana's model so far take place in a stirred reac
tor. All strings can interact with all strings. Consider instead a set of chemostats, or 
boxes. Each box, to be concrete, begins with a sustained founder set, which consti
tutes the box's sustainable natural resources. Each set of strings proliferates purely 
internally. So far this is nothing but the stirred reactor within one chemostat. Now 
let some of the strings be made for "export only." These exported strings may pass 
to other boxes. Those other boxes may be identified by spatial location, or some 
strings may bind to the box surface and serve as address strings. Either way, the inven
tion of multiple chemostats identifies individual regions oflocal processes which may 
then coevolve with other such regions. 

Among the first questions to consider are these: 

1. Imagine that each box, granted its sustained founder set, yields only a finite Jet. 
It may be the case that, when strings can be exported between boxes, some or all 
of them are lifted to a more complex level of activity. For example, the collective 
system might form an infinite Jet, a finite or infinite Mushroom, a Filigreed Fog, 
or even a Pea Soup! The point to stress is that collaborative interaction may trans
form a system from one type offunctional set to another. In particular, there may 
be a critical level of complexity for any given set of algorithmic transformations, 
a critical level that leads with high expectation to each of these transitions. If so, 
what are these thresholds like? Might they, for example, bear on economies which 
are unable to expand in diversity of goods versus those which can explode? Do 
they bear on the consequences to isolated cultural systems when brought in con
tact with other isolated systems or with a larger world culture? Do they bear on 
the scientific explosion following the Renaissance? 
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2. Consider the question of functional integration between the boxes. Each box can 
be thought of as a kind of country with natural resources, or a firm interacting 
with other firms, or perhaps an integrated functional organism. String inputs from 
other countries, firms, or organisms may perturb the internal dynamics of each 
box. In response, the box may die; that is, the Jet or other process may collapse to 
a sustained founder set, or it may transform to some other more or less constant 
functional set. In the latter case, we have an image of entities which alter their 
internal structure in response to external couplings such that each entity is inter
nally a stable sustained flux of collaborative processes in conjunction with cou
plings to other boxes. It is an image of stable signal relations among bacterial cells 
or perhaps, as we see in more detail below, trade relations among nations 
endowed with different natural resources and different histories of technological 
development. Are there many alternative attractors to such a system, given the 
same founder sets to each box? How history-dependent is the system? How stable 
to perturbations? 

Such coevolving boxes literally come to know one another and to know their 
worlds. We must consider when and whether such systems are competitive and when 
and whether they coevolve mutualisms which optimize mutual growth rate or, 
equivalently, utility. Indeed, I suspect that these processes must occur in biologic and 
economic evolution. 

Dynamical Stability as Well as Compositional Stability 

The sets we considered above-Jets, Mushrooms, Eggs, Fogs, and Soups-deal with 
the string composition generated by different rules by which strings interact. In addi
tion to the composition of such generated sets, however, it is also important to con
sider their dynamical aspects in terms of the "concentrations" of strings of each type 
over time. For example, an Egg might reproduce itself compositionally at a dynam
ical steady state or along a limit cycle or chaotic orbit in string space along which its 
constituent strings were successively produced. Presumably other orbits might suffice 
for an Egg to persist. Similar questions arise for Jets, Fogs, and other potential 
objects. 

A critical difference between string systems and familiar dynamical systems is that 
the former operate in an indefinitely large state space, and the latter in a fixed state 
space. The functional sets we are considering are, in a sense, evolving in an open state 
space of strings. 

INFINITE BOOLEAN NETWORKS AND RANDOM 
GRAMMARS: APPROACHES TO STUDYING FAMILIES 
OF MAPPINGS OF STRINGS INTO STRINGS 

In order to study Jets, Eggs, Fogs and functional interactions, we require mathemat
ical models of the algorithmic interactions by which strings act on strings to produce 
strings. The autocatalytic polymer set with fixed probability of catalysis P, the RNA 
string match rule Bagley and I have investigated, and Fontana's alchemy are three 
choices of rules by which strings act on one another. The aim of this section is to 
consider alternative approaches to generate in some ordered way the set of "all pos
sible" mappings of strings into strings. In fact, this cannot be done in an ordered way 
because the set of all such mappings involves the infinite power set of binary strings 
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of infinite length acting on itself to produce the infinite power set of binary strings. 
This class of objects is not denumerably infinite. It maps to the reals. Consequently, 
any ordered approach to this problem requires simplifying at least to a denumerably 
infinite set of objects, categorized in terms of some parameters such that mappings 
of increasing complexity can be studied and such that these mappings fall into useful 
classes. 

The aims of this endeavor should be stated clearly. I believe such mappings send
ing strings or sets of strings, operated on by strings or sets of strings, into strings or 
sets of strings may provide useful models of several things: molecular interactions or 
molecular machines in organisms; production technologies in economic systems; 
and conceptual linkages in psychological, scientific ideational, or cultural systems. 
We surely do not, at this stage, have detailed understanding of such functional cou
plings in any of these areas, and the hope is this: by exploring large tracts of "grammar 
space," we may find rather few "regimes" in each of which the same general behavior 
occurs in the sets of strings generated by the specific grammar. That is, just as explo
ration of random Boolean networks has revealed three broad regimes-ordered, 
complex, and chaotic-so too may exploration of grammar space reveal rather few 
broad regimes. We can then hope to map these broad regimes onto biological, eco
nomic, conceptual, or cultural systems. Thereby we may obtain models of functional 
couplings among biochemical, technological, or ideational elements without first 
requiring detailed understanding of the physics or true laws governing the couplings. 
We may find, in short, the proper universality classes. 

I next discuss two approaches to this task. The first explores the representation of 
mapping of strings into strings via potentially infinite Boolean networks. The second 
considers the use of random grammars with definable parameters which allow gram
mar space to be explored. 

A Natural Infinite-Dimensional State Space Representation 
of the Mapping of Strings into Strings via Infinite 
Boolean Networks 

One representation for strings mapping into strings is a potentially infinite-dimen
sional state space of symbol strings which are finite but of arbitrary length. Consider 
binary strings oflength L, where L can increase up to infinity. Order these in count
ing to infinity, beginning with the two "monomers" 0 and I, then the four "dimers" 
00, 0 I, 10, II ... , followed by the eight trimers, and so on. At each string length L, 
there are 2L types of strings. This infinite list of string types, whose lengths also 
increase to infinity, can be ordered from a starting point: the monomer O. Create two 
infinite matrices. The first, the input matrix, is ordered such that each column 
denotes one specific binary symbol sequence, and the columns begin with the mono
mers at the rightmost column, the dimers to the left, the trimers to the left of the 
dimers, and so forth, stretching to infinity in the left ditection. Thus each possible 
symbol string is assigned one column in the input matrix. The second matrix, the 
response, is simply the mirror image of the input matrix. The response matrix lists 
the monomers in the leftmost two columns, the four dimers to their right, and so on, 
stretching to infinity in the rightward direction. The input matrix has as its rows all 
possible combinations of the presence or absence of the possible types of symbol 
strings, starting with the row ( ... 00000) on top. There are an infinite number of 
rows in the input matrix. Lower rows, for example ( ... 01100), represent states with 
longer symbol strings. 
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The positions of 1 values in each row of the input matrix represent which strings 
are present in that state of the world. The response matrix will show the next state of 
the world as strings act on strings to produce strings. By construction, the input and 
response matrices are mirror symmetric; hence in order to read the next state formed 
from each input state, the reading must be flipped from right to left for the input 
matrix to left to right for the response matrix. 

Alternative mappings from input to response represent alternative mappings of 
the set of strings into itself. In order to proceed, some further definitions are required. 
Let a machine M* be an ordered collection of M strings. Let an input bundle 1* be 
an ordered set of I strings. The action of M* operating on 1* will yield an ordered 
output set of strings 0*. 

Any row of the input matrix has a finite number of cells having the value 1, rep
resenting the fact that each row represents a unique combination present or absent 
in the world of strings up to some length. The possible machines built of these strings 
might be limited to a specific maximum number of strings-five, for example-or 
might range up to the finite total number of strings present in that state of the world. 
Call the latter maximum size machine unbounded in the sense that, as rows farther 
down the infinite input matrix (which represent the presence of longer and often 
more symbol sequences) are considered, still more complex machines can be built. 
Because of the ordered way the input matrix is constructed, it is possible, given con
straints on which ordered sets of strings count as legitimate M* or 1*, to uniquely 
number each machine and input bundle. In a moment I shall use such unique num
berings to produce a deterministic mapping from current state to next state. 

The choice to include all possible unbounded machines as legitimate machines or 
all possible unbounded input bundles as legitimate bundles specifies the power set of 
strings operating on itself as the mathematical entity of interest. This is clearly the 
widest interpretation. It allows us to generate, in the presence of a fixed set of strings, 
the maximal number of strings possible under any interpretation of the kinetics in 
which strings collide with and act on one another. (Other choices are more limited. 
For example, we might wish to assume that the largest machine any string might 
enter was the only machine which formed and acted. In that case, transformations 
mediated by smaller machines would be inhibited by the capacity to form the larger 
machine.) Here, instead, we assume that all legitimate machines able to be formed 
are present and carry out their transformations on all possible legitimate input sets. 
Thus, for the moment I therefore choose the widest, full power set interpretation of 
machines and input sets. 

If a string is acted on and transformed, we need to choose whether the initial string 
remains in the system or not. The natural interpretation, adopted here, is that the 
string is used up, or disappears, in the transformation. (Note that, in chemistry, back 
transformation always occurs. This is not in general the case, however.) 

With these assumptions, the next state of the world is a mapping from the present 
state, a mapping given by some Boolean functions in the response column. Such a 
system can be thought of as a discrete-time, autonomous, synchronous, potentially 
infinite automaton. The dynamics of this automaton tells us the way strings engender 
strings in the potentially infinite space of strings. 

Three further assumptions lead us to a canonical and ordered way to generate a 
denumerable family of transformations: 

1. We can parameterize such transformations by the largest machines allowed, M* 
and the largest input sets to a machine allowed, 1*. Thus the system might at the 
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moment have 1000 strings, but only machines or input bundles with five or fewer 
strings might be allowed. In any row in the input matrix, there are a finite number 
of sites with 1 values, corresponding to strings present in the system, say N*. The 
maximum number of machines is N*5. The maximum number of input bundles 
is similarly N*5. The product of these is the maximum number of pairs of 
machines and input bundles. Determinism demands that for each pair, there is a 
unique outcome. 

2. In order to retain denumerability, we need a rule which limits the number of out
put strings given the number of input strings. Call this a limit on the "output 
spray" S*. Given this limit and then given N* in the input row, we have a maxi
mum limit on the number of strings present in the next state of the world. 

3. Next, again to retain denumerability, we can choose to delimit the maximum 
length of a new string produced by machines whose maximum member number 
is M and whose maximum input bundle string length is L to some finite bound 
which increases with M and L by some bounded function. Thus in the origin of 
life model from a food set, at each iteration, the maximum string length doubles 
because one imagines ligating two strings present in the system. Any such bound
ing choice is a third parameter, which in effect creates an expanding cone down 
the rows of the response matrix. The cone asserts that maximum string length can 
grow only as fast as a function oflengths of strings already present in the system. 

Given these bounds, we have, for each row of the input matrix, a bound on the 
maximum number of strings which can be present in the next state of the world and 
a bound on the maximum length of those strings. (Note parenthetically that a con
straint exists between the maximum rate of cone expansion of string lengths and the 
total number of output strings from any input state. There must be enough possible 
strings in the space allotted to accept the new strings.) 

The Quenched Deterministic Version: Mapping the Infinite 
Power Set of Binary Strings into Itself 

The mathematical object we are considering in the Boolean idealization where all 
allowed transformations occur is really a mapping of the now at most denumerably 
infinite power set of N strings into itself. That is, consider a row of the input matrix. 
It contains a set of N strings. The power set of ordered pairs of strings, ordered triads 
of strings, ... , ordered Nads of strings, however, is just the set of all possible 
machines M* constructible from those strings. Similarly, the sets of single strings, 
ordered pairs of strings, and so on are the set 1* of possible input bundles. Thus 1* 
and M* are the same power set in the limit when machines and bundles having N 
strings are allowed. As remarked above, identify each unique ordered set of strings 
which is a machine Mi with a unique number. Similarly, identify each unique 
ordered set of strings which is an input bundle Ii with a unique number. Then the 
pair of numbers ij specifies a unique machine input pair and hence must always have 
a fixed output bundle Oi}. The output, of course, is bounded by the output spray S. 

Given the unique identification of IN, it is possible to define for each machine 
input pair-regardless of which state a/the world it occurs in, hence which row of the 
input matrix-a unique output bundle. This ensures both determinism and con
straints within the family M, I, and S. Since both the length and the number of strings 
making up machines, input bundles, and output sets are finite and bounded for any 
unique machine input pair, we can generate all possible finite number and length 
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legitimate output sets which might be generated by the pair. Thus it follows that, in 
terms of the parameters giving (1) maximum machine, bundle, and output spray 
sizes, and (2) cone angle or string length amplification factor, and (3) the determin
istic machine input pairs mapping into unique output bundles, we can consider all 
possible mappings of any finite set of strings into itself. Hence within these parame
terizations, we can explore all possible dynamical behaviors this family of systems. 

The Annealed Model 

Given these bounds on the response matrix, we may consider a simpler, "annealed" 
model which may prove useful. Consider, for each row of the input matrix and the 
bounds on amplification, output spray, and so forth, all possible ways of filling rows 
in the response matrix with 1 and 0 values, consistent with those constraints. Each 
way corresponds to a well-defined transformation of the set of strings into the set of 
strings and allows an expanding cone of complexity. However, this model does not 
preserve deterministic dynamics. It is an annealed approximation to a deterministic 
grammar of the infinite set of strings into itself. The lack of determinism is easy to 
see. Consider two input rows in which strings S 1 ... S5 are present, but in the second 
row string S6 is also present. By determinism, all the machines, input bundles, and 
transformations which might occur in the first row are also present in the second row 
and hence must occur in the corresponding next state of the world. Under the 
annealed model, however, filling the response rows in all possible ways, such deter
minism is not guaranteed. Instead, this model is an annealed approximation to a 
deterministic dynamics whose statistical features it may prove useful to analyze, as 
has proved to be the case with the Boolean networks discussed in Chapter 5 (Derrida 
and Pomeau 1986). 

The concepts of Jets, Lightning Balls, Eggs, Filigreed Fogs, and Pea Soups are all 
clear in either the deterministic or the annealed picture as either trajectories from a 
maintained source set (Jets, Mushrooms) or "free" dynamics (Eggs, Lightning Balls, 
Filigreed Fogs, Pea Soups). 

Since these systems are just infinite Boolean networks explored from an initial 
state invoking relatively short and few symbol strings, the concepts of dynamical 
attractors and ordered, chaotic, and complex behaviors carry over directly. In addi
tion, however, in comparison with a fixed state space, we have here the idea of attrac
tors in composition space-the sets of strings which make up the system as well as 
the dynamical behaviors evidenced among the sets of strings, be they Eggs, Mush
rooms, or Filigreed Fogs. 

We can begin to guess at the relation between dynamics and composition space. 
The Boolean idealization shows the set of all possible transformations from the cur
rent set of strings into the next set. By contrast, in other dynamics not all machines 
and input bundle pairs will interact at each moment, and hence only a subset of all 
transitions will occur. In particular, as remarked above, we might want to model the 
presence of an inhibitor string which, when present, unites with a machine and reli
ably blocks its action, just as repressor molecules bind to cis-acting DNA sites and 
block transcription. Note that this kind of dynamics departs from the choice to allow 
all possible transformations induced by machines on inputs. Were that most general 
choice made, then in the presence of the inhibitor string, both the machine without 
the string and the machine with the string would be present. The former would carry 
out its prefigured transformation; the latter would not. In the modified dynamics, the 
inhibitor string uses up all copies of the machine and prevents the transformation 
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which would otherwise occur. The important point is this: Once we allow inhibition 
of transitions in this way, the dynamics can be chaotic, ordered, or complex. 

Consider the case in which, on the infinite graph, graph growth creates a leaky Egg 
which emits a narrow infinite Jet. Will the infinite Jet actually occur? The dynamics 
itself can control the subset of the composition set explored. For example, the dynam
ics of the system might cut off all transformations at the base of the infinite Jet, so 
that there will be no strings to flow up and create the Jet. Clearly, this process is easier 
to control if the dynamics are in the ordered regime rather than the chaotic. In the 
ordered regime, all string processes from the Egg to the Jet entrance might be inhib
ited. Under chaotic dynamics in the Egg, firing of strings at the base of the Jet would 
be hard to prevent. Thus which subset ofthe composition set actually occurs is clearly 
more readily controlled if there are ordered dynamics. Conversely, achievement of 
ordered dynamics in Boolean networks requires control over the number of inputs 
per variable and over the biases in the Boolean functions. Both controls will be easier 
to maintain in afinite Egg than in an infinite Mushroom, Filigreed Fog, or Pea Soup. 
In these latter cases, the elaboration of feedback connections to each string is roughly 
unbounded. Thus these systems are more likely to exhibit chaotic dynamics, and 
thus to explore fuller reaches of their possible composition set, than are finite Eggs 
with orderly dynamics. 

Obviously, finiteness in physical systems is also controlled-by thermodynamics 
in chemical systems, for instance, and by costs of production, aggregate demand, and 
budget constraints in economies. However, in the worlds of ideas, myths, scientific 
creations, cultural transformations, and so on, no such bound may occur. Thus it is 
of interest to see how such algorithmic string systems can control their own explo
ration of their possible composition set by dynamic control over the processes they 
undergo. 

The generalization to the case with multiple chemostats is obvious. It is equivalent 
to a set oflinked Boolean nets-that is, those which share some external variables. 

Random Grammars 

While infinite Boolean systems may prove useful, random grammars may be more 
readily studied. Grammars range from simple regular languages to context insensi
tive and context sensitive to recursively enumerable. The most powerful grammars 
are known to be as powerful as universal Turing machines. A grammar can be spec
ified by a list of pairs of symbol strings, with the interpretation that each instance of 
the right member of the pair in some input string is to be substituted by the corre
sponding left member of the pair. Thus, were the sequences (1100 11) and (0011) such 
a pair, then starting with a given input string, any instance of (0011) would be 
replaced by (110011). Effectively carrying out such a transformation on an initial 
string requires a precedence order among the pairs of symbol sequences in the gram
mar plus a means to limit the depth to which such substitutions are allowed. For 
example, replacement of(OOII) with (110011) creates a new (0011) sequence. Shall 
it be operated on again by the rule? If so, recursion will generate an infinite string by 
repeated substitutions at that site. If not, the depth .has been limited. Limiting depth 
limits the length of the transformed string with respect to the input string. 

Recursively enumerable grammars, which can be defined by a finite list of pairs 
where the partner on the left can be shorter or longer than the partner on the right, 
are as powerful as universal Turing machines. Tuning the number of pairs of symbol 
strings, the lengths of those strings, and their symbol sequence complexity tunes the 
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power and character of the grammar. A further "amplification" parameter specifies 
by how much and whether always or on average substituted symbol sequences are 
longer or shorter than the original sequence. Additional rules allow strings to be 
cleaved or ligated. In short, a few simple parameters can be used to specify a grammar 
space. Using them, random grammars within each set of values of the parameters 
can be chosen and the resulting string dynamics studied. 

A simplest approach is this: Use a random set of pairs of strings as the random 
grammar. Begin with a set of strings and operate on each string according to the 
grammar. Here, however, strings do not act on one another. 

A more useful approach, suggested by Albert Wong (personal communication 
1991) and closely related to Fontana's work as well as to our own origin oflife model, 
is to define grammars of substitutions plus ligation and cleavage operations, but 
require that strings contain "enzymatic sites" such that the strings themselves are 
carriers of the grammatical operators. Thus if the grammar specifies that string ab is 
replaced by string cddcde, then an enzyme string with an ab enzymatic site would 
search target strings for a matching ab site and, if found, substitute cddcde in the 
target string at that site. Or the enzymatic string might cut or glue strings at sites. 
Clearly, such grammars can be implemented in binary strings, with matching as 
complements or as identities. Any such grammar-chemistry must also make definite 
choices about the precedence order in which rules are applied and in which depth of 
recursive substitution or other actions at one site are pursued. 

More complex machine and input bundle sets can also be built up by generalizing 
on the idea of enzymatic sites. Real proteins often cooperate with one another by 
forming multimeric enzymes carrying out the same or even a succession ofbiochem
ical transformations. Here the constituent monomer proteins recognize one another 
and self-assemble within the cell to form the ordered protein aggregate which is the 
cooperative complex enzymatic machine. Similarly, we might extend our grammar 
rules to specify how ordered collections of strings self-assemble and act as machines 
or input bundles to yield unique output sets of strings. 

The use of grammars is likely to be very important in analyzing the emergence of 
functional adaptive systems. The Boolean idealization allows the set of all possible 
next strings to be followed, but it does not readily allow for growth in the numbers 
of copies of each string, for inhibitory interactions and hence competition between 
strings, and so forth. In contrast, just such features emerge readily in models where 
strings interact with one another via grammatical rules. I return to this model below 
in considering the implications of these ideas for mutualism, community structure, 
and economics. 

The relation between grammar complexity and the kinds of Jets, Eggs, Fogs, and 
so forth which arise is a central object for analysis. Some points already seem plau
sible. A simple grammar may be likely to give rise to finite Sets, Jets, Mushrooms, or 
Eggs. A complex grammar may be likely to give rise only to infinite Mushrooms or 
Filigreed Fogs. The reason is intuitively clear. The first finite autocatalytic sets found 
were the hexamer single-stranded RNA and its two trimer substrates, as noted above. 
The point-point complementarity due to base pairing allows this system to make 
first an exact complement and then itself in a closed cycle which need not expand out 
into sequence space. It is possible for this autocatalytic set to remain a two cycle and 
finite. Once overlapping sticky ends and ligation are allowed, this more complex 
grammar can give rise at least to infinite Filigreed Fogs. Now consider a very complex 
grammar: the fixed probability rule for autocatalytic sets. Here, each string has a fixed 
probability of catalyzing any reaction. The grammar is complex in the sense that, 
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aft~r catalytic interactions are assigned, each enzyme can typically act on many 
umque substrates. In due course, in supracritical systems under the probability of 
catalysis Prule, the formation of all strings will be catalyzed; hence this system creates 
a Pea Soup. It seems highly likely that, for a fixed founder set, the more complex the 
grammar, the less easy to limit string generation to finite sets. 

The Growth and Asymptotic Form of Mutual Information as 
Strings Act on Strings 

The action of strings on strings to produce strings according to a grammar should, 
over time, build up constraints in symbol sequences in the strings produced. As 
described briefly in Chapter 7, such constraints should show up in a measure of rela
tions between symbols called mutual information. The mutual information between 
pairs of symbols a distance S apart is defined as 

where Pa or Pb is the frequency of value a = 1 or b = 0 in the set of symbol sequences 
and Pab(S) is the frequency of symbol value a at position 1 and symbol value b at 
position 2 at distance S from position 1. The factor Pab(S) is averaged over all pairs 
of positions S apart in the set of symbol sequences under consideration. 

In natural language texts, M(S) typically decreases as a power law as S increases 
(Li 1989). Thus nearby symbols tend to be more strongly correlated than distant 
symbols. 

Consider now a system of 1000 binary strings, each chosen at random among 
strings having length 100. Because the set is chosen at random, the mutual infor
mation between sites at any distance S will be O. Let the strings act on one another 
in a chemostat such that 1000 strings are always maintained in the system. As these 
mutual interactions occur, the action of strings on one another creates correlations 
and hence mutual information. Preliminary studies with David Penkower in my lab
oratory at the University of Pennsylvania indicate that in these systems mutual infor
mation begins very close to 0 and builds, as interactions take place, to an asymptotic 
form which depends on the grammar. Figures 10.1 and 10.2 show examples of these 
results for grammars of different complexity. The following features have been 
observed. The time course of the buildup is complex and can vary for different dis
tances vSl in the same grammar and for grammars of different complexity (Figure 
10.1). Surprisingly, the establishment of correlations need not be monotonic in time. 
For some values of S, mutual information can first increase and then decrease (Fig
ure 10.1 b). Mutual information patterns do appear to build to a final asymptotic 
form as a function of number of grammar transformations. Simple grammars appear 
to build to their asymptotic patterns faster than complex grammars. The asymptotic 
pattern of mutual information is high for adjacent symbols and appears crudely to 
fall off exponentially, rather than in a power law, as S increases (Figure 1O.2a). 
Finally, the mutual information patterns which build up can be strongly statistically· 
significant (Figure 1O.2b). 

These preliminary results suggest that two factors-( 1) the time course in which 
mutual information builds to the asymptotic form as a function of numbers of string 
interactions and (2) that asymptotic form-give information about the complexity 
of the grammar. 
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Figure 10.1 (a) The buildup of mutua I information between adjacent symbol sites in random gram
mars with 5 or 50 pairs of symbol strings defining the grammar. Grammar rules also varied the frac
tion that mediates ligation and cleavage from 50 to 25 to 0 percent. The x axis plots the total number 
of interactions between symbol strings that have occurred. A system contains up to 1 000 interacting 
symbol strings. (b) Similar to (a), except that the symbols compared are three apart along symbol 
strings rather than adjacent. 

As remarked in Chapter 7, one can envision experiments in which random single
stranded RNA molecules of perhaps length 100 are allowed to interact with one 
another. If these molecules interact via specific sites that mediate ligation, cleavage, 
and splicing reactions (as do hexamers and ribozymes), then over time the sequences 
in the system should build up mutual information as a function of internucleotide 
distance S. This hypothesis should be testable by using PCR amplification, cloning, 
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Figure 10.2 (a) The logarithm of mutual information as a function of intersymbol distance for the 
different grammars shown in Figure 10.1 and after 250 000 interactions between symbol strings have 
occurred. (b) Replotting of the data shown in (a), showing the logarithm of the chi-square value for 
each intersymbol distance after 250 000 interactions between symbol strings have occurred. The hor
izontalline represents the 5 percent statistical significance level. 

and sequencing of the interacting RNA sequences over time. In tum, estimates of 
grammatical complexity are bulk estimates of enzymatic-site complexity as RNA 
sequences act catalytically on one another. Further, the buildup of short-range 
sequence biases implies that some sequences on a short range are far more common 
than are fully random sequences. This process might be detectable by the buildup of 
the capacity of one such sequence to hybridize with many complementary sequences 
as sequence biases build up. Analysis of the buildup of mutual information may 
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prove useful for mixtures of initially random polypeptides or other potentially cat
alytic polymers which act on one another. While the length distribution of RNA or 
peptide polymers in such a system will be sensitive to thermodynamic factors, it 
seems likely that measures of mutual information among nucleotides or amino acids 
as a function of distance apart is sensitive only to the grammatical complexity with 
which RNA or peptide sequences act on one another. 

Stochastic Generalization 

The model above is deterministic. It can be expanded to a stochastic form in two 
ways. First, it is possible to include random bit mutations in strings to yield a sto
chastic version of the same basic model. Second, note that the grammar rules, when 
applied to strings without reference to use of other strings as enzymatic tools, are the 
analogue of spontaneous reactions occurring without an enzyme in the autocatalytic 
polymer set model. Hence spontaneous applications of grammar rules are the natural 
form of spontaneous mutations in these systems. This provides a second direction in 
which to make grammar systems stochastic. Analysis of the capacity of such systems 
to evolve will presumably be aided by study of stochastic versions of the basic gram
mar models. 

APPLICATIONS TO BIOLOGICAL, NEURAL, 
AND ECONOMIC SYSTEMS 

Random grammars and the resulting systems of interacting strings will hopefully 
become useful models of functionally integrated, functionally interacting molecular, 
biological, neural, psychological, technological, and cultural systems. The central 
image is that a string represents a polymer, a good or service, an element in a con
ceptual system, or a role in a cultural system. Polymers acting on polymers produce 
polymers; goods acting on goods produce goods; ideas acting on ideas produce ideas. 
The aim is to develop a new class of models in which the underlying grammar implic
itly yields the ways in which strings act on strings to produce strings, to interpret such 
production as functional couplings, and to study the emergent behaviors of string 
systems in these contexts. I consider first some implications for biological models. 

Waiting for Carnot: Biological Integration and the Evolution 
of Open Self-Constructing Systems to the 
Subcritical-Supracritical Phase Transition 

Carnot gave us equilibrium thermodynamics and the general laws which have been 
extended to statistical mechanics. Yet we have no general laws concerning the behav
ior of open, far-from-equilibrium systems. Indeed, for apparently good reasons, we 
could not hope to have such laws: Turing machines, we know, can carry out universal 
computation. Thus any well-specified algorithm can be carried out by some 
machine. Such machines can be made of real physical materials and can carry out 
the algorithm if the system is displaced from equilibrium, open to matter and energy. 
Thus physical systems displaced from equilibrium and properly constructed can 
carry out any well-specified sequence of behavior. We know that some computations 
cannot be described in a more compact form than carrying out the computation and 
observing its unfolding. Thus we could not, in principle, have general laws, shorter 
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more compact descriptions, of such behavior. Thus we could not have general laws 
about the behavior of arbitrary, far-from-equilibrium systems. 

This argument, however, contains a vital premise: It is we who construct the non
equilibrium system in some arbitrary way. Having specified its structure and logic, 
we find the system capable of arbitrary behavior. Perhaps if we focus instead on self 
constructing far-from-equilibrium systems, we may hope to find general laws. 
Among these, I now suggest, are laws of functional integration and the real possibility 
that coevolving far-from-equilibrium systems may evolve to the phase transition 
between subcritical and supracritical behavior. 

Part of the interest in models of autocatalytic polymer systems, beyond the serious 
hope that they bear on the origin of life on earth and presumably elsewhere in the 
cosmos, lies in the fact that such systems afford a crystalline founding example of 
functional wholeness, hence functional integration. Given the underlying model of 
chemical interactions, once an autocatalytic set of polymers emerges, it is a coherent 
whole by virtue of achieving catalytic closure. Given the underlying model chemistry 
and catalytic closure, the functional role of each polymer or monomer in the contin
ued existence and proliferation of the autocatalytic set is clear. Note that we here feel 
impelled, almost required, to begin to use functional language. This requirement 
reflects the fact that such a self-reproducing system allows a natural definition of the 
"purpose" of any polymer part, a purpose which is subservient to the overarching 
purpose of the autocatalytic set, which is of course, abetted by natural selection, to 
persist and prevail. In this nonconscious sense, an autocatalytic set becomes a locus 
of agency. 

Model autocatalytic sets are natural testbeds for studying the emergence of col
laborative or competitive interactions. We need merely specify how such systems 
may export or import strings to one another, and we shall find out how they cope 
with such exchanges. As remarked above, such interactions and their internal con
sequences within each set literally are what it means for such systems to come to 
know one another. By studying these properties across grammars, it should be pos
sible to understand how grammar structure as well as the structure of interacting 
autocatalytic sets governs the coupled coevolutionary structures which emerge. The 
ways model autocatalytic sets build internal models of one another may well mimic 
the ways E. coli and IBM know their worlds. In addition, these models may well yield 
insight into the onset of mutualism, symbiosis, and competition in the biological 
realm. 

In Chapter 5, I discussed the bold hypothesis that knower and known evolve to 
the edge of chaos. This hypothesis seems to me to be very attractive indeed. Like 
Boolean networks, model autocatalytic systems are parallel-processing systems that 
might lie in the ordered regime, chaotic regime, or complex regime in terms of their 
dynamical behavior. If deeply ordered or deeply chaotic, such systems would be 
expected to coordinate complex sequences of molecular events poorly and to adapt 
poorly. One might expect such systems to evolve their internal organization to the 
edge of chaos. 

Autocatalytic polymer systems overcome a powerful limitation of the use of Boo 1-
ean networks. In such networks, the binary elements themselves have no internal 
"meaning." It is just such internal meaning that is afforded by random grammar 
models. The strings which interact to produce one another exhibit their mutual 
meanings to the evolving system precisely by their functional couplings. It is in just 
this sense that grammar models are the natural extension of our interest in the prop
erties of complex systems which allow them to adapt. Here we can deduce such prop-
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erties based on hypotheses about the structure of the underlying "laws of chemistry" 
which govern functional couplings among symbol strings. Meaning, immanent, 
becomes explicit to the coevolving systems. 

I now sketch some simple, preliminary grounds to support a candidate general law 
concerning the evolution of self-constructing open, far-from-equilibrium systems: 
Such systems may evolve and coevolve to the phase transition between subcritical 
and supracritical behavior. I find even the possibility of such a general law fascinat
ing. 

Prior to the origin oflife, the earth was an open thermodynamic system. As noted 
in Chapter 8, some form of complex chemical evolution from simple organic mole
cules to a far higher diversity of organic molecules must be presumed to have 
occurred during the lOO-million-year interval between the cooling of the crust suf
ficient to support liquid water and the first known signs oflife 3.8 billion years ago. 
Thus we must seek the laws which govern such far-from-equilibrium chemical evo
lution. We already have some hints. In Chapters 7 and 8, we investigated the sub
critical-supracritical phase transition. Once a supracritical diversity of organic mol
ecules was present, such that the molecules themselves catalyzed the formation of 
new organic molecules, that very system must have been able to catalyze an open
ended explosion of diversity. In this sense, open chemical systems can be self-extend
ing. We also have a clue that this view might be correct. Recall from Chapter 8 that 
the distribution of the numbers of kinds of organic molecules as a function of carbon 
atoms per molecule yields a single peaked distribution with a roughly exponential 
fall-off for larger organic molecules. This, I argued, reflects twin combinatorial facts 
about chemistry: As larger organic molecules are considered, with more atoms per 
molecule, the potential diversity of kinds of molecules increases exponentially or 
faster. Conversely, in the reaction graph among such organic molecules, there are 
always more pathways to create small molecules by cleaving them off larger mole
cules than there are pathways to build large molecules by combining smaller ones. 
The implications of these two combinatorial factors seems to be that if a supracritical 
fraction of reactions is catalyzed, then the diversity of molecules whose formation is 
catalyzed will reach a peak at an intermediate number of atoms per molecule and 
will fall off in an exponential tail for larger molecules. In short, the observed diversity 
distribution appears to be consistent with the self-extending features of organic 
chemistry. 

Our next step is to try to extend Darwin's principle of natural selection to the pre
biotic earth. Suppose that red and blue bacteria compete for resources, and red bac
teria grow faster than blue bacteria. Eventually, the red bacteria overgrow the blue. 
A petri dish inoculated with red and blue bacteria becomes red. The fastest replica
tors inherit the earth. But is cell division essential for this process? Suppose that a 
nondividing red bacterium grows faster than a nondividing blue bacterium and that 
neither lyse from obesity. Eventually, the petri dish will be red. The fastest eaters 
inherit the earth. In short, cell division is not essential to Darwin's argument about 
selection leading to the overgrowth of one form compared with another. Continued 
evolution, however, does require heritable variation. Cell division is essential because 
it allows persistent independent heritable variation and thus persistent evolution. 
Thus let us, as a thought experiment, extend Darwin's concept to what might be 
called producing organizations, rather than reproducing organisms. We consider 
next hypothetical vesicles on the prebiotic earth which transport materials across 
their boundaries and carry out metabolic transformations on those materials. Such 
vesicle organizations may be imagined to grow in mass and size, even to divide by 
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budding. Those organizations which increase in mass the fastest will inherit the earth. 
However, even if vesicles bud, no organization need be literally self-reproducing. Our 
hypothetical vesicles are, instead, loci of coordinated chemical productions. 

Such vesicles can, in fact, even form reproducing organizations. Bachmann, Luisi, 
and Lang (1992) have created a micelle which transports an organic molecule across 
its boundary from a bulk medium. The organic molecule is transformed within the 
vesicle into a product molecule which itself forms the vesicle or micelle boundary. 
Thus the vesicle grows and ultimately divides as a result of surface tension. 

Following Bachmann et al. in this thought experiment, I wish to make use of the 
fact that quite simple organic molecules can form such hollow micelles, or hollow 
lipid bilayer vesicles such as liposomes. Such vesicles divide an interior environment 
from an exterior environment. Thus they allow a system of organic molecules to reg
ulate which molecules have access to one another. Therefore, while the entire collec
tion of molecules located in many vesicles might be strongly supracritical if each mol
ecule could interact with all the others, vesicle boundaries can prevent specific 
molecular interactions from occurring. In consequence, such a system of vesicles 
can, in principle, remain subcritical or can be maintained on the boundary between 
subcritical and supracritical behavior. 

The central possibility I want to sketch is that open self-extending molecular sys
tems able to regulate which molecules interact will do so such that each vesicle, or 
other type of compartment, is just subcritical. Two reasons support this possibility. 
The first asserts that vesicle organizations at the phase transition can evolve more 
successfully than those which are very supracritical or very subcritical. The second 
suggests that vesicle organizations at the phase transition can grow fastest. 

Imagine two extreme alternative kinds of nested vesicle systems: "onions" and 
"pomegranates." Onions are nested concentric shells of vesicles. Each vesicle con
tains a single vesicle nested within it, which, in turn, contains still another. Multilam
melar liposomes are an example. Pomegranates are nested sets of vesicles, each of 
which contains a large number of vesicles at the next nested level. In the onion, each 
vesicle is alone in its environment. In the pomegranate, each vessicle shares its envi
ronment with many others whose metabolic activities may impinge on it. Imagine 
next that each membrane layer contains molecules which control vectorial transport 
across the membrane, either inward or outward. Since vesicles can grow only by 
inward vectorial transport, such membrane sites allow the vesicle to "eat." Further, 
imagine that the molecules within a vesicle can interact only with those within that 
vesicle or in the membranes forming the boundaries ofthat compartment. Molecules 
in a membrane can interact only with those within that membrane or in the outside 
and inside compartments divided by the membrane. Finally, imagine two extremes 
of supracritical and subcritical organization. In the supracritical extreme, each vesi
cle alone contains a sufficient diversity of organic molecules-perhaps including 
polymers-that it is already supracritical. In the subcritical extreme, each vesicle 
contains a very small, hence very subcritical, diversity of molecular species. 

Following Bachmann et al. in our thought experiment, consider first a subcritical 
vesicle organization where the outer boundary membrane transports an organic mol
ecule, A, to the interior. The interior contains three types of organic molecules, one 
of which is a catalyst. The incoming organic molecule is transformed to yield three 
products: one forming the outer membrane, one forming the molecule which acts 
catalytically on the incoming organic molecule, and one that will form and be trans
ported into the next inner vesicle. A series of such reactions might transport material 
to the innermost vesicles in the organization. Thus we might imagine that each com-
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partment of the organization and its boundary membranes are able to grow and bud. 
Each daughter vesicle would contain, at random, the molecules and the vesicles 
nested within the mother vesicle. Since different vesicles in the organization would 
bud at different rates, the resulting organizations would explore a variety of more or 
less elaborate arrangements of nested vesicles. Some arrangements would accumu
late mass and would bud faster than others. If stably produced, such organizations 
would come to predominate. 

But consider the further evolutionary potential of these very subcritical organi
zations. Suppose that the initial food molecule A disappears from the environment, 
while a new food molecule, B, arrives. Alas, our subcritical organizations are ill
equipped to make use ofB. IfB encounters the outer membrane, it is likely not to be 
transported across the membrane or, once inside, to be acted on by the molecules 
within the compartment. 

Precisely because such organizations are profoundly subcritical, they are likely to 
be blind, or nonreactive, to incoming new molecules. Hence they cannot make use 
of such novel molecules in either of two ways: 

1. The new molecules cannot be used as food for further metabolism and growth. 

2. The new molecules do not interact with existing molecules to unleash a cascade 
of still more new molecules whose formation is catalyzed within the compartment 
and which might be of further use to the organization. 

But it is just such cascades which afford an analogue of metabolic mutations in which 
new kinds of molecules are generated and tried out by the organization. If adaptive 
evolution requires heritable variation, subcritical organizations cannot vary enough 
to evolve well. This would be expected to create a selection pressure for organizations 
which are less profoundly subcritical. Such organizations should be able to evolve 
more efficiently. 

Consider next profoundly supracritical vesicle organizations. Each compartment 
is already supracritical. Then suppose that a new molecule arrives in the environ
ment and is transported into the first, outermost vesicle. Once inside, that novel mol
ecule will unleash a massive cascade of novel types of molecules, never before expe
rienced by the organization. Many of these molecules would be expected to disrupt 
any useful coordination of processes within the organization. For example, some 
might destroy membrane sites, thus preventing the outer vesicle to take in material 
across the boundary and killing the organization. In short, supracritical systems are 
so radically altered by any novel molecular input that they cannot stop varying. If 
evolution requires heritable variation, profoundly supracritical systems vary too 
much and too unendingly. An adapting population should suffer the error catastro
phe noted by Eigen and Schuster (1979): Any useful information or coordination will 
be lost by an evolving population. This would be expected to create a selection pres
sure for less supracritical organizations. 

If, in fact, selection pressures tend to lower the degree of supracritical diversity and 
increase the degree of sub critical diversity, the balance struck might lie very near the 
phase transition, such that any vesicle is just subcritical in the face of the molecular 
diversity impinging on it from its environment. Such poised systems would seem to 
be those both best able to adapt and best able to make use of a diversity of resources 
to grow. 

A very crude calculation supports this idea: The biosphere as a whole appears 
supracritical. A typical human cell appears to be just subcritical. The human genome 



392 THE CRYSTALLIZATION OF LIFE 

encodes about 105 genes. There may be on the order of 108 species. Estimate that the 
total diversity of proteins in the biosphere is somewhere between 105 and perhaps 
1013. A conservative estimate of the diversity of organic molecules in the biosphere 
might be about 106• As in Chapter 8, estimate that, on average, any pair of organic 
molecules with several atoms per molecule can serve as a pair of substrates which 
undergo at least one chemical reaction. Then the total number of reactions possible 
is the square of the organic molecule diversity, or 1012. Estimate, based on the prob
ability that a random peptide binds a monoclonal antibody and on the ease of finding 
catalytic antibodies, that the probability that a randomly chosen peptide or polypep
tide binds a randomly chosen transition state and catalyzes the corresponding reac
tion is on the order of 10-9• Then ifthe entire molecular diversity of all the organisms 
in the biosphere were placed in a beaker, in a kind of "Noah's vessel" experiment, 
such that all molecular species could interact with one another, the minimum 
expected number of reactions catalyzed would be on the order of 1012 X 105 divided 
by 109• Hence 108 reactions would be catalyzed, exploding the diversity of organic 
molecules from about 1 million to about 100 million. Since those novel organic mol
ecules would be available for further reactions, further supracritical explosion would 
occur. The biosphere as a whole appears to be vastly supracritical! 

Is a human cell, by these arguments, supracritical? The 100 000 genes encoded by 
our genome control both ontogeny and metabolism. Let us estimate the intracellular 
organic molecular diversity of metabolism at 1000 species. The genes and proteins 
within us have already evolved to handle the flow of reactions possible among these 
1000 to create the ordered flux of metabolism. Thus any "unwanted" side reactions 
among the perhaps 1000 X 1000 possible reactions have been eliminated by selec
tion acting on the enzymes that catalyze metabolic flux. However, in addition to its 
evolved active site, any protein unavoidably has a variety of epitopes, nooks, and 
crannies that might catalyze reactions with novel substrates. Imagine injecting a 
novel organic molecule, Q, into a human cell. Q might interact with each of the 1000 
organic molecules to form a two-substrate pair for some novel reaction. By our ear
lier estimates, the probability that such a reaction occurs is 1000 X 100 000 divided 
by 109• Thus the probability is 0.1! Only one in ten such types of novel molecules 
would be expected to undergo a reaction. Were a novel product molecule, R, formed, 
it too would have a 10 percent chance of being a substrate for a further reaction, yield
ing a still further molecule, S. Thus by this very crude reckoning, the human cell is 
just subcritical! 

This argument is far too crude to be taken seriously in detail. But it provides a 
powerful hint. The biosphere appears to be highly supracritical. The human cell 
clearly appears to be somewhere near the boundary between subcritical and supra
critical behavior. If a human cell is near the boundary, then so too are all other known 
cells-from bacteria to higher metazoans. Bacteria have smaller genomes, but may 
experience a somewhat higher diversity of intracellular organic compounds. The 
human genome probably encodes as many distinct proteins as any other cell. Indeed, 
the supracritical boundary would appear to be offundamental importance and might 
limit the total molecular diversity within present-day cells. Suppose that a eukaryotic 
cell harbored 106 organic molecules and 106 types of proteins. If the probability that 
an arbitrary protein catalyzes an arbitrary reaction is actually about 10-9, then the 
cell would be quite supracritical. A novel molecule that entered the cell would 
unleash the formation of about 1000 new types of molecules at the first step, and 
thereafter the diversity would explode. Thus such a cell would require very precise 
control over its membrane in order to prevent intrusion. Far easier, it would seem, 
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to live just subcritically and be prey to cascades of novelty from only the rare molec
ular invader. 

The boundary between subcritical and supracritical diversity within vesicles or 
cellular compartments emerges as a plausible candidate attractor for an evolutionary 
dynamics. If contemporary cells are bound by this boundary, then the phase bound
ary probably has constrained molecular evolution for 3.8 billion years. Total diver
sity within a single vesicle, compartment, or cell cannot transgress the frontier, but 
total prebiotic and biosphere molecular diversity can and apparently has continued 
to expand along this phase-transition boundary by creating novel vesicle organiza
tions, other forms of compartmentation, and novel organisms whose own physical 
boundaries sharply regulate molecular interactions. The fact that the biosphere as a 
whole is supracritical serves, I believe, as a fundamental wellspring for a persistent 
increase in molecular diversity. There are perhaps two reasons for the increase in the 
molecular diversity of the biosphere since life came to rely on genes and proteins. 
First, genetic mutations may lead to an enzyme which diverts the metabolic flux of 
existing small molecules down some new pathway to a novel organic molecule. Here 
the proliferation of organic molecular novelty is driven by the formation of novel 
proteins. Second, novel molecules arising from other organisms may impinge on an 
organism as toxins or food sources, requiring the adaptive evolution of an enzyme 
to transform the novel molecule into another novel molecule. Both mechanisms are 
but other expressions of the fact that the entire biosphere appears to be supracritical. 
Novel molecules produced in one venue ultimately impinge on another and afford 
the possibility of novel reactions leading to a further increased diversity of new 
molecular species. 

If these ideas have merit, we are led to think that self-constructing, far-from-equi
librium molecular systems, whose molecular components can regulate the interac
tions among themselves, may actually flow to the phase transition between subcrit
ical and supracritical behavior, and then diversify further along that frontier. If true, 
then Carnot may have whispered to us about the shape of general laws governing the 
behavior of self constructing, far-from-equilibrium molecular systems. 

Potential Neural and Psychological Implications 

Artificial intelligence has long harbored a debate between those who favor models of 
the mind based on sequential inference, as exhibited by sequential computer pro
grams, and those who favor models based on parallel-processing neural networks. 
The former models are widely used in expert systems, in analyses of linguistic and 
inferential webs, and so forth. As described in Chapter 5, parallel-processing neural 
networks have reemerged more recently as models of content-addressable memories. 
Here a dynamical attractor is thought of as a memory or as the paradigm of a class. 
All initial states flowing to that attractor achieve the desired memory or class. Hence 
such systems generalize from attractor to basin. Learning consists in sculpting attrac
tor basins and attractors to store desired patterns of neural activity (Hopfield 1982a, 
1982b; Rummelhart, McClelland, and PDP Research Group 1986). 

Random grammars and the consequent models of strings acting algorithmically 
on strings to form Jets, Eggs, Mushrooms, or Fogs may be a new and useful marriage 
of the two classes of AI models. Like sequential-rule-based models, where one action 
or classification triggers downstream cascades of actions, one string or a set of strings 
creates downstream cascades of strings. Like parallel-processing networks, many 
strings can act on one another in parallel to create Jets, Mushrooms, Eggs or Fogs. 
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Unlike AI models, though, where the couplings among the elementary processes are 
defined by external criteria, the coupling in grammar string models is defined inter
nally by the grammatical rules which determine how strings generate one another. 
There is an important sense in which the "meaning" of one elementary process with 
respect to others is given by local production transformations and the global struc
ture-Jet, Egg, Mushroom-and its natural dynamics. Random grammars are 
somewhat like Holland's (1986) problem-solving computer algorithms called clas
sifier systems, in which rules cast as binary strings trigger the firing of other rules, 
attain a fitness or "strength" dependent on payoff in a mock economy, and coevolve 
with other rules by mutation, recombination, and selection. In Holland's case, the 
couplings are governed by match criteria by which the action part of one rule acts on 
the message condition part of another rule. 

Another feature of grammar models is that the set of neural network processes is 
open and potentially infinite, unlike the case with parallel-processing models. Such 
open systems may remain perpetually changing, always out of equilibrium, always 
adapting, rather than falling to simple dynamical attractors. 

It is not entirely implausible that such grammar-string models may prove useful 
in thinking about the "schemas" by which personality elements are constructed. 
Consider, for example, the stunning phenomenon of multiple personalities. Typi
cally, each "self' has only faint or no awareness of the alternative personalities. The 
situation is like a gestalt shift when regarding a Necker cube. When seeing the cube 
in one way, one cannot simultaneously perceive it in the second way. The two views 
are mutually exclusive perceptual organizations of the visual world. It seems of inter
est to consider an Egg able to interact with an external world as a kind of self which 
knows and organizes its world in some self-consistent way. The same system may 
harbor more than one Egg, however, each mutually exclusive of other Eggs, each liv
ing in its own self-consistent world. 

Parallel-processing grammar models may help relate holism in science to stability 
of ego structures and centrality in the web of string processes. First, consider the thesis 
of holism in science. Suppose I hold the earth to be flat, and you hold it to be round. 
We perform a critical experiment at the seashore, watching a ship sail out to sea. I 
predict it will dwindle to a point. You predict the hull will lapse from sight before the 
superstructure. Your prediction is confirmed. "The world is round, admit it!" you 
claim in jubilation. "No," I respond, "light rays fall in a gravitational field, so of 
course the hull disappears first." The point, first stressed by Quine (1961) is that any 
hypothesis confronts the world intertwined in a whole mesh of other hypotheses, 
laws, and statements of initial conditions. Given disconfirming evidence, consistency 
requires that some statement(s) of the premises be abandoned, but we are free to 
choose which premise we shall abandon and which we shall save. I can save my 
hypothesis that the earth is flat at the price of a very bizzare and convoluted physics. 
We cannot avoid Quine's point. Typically, we choose to save those hypotheses that 
are the most central to our conceptual web and give up peripheral hypotheses or 
claims about initial conditions. But that very choice renders those central claims very 
hard to refute, indeed, almost true by definition. Now the interesting point to add is 
that the hypotheses we choose to save are those which, in a graph theoretic sense, are 
central to the conceptual web. Let us use, as our model of a conceptual framework, 
a string process that creates an Egg, a Mushroom, or another object connected via 
string exchange to an outside world. That Egg entity will have more central and less 
central elements. If an Egg is a self knowing its world, preservation of self becomes 
preservation of the central elements in the Egg while a peripheral metabolism fluc-
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tuates into and out of existence. Indeed, one wonders if the concept of resistance in 
psychotherapy, a phenomenon familiar in practice if hard to quantitate, can in part 
be made sense of in terms of preservation of core elements of the Egg. One can con
sistently continue to maintain that the world is flat despite apparently enormous evi
dence to the contrary. 

Models of Cultural Coherence and Transformation 

What did China's leaders know in the summer of 1989? What occurs when an iso
lated culture comes into contact with a world culture? What constitutes the integra
tion and coherence of a culture and how do new ideas, myths, or production tech
niques transform the culture? Just as it is a vast jump from grammar-string models 
to models of personality structure, so too is it hubris to leap to cultural models. Yet 
the phenomena feel the same. New strings are injected into an Egg. It transforms to 
something different and coherent, perhaps another Egg, another closed, coherent cul
ture. Conversely, modern society is open, explosive, changing, indefinitely expand
ing in ideas, goods, services, myths. Have we now become culturally supracritical? 
Can we construct models in which cultures can be stable Eggs but then transform 
into a different kind of object, perhaps a Fog? It seems worth considering. 

Application to Models of Technological Evolution 
of Economic Webs 

Grammar models may prove useful in developing a new class of theories about tech
nological coevolution. It is quite surprising that, although technological evolution is 
thought by many economists to be a major, perhaps the preeminent, factor driving 
modern global economic growth, economists lack a coherent theory of the phenom
enon. The problem is that the issue is not merely economic; it is technological. In a 
way which requires understanding, the goods and services in an economy themselves 
offer new opportunities to invent yet further goods and services. In turn, new goods 
and services drive older goods and services out of the economy. Thus the system 
transforms. For example, the invention of the automobile lead to the requirement 
for a host of other goods and services, ranging from paved roads, traffic lights, traffic 
police, and courts to oil refineries, gasoline stations, motels, automobile-repair facil
ities, parts manufacturers, and emission-control devices. And the advent of the auto
mobile led to elimination of the horse for most transport. With the horse went sta
bles, public watering troughs, blacksmiths, the Pony Express, and a host of other 
goods and services. 

This example states the problem faced by the economist. In order to understand 
the current web structure of the goods and services of an economy, and how that 
structure governs its own possibilities of transformation by the invitation to invent 
new goods which intercalate into the web, transform it, and eliminate other goods, 
one needs a theory for which goods and services fit together technologically. 

Economists call such fitting "complementarity." Thus nut and bolt are comple
ments, hammer and nail are complements, and so forth. Complements are sets of 
goods or services which are used jointly to produce a given other good, service, or 
consumer product. Substitutes are sets of goods which might substitute for one 
another in a given production technology or consumption good. Screws can substi
tute for nails; potassium chloride can substitute for ordinary salt at dinner. 
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We have no theory of which goods are substitutes or complements of one another, 
but grammar models provide a novel approach. Just as any grammar mapping the 
power set of strings acting on itself into itself is a mock-up of the laws of chemistry, 
so too any such grammar is an "as if' model of the unknown laws of technological 
complementarity and substitutability. Goods and services are modeled as symbol 
strings, and machines, input bundles, and output bundles become production tech
nologies. We have no idea what those technological laws are, but if we can find that 
large regions of grammar space yield model economies which behave much as do real 
economies, we shall have grounds to map real economic technological growth to the 
same universality class. 

A concrete way to build grammar-string models of economic growth is the follow
ing. First, specify a grammar by which strings act on one another to produce strings. 
The set of strings which are a machine M and jointly act on a string or set of strings 
to produce an output set are complements. All parts of M are needed to make the 
product. Alternative strings or sets of strings which, as input to M, yield the same 
output set are substitutes. Weaker senses of complements and substitutes arise if out
put sets which are overlapping but not identical are considered. The transformations 
specified by the production technologies specify the numbers of each type of string 
required as input or machine part to make a specified number of each kind of output 
string. 

Economist Paul Romer pointed out that the grammar implies an input-output 
matrix. Using this framework, a simple, formal economic model can add constraints 
on exogenous inputs to the economy, such as raw material mined from the ground. 
These constraints might be supplied by a founder set of strings maintained at a con
stant "concentration." To carry economic analysis further, the utility of each string 
must be specified. Given these constraints, the equilibrium for the current economy 
specified in terms of the linked set of goods and services is that ratio of production of 
all goods and services which maximizes the total utility of all the goods and services 
in the economy subject to the constraints. That ratio can also be thought of as the 
price of the goods relative to one another, taking any single good as the unit. 

The growth of the economy over time in terms of the introduction of new goods 
and services can be studied as follows. Start at the current equilibrium with the cur
rent set of goods and services. Use the grammar rules to construct all possible new 
goods and services derivable by allowing the current goods and services to act on one 
another in all possible ways. Doing so generates all possible new goods which are 
technologically next to those in the current economy. (Alternatively, you could 
choose some random or nonrandom subset of these new goods as potential new 
goods.) Now construct the next economy, which contains the potential new goods 
and services plus all the current goods and services. These new and old goods specify, 
via the grammar, a new input-output matrix for the economy. Now assess the equi
librium of the new economy, as derived from its modified input-output matrix. At 
that equilibrium, some of the new potential goods may make a profit and hence are 
produced at a positive rate. Others may make a loss and hence are not produced at 
a finite rate. Similarly, some old goods will still make a profit, and others will now 
make a loss. The new economy comprises only those old and new goods which 
jointly make a profit. Hence over time, cascades of new goods enter the economy, 
and cascades of old goods are driven from it. 

I have begun to investigate very simple economic models of this type in order to 
explore the implications for technological evolution. In these models, a grammar 
specifying all possible input bundles, machines, and output bundles is chosen. The 
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grammar implicitly defines the possible technological evolution of the economy. All 
goods are assumed to be consumable. In addition, some goods can be inputs or 
machines yielding further goods. For simplicity, there is a single consumer. The util
ity of each good is specified by a spin-glass-like function. In addition, there is an infi
nitely rational social planner whose task it is to decide which possible production 
functions are to be carried out and at what rate, at each period of time, in order to 
maximize the overall utility of the consumer. 

At each period, a defined set of diverse symbol strings can be harvested from the 
ground. These strings serve as renewable resources. The social planner begins at 
period 0 and either thinks ahead or looks ahead for some finite number of periods T. 
Her first task is to conceive of all possible goods which might be created in the first 
period, given those growing from the ground. Then she considers all the goods which 
might be created in the second period from those created in the first period and so 
on for T periods ahead. For sufficiently complex grammars and sufficiently diverse 
types of strings emerging from the ground, the set of possible goods and services 
expands over look-ahead periods. The planner's next task is to create an optimal plan 
for the T periods. To do so, she optimizes a specific utility function which discounts 
the utility offuture goods by a constant fraction B < 1.0. If an apple today is worth 
100, the same apple tomorrow is B X 100. The same apple in T days is BT X 100. 
The total utility to the consumer is just the sum of the discounted utilities over the 
T periods of all the goods and services provided at each period. This simple utility 
function yields a linear programming optimization problem which the planner 
solves. The solution specifies an optimal plan showing which goods are consumed, 
which are produced, and which are carried over to the next period, for all periods 
from 0 to T. Thereafter, the planner implements the optimal plan for the first period. 
She again plans T periods into the future, hence from period 1 to T + 1, creates a 
new optimal plan, and carries out the first period of that optimal plan, thereby car
rying the evolving economy to period 2. Over iterations, the economy evolves. 

Economic models of this type are of interest in a number of regards. 
First, they model economic growth due to the growth in niches afforded by goods 

to create new goods. 
Second, such systems afford novel models of economic takeoff. The behavior of 

the economy depends on grammar complexity, the diversity ofrenewable resources, 
the discount factor B, and how far into the future the social planner looks at each 
period. Economies which have too few renewable goods or too simple a grammar 
may not be technologically able to be supracritical and hence may never take off. If 
the grammar is complex, however, or if more types of renewable resources are avail
able, or if several economies come into contact and exchange goods and services, the 
coupled system may jump from one in which each separate economy makes a small 
finite Jet to a supracritical Mushroom which explodes into the space of potential 
goods and services. Hence this is a model for economic takeoff. This behavior sug
gests that technological diversity is a major factor in abetting economic growth. 
Recent evidence appears to support this. Growth in cities appears most strongly cor
related with industrial diversity and not with concentration within single industries 
(Schenkman et al. 1991). In turn, this correlation carries policy implications: to 
engender growth, it may be better to support a web of cottage industries than the 
Aswandam. 

The extent to which the planner looks into the future governs whether the econ
omy grows at all, slowly, or rapidly. Figure 10.3 shows a model economy plus the 
growth of the total number of goods and services over time as a function of the plan-
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Figure 10.3 Increase in diversity of goods and services in an economy as a function oflookahead. 
The x axis represents number of periods through which the economy has evolved. Each curve is 
labeled with the planning horizon of the social planner. 

ning horizon. The economy rapidly stagnates in terms of diversity when the horizon 
is only one or two periods ahead, but diversity increases when the horizon is longer. 
This result is general in this class of models. Naturally real economies have no social 
planner, but the expectation that technological growth is strongly correlated with the 
capacity to see its implications is reasonable. Finally, growth in diversity of goods 
does not occur as rapidly if B is close to O. If the consumer places little value on the 
future, diversity of goods and services remains small. 

Third, these model economies can be expected to exhibit enormous historical 
contingency coupled with lawlike behavior. If, at each stage in the growth of the kinds 
of goods and services in the economy, a random subset of potential new goods is tried 
and some are accepted, that sampling process will strongly bias the future directions 
of growth. Hence the goods which emerge and integrate into the system will become 
frozen accidents guiding the future evolution of the system in ways similar to biolog
ical evolution. Yet the statistics of the process-the size distribution of new sectors, 
the numbers of new goods entering and old goods leaving, the changes in richness of 
interconnection within the web-may all be stable given membership in a regime or 
class of grammars. 

Fourth, several features of these models invite modifications of the core ofneo
classical economics, which rests on general competitive equilibrium theory. This 
beautiful theory demands infinitely rational economic agents and what are called 
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"complete markets." Such markets allow exchange of all possible dated contingent 
goods. An example would be a contract to deliver apples tomorrow if it rains in 
Nebraska today. In the absence of infinite rationality and complete markets, we see 
failure of the beautiful theorems guaranteeing an equilibrium such that all markets 
clear. If we take grammar models seriously as models of technological evolution, 
then the decidability problems in Filigreed Fogs and other objects imply that it may 
be logically impossible to deduce that a given good is ultimately producible from the 
current technologies. This implies that markets must be incomplete. The same failure 
of decidability may imply that economic agents must logically be boundedly ratio
nal. Both these latter two points cut at the core of neoclassical economics and hence 
may invite its extension. 

Fifth, grammar models hold the hint of that extension, a hint which suggests the 
possibility of a theory of bounded rationality and a new nonequilibrium solution 
concept: Markets may not clear. Rather, boundedly rational economic agents may 
achieve the edge of chaos, where markets come close to clearing. At the edge, bank
ruptcies, like extinctions, would propagate through the economy from time to time. 

Figure 10.4 shows the grounds for these hints. Maintaining the fiction of a social 
planner, the figure examines the behavior of the optimal plan for the first period as 
a function of lookahead (1 O.4a) and as a function of a slight change in the utility 
function (lO.4b). In Figure lO.4a, as the planner extends the planning horizon fur
ther into the future, the plan for the first period at first changes a lot and then grad
ually settles down and stops changing. Suppose, however, that the planner is a bit 
unsure of the consumer's utility function. Then let her assume a slightly modified 
utility function and generate a new optimal T period plan. Figure lO.4b shows the 
difficult results. The further into the future the planner thinks, the more dramatically 
the optimal plan for the first period under one utility function diverges from that 
under the slightly modified utility function! In short, given uncertainty over the con
sumer's utility function, the further the planner thinks into the future, the less certain 
she becomes about the actions to be taken in the very first period. Thinking into the 
distant future has become counterproductive! Yet the planner is tempted to think 
into the future: The further she thinks ahead, the more an optimal plan can take 
account of the highly valuable novel goods and services which can be constructed 
from the renewable resources. The total expected utility to the consumer goes up as 
the planning horizon extends. The consequence of these countervailing effects is this: 
As the planner extends the planning horizon, expected utility to the consumer rises 
but the risks of being drastically wrong increases if she is slightly wrong about the 
consumer's utility function. 

It seems plausible, but I have not yet shown, that an optimal planning horizon is 
the consequence of the countervailing advantages of thinking further into the future 
but risks increasingly catastrophic misallocation of resources if a mistake is made 
about the consumer's utility function. Rather than thinking into the infinite future 
and basing action on an optimal plan, the planner should take account of uncertainty 
over utility functions and think an optimal distance into the future, balancing risk 
and reward. Such an optimal planning horizon offers a clear sense of a kind of 
bounded rationality: It pays to plan only so far ahead. 

A further potential implication of this model is that a multiplicity of economic 
agents may attain the edge of chaos. In this model, lacking markets, the analogue of 
market-clearing equilibrium is the optimal plan where the flows into and out of all 
production functions mesh perfectly. Consider a modified economic model in which 
there is no social planner and each production technology belongs to one of four 
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Figure 10.4 (a) Overlap of optimal plan for the first period as a function of planning horizon. As 
the social planner thinks further into the future, the first-period plah changes less and less. Hence the 
overlap between successive lookahead periods increases to 1.0. (b) Overlap between the optimal plan 
for the first period as a function of planning horizon when two slightly different utility functions are 
used to generate the optimal plans. A plan generated by an unperturbed utility function is compared 
with plans having small, modest, and large random perturbations of the utility function. As the plan
ning horizon increases, optimal plans for the first period diverge. 

firms-Red, Blue, Green, and Yellow. Suppose each firm is trying to decide how 
much of each of its production technologies to run, under uncertainty about the con
sumer's utility function. Let each firm reason as did the social planner. Suppose each 
assumes a slightly different utility function for the consumer, constructs an optimal 
plan for some period T, and attempts to execute the first-period plan. Alas, Red 
assume4 four kilograms of butter supplied by Green to allow Red to make cakes, but 
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Green planned to produce only three kilograms. The mismatches of flows between 
firms are losses in total utility produced and losses to each firm. Yet even given uncer
tainty over the consumer's utility function, each firm would be tempted to think far 
into the future to take account of coming technological evolution. It is plausible that, 
in this world, economic agents will balance how far into the future they plan against 
the increasing risks of discoordination ifthey are slightly wrong. Note that the further 
into the future each agent plans, the more rugged is his fitness landscape! I would like 
to believe, but have not shown, that generically such agents tune how far into the 
future they plan such that the set of agents achieves the edge of chaos. Here, the ana
logue of markets would not clear but would fluctuate near clearing in a characteristic 
way. Small and large bankruptcies would propagate through the system. 

An even broader basis suggests that in order to optimally predict one another's 
behavior, complex adaptive agents will build optimally complex, and hence bound
edly rational, models of one another. Such adaptive agents might well coevolve to 
the edge of chaos. The framework of ideas has several steps. 

First, givenfinite data, models which can optimize the capacity to generalize accu
rately must be of optimal, intermediate complexity. For example, given a set of 20 
prices of oil versus time over the past 20 years, an overcomplex model connecting all 
the data points precisely is merely a lookup table, and hence is incapable of gener
alizing. Overfitting the data is captured by the idea of using such a high-order poly
nomial equation that there are as many parameters as data points. In the neural net 
field, overfitting of data arises when too many hidden units are used. Conversely, an 
oversimple model-for example, fitting a straight line through the data-also gen
eralizes poorly, since it ignores major trends in the data. In general, given finite data, 
optimal models best able to generalize are of an intermediate complexity tuned to 
the data available. The complexity of a model can be roughly defined as the number 
offree parameters needed to specify it. Thus one might constrain models to use seven 
Fourier modes in the attempt to fit the data. 

Second, when adaptive agents make models of one another as part of their mutual 
ongoing behavior, the eventual failure of any finite, approximate model of another's 
behavior drives substitution ofa "nearby," optimally complex model of the other's 
behavior which now appears to be the best fit to the other's behavior. Here the point 
is that, given any finite set of data, multiple models of about the same complexity will 
fit the data roughly as well. As the data stream evolves, overlapping patches of the 
data are optimally fit by nearby models drawn from a set of models of the same com
plexity. 

Third, adaptive agents may persistently alter their models of one another's behav
ior. Once an agent adopts a changed model of another agent, then his own decision 
rules, and hence behavior, will change. It follows that such agents must coevolvewith 
one another using changing models of one another's behavior. 

Fourth, presumably, such coevolving behavior can be chaotic, ordered, or at the 
edge of chaos. Chaotic behavior would correspond to rapidly changing models of the 
other agents. Ordered behavior would correspond to converging on a mutually con
sistent set of models of one another. This yields full behavior coordination and is 
close to the theory of rational expectations in economics. At the edge of chaos, mod
els of one another would be poised, tending to change, unleashing avalanches of 
changes throughout the system of interacting agents. 

Fifth, a qualitative argument suggests that, in a persistent attempt to optimize pre
diction about the behavior of other agents, adaptive agents will alter their finite, opti
mally complex models of one another so that the entire system approaches the edge 
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of chaos. If the dynamics are very stable and mutually consistent, then each agent 
has an abundance of reliable data about the behavior ofthe other agents. Given more 
data, each agent naturally attempts to improve his capacity to generalize about the 
other agents' behavior by constructing a more complex model of the others' actions. 
This more complex model is necessarily more sensitive to small alterations in the 
other agents' behavior. It lives on a more rugged landscape. Thus as agents adopt 
more complex models to predict better, the coevolving system of agents tends to be 
driven from the ordered regime toward the chaotic regime. Conversely, in the chaotic 
regime, each agent has very limited reliable data about the other agents' behavior. In 
part, the absence of reliable data reflects the fact that in the chaotic regime each agent 
adopts successive models of the others, thus actually changing the "law" or decision 
rules governing his own behavior. Given the small amount of reliable data, each 
agent, in order optimize the capacity to generalize, is driven to build a less complex 
model of the other agents' behavior. These less complex models are less sensitive to 
the behavior of the others, and thus live on smoother landscapes. The substitution 
of simplier models therefore drives the system from the chaotic regime toward the 
ordered regime. The process, I hope, will generically attain the edge of chaos. 

This framework is entirely untested. It seems to hold promise, however. At pres
ent, there appears to be no established framework which successfully characterizes 
the coordination of interacting agents. The classical solution in economics is the 
invisible hand, which leads to price equilibrium at which markets clear. However, 
the invisible hand can fail if more than one good is in the economy. The equilibrium 
price at which supply and demand balance can be unstable to price fluctuations. 
Nash equilibria in game theory provide a second framework for coordination. How
ever, in general there is no dynamics among the agents which ensures convergence 
on a Nash equilibrium. Further, Nash equilibria, as in the prisoner's dilemma, are 
often not particular good solutions. Rational expectations in economics argues that 
it can be rational to speculate on bubbles because of a convergence of beliefs among 
agents. But given any finite data, multiple models or expectations fitting that data are 
always possible. The size of the set of alternative models which might fit the data 
increases with the complexity of models that the agents might construct. Thus cov
ergence of all agents on any single expectation or vector of expectations presumably 
cannot be guaranteed (Grammont, personal communication). In place of these 
established attempts to find a general framework by which agents coordinate behav
ior, the approach outlined here hopes to find coordination to the coevolving edge of 
chaos among agents bent on optimal prediction of one another's behavior. If correct, 
it may help us understand that E. coli and corporate executives build optimally com
plex, boundedly rational, models of the other agents constituting their worlds. 

Why do such economic models matter in this book? Economics is the study of 
allocation of resources to optimize something like utility. If the bold hypotheses of 
Chapters 5 and 6, that complex systems achieve the edge of chaos internally and col
lectively, were to generalize to economic systems, our study of the proper marriage 
of self-organization and selection would enlist Charles Darwin and Adam Smith to 
tell us who and how we are in the nonequilibrium world we mutually create and 
transform. 

SUMMARY 

We are interested in how complex systems come to exist and adapt. Current theories, 
as discussed in Chapter 5, are based on dynamical systems in which the elementary 
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variables may be molecules, genes, organisms, neurons, cognitive elements, or cul
tural roles. Yet in these theories there is no underlying microscopic theory or account 
of the functional couplings among the variables. Rather, these couplings must be pos
tulated or defined based on some external criteria which might range from observa
tion to ad hoc. 

In this chapter, I introduce a new class of models based on random samples from 
grammar space. In contrast to standard dynamical theories, grammar models yield 
a theory of the functional couplings among the variables. The approach is a gener
alization of studies of autocatalytic peptide and RNA systems and of Fontana's 
recent extension of that work to AlChemy, an algorithmic chemistry. In this further 
generalization, I consider finite power sets of symbol strings whose lengths may be 
arbitrary. Ordered sets of strings act as machines on ordered sets of strings as input 
bundles to yield unique output bundles of strings. Limitation on the number and 
length of output strings as a function of the number and lengths of input and machine 
strings ensures that the system, if started with a finite number of finite-length strings, 
remains finite after finitely many iterations. Each grammar specifies a unique map
ping of this set into itself. The transformations mediated by symbol strings on one 
another are the functional couplings among the symbol strings. 

In this string world, new kinds of dynamical objects-here dubbed Jets, Lightning 
Balls, Mushrooms, Fixed or Traveling Eggs, Filigreed Fogs, and Pea Soups-arise 
and inhabit string space. In addition to the compositional character of such sets, we 
may consider their dynamical behavior. An Egg, which is a collective identity oper
ator in string space, may re-create its strings in a steady state, in a limit cycle, or on 
a chaotic attractor. 

Eggs and autocatalytic Mushrooms and other sets seem natural models of inte
grated function and even of agency. In these models, strings of symbols can stand for 
molecules, neural activities, cognitive elements, goods or services, or cultural roles. 
Thus such objects may be useful models of prebiotic molecular evolution, of ecosys
tems and organisms among which mutualistic or competitive interactions may coe
volve, and of parallel-processing neural systems, ego systems, economic systems, and 
cultural systems. In all cases, we attain models of functional integration and trans
formation. 

Biology is a deeply historical science which may yet be the locus of law. An old 
debate wonders what it might be, in a historical science, to exhibit laws. Grammar 
models promise answers for such issues. The specific regions of string space inhabited 
by any such system may often be critically dependent on frozen accidents, and yet 
phenomena such as phase transitions, the sizes of cascades triggered by minor per
turbations, and the statistical connectivity features of Jets, Mushrooms, Eggs, and 
Fogs may all show powerfully lawlike behaviors. This may be just the conceptual 
scheme we need: a locus oflaw, accident, design, selection, ever unfolding and trans
forming in novel functionally integrated forms. 

It is as if we were waiting for a new Carnot. Grammar models allow us to study 
model worlds of pure linked processes. These processes, in general, are not reversible 
and hence can be seen as arbitrarily far from equilibrium systems. We have no ge~ 
eral theory about the behavior of such systems. Indeed, if we construct such systems, 
they can function as universal computers about which no predictions can be made. 
Perhaps if we model worlds of coupled processes which govern their own transfor
mations, however, worlds in which autocatalytic sets emerge and coevolve in some 
wavefront of increasing complexity, building models of one another, ever transform
ing, ever subject to frozen accidents and avalanches of change, perhaps then we shall 
find general principles. 
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In this chapter, I have suggested one candidate general principle: Open far-from
equilibrium, self-constructing systems whose molecular variables can regulate which 
variables interact with one another may form organizations which evolve to the 
phase transition between subcritical and supracritical behavior. Each vesicle, com
partment, or cell would be slightly subcritical. The system of interacting vessicles, 
compartments, or cells would, as a whole, be supracritical. Crude estimates of the 
total organic molecular diversity and protein diversity of the biosphere strongly sug
gests that the biosphere as a whole is very supracritical. By the same estimates, human 
cells, and thus all other cells, appear slightly subcritical. If so, then 3.8 billion years 
oflife have respected the subcritical-supracritical boundary. Cells may have evolved 
to that boundary. The total diversity of molecules may have been driven to increase, 
in part, by the supracritical character of the entire biosphere. If so, supracritically is 
an ultimate wellspring for the growth of molecular diversity. The phase transition as 
an evolutionary attractor for open, self-constructing molecular systems may hint at 
the answer Carnot would wish to suggest. 

The largest intellectual agenda of this chapter is based on the presumption that
by analyzing a variety of grammars from regions of a parameterized grammar space, 
each grammar a kind of hypothetical set of laws of chemistry or functional comple
mentarity-a few broad regimes will emerge. Where we can map such generic behav
iors onto molecular, organismic, neural, psychological, economic, or cultural data, 
we may have found the functional universality class needed to explain phenomena 
in these areas of chemistry, biology, and the social sciences. In Chapters 5 and 6, I 
stressed that complex systems might adapt and coevolve to the edge of chaos both in 
terms of internal structure and in terms of mutual interactions. The approach of this 
chapter points toward the proper extension of these efforts in understanding the 
emergence of functionally coupled, coevolving systems. Indeed, we found grounds 
for another bold hypothesis. Coevolving adaptive agents attempting to predict one 
another's behavior as well as possible may coordinate their mutual behavior through 
optimally complex, but persistently shifting models of one another. Again, we sus
pect, the edge of chaos will be attained. We may find that E. coli and IBM do indeed 
know their worlds in much the same way. 



PART III 

Order and Ontogeny 





The remainder of this book looks at ontogeny in current organisms. In these intro
ductory pages preceding Chapter 11, I outline the two main problems in ontogeny: 
cellular differentiation and morphogenesis (for a good general discussion, see Gurdon 
1974). The former includes all the processes by which cells become different from one 
another; all the latter, the processes by which either cells of the same type or cells of 
different types become coordinated into organized tissues, organs, and morphologies. 
Chapters 11, 12, and 13 discuss the control of cellular differentiation, and Chapter 14 
discusses morphogenesis. These are vast topics. My aim throughout is to attempt to 
characterize two features about ontogeny-those aspects which may reflect the self
organized properties of the underlying genomic and biochemical system and those 
which reflect selection-and to determine a way of recognizing the marriage between 
the two. If our look at ontogeny is to be useful, we mustfind not only ways of thinking 
about these issues but also ways of turning them into research programs. 

Multicellular organisms have existed at least since the late Precambrian. There is 
no reason to think that the major features of ontogeny have changed in 600 million 
years or more. Almost all multicellular plants and animals begin as a single cell. Typ
ically this single cell is the zygote, formed by union of the male and female gametes. 
During development, this single cell undergoes 10 to 50 mitotic divisions, creating 
2/0 = 1 rY to 250 = 1015 cells, which form the adult. Perhaps the most critical single 
fact about ontogeny in almost all organisms is that the set of genetic instructions is 
identical in all cells of the organism. The familiar example-which, despite its famil
iarity, should enthrall us all-is the carrot (Steward 1958; Steward, Mapes, et al. 
1964). The mature ca!:!!l1...fan be dispersed into single cells; under appropriate con
ditions, any single celT type-whether from root, cambium, or leaf-can be induced 
to divide, form a rudimentary tissue mass, undergo organogenesis, and re-form an 
entire organized carrot. From this it follows that each cell of the carrot carries the 
genetic instructions needed to form an entire carrot. In other words, ontogeny is an 
overwhelming example of self-organization. 

It is not entirely true that all cells of each multicellular organism retain identical 
information, however. In some cases, entire chromosomes sets are lost, or maternal 
or paternal chromosomes are lost. In other, rare cases, specific genes in the genomic 
set are amplified to form extra copies in only some cells. For example, the chorion 
genes in the fruit fly, Drosophila melanogaster, responsible for proteins in the chorion 
covering of the egg, are amplified in the cells which make the chorion (Spradling and 
Mahowald 1980). Such alterations are rare, however. Almost universally, the DNA 
appears to be identical in all the different cells of an organism. This uniformity leads 
to the central dogma of developmental biology: Cells are different in an organism \ 
because different genes are expressed in different cell types. In turn, the genetic iden
tity of different cell types focuses attention on understanding the mechanisms which 
control and coordinate differential gene expression in the organism. It is this genomic 
regulatory system which orchestrates cell differentiation and morphogenesis. This 
view is, in fact, the contemporary expression of Weismann's doctrine (1885, 1904), 
discussed in Chapter 1. The genomic system constitutes the developmental program. 

An overview of the probable complexity of this genomic system is a worthwhile 
exercise. A higher mammal has enough DNA to encode on the order of2 million aver
age-size proteins. Based on the diversity of messenger RNA species found in one or 
another cell type in the organism, the total number of different kinds of proteins may 
be on the order of20 000 to 100 000 (Alberts, Bray, et al. 1983). In turn, the synthesis 
or lack of synthesis of each protein is almost certainly under the control of a variety of 
regulatory genes and processes, described in detail in the next few chapters. Focusing 
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attention on structural genes-that is, those coding for proteins-and simplifying to 
imagine each protein to be either present or absent in a cell, we find that there are at 
least 220 000 possible combinatorial patterns of gene expression. This is 1(1000, a num
ber vastly larger than the number of hydrogen atoms in the known universe. It is the 
genomic regulatory system which constrains into useful behavior the patterns of gene 
activity during ontogeny. The problem, simply stated, is to understand how such coor
dination is achieved and how it could have evolved. The central tenet of the ensuing 

\ 
chapters is that many of the highly ordered properties of genomic regulatory systems 
are spontaneous, self-organized features of complex control systems which required 
almost no selection at all. Clearly, if much of the order we see in ontogeny ref/ects the 
natural features of complex control systems, we must rethink evolutionary biology. 
Some of the sources of order lie outside selection. 

Cellular Differentiation 

During mitotic divisions, the progeny cells of the zygote become different from one 
another via the process called cellular differentiation. In virtually all known organ
isms, differentiation proceeds down branching pathways such that one cell type gives 
rise to two or afew new cell types and they in turn branch to give rise to afew further 
cell types, until the spectrum of cell types characterizing the adult organism is even
tually formed. While ontogenies in Cambrian metazoans and metaphytons cannot be 
studied directly, presumably they too followed branching pathways of differentiation. 
Thus presumably such pathways are a deep property of ontogeny. 

There are probably threefundamental ways differentiation occurs (Gurdon 1974): 

1. A single cell becomes different over time. Equivalently, a single cell and its daugh
ters become different over time, but all daughters remain identical to one another. 
Only mitotic division has intervened in this pattern of change. 

2. Two daughter cells become different from each other. If one remains the same as 
the mother cell, it is called a stem cell. Alternatively, two daughter cells differ from 
each other and from the mother cell. Almost certainly, such branching differenti
ation is controlled internally by the cells. In general, one supposes that the two 
daughter cells become different because they are placed in different states at divi
sion, perhaps by differential distribution of key molecules. Examples include 
asymmetric divisions in the development of the molluscs (Dohmen and Verdonk 
1979), in the nematode Caenorhabditis elegans, in yeast, and in neural develop
ment in the grasshopper. 

3. Cells are induced to differentiate by exposure to externa/factors derivedfrom the 
environment or from other cells. The classical example here is induction of the 
ectoderm to form neurectoderm by contact with the underlying mesodermal man
tle in the early vertebrate embryo. Similar examples are rife in vertebrate devel
opment and include sequential inductive events in the differentiation of the eye and 
the ear. In most cases, it seems clear that specific substances, probably small mol
ecules, transfer from one cell to a neighbor and are the normal inductive agents. 

A particularly striking fact that emerged from the initial attempts to isolate the 
normal inducer molecules for neurectoderm development is that cell types are poised 
among only a few alternative pathways of differentiation. A variety of compounds, 
including pure chemical substances, even changes in pH and pure water, were found 
to induce embryonic ectoderm to differentiate into neurectoderm. Thus the critical 
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conclusion is that the ectoderm is, as noted, poised between only two alternative path
ways and can be triggered to differentiate into neurectoderm by a variety of normal 
and abnormal stimuli. 

The property of being poised between only two or a few alternatives, called com
petence, is almost certainly directly related to branching developmental pathways. In 
turn, branching pathways almost certainly reflect thefact that each cell type is a highly 
constrained pattern of gene expression. At each stage in ontogeny, each cell type has 
only afew accessible neighboring cell types. The specificity of the inducer-created dif
ferentiation step lies in the responding cell and in the constraints in the pathways of 
change open to it. Thus branching pathways and the poised properties of competent 
cells are both a reflection of an idea we can state qualitatively: Cell types must be very 
constrained patterns of gene expression among the 220 000 to 2100 000 possibilities. Then 
exogenous inductive signals can trigger each such constrained pattern, or cell type, to 
change to only afew other constrained patterns. 

In the following chapters we shall see that the achievement and maintenance of the 
poised character of cell types and of the universality of branching pathways of differ
entiation have not required extensive selection since the Cambrian. Rather, highly 
constrained, poised cell types and ordered patterns of gene activity, each able to 
change to only afew others, are gratuitously present in a vast class of genomic regu
latory systems. Recall from Chapter 5 our discussion of parallel-processing Boolean 
networks. These may lie in the ordered regime, the complex regime, or the chaotic 
regime. The phase transition from one regime to another is governed by simple 
parameters of the system, such as richness of coupling among the variables. The order 
seen in ontogeny, I shall suggest, is just that which arises spontaneously in the pow
erfully ordered regime found in parallel-processing networks. Selection, I shall further 
suggest, by achieving genomic systems in the ordered regime near the boundary of 
chaos, is likely to have optimized the capacity of such systems to perform complex 
gene-coordination tasks and evolve effectively. 

One strikingfact about the ordered regime is that the generic properties of complex 
parallel-processing systems in it also appear to account for many other characteristic 
features of ontogeny and cell differentiation. These properties rangefrom the number 
of cell types in an organism as a function of genomic complexity, to the avalanches of I 
gene activity alteration in a cell when the activity of one gene is transiently altered, to ' 
the similarities and differences in gene activity patterns in different cell types of one 
organism, and even to the existence of archaic cell types which can be reexpressed in ! 
an organism in unusual circumstances. The very nonintuitive point of the next three 
chapters, in short, is that much of the order seen in ontogeny is due to a previously 
unsuspected and powerful tendency for order to emerge in massively complex systems. i 
Selection had such order to work with from the outset. And, wonderful if true, selective 
adaptation toward the boundary between order and chaos, the true marriage of self
organization and selection, may prove to be an ahistorical universal in biology. 

Morphogenesis and Pattern Formation 

Ontogeny unfolds into an ordered organism: cells in tissues, tissues in organs, organs 
in proper array. Spatial organization, or pattern formation, must reflect the coordi
nated, coupled behaviors of cells. This topic, morphogenesis, is the focus of Chapter 
14. Our general framework for thinking about morphogenesis includes the ideas that 
cell types may adhere specifically to certain other cell types, may divide in oriented 
ways and controlled rates to generate ordered spatial patterns, may move relative to 



410 ORDER AND ONTOGENY 

one another, may exert physicaljorces on one another which literally generate shapes, 
and may emit and receive, from neighboring or distant cells, chemical or physical 
signals which control the differentiation, growth, or shape of individual cells at spec
ified positions within a maturing tissue. A great deal has been learned about these 
processes in a number of organisms. Just as we may wonder to what extent the deep 
features of cell differentiation are achievements of selection, so too we may ask 
whether there are underlying general properties of morphogenesis and, if such prop
erties do exist, to what extent do they ref/ect more or less inevitable properties of cou
pled cells, guided by a complex genomic regulatory system? 

The problems we confront here include old ones. D'Arcy Thompson (1942),forone, 
made famous many examples of organismic forms which closely approximate simple 
physical forms. Radiolaria, for example, distribute spicules in the interstices separat
ing protoplasmic bubbles which are organized as if to minimize surface tension, just 
as are soap bubbles in a child's loop. How are we to recognize such apparently phys
ical properties in morphogenesis? And, in our search for the relation between spon
taneous order and selection, how are we to understand the ways in which the genome 
and its evolution can use, modify, and be limited by those abiological morphogenetic 
processes? Morphogenesis is not just the genome's "doing"; rather, it is the conse
quence in time and space of the structural and catalytic properties of proteins encoded 
in time and space by the genome, acting in concert with nonprotein materials and with 
physical and chemicalforces to yield reliableforms. Our problem is to understand not 
merely how genes influence morphology, but how they marry to the entire morpho
genetic process, and how that process may evolve. 

In Chapter 14 we discuss aspects of morphogenesis rangingfrom induction, to pat
tern duplication and regeneration, to pattern formation and morphogenesis in such 
varied organisms as slime molds, fruit f/ies, molluscs, and vertebrates. A central con

. cept we shall discuss is that any developmental mechanism gives rise to a well-defined 
I and natural family of forms. Shifting among members of such a family occurs as 
i parameters of the developmental mechanism are altered. The morphologies which 

arise as parameters change smoothly define what we must mean by morphological 
neighbors. This is the structuralist theme struck by Webster and Goodwin (1982), 
mentioned in Chapter 1. The proper marriage of self-organization and selection with 
respect to morphology interweaves two major strands. First, some developmental 
mechanisms lie to hand in the evolution of morphogenesis. The evolutionary discov
ery of such mechanisms appears almost inevitable. Consequently, some families of 
form lie to hand. Second, among any family of forms, selection is unlikely to be able 

II to avoid those forms or morphologies which correspond to large volumes of the param
eter space of the developmental mechanisms. It is just these forms, the ones naturally 
generated by the governing mechanisms, which we must expect to find. 

In summary, Part III searches for and finds deep signs of self-organization in 
ontogeny underlying the wondrous coordination of gene activities governing cell dif
ferentiation in systems with tens or even a hundred thousand genes. That order ref/ects 
the unexpected, emergent order in a vast class of parallel-processing regulatory sys
tems. Similarly, the fundamental chemical and physical mechanisms which under
write morphogenesis were, in many cases, natural emergent features of interacting 
cells. The natural families of forms which follow from those mechanisms lay ever 
available to selection. Selection, 1 suggest, has molded but was not compelled to invent 
the native coherence of ontogeny. 



CHAPTER 11 

The Architecture of Genetic 
Regulatory Circuits and Its Evolution 

Cellular differentiation in plants and animals is a consequence of the capacity of 
genes to modify the activity of other genes. Thus different cell types, as noted in the 
introduction to Part III, differ largely because different sets of genes are active in 
them. As known since Jacob and Monod published their seminal work on the lactose 
operon (1961, 1963), however, and as stressed by Monod in his elegant Chance and 
Necessity (1971), the existence of allosteric interactions allows a molecule to control 
the activity of enzymes or other effector molecules bearing on the synthesis of mol
ecules entirely unrelated to the controlling molecule. That is, this freedom allows the 
"cybernetic" aspect of genomic control systems to achieve arbitrary complexity. 

We shall, in the present chapter, define and develop a body of theory to think 
about the wiring diagram of these cybernetic control systems and about their evo
lution. The background expectations we bring to this enterprise, which reflect the 
present conceptual tradition, should be noted again. I shall suggest that this tradition 
is inadequate. We have come to think ofthe genomic system as a kind of biochemical 
computer which executes a developmental program leading to the unfolding of 
ontogeny. We know from experience with genuine computer programs how com
plex, intricate, and often fragile to minor errors they can be. We know that programs 
can be written to compute literally any algorithm. We suppose that selection has fil
tered out useless programs and has achieved rare, intricate, balanced yet buffered 
programs guiding development. The rough idea that programs can compute virtually 
any algorithm and that selection alone determines which among a vast number of 
developmental programs are fit fits our conception of the genome as the master caus
ative agent in ontogeny and the common idea that selection is the sole source of 
order. The idea that even in the absence of selection something like orderly devel
opmental programs might exist seems absurd. After all, what would a "random" pro
gram do? 

I strongly believe this set of views to be ill-founded and, worse, misleading, Thus 
the major purpose of this chapter and of Chapter 12 is to develop a theory concerning 
random developmental programs based on the expected wiring diagram, or archi
tecture, of genetic regulatory circuits and on the expected dynamical behavior of such 
networks. I shall develop an initial theory for the robust statistical structure and 
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behavior of these networks in the face of mutational forces. As we shall see, abundant 
order prior to the action of selection exists. In prospective summary: The genome is 
a system in which a large number of genes and their products directly and indirectly 
regulate one another's activities. The proper aim of molecular and evolutionary biol
ogy is not merely to analyze the structure and dynamical behavior of genomes but 
also to comprehend why they have the architecture and behavior observed and how 
they may evolve in the face of continuing mutations. I shall suggest that we must 
build statistical theories of the expected structure and behavior of such networks. 
Those expected properties then become testable predictions of the theory. If discov
ered in organisms, those properties then find their explanation as the typical, or 
generic, properties of the ensemble of genomic regulatory systems which evolution 
is exploring. 

INDEPENDENCE OF THE MOLECULAR EVOLUTIONARY 
CLOCK AND MORPHOLOGICAL EVOLUTION 

In Chapter 4 we briefly discussed the data roughly supporting the existence of a 
molecular "clock." For a number of different proteins or DNA sequences, the rate 
of amino acid or nucleotide substitution appears approximately constant (Zucker
kandl and Pauling 1965; Ohta and Kimura 1971; Kimura 1983). The idea of a 
molecular clock ticking at a fairly uniform rate in protein evolution causes a certain 
shock when the protein sequences of chimps and humans are compared: we are 
nearly identical. Nevertheless, the morphological variation is considered, at least by 
human classifiers, to be great. In contrast, divergent species of frogs are morpholog
ically similar but exhibit strong differences at the DNA and protein levels. This 
important set of facts led Wilson and co-workers (1974, 1977), and subsequently 
many others, to suppose that the major changes in morphological evolution were due 
to mutations not in structural genes but rather in regulatory genes, whose actions 
determine the action of other regulatory and structural genes. The general idea is that 
a single regulatory mutation can cause very large alterations in patterns of gene 
expression by disrupting the coordinating behavior of the genomic regulatory system 
(Wilson, Sarich, and Maxson 1974; Valentine and Campbell 1975; Bush, Case, et al. 
1977; Stanley 1979; Bush 1981; Campbell 1982). 

COMPONENTS IN THE GENETIC REGULATORY 
SYSTEMS OF PROKARYOTES AND EUKARYOTES 

In this section, I review the major molecular mechanisms controlling gene expression 
at the DNA, RNA, and protein levels. These mechanisms collectively constitute the 
genomic regulatory networks governing ontogeny. I also review the types of chro
mosomal mutations which persistently alter genomic regulatory networks in the 
course of evolution. This material, familiar to biologists but less familiar to other 
readers, forms the basis of the ensemble theories of genomic regulatory networks 
developed below. 

Cis-Acting Loci at the DNA Level 

The term "cis-acting" refers to regulatory genes which act on more or less nearby 
genes on t~A molecule. Cis-acting regulatory loci known at present are 
promoters; operators; enhancers; boxes, or hormone responsive elements; chromatin 
folding domains and loops; and facultative heterochromatin. I discuss each briefly. 
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In both prokaryotes and eukaryotes~omoters are small DNA regions, typically 
on the order of 10 to 30 base pairs (Alberts, Bray, et al. 1983; Ptashne 1986), which 
serve as the sites of attachment for the appropriate RNA polymerase enzymatic com
plex required for transcription of adjacent structural genes. For example, in Esche
richia coli, the lactose promoter is the site where first sigma factor and core RNA 
polymerase bind each other to make holoenzyme, then cyclic AMP and its binding 
protein, CAP, bind each other, arid finally all bind to the promoter site to form a 
competent transcription complex (Zubay and Chambers 1971). Promoters on 
eukaryotic genes that transcribe relatively large amounts of mRNA have similar 
structures. They have an AT A sequence (sometimes called the T AT A box) located 
about 30 base pairs upstream from the site where transcription begins plus one or 
more upstream promoter elements (Maniatis, Goodbourn, and Fischer 1987). The 
upstream promoter element is often a variation of the sequence CAA T, but other 
upstream promoter elements have been found (Grosschedl and Birnstiel 1980; 
McKnight and Tjian 1986). The CAAT and TATA boxes have been found to be 
critical elements in numerous eukaryotic promoters (Efstratiadis, Pasakony, et al. 
1980). Table 11.1 shows a number of common eukaryotic promoter elements (from 
Gilbert 1988). 

Qperato% well established in bacteria and viruses (Jacob and Monod 1961; Vogel 
1971; Ptashne 1986), are typically DNA sites between a promoter and adjacent struc
tural genes which can regulate transcription of the adjacent structural genes. Often 
operators have the property that, when bound by a regulatory protein, they block 
transcrWtiPn initiating at the promoter from reading through to the structural genes. 
Such operators are examples of negative regulators, shutting off transcription. 

TABLE 11.1 Basic Promoter Elements Common to Several Genes 

Gene CAA T region" TAT A region" 

Histone 
Sea urchin H2A GGACAA TTG (-85) TATAAAA(-34) 
Sea urchin H2B GACCAA TGA (-92) TATAAAA(-26) 
Sea urchin H3 GACCAATCA (-75) TATAAAT(-30) 
Drosophila H2A AGTCAATTC TATAAAT 
Drosophila H3 CGTCAAATG TATAAGT 

Globin 
Mouse a AGCCAATGA (-88) CATATAA (-29) 
Humana2 AGCCAA TGA (-70) CATAAAC(-28) 

Collagen 
Chick a2 type 1 GCCCA TTGC (-78) TATAAAT 

Insulin 
Human GGCCAGGCG (-73) TATAAAG (-29) 
Rat I GGCCAAACG (-78) TAT AAAG (- 30) 

Ovalbumin GGTCAAACT(-74) TATATAT(-31) 

Conalbumin GGACAAACA (-81) TATAAAA(-30) 

Silk fibroin GTACAAATA(-93) TATAAAA (-29) 

"Numbers in parentheses correspond to the position upstream from the point where transcription 
is initiated. 

Source: Efstratiadis, Pasakony, et al. 1980; Voge11971. 
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Similar sequences can also serve as positive regulators, activating transcription when 
bound by a regulatory protein. 

Another kind of cis-acting regulatory elements are the enhancers (Maniatis, 
Goodbourn, and Fischer 1987), initially found in viruses but <also occurring in the 
eukaryotic genome. They are DNA regions which may be a modest distance from 
the genes whose transcription they influence, transcriptionally either upstream or 
downstream from those genes. Enhancers act via cis-regulation of promoters which 
themselves are cis-regulators of adjacent structural genes. In addition, enhancers can") 
function equally well if removed and reinserted in the opposite 3'-5' orientation. 
One of the first enhancers found appears to control the cell specificity of immuno
globulin gene transcription (Gillies, Morrison, et al. 1983; Potter, Weir, and Leder 
1984). Tissue-specific enhancers have also been found in the pancreas (Boulet, 
Erwin, and Rutter 1986), where the enhancers for the exocrine protein genes (chy
motrypsin, amylase, and trypsin) are different from the enhancers for the endocrine 
protein insulin (Walker, Edlund, et al. 1983). Other enhancers appear to regulate the 
timing of gene expression. For example, Krieg and Melton (1987) found that certain 
frog DNA sequences contain an enhancer which triggers transcription at the mid
blastula transition. When B-globin genes were placed adjacent to the enhancer, the 
globin protein, usually first seen in the tadpole, was turned on during the mid-blas
tula stage. Other enhancers are hormone-responsive. For example, the enhancers for 
ten exocrine proteins of the pancreas share a 20-base-pair consensus sequence, sug
gesting that coordinate expression of all ten is mediated by this similarity (Boulet, 
Erwin, and Rutter 1986; Gilbert 1988). The general idea is that first hormones bind 
to a specific protein receptor and then this complex is able to bind to the enhancer 
(Miesfeld, Rusconi, et al. 1986). 

In eukaryotes, DNA is folded into chromatin. At the lowest structural level, the 
DNA winds twice about a complex off our types of histone proteins to form a nucleo
some (reviewed in Alberts, Bray, et al. 1983). The nucleosomes, which are separated 
from one another by about 60 bases, are packed into condensed higher order struc
tures and form a 30-nm chromatin fiber. The fibers are organized into a series of 
looped domains each containing 20 000 to 80 000 base pairs. (Human chromatin 
might have about 2600 looped domains.) These looped domains may be functional 
domains as well. There is evidence that eukaryotic transcription is initiated in sub
regions of decondensed chromatin, at cis-acting DNA sites specified within the 
decondensed domain. The decondensed state appears to be stable once it forms. 

A general view of eukaryotic DNA is that the default condition of chromatin is a 
condensed state due to packing into nucleosomes. In this repressed state, regulatory 
factors cannot gain access to the DNA unless the tight packing is relieved by specific 
activation factors (Schlissel and Brown 1984; Zaret and Yamamoto 1984; Weintraub 
1985). Thus, in this general view transcription is activated in two stages. First, the 
chromatin region must be unfolded so that the gene and its promoter are accessible 
to transcription factors and RNA polymerase. Second, these transcription factors 
must be present in the nucleus and must bind the exposed DNA sites. 

Trans-Acting Regulatory Elements at the DNA Level 

By definition, trans-acting elements on one chromosome are able to influence genes 
located on oth~omes (Alberts, Bray, et al. 1983; Ptashne 1986). Typically, 
these elements can act on other chromosomes because they create diffusible prod
ucts, such as RNA, protein, or metabolites. Figure 11.1 shows the lactose operon in 
E. coli. Transcription is blocked if the protein product of a distant gene, the repressor 
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protein R, is present and binds to the operator DNA site. In turn, a metabolic trans
formant of lactose, allolactose, binds to the repressor protein at a second "allosteric" 
site, alters the conformation ofthe repressor, and hence releases it from the operator. 
Therefore, the operator is under the control of two trans-acting molecular inputs. 
Four other trans-acting molecules interact with the promoter to stimulate transcrip
tion. 

Similar trans-acting regulatory proteins have now been well established in a num
ber of eukaryotes, ranging from yeast through nematodes, Drosophila, maize, and 
mice (McClintock 1956; Paigen 1979; Dickinson 1980a, 1980b, 1980c). For exam
ple, the 5S rRNA gene in Xenopus is transcriptionally regulated throughout devel-
opment (Korn 1982). Transcription requires the presence of a 32 500-dalton protein, Ty I' ') 
called TFIIIA, which binds to the control region of the gene and directs RNA poly-
merase III to bind and begin transcription (Ng, Parker, and Roeder 1979; Engelke, 
Ng, et al. 1980). Similarly, transcription of eukaryotic mRNA is mediated by trans-
acting factors that enable RNA polymerase II to initiate transcription. For example, 
Parker and Topol (1984) isolated from Drosophila nuclei two factors required for the 
transcription of two histone genes and an actin gene. One factor appears to bind an 
upstream promoter element; the other binds to the TAT A box. Davison, Edgly, et 
al. (1983) have isolated mammalian TAT A-box binding proteins. 

Some trans-acting nuclear proteins are operative in a limited set of cells and medi
ate tissue-specific gene expression. An example is GHF-l in the anterior pituitary 
cells. This protein binds to an upstream promoter element of the human growth hor
mone and can activate transcription of growth hormone when added to nonpituitary 
nuclear extract (Bodner and Karin 1987). 

Among the most interesting putative trans-acting genes are homeodomains, 
found first in a number of homeotic mutants in Drosophila andsubsequently in' 
other organisms. These mutants will be described in detail in Chapters 12 and 14. 
Briefly, home otic mutants convert one tissue or organ to another: eye to wing, for 
example, or antenna to leg. A number of protein-encoding homeotic genes have been) 
found to encode a 180-base-pair region that becomes part of the functional protein. 
The DNA region is called the homeobox, the protein region is the homeQ.Qmnain 
(McGinnis, Garber, et al. 1984;-scott and Weiner 1984). Evidence from several \' 
sources suggests that the homeobox and homeodomain are regulatory site and trans
acting factor, respectively. First, the homeobox looks like a nuclear-localization 
sequence. Second, the homeobox-encoded proteins return to the nucleus after syn
thesis and are able to bind DNA (O'Farrell, Desplan, et al. 1985). Indeed, the hom
eodomain of one gene in Drosophila, called engrailed, binds to the 5' flanking region 
of its own gene and to that of another homeotic gene, thefushi tarazu (flz) gene (Des
plan, Theis, and O'Farrell 1985). Similarly, in mouse the homeodomain ofa protein 
is known to bind to a DNA site upstream of its own homeobox (Fainsod, Bogarad, 

\>-'? \>-~'? 0((-«-c5 
c.. I C. I C; I I R- Lact. 

~6 ZYA ------'----"''--''=-'-'''''----chromo some 
I • 

Transcription 

Figure 11.1 The lactose operon in E. coli. Z, Y, and A are structural genes; 0 is the operator, P the 
promoter site, and R a trans-acting repressor protein which binds 0 and blocks transcription unless 
itself bound by lactose or allolactose. P is regulated by four trans-acting factors: cyclic AMP; a core 
enzyme; (J, a factor which combines with the core enzyme to form holoenzyme RNA polymerase for 
transcription; and CAP, a factor which binds cAMP. All must be present for transcription to initiate. 
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et al. 1986). This evidence strongly suggests that the homeodomain is a trans-acting 
factor able to regulate gene expression on genes at distant loci and to act in a feedback 
loop for regulating its own transcription via its own cis-regulatory sites. The conser
vation of homeoboxes in evolution has received a great deal of attention and caused 
much excitement. Homologous sequences have been found in frogs, mice, humans, 
echinoderms, annelids, and molluscs but not in tapeworms, roundworms, or slime 
molds (Holland and Hogan 1986). The dramatic effects of home otic genes in insects 
has suggested to many workers that these highly conserved sequences play critical 
roles in development of all the organisms in which they occur. 

In addition to all these modifications mediated by trans-acting factors, it is impor
tant to mention a quite different mechanism of gene regulation: methylation of one 
of the DNA bases, cytosine, when this base is adjacent to guanosine. About 5 percent 
of the cytosine residues in mammalian tissues are methylated. Methylation is gen
erated after DNA replication. In some organisms, methylation appears to be asso
ciated with diminished transcriptional activity (Groudine and Weintraub 1981). 
Organ-specific methylation patterns are seen in some cases. For example, the chick 
ovalbumin gene is unmethylated and expressed in the oviduct but is methylated and 
not expressed in other chick tissues (Mandel and Cham bon 1979). When the DNA 
replicates in the cell division cycle, two hemimethylated sites are created, one on each 
sister chromatid. A methylase enzyme then regenerates the fully methylated state on 
each hemimethylated site. The novel feature of gene control by methylation is thatl 
once created, such methylated sites are passively heritable over cell division cycles\ 
(Stein, Gruenbaum, et al. 1982). Unlike specific controls of transcriptional activity, 
such as the lac operator, whose repression depends both on the continued presence 
of respressor molecule and on the specificity of the repressor for the operator DNA 
sequence, maintenance of patterns of methylation is nonspecific. Essentially, any site 
which can be methylated will be maintained passively and stably thereafter by the 
general enzyme which methylates any hemimethylated site. This passive mechanism 
cannot be necessary for ontogeny. A number of organisms, including Drosophila, 
exhibit all the typical features of ontogeny in a complex metazoan without detectable 
methylation of cytosine. 

RNA Loci of Control: Processing, Transport, Translation 

In bacteria, the product of transcription is messenger RNA (mRNA). In eukaryotes, 
however, the nuclear DNA is first transcribed into short-half-lived heterogeneous 
nuclear RNA (nRNA) (for a review, see Lewin 1980). Then several additional steps 
are required to produce mature eukaryotic mRNA. Nuclear RNA contains many 
more sequences than those which ultimately appear as cytoplasmic message. The 
unexpressed sequences are called introns, and they are spliced out of the mature 
mRNA before it leaves the nucleus. The regions between introns, called exons, are 
the parts expressed in the protein being made. Thus the same nRNA transcript can \ 
produce different mRNA molecules by splicing out and adjoining different subsets 
of exons (Maki, Roeder, et al. 1981; Amara, Jonas, et al. 1982; Breitbant, Andreadis, 
and Nadal-Ginard 1987; Crenshaw, Russo, et al. 1987). That is, one "gene" can code 
for more than one protein, each gene made up of a different subset of the exons con
tained in its transcript. Differential splicing may playa role in creating different pro
teins in different cells at different times and even in sex determination (Baker, Nago-
shi, and Burtin 1987; Boggs, Gregor, et al. 1987). 

In addition to splicing, maturation ofmRNA often, but not always, requires addi-
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tion of a large tail of A bases, creating a poly A 3' tail. Next, modification ofthe 5' end 
of the RNA, called capping, must occur. Finally, the mRNA must be transported 
from the nucleus to the cytoplasm, where it becomes attached to ribosomes and is 
translated into protein. 

The formation and breakdown rates of any specific mRNA are further obvious 
control points in gene expression. For example, the cellular oncogene (see Chapter 
12) c-fos encodes a nuclear protein needed for normal fibroblast cell division. The 
mRNA for this gene contains a large 3 ' untranslated region rich in AU sequences. 
Deletion of this region creates a longer messenger half-life and results in more c-fos 
protein, which in turn signals the cell to divide. The result is a tumor (Meijlink, Cur
ran, et al. 1985). Among the most important ways control ofmRNA half-life acts in 
development are the well-established stable "storage" forms for mRNA, found in 
particular as maternal mRNA stored in the oocyte. 

Finally, the protein product of translation is itself subject 10 modification It may 
be cleaved to leave a mature subfragment, as occurs when insulin is cleaved from 
proinsulin. The activity of many proteins are modified by phosphorylation or 
dephosphorylation of lysine and serine residues, mediated by specific kinases and 
phosphatases. In addition, once synthesized, proteins are often modified by addition 
of sugar sequences to form glycoproteins. 

In the remainder of this book, I shall use either "genetic regulatory network" or 
"genomic regulatory system" inclusively to point at the integrated system underlying 
homeostasis of cell types, differentiation of cell types, regulation of developmental 
pathways, stability of those pathways, and unfolding of morphology. This system is 
made up of all the complex feedback webs and cycles of control acting at all these 
levels. 

At this point, it is worth pausing again to ask, How many distinct molecular spe
cies, kinds of sites, and elements are components in the genomic system in a higher 
eukaryote? The answer is unknown, but plausible guesses are available. As noted ear
lier, a human genome has sufficient DNA to code for about 2 000 000 average-size 

It proteins. Almost certainly this is a large overestimate because much ofthe DNA may 
be "noncodonic." The estimated number ofmRNA species in the cytoplasm or of J 
the number of heterogeneous nRNA species found in all the nuclei of one organism 
is on the order of20 000 to 100000 (Bishop 1974; Hough-Evans, Smith, et al. 1975; 
Axel, Feigelson, and Shultz 1976; Chikarraishi, Deeb, and Sueoka 1978; Brown 
1981; Alberts, Bray, et al. 1983). (This estimate does not include nontranscribed reg
ulatory loci such as promoters and operators.) Suppose roughly one regulatory gene 
per structural gene exists, an estimate which might be off either way, perhaps by a 
factor of 10 to 100; then the number of genes might range from 10 1 000 to 
10 000 000. Guess 200 000 to be conservative. In addition, all the different RNA 
molecules and different splicing opportunities offer different points of control, as do 
the different phosphorylation and cleavage sites on the proteins. Perhaps the regu
latory system has a total of 250 000 components? If this were a tenfold overestimate, 
which seems unlikely, then the genomic system would have "only" 25 000 distinct 
components. Not only do we wish to understand how anyone such system works, 
but we also wish to understand how it might have occurred at all in evolution. 

Chromosomal Mutations and the Fluid Genome 

The genomic regulatory system of25 000 to 250 000 components can be thought of 
as a kind of chemica~omputer. Each component is a node in the computer and 
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receives inputs from those other components which directly regulate its activity. 
Whenever I refer to the "architecture" of this genomic regulatory system, Monod's 
"cybernetic system," I simply mean the "wiring diagram" showing which compo
nent affects which component. Of course, the wires are not physical connections; 
they are merely representations of the fact that, for example, the gene synthesizing 
the repressor protein for the lactose operator acts on that operator. Thus the wires 
are better thought of as directed arrows pointing from the regulating to the regulated 
component. This is no mere abstract image. Although we do not yet know the archi
tecture of the genomic system, it surely has one. On the other hand, that architecture 
is surely not stable. A variety of chromosomal mutational events literally scramble 
the wiring diagram. 

In addition to point mutations, in which one base is substituted for another, there 
are regional chromosomal mutations. A whole region may be deleted, moved, or 
duplicated (Markert, Shaklee, and Whitt 1975). The duplicated regions may then 
amplify into a long, multiply repeated set of identical sequences by unequal exchange 
between homologous chromosomes or other mechanisms. In turn, these redundant 
sets may diversify by accumulating point mutations to produce a family of similar 
sequences called a multigene family (G. P. Smith 1974; Kafatos 1983; Ohta 1983; 
Ohta and Dover 1983). Some of these sequences may accumulate stop codons and 
hence form nonfunctioning pseudogenes (Li 1983). Other types of chromosomal 
mutations, called inversions, translocations, and transpositions, invert a segment of 
DNA or move it to a new chromosomal location (McClintock 1956; Cameron, Loh, 
and Davis 1979; Young 1979; Berg 1980; Chaleff and Fink 1980; Green 1980; 
Corces, Pellicer, et al. 1981; Peterson 1981; Spradling and Rubin 1981; Finnegan, 
Will, et al. 1982). Conversions involve a process whereby two different but very sim
ilar genes become identical to one of the two (Dover 1970; Dover, Brown, et al. 1982; 
Dover and Flavell 1982). 

The general consequence of such chromosomal mutations is summarized by a 
picture in which genes are duplicated, modified, and dispersed to novel positions 
around the chromosome set. Every biologist who has remarked on this process has 
immediately remarked as well that such mutations obviously can alter the regulatory 
connections in the genomiC system (Wilson, Sarich, and Maxson 1974; Gould 1977; 
Wilson, Carlson, and White 1977; Sherman and Helms 1978; Stanley 1979; Bush 
1981; Dover, Brown, et al. 1982; Flavell 1982; Campbell 1985). That is, a cis-acting 
gene can be moved to near a novel set of structural genes and hence bring the latter 
under its control and thus under the control of those upstream genes acting on that 
cis-acting gene. Similarly, a trans-acting gene may move into the domain of a new 
cis-acting gene, bringing to the cis-acting gene an influence over the downstream cas
cade of that trans-acting gene. In other words, chromosomal mutations rearrange 
genomic circuitry. 

It must be stressed that, in evolution, rapid chromosomal alterations often occur, 
leading a number of workers to suppose that such alterations may be the predomi
nant factors in speciation (Bush, Case, et al. 1977; Dover, Brown, et al. 1982; Flavell 
1982). Despite the plausibility of this claim, it remains controversial. In particular, a 
clear link among chromosomal mutations in sibling species, alterations in the geno
mic wiring diagram, and speciation is lacking. Nevertheless, the rate of chromosomal 
mutations is sufficiently great to have displaced the picture of the well-ordered, static 
genome in favor of a rapidly changing, fluid genome in evolution. 
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If the genome is fluid, how shall we conceive of its structure and evolution? Let us 
recast the problem as follows: Duplication and dispersion of cis- and trans-acting loci 
around the scrambling genome explores an ensemble of regulatory architectures. We 
do not know yet what that ensemble is, but one way to define it is to consider any 
constraints in the mutational process by which the regulatory connections are rear
ranged. Whatever'the proper description of the scrambling process, we can use it to 
define the one-mutant variants of a given genomic system and then iterate from each 
variant to its one-mutant variants, and so on, to generate an enormous ensemble of 
genomic systems. In the case of peptide space, each point is a protein. Similarly, in 
genomic network space, each point is a genomic system, and that point's neighbors 
are its possible one-mutant neighbors. Obviously, we do not yet know enough about 
the structure of the genomic system in any complex eukaryote to carry out this 
gedanken experiment. We can reasonably begin, however, by building simplified \ 
models of genomic cybernetic systems, capturing some of the correct features, and 
then asking what occurs when chromosomal mutations arise (Kauffman 1985a, 
1985b, 1986c). 

In Figure 11.2 I show two haploid genomes, each with four hypothetical chro-

CHROMOSOME I CI TI SI-C2 T2 S2-C3 T3 S3-C4 T4 S4-

CHROMOSOME 2 C5 T5 S5-C6 T6 S6-C7 T7 S7-C8 T8 S8-

CHROMOSOME 3 C9 T9 S9-CIO TIO SIO-CII Til SII-CI2 TI2 S12-

CHROMOSOME 4 CI3 TI3 S13-C14 TI4 S14-C15 TI5 S15-C16 TI6 S16-

a 

CHROMOSOME I CI T2 SI-C2 T3 S2-C3 T4 S3-C4 T5 S4-

CHROMOSOME 2 C5 T6 S5 -C6 T7 S6-C7 T8 S7-C8 T9 S8-

CHROMOSOME 3 C9 TIO S9-CIO Til SIO-CII TI2 SII-CI2 TI3 S12-

CHROMOSOME 4 CI3 Tl4 S13-C14 TI5 T14-C15 TI6 S15-C16 TI S16-

b 
Figure 11.2 (a) Hypothetical set offour haploid chomosomes with 16 kinds of cis-acting (Cl,C2, 
... ), trans-acting (Tl,T2, ... ), and structural (SI,S2, ... ) genes and regulatory domain boundary 
markers (dashes). Each cis gene acts to its right until the first boundary marker. Each trans gene acts 
on the cis gene having the identical index. Structural genes code for proteins which are assumed to 
play no regulatory roles. (b) Similar to (a), except that here the regulatory domains contain C(x), 
T(x + 1), S(x). 
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mosomes containing four types of genetic elements: structural genes, cis-acting 
genes, trans-acting genes, and domain markers showing the boundaries of action of 
adjacent cis-acting genes. For concreteness, I have assumed that each cis-acting gene 
acts to its right and controls all trans-acting and structural genes until the first bound
ary marker. I leave out those parts of the genomic system depending on RNA control 
points, and so forth. The meaning of the numbers is simply to capture the idea that 
a trans-acting gene is targeted to act on specific cis-acting genes. Numbers on struc
tural genesjust distinguish them. For simplicity, I have assumed that structural genes 
play no regulatory roles. 

Each arrangement of the four types of genes or loci implies a specific regulatory 
architecture. In Figure 11.3, I have drawn the arrows representing these control inter
actions for the chromosomes of Figure 11.2. The result in Figure 11.3a is a set of 
separate small circuits, each independent of the others. In Figure 11.2b I permuted 
which cis gene is next to which trans gene. The result, Figure 11.3b, is a large loop 
passing through all the regulatory genes. I have ignored structural genes because they 
are assumed only to be regulated, not to regulate. These simple pictures should con- . 
vey the obvious result: Altering which genes are neighbors changes the regulatory ) 
architecture. 

What happens if chromosomal mutations duplicating and transposing chromo
somal regions around the genome occur at random? To investigate this, it is simple 
to write a computer program which decides at random, for each small region, if it is 
to be duplicated or transposed and, if the latter, to what site. Figure 11.4 shows the 
results of 2000 generations of such random scrambling of the two initial genomic 
systems of Figure 11.2. Although the results look like scrambled spaghetti, an impor
tant point is immediately obvious to the eye: Figures II.4a and II.4b look much 
more similar to each other than do Figures 11.3a and II.3b. What your eye has 
picked up effortlessly is that the statistical connectivity features of the two parts of 
Figure 11.4 are very similar to each other, while those of the two parts of Figure 11.3 
are very different from each other. Your eye is correct: Two "well-scrambled geno
mic architectures" look very much alike, although, of course, the detailed positions 
of the genes differ. Restated, in the course of scrambling, two initially highly improb
able architectures have "fallen" toward what must be the statistically expected, typ
ical connectivity features of such architectures. 

It is useful to define several connectivity features more precisely. Because such 
wiring diagrams use arrows, not lines, to connect points, they are directed graphs 
(Berge 1962; Harary 1969; Hararay, Norman, and Cartwright 1975). We can define 
the ratio of arrows to points as well as the mean number of direct inputs and outputs 
per point. These latter two are the local connectivity properties of the network. In 
addition, each gene regulates, either directly or indirectly, all those genes which can 
be reached by following arrows, tail to head, from that initial gene. Therefore, we can 
define the number of descendants from and antecedents to each gene as well as the 
mean number of descendents and antecedents of each gene. Any gene can reach all 
of its descendents in a finite number of steps by following a sequence of arrows tail 
to head. The radius from each gene is the minimum number of steps which allows it 
to reach all its descendents. Thus we can define the mean radius of the network, 
which measures how spread out the network is. Some genes lie on feedback loops, 
and thus we can define the fraction of genes lying on feedback loops. Any such gene 
may lie on a number ofintermeshed feedback loops. We can study the length of the 
smallest loop any such gene lies on and the mean minimum loop length. We can 
define as a strong component any set of genes which can mutually reach one another, 
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Figure 11.3 (a) Regulatory interactions among genes in the chromosomes of Figure 1!'2a. ( b) Reg
ulatory network of interactions implied by the chromosomes of Figure 11.2b. 

directly or indirectly, by following arrows tail to head. A variety of other connectivity 
features can be defined, but these just mentioned will suffice to indicate the spirit of 
the enterprise. 

The natural question becomes this: What are the expected connectivity properties " 
in the well-scrambled genome? This problem, simply stated, is too hard to answer, 
but the flavor of an answer can be obtained by considering a simple problem. 
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Figure 11.4 (a) Regulatory interactions from the chromosome set of Figure II.2a after 2000 random transpositions and 
duplications have occurred in ratio 9: I, each event including one to five adjacent loci. (b) Similar to (a), after random trans
positions and duplications of the chromosome set of Figure II.2b. 
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Random Isotropic Directed Graphs 

Consider a system of N genes, shown as points and connected entirely at random by 
M arrows. Our intuitions are already tuned by the results of Erdos and Renyi (1959, 
1960) on random undirected graphs, where lines, not arrows, connect points at ran
dom. These results were discussed in Chapter 7 and exhibit threshold phenomena. 
As the ratio of lines to nodes increases, critical thresholds are crossed at which the) 
connectivity properties change abruptly. Similar transitions occur in directed graphs. 

Figure 11.5 shows 20 genes connected at random by more and more arrows. As 
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Figure 11.5 Evolution of connectivity in an isotropic random directed graph. When N = 20 points 
are connected at random by an increasing number of arrows M, a large connected structure begins 
to crystallize when N = M. 
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Figure 11.6 (a) Mean number of descendants from each point in graphs having N = 200 nodes, as 
the number of directed arrows M increases from 0 to 720. Mean descendants are mean number of 
genes any gene directly or indirectly influences. (b) Radius distribution showing mean number of 
steps via intermediate genes for influence to propagate to all descendants of a gene, as a function 
of M. (c) Average number of genes lying on feedback loops, as a function of M. (d) Average length 
of shortest feedback loops genes lie on, as a function of M. (e) Descent distribution within a network, 
showing how many descendants each gene has. Note bimodal character of distribution for M > N. 

the ratio of arrows to genes increases, small, isolated, branched tree circuits form, 
coalesce into fewer large, sparsely connected circuits, then finally become multiply 
connected in a richly cross-coupled web having many interlocked cycles. Figure 11.6 
shows mean connectivity features in numerical trials for N = 200 genes, connected 
at random by M = 0 to 720 arrows. In Figure 11.6a, a threshold is reached for the 
crystallization of connected circuits when the ratio of arrows to genes equals I. Below 
that value, on average each gene influences no other gene, or at most very few; 
beyond that value, genes begin to have many descendants. The mean radius (Figure 
11.6b) is at a maximum when the ratio is about 2, corresponding to the steepest part 
of the curve in Figure 11.6a, when the descent distribution is increasing most rapidly 
and the underlying graph is most diffuse and large. This is just what we might expect. 
As the number of connections increases beyond this level, shorter pathways to all 
descendents emerge, and hence the radius falls. Since feedback loops are likely to 
form when any gene has a large number of descendants, each of which might feed 
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back to act on that gene itself, the curve in Figure 11.6c parallels that in Figure 11.6a; 
eventually almost all genes lie on feedback loops. The mean minimum size of feed
back loops (d) parallels the mean radius and increases, then grows shorter as the ratio 
of arrows to genes increases. This makes sense, for the minimal loop lengths should 

r~·rt, 1'\((, be less than the radius from any gene to all its descendents, and the radius increases, 
then decreases as the ratio of arrows to nodes increases. Finally, Figure 11.6e shows 
the descendant distribution for all the genes in the network as the ratio of arrows to 
genes change. The interesting result of Figure 11.6e is that the descendant distribu
tion is bimodal. Many genes have few descendants, a vast number have an identical 
and large number of descendants, and a few have yet more descendants. The reason 

\ is simple. Once interconnected loops form, all the genes on the loop(s) have one 
1 another as descendants, as well as all genes lying on tails descendant from the loops. 

The set of genes on these interconnected loops can each reach all the other genes on 
those loops, and so these genes constitute the strong component of the genomic reg
ulatory network. The genes on tails have only a few descendants. Genes antecedent 
to genes on loops have a few more than the very large number of descendants of the 
genes on loops. The antecedent genes and tail genes are not members of the strong 
component. The former cannot be affected by the genes ofthe strong component and 
the tails; the latter can affect only their few descendants. 

Generic Properties of the Ensemble, Statistically Robust 
Null Hypotheses, and, If Unavoidable, Potential Universals 

What we have just described is a toy model. The real scrambling genome is not an 
isotropic random graph. In order to use the insights gained from this toy model, we 
must certainly develop far more accurate models of how real genomic systems are 
scrambling in evolution. We return to this below. Nevertheless, the analysis helps us 
see quite a bit. What is most obvious is that, given any well-defined prescription on 
how the real genomic system is scrambling, there is a well-defined ensemble of reg
ulatory architectures being explored. That ensemble is enormous. As in any other 
large ensemble, the generic features of this ensemble will be very robust. Then the 
following statements appear absolutely reasonable: 

1. If we can correctly identify how the genome is scrambling, the average connectiv
ity properties of the resulting ensemble of systems constitute the proper null 
hypothesis about the properties we would expect in the absence of outside forces. 

2. Thus, such mean properties are our reasonable best first guess as to regulatory 
architecture. 

3. Selection is the most important outside force. It may pull populations of adapting 
Ofgaiiisms to odd regions in the underlying ensemble, where the genetic regula
tory architectures are grossly untypical of the ensemble as a whole. If so, we can
not predict which features will occur on the basis of ensemble average properties. 

4. On the other hand, if selection is too weak or otherwise cannot escape the typical 
properties of the ensemble, those properties will be widespread in organisms not 
because of selection but despite it. Then the null hypothesis will be explanatory 
of features actually found. 

5. Further, we shall be able to predict statistical features without carrying out the full 
reductionistic analysis to work out all 250 000 components and their interactions. 
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6. Insofar as the typical properties are ordered in some way, we do not have to 
account for that order on the basis of selection. It lies to hand in the ensemble. 

7. We stressed in Chapter 5 that selection may alter the kinds of entities upon which 
it is acting. The corollary here is that selectio2! .. I!!ayj"laYt:l'.uilt up specific ways it 
~J.!1Jii!lz._tht:~~~o!1!~. If so, it will follow that the ensemHe being explored is 

- constrained in some ways. It will not follow that such an ensemble does not exist, 
for the ensemble claim is merely a restatement of those aspects of genomic scram
bling which are random, subject to the constraints. Insofar as we can define the 
current constraints, and hence the current ensemble being explored, we can legit
imately consider the average properties of members of that (selected) ensemble as 
proper null hypotheses and assess the extent to which selection within that ensem
ble can attain entities which deviate significantly from its robust mean properties. 

In short, we may need selection to account for the particular ensemble selection 
is exploring but not to account for the fact that organisms remain typical members 
of that ensemble. We here confront a new pattern of evolutionary inference: generic) 
properties shared among organisms due to common membership in an ensemble, . 
not by virtue of common descent. J 

While appeal to the simple model of a scrambling genome as a serious description 
of genomic systems is premature, some of the features of the model seem likely to 
apply in real genetic cybernetic systems. In particular, the rich results on connectivity 
and sizes of descent distributions are known to exhibit sharp thresholds as the ratio 
of arrows to points increases (Erdos and Renyi 1959, 1960; Kauffman 1985a, 1985b, 
1986c; Cohen 1988). It would be quite astonishing if those typical graph properties 
did not carry over to the wiring diagrams of current genomic systems. In the current 
context, we suppose that a eukaryote has on the order of 20 000 to 100 000 structural 
genes and a variety of other control points in the regulatory network. We suppose 
each gene is regulated somehow, probably through multiple regulatory inputs to 
account for tissue-specific expression. Suppose for simplicity that we consider a plau
sible picture with 70 000 structural genes and on the order of 200 000 regulatory 
interactions via cis- and trans-acting elements. Given a typical directed graph with 
200 000 regulatory connections and 70 000 genes, we can make strong predictions 
about the connectivity features of such a system. For example, it would be astonish
ing if a very large number of genes were not coupled to one another via loops on a 
gigantic strong component such that each could, in principle, influence all the rest. 
(I stress "in principle" because, as we know from Ashby [1960] and examine further 
in Chapter 12, potential influence may not propagate in such a network.) Equally, it 
would be astonishing if many genes did not have a very large number of descendants. 
Thus it would be astonishing if such a system were not richly webbed, with many 
feedback loops interlocked in complex ways and with minimal-length feedback loops 
from each gene to itself which were reasonably short. Conversely, the probability that 
such a system has a 'Yiring diagram which falls apart into truly independent separate _ 
circuits is il1!Lniteslmal.~ ,',\ {,I! ~ b.t v~ J It.: " ,11,:; ~ o..;;;fy~ J ':-L kc -it "'1 i;.';-

Genomic Regulatory Architectures Are Likely to Be Rich in 
Feedback Loops Rather than Purely Hierarchical 

A familiar conceptual model of genetic regulatory architectures has been a military 
hierarchy, with a few generals commanding overlapping battalions of officers and 
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troops below them (Britten and Davidson 1969; Davidson and Britten 1976). In 
these models, a few master genes control overlapping downstream cascades or bat
teries, of genes. Control of alternative developmental programs lies in unleashing the 
different possible cascades of activities from the master control gene at the top of each 
hierarchy. The overlapping activations sprearung through the overlapping down
stream cascades would create different cell types, each with a unique battery of gene 
activities. In one extreme form, such regulatory networks are entirely free of feedback 
loops. The terminal structural gene "twigs" of the hierarchial cascades, once acti
vated, might maintain a stable pattern of activity by virtue of a stable unmethylated 
state. 

The hypothesis that genetic regulatory systems are hierarchical and free of feed
back loops is an important one. If true, propagation of control is particularly simple. 
Yet even with only modest insight into the statistical properties of scrambled wiring 
diagrams, it is clear that such a hierarchical system is highly improbable. Genomic 
regulatory networks are very likely to be rich in feedback loops. In turn, the existence 
of such loops raises complex issues about the control of cascades of gene activities in 
such webbed networks, issues which will be discussed in the following chapter. For 
now, focus attention again on the genomic regulatory network, ignoring structural 
genes playing no further control roles. The hierarchy of control from master genes to 
lowest level structural genes is assumed to pass via intermediate regulatory genes, 
presumably cis- and trans-acting factors. Suppose there are N such regulatory genes. 
Then in order that they be connected into the simplest possible directed-tree hierar
chy, we must assume that each regulatory gene (except perhaps the master genes) has 
one regulatory input from above in the hierarchy. Thus M, the number of regulatory 
connections, is at least equal to N, the number of regulated regulatory genes. If cas
cades of genes downstream from master genes overlap, as commonly assumed, then 
some or many of the regulated genes must have more than a single regulatory input 
from above. Then M is clearly larger than N. Recall from the analysis of Figures 11.5 
and 11.6 that, when M is significantly less than N, the generic structure of connec
tions is small, directed trees. As M increases toward N, the trees get larger and begin 
to merge. As large trees begin to merge, however, creating just the kinds of hierarchy 
envisioned, they typically also begin to form feedback loops. Precisely when M 
equals N, both large descendant trees and richly interconnected loop structures 
almost surely begin to form. As M becomes greater than N, feedback loops become 
ever richer. The genome is, in fact, scrambling its architecture and logic. Thus in 

(

' order that hierarchical command structures among regulatory and structural genes 
be generic, and hence readily attained and maintained by selection, M must be less 
than N. If M is to be less than N, many regulatory and structural genes must have no 

, regulatory inputs. Conversely, if all or almost all regulatory and structural genes have 
one or more regulatory inputs, then, generically, the genomic architecture is rich in 

I (' feedback loops. Thus to attain and maintain an improbable hierarchical wiring dia
gram in the face of mutations tending to randomize connections and creating a richly 

, webbed architecture, selection would have to struggle against powerful forces. We see 
in the next section of this chapter that selection is very likely to fail in such an 
endeavor. However, in Chapter 12 we shall find conditions based on Ashby's per-
colating walls of constancy and frozen components, discussed in Chapter 5, which 
permit evolution of hierarchial command structures even in genomic systems rich in 
feedback loops. 

This brings us, inevitably, to a fundamental question: Can selection build arbi
trary genomic wiring diagrams? 
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Simple Population Models and the Error Catastrophe Again 

Selection acting to attain optimal wiring diagrams confronts the same limitations we 
encountered in Chapter 3: On smooth fitness landscapes, as mutation rate increases, 
populations fall from fitness peaks and exhibit the error catastrophe; on rugged land
scapes, populations become trapped in small regions of the space of possibilities. 
Recall the error catastrop~_As the number of elements in a system increases in the 
face of a constant mutation rate, a maximum complexity is reached. Beyond this 
complexity level, selection is no longer able to hold the population at the globally 
optimum phenotype, errors begin to accumulate, and the population flows away 
from the optimum toward less fit combinations. We now reexamine this phenome
non in the context of selection acting to mold the wiring diagram of a genomic reg
ulatory system. The results repeat and extend the familiar ones. In the simple model 
I consider next, I shall assume that a specific wiring diagram is the globally optimal 
diagram and that no other local optima exist. More realistic models of genetic regu
latory networks and their evolution, discussed in Chapter 13, admit a multiplicity of 
local optima. 

We now define a fitness landscape with a single optimal wiring diagram. Let us, 
for simplicity, continue to model a genetic wiring diagram by a set of N genes, shown 
as points, wired together by a total of T directed regulatory connections, shown as 
arrows connecting the points. For complete simplicity, let us suppose that a muta
tional event can alter the wiring diagram arbitrarily, by changing either the tailor the 
head of any arrow such that it starts from or terminates at a different gene. That is, 
in a stepwise fashion, we can change any wiring diagram into any other wiring dia
gram. Further, for extreme simplicity, let us suppose that some specific wiring dia
gram is optimally fit. Since all wiring diagrams are equally likely, for our modeling 
purposes we can pick anyone as optimally fit. For example, we might as well pick 
the diagram that has N = T and is connected in a single loop of genes, 1 -- 2 -- 3 
... N--I. 

Next we need to define a simple fitness function for wiring diagrams which deviate 
from the optimal diagram. One choice is to measure fitness by GxlT, the fraction of 
"correct" connections in a given network X. A slight generalization admits that the 
fitness might be linearly proportional to this fraction but might also change in some 
nonlinear fashion. A further generalization allows the possibility that a network with 
no correct connections might even be slightly fit. This leads to a simple form: 

(1Ll) 

where Wx is the fitness of a given wiring diagram; b, for ° ~ b ~ 1.0, is a basal fitness 
even if no connections are correct; and ex is a parameter measuring how fitness 
changes as the ratio of good connections ranges from ° to T. If ex = 1.0, fitness is just 
proportional to the fraction of good connections and the model corresponds to addi
tive fitness. If ex > 1.0, fitness drops off rapidly at first and then more slowly as the 
number of incorrect connections increases. The fitness peak is a spike, which corre
sponds to saying that the components act cooperatively in fitness. If ° < ex < 1.0, 
fitness falls off slowly at first but then more rapidly as the number of incorrect con
nections increases from ° to T. Now the fitness peak is round-topped and has steep
ening sides, a typical form in genetic models which assumes that, near the optimum, 
most mutants have only very minor deleterious effects. 
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The first thing to notice about this fitness landscape is that it has a single peak
the global optimum-and every wiring diagram which is less than optimal has one 
or more adaptive walks via one-mutant fitter neighbors to that peak. That is, no trap
ping on local optima below the global optimum can occur, and so the problem is 
excessively simple. 

We can next define a haploid-population genetic model by assuming a population 
of "organisms," each consisting in a specific genetic wiring diagram. At each gener
ation, each connection in each wiring diagram is subjected to mutations with a given 
probability, altering heads or tails of regulatory connections at random. At each gen
eration, each wiring diagram produces progeny in the next generation proportional 
to its current fitness. The program proceeds by fixing a population size starting with 
an initial population of identical networks, mutating each at random as determined 
by a mutation rate, determining the fitness of each network, and then allowing each 
network a chance to be a parent with a fixed low probability. For each network 
afforded a chance to be a parent, the program decides with a probability equal to 
network fitness whether that parent has an identical offspring. Each potential parent 
can be sampled more than once, and sampling continues until the fixed number of 
networks needed for a constant population size is chosen for the next generation. 
This procedure normalizes fitness each generation, relative to the fittest in the pop
ulation. The networks are subjected to new mutations at each generation, and the 
process is iterated. 

For sufficiently high mutation rates, the error catastrophe shows up as populations 
falling from the fitness peak to an intermediate fitness level. Figure 11.7 shows the 
results of two numerical trials at parameter values where the error catastrophe dis
cussed in Chapter 3 has set in. In one case, the entire population began as the opti
mally fit network, the loop. In the other case, the entire population began as a net
work with very few correct connections-the number which are correct by chance 
in a random network. In the former case, the population accumulates errors over 
time, and the mean fraction of correct connections per network decreases. No net-
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work which is the global optimum remains. The entire population slides down the 
side of the fitness peak to an intermediate height and remains there. Conversely, the 
initially poorly fit population climbs in fitness to the same intermediate height on the 
fitness hill. That is, regardless of the initial position of the population, it ends up, in 
the presence of continuing selection and mutation, at a stable intermediate level of 
fitness. If perturbed above or below that fitness, the population returns to the same 
stable distribution. Clearly, selection is here unable to hold the population on the 
global optimum, even if the population had been released there, and surely cannot 
pull a population to that peak from suboptimal positions, despite the fact that con
nected adaptive pathways to the peak abound. Also, obviously, the position of the 
population midway between the peak and very low fitness networks is consistent with 
an enormous number of alternative wiring diagrams, all having the same ratio of 
correct to total connections. Thus Figure 11.7 is misleading. In the proper high
dimensional space, the population may be located at any point on a shell surface that 
is at a constant distance from the global optimum and has a finite thickness. Since 
evolution occurs by small mutations which accumulate and since all points in the 
shell have essentially the same fitness, derivative lineages of networks will show 
branching random (literally neutral) walks in the shell. As we described in Chapter 
3, as a result of finite population size and of founder effects such that after sufficient 
generations all descendants in the population derive from one (random) initial mem
ber, the walks tend to be coherent rather than resulting in diffusion of the population 
over the entire shell. Rather obviously, the spherical symmetry of this shell derives 
from the fact that all loci are assumed to contribute equally to total fitness. If that 
symmetry were broken, the shell would be more or less distorted. 

Bifurcation Behaviors 

Altering the parameters leads to sharp changes, or bifurcations, in the behavior of the 
adapting population. In some regimes, the population climbs to and remains clus
tered about the fitness peak. In others, it falls from the peak to a sustained interme
diate level. Numerical experiments have been carried out varying the mutation rate 
J.1" the peak shape parameter a, the basal fitness b, and the total number of arrows T. 
Qualitative insight into the bifurcation behavior of this system follows from approx
imate equations for the rate of change of the mean number of correct connections 
G per network in the population (Kauffman I985a, I985b, I986c). 

( 11.2) 

where (J" is the variance in G and P is the probability that a given connection is correct. 
The second term reflects mutations, which tend to destroy correct connections 
already established. Mutations provide a restoring force which pushes the adapting 
population toward the mean number of correct connections expected in the absence 
of selection in an entirely random wiring diagram. This restoring force is propor
tional to the deviation of the population above that unselected mean. That is, the 
mutational restoring force is like the restoring force in a simple spring, proportional 
to deviation above rest length. By contrast, the first term in Equation 11.2 is the selec
tive force tending to increase the mean number of correct connections per network 
in population members. Recall Fisher's fundamental theorem (Ewens 1979): 
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( 11.3) 

where W is the mean fitness of the population. This general result states that the rate 
of change of mean fitness in the population is proportional to the variance of fitness 
and inversely proportional to the mean fitness. That the rate of change depends on 
the numerator is immediately reasonable since selection can increase fitness only if 
there is a fitness range, allowing the fitter to outgrow the less fit. That the rate is 
inversely proportional to the present mean fitness, a result following simply from the 
difference equations for the change in fitness over one generation, means that selec
tion is a less effective force as fitness increases. 

The relation between effective selection and mutational restoring force shows up 
in the two terms of Equation 11.2 (so long as b = 0). In Figure 11.8, I graph these 
two terms separately. The restoring force lowering fitness increases proportional to 
mean fitness. The selection force trying to increase fitness falls off first rapidly and 
then more slowly as fitness increases. If these two curves cross in the interval where 
0< G < 20, that level of mean fitness is a steady state, and the tendency to increase 
is the same as the tendency to decrease it. Thus the steady state is stable, and the 
population adopts a stable distribution around it. Conversely, if the selection force is 
greater than the restoring force throughout the interval of mean fitness from 0 to 1.0, 
the population is pulled from any initial distribution to the global optimum and 
remains there. It should be stressed that Equation 11.2 is inadequate. We really need 
a companion equation showing how the variance of fitness in the population changes 
in time. This is a hard problem. The idealization in Equation 11.2 is based on the 
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assumption that the variance settles down to a constant in a few generations and 
remains stable thereafter. This is borne out by simulations. 

Despite its inadequacy, Equation 11.2 can help us gain some insight into how 
behavior depends on the parameters of the adapting system. If a increases, the selec
tive curve shifts upward but the restoring curve is constant (Figure 11.8). Thus if the 
two curves cross inside the 0 to 1.0 fitness range for a = 1, the point of crossing will 
shift toward higher fitness as a increases. For sufficiently large a, implying that fitness 
falls off very steeply from the optimal network, the selection curve is guaranteed to 
be above the restoring curve; hence overwhelming selection for an optimum wild 
type can always dominate over mutational forces. The limit of infinite a is identiCal~).f.-r ~i 
to hand-picking the fittest variant at each generation and seeding the entire next gen- {::'.7 V . 

eration from that hand-picked network. Very high values of a, or their biological in. J 

counterparts, seem implausible in general. In reality, the steepness of fitness gradients ,...., "'J 
appears bounded. 

As the mutation rate increases or decreases, the mutational restoring force 
becomes steeper or less steep. Thus, for a fixed selection curve, decreasing the muta- \ 
tion rate will move the steady-state crossing point inside the range 0 to 1.0 toward I 

increasing fitness. Ifthe mutation rate is low enough, selection is able to pull the pop- (. 
ulation to the global optimum. Conversely, if the mutation rate is higher and the 
population is released on the optimum, mutations accumulate gradually and the 
population will first remain at and then flow away from the optimum. 

Perhaps most important, all these properties depend on the complexity of the sys
tem under selection. Recall the classical population result for additive models which 
leads to the error catastrophe. Let each correct gene connection make a contribution 
to fitness inversely proportional to the total number of connections. That is, let a 
equal 1.0. Then as the number of connections T increases, the contribution of each 
to fitness decreases inversely proportional to T. However, the mutation rate from a 
correct to an incorrect connection is constant. Therefore selection becomes a weaker 
force per connection as T increases, while mutation remains as powerful as ever. 
Eventually, selection becomes weaker than mutation-in other words, too weak to 
hold a population at the global optimum. 

The classical result shows that the expected number of incorrect connections will 
increase proportional to the square of the total number of connections T2 (Chapter 
3). This rate is very rapid. It can be compensated by decreasing the mutation rate ( 
inversely to T2. For any real system, however, there is a lower bound on the mutation \ 
rate. Eventually, as T increases, selection is unable to hold the population at the 
global optimum. The error catastrophe sets in. 

Simulation results on model genetic wiring diagrams strongly suggest that these 
results extend from the additive fitness case, a = 1, in which each correct connection 
makes a proportional and independent contribution to fitness, to values of a sub
stantially greater than 1.0. This result reflects the fact that, for a range of values of a, 
the population variance in fitness increases only as VTwhile the mutational restor
ing force increases as T. Therefore, the classical population genetic result appears to 
extend fairly widely to nonadditive models, where a > 1.0. 

A Novel Bifurcation When b Is Greater than Zero 

The behavior of this system changes dramatically when basal fitness b > 0, for now·" 
the population can jump discontinuously from a stable high-fitness state to a stable r' 
low-fitness state. This bistable behavior reflects the fact that the effective selection 
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curve can increase rather than decrease as fitness increases. Consequently, as shown 
in Figure 11.9, the selection and mutation force curves can cross in two places in the 
interval of mean fitness between 0 and 1.0. In this case, the upper crossing (point G2) 

is an unstable steady state. If the population is released above that steady state, selec
tion is stronger than mutation and the mean fitness increases toward the global opti
mum. However, the global optimum, G/T = 1.0, is a reflecting barrier. Thus the 
population hovers in a highly fit steady-state distribution between the G2 steady state 
and the global optimum. Conversely, if the population is released below G2, muta
tional forces lowering fitness are stronger than selectional forces, and the population 
falls to G" which is stable. Thus the system will remain in either a high-fitness state 
or a low-fitness state unless a fluctuation drives the population across the threshold 
unstable steady state. 

In fact, such fluctuation-driven transitions do occur (Figure 11.10). Further, the 
system exhibits striking behavior if the mutation rate begins low and increases grad
ually. At first, the mutational restoring force curve is low and crosses the selection 
curve only once (Figure 11.9). Selection is always stronger than mutation, and hence 
the population climbs to and remains at the optimal wiring diagram. As mutation 
rate increases, however, and the mutational curve becomes steeper, the second upper 
crossing is first created, then moves to the right, and then hits the boundary where 
mean fitness is 1.0 and disappears. At that mutation rate, the population suddenly 
falls abruptly from the global optimum to a wiring diagram only slightly better than 
random and corresponding to the lower steady state created by the crossing of the 
two curves. 

Increase of total complexity for the interesting case where b > 0 leads to a similar 
dramatic result. The population distribution of high fitness near the global optimum 
is at first stable, but as T increases, the mutation curve becomes so steep relative to 
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Figure 11.10 Auctuation-driven transition of adapting population from stable upper, near-perfect 
G = Tstate to stable low-fitness G:::= 1 state. Here T = 20, a = 10, b = .S, JL = .OOS. (From Kauff
man 1985) 

the selection curve that the upper stable state disappears and the population crashes 
to a low-fitness state. Thus if a simple loop of genes is the maximally adapted archi
tecture, and if "evolution" begins small with a perfect loop and attempts to integrate 
new genes into the loop, at first selection can maintain perfect loops. Eventually, 
however, the addition of one more gene crosses the bifurcation threshold and the 
loop architecture abruptly becomes highly scrambled (Figure 11.11). 

The General Qualitative Result 

The general qualitative result of these simulations is that, as the complexity of the 
system under selection increases, for a fixed mutation rate and a range of additive 
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Figure 11.11 Selection for a perfect-loop structure in a genetic wiring diagram. The five diagrams 
represent the maximal adaptation achieved and maintained in a population as the number of genes 
in the loop Tincreases. Eventually, addition of one more gene causes the loop to cross the bifurcation 
threshold and its architecture abruptly becomes highly scrambled. Here a = 10, b = .S, JL = .OOS, 
from Equation 11.2. (From Kauffman 1985) 
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and nonadditive fitness rules, selection can at first either maintain a population at a 
global or a local optimum to which pathways exist or pull a population to such an 
optimum. At some critical complexity value, however, selective forces become 
weaker than the mutational forces driving the population toward the mean proper
ties of the underlying ensemble of systems. As complexity increases further, the pop
ulation falls away-either smoothly or in a large jump-from its optimum toward 
the mean properties of the ensemble. The population then arrests at some stable dis
tance from a single global optimum and occupies a shell neutrally, wandering in it 
in coherent, branching, ergodic ways. 

This model has only a single optimum. It represent the simplest case to consider. 
Already it shows that complex systems are likely to be suboptimal, depending on size 
and mutation rate. The existence of a global optimum in the present case is associ
ated with the existence of connection changes via fitter variants to reach that global 
optimum. In real genomic systems, single-optimum landscapes may not be the case 
for two reasons: 

1. The space of genomic regulatory architectures virtually certainly will have many 
local optima. Recall the NK model of correlated rugged landscapes discussed in 
Chapters 2 through 5. We noted in general that conflicting design constraints in 
complex systems lead to multipeaked rugged landscapes. Recall, too, that on such 
landscapes an adapting population tends to become trapped on local optima in 
small subregions of the very rugged landscape. 

2. We have assumed that any rearrangement of connections is a possible mutation, 
but this may be drastically incorrect. That is, it may typically be the case that non
random "hot spots" for genomic rearrangement exist while other connections 
rarely, if ever, change. For example, insertion of transposable elements into a site 
typically generates small repeated sequences which remain after the element 
transposes from that site. The repeated elements make that locus a hot spot for 
further transposition (Spradling and Rubin 1981). Such nonrandom ness suggests 
that some connections are almost inviolate, while others are modified often. In 
turn, this means that the way the genome scrambles is nonrandom and con
strained. From a given wiring diagram, therefore, not all other diagrams are acces
sible to the mutational move generator. 

In sum, the real fitness landscape in genomic architecture space may be highly 
rugged and multipeaked. There would probably be extensive trapping on local 
optima even if all mutational moves to adjacent genomic wiring diagrams were pos
sible, but the problem is exacerbated by nonrandomness in the mutational move gen
erator across the space of wiring diagrams. Thus more realistic assessment of real 
genomic systems will force us to ask which transitions among diagrams are even legit
imate sequences of mutational moves, let alone which pass via neutral or fitter var
iants. 

In examining the NK model in Chapter 2, we found that a second complexity 
catastrophe sets in when K increases proportional to N. The fitness peaks decay 
toward the mean features of the space of systems. In the present case, we have no 
coherent way to guess the distribution of fitness values across the space of genomic 
architectures. Thus we cannot be sure whether this further complexity catastrophe 
sets in. In Chapter 13, however, we shall see that this complexity catastrophe does set 
in in models of cell differentiation. Thus, decay toward the mean features of an 
ensemble as complexity increases, even with strong selection, must be a very general 
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phenomenon. On the other hand, it does seem likely ~hat the fitness l~ndscape for 
genomic architecture is quite rugged. Therefore, trapplI~g of the evolutt?nary ~~~p
tive process in small subregions of network space seems hkely. In t~m, thIS possIb~hty 
suggests that, even after strong selection acts, networks trapped 10 local subregIOns , 
due to landscape ruggedness are likely to exhibit fairly typical features of network , 
architecture space as a whole. If so, the wiring diagram architecture of complex net
works, even in the face of strong selection, will be generic members of the class of i 
systems explored by evolution. 

In short, in the real biological world with all its complex organisms, it is not foolish 
to ask how "precise" such organisms are likely to be as a result of selection. Can we 
guess anything about the structure of regulatory networks? Is an organism with 
70 000 genes and 200 000 regulatory connections likely to be graced by an arbitrary 
improbable wiring diagram? 

To be concrete, let us consider how precise the genomic wiring diagram in a mam
mal might be. Suppose that the genomic system has on the order of only 10 000 genes 
and two regulatory connections per gene, and that the mutation rate of a regulatory 
connection is 1O~6 per genome per generation. The classical population result for 
additive fitness with a single global optimum suggests that on the order of25 percent 
of the connections will be "wrong." With a genome of 100 000 genes and two con
nections each, the expected fraction of wrong connections is about 80 percent. In 
either case, it is obvious that highly nontypical architectures, such as isolated subcir
cuits or strictly hierarchical wiring diagrams, simply could not be maintained. Any 
architecture whose statistical connectivity features were remarkably rare in the 
underlying ensemble would not be maintainable. Conversely, as noted already, if the 
landscape is very rugged, selection cannot pull an adapting population to an arbitrary 
correct wiring diagram from an arbitrary initial point in the space of systems because 
selection becomes frozen into a small subregion of the space. In either case, genetic 
networks having thousands of components seem likely to be rather typical members 
of the available ensemble. 

A Research Program 

The models presented in this chapter are oversimple examples of the connectivity 
properties of a scrambling genomic regulatory system under the drives of mutation 
and selection. The purpose of the models is to make us realize that such systems have 
well-defined, robust statistical features which we can characterize. Further, we can 
develop theories about the extent to which selection can pull adapting populations 
away from the average properties of ensemble members and toward rare, presumably 
useful wiring diagrams. 

The general theory is an injunction to find out precisely how real genomic systems 
scramble and thereby to attempt to build a well-informed picture of the true ensem
ble of genomic regulatory systems selection is exploring. As noted, we already know 
about a number of features which bias the ways the genomic system scrambles. For 
example, in the evolution of real chromosomes, once a given gene has undergone 
tandem duplication, the existence of the duplicates renders further expansion of the 
duplicated genes via unequal crossing-over during meiosis more likely (G. P. Smith 
1974; Dover, Brown, et al. 1982). Thus some sequences amplify tandem duplicates 
by what may be a selectively neutral mechanism. As this duplication occurs, extra 
copies of cis- and trans-acting genes may be being generated into multigene families. 
Later translocations, inversions, transpositions, and so forth will then disperse this 
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randomly amplified particular set of cis or trans loci around the genome. Consider 
a trans-acting gene which acts on the duplicated and dispersed cis-acting gene. That 
trans gene will now have a very large numbers of descendants via those particular cis 
loci. Thus large biases in the number of regulatory descendents are almost surely 
introduced by such adventitious and biased amplification of copies of an initial cis 
or trans gene. In short, the wiring diagram is probably not isotropic. Further, as noted 
above, transposition occurs by specific transposable elements whose terminal 
sequences typically leave a small duplicated trace when they hop out for a new loca
tion. Those traces become hot spots for the reentry of another transposing element. 
Hot spots imply that the moves among genomic regulatory systems by which the 
systems rewire are not random but strongly biased. Translocation of genes to non
coding, junk DNA which is not transcribed may often be silent. The bits of genes so 
translocated may themselves fall silent, as do pseudogenes, and play no further role 
in the evolution of the connected regulatory network. 

Selection has had unknown wisdom in protecting genomic systems from the rav
ages of chromosomal mutation. Close linkage of cis-acting loci to their regulated loci 
undoubtedly reflects, in part, protection against disruption by chromosomal muta
tions. This protection plan is a form of the familiar idea that recombination builds 
up closely linked coadapted gene complexes. Experiments in Drosophila using a spe
cific transposable P element have shown that structural genes plus their adjacent cis 
regulatory elements can be cloned into the P element and the whole unit then trans
posed and integrated into many positions of the Drosophila chromosome; yet the 
structural gene is often activated in proper tissue-specific and time-specific manner 
in development (Garabedian, Shepherd, and Wensink 1986). This implies that influ
ences from outside the boundaries of the P element do not often "reach inward" to 
influence the action of the structural gene. Limiting the range of action of cis-acting 
elements along the chromosome limits the sensitivity of the genomic system to chro
mosomal rearrangements. 

Whatever these boundaries may be, whatever the nonrandom ness may be, ulti
mately we should be able to characterize the way the genomic regulatory system is 
scrambling and build a good statistical theory of its expected structure. That that 
prospect lies in the future means only that it awaits our efforts. 

Can we, in the meantime, build up information about the overall wiring diagram 
in a genomic system? This surely is the aim of contemporary developmental genetics. 
Here a major point to emphasize is that our experimental procedures are well tuned 
to uncover local features of the overall genetic regulatory system plus global conse
quences of that organization. That is, we can find out in detail which genes directly 
regulate one another, via which molecules. This knowledge yields insight into the 
local structure of the wiring diagram. As I emphasize in Chapter 12, studies of the 
overall similarities in patterns of transcription in differentcell types and other studies 
provide information about the global, large-scale behavior of the genomic system. 
What we need to invent is a means oflinking clues about the local architecture and 
clues about global behavior into a coherent theory for the probable structure and 
behavior of genomic systems. The ensemble theories of this and the next chapter are 
meant to provide a toehold on this vast problem. 

In attempting to understand the overall wiring diagram of genomic systems, we 
confront the experimental difficulty that alteration in the activity of one gene in the 
network may typically not propagate to all its descendant genes. Recall that if a gene 
is activated by the prior activity of either of two input genes and if one input gene is 
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now active, the activity of the second has no influence on the activity of the regulated 
locus. Ashby warns us that influence may not propagate. In order to study the down- 1 
stream cascade of events, I shall return in Chapter 12 to testing the structure of geno
mic regulatory systems by means of inclusion in a cell of an arbitrary cellular gene, 
and its willful activation by a controllable cis-acting element. Similarly, any single 
gene can be deleted and the downstream consequences of the deletion analyzed. In 
this way, we can reasonably hope to build a picture of such small-scale features of the 
genomic system as small feedback loops and small patches of the wiring diagram. 
Limitations to the cascading effects may make it hard to pick up a strong component 
linking thousands of genes, however. Contrast this problem with one in which signals 
propagate to all downstream components. In that case, activation of one element 
reveals, by the subsequent cascade, all descendants. The fact that signals may not 
propagate in genetic regulatory networks means that the detailed wiring diagram 
structure may have to be teased apart bit by bit. 

In order to study the evolution of genomic regulatory systems, we need to under
stand how rapidly and easily connections vary. This promises to be a fruitful direc
tion, for we can already study the variability in genomic regulatory systems in closely 
related species (Dickinson 1980a, 1980b). Such variability may reflect either selec
tion for different microhabitats or random drift in sloppy, suboptimal genomic sys
tems. Discriminating which will be difficult, but at least establishing substantial reg
ulatory variability is very important. I discuss this further in Chapter 13. 

SUMMARY 

The genome is a system in which a very large number of genes and their products 
directly and indirectly regulate one another's activities. The proper aim of molecular 
and evolutionary biology in considering such systems is not merely to analyze their 
architecture and dynamical behavior but also to understand why they might have 
more or less the architecture and behavior observed and how they may evolve in the 
face of mutational effects. To this end, we must build statistical theories of the 
expected structure and behavior of these complex systems. Structure is discussed in 
this chapter; behavior, in the next. 

In order to understand the probable structure and behavior of evolving genomic 
regulatory systems, we must confront a new pattern of reasoning in biology: We must 
invent and investigate ensemble theories because an ensemble houses our current 
best hypotheses about the local or global structural or behavioral characteristics of 
genomic systems. The ensemble is just the set of all regulatory networks which are 
consistent with the con~raiiifswe currently know. A principle of adequate reason 
then enjoins us to suppose that, in the absence of further forces, genomic systems will 
be typical of the ensemble in question. Thus, for any genomic system, the typical 7", 
properties of such ensembles emerge as the proper null hypotheses describing the ~ . 
structural or behavioral features we would expect in the absence of outside forces. ~ 

The most obvious outside force which may cause genomic systems to deviate from 
the typical features of the ensemble is natural selection. Thus we are enjoined to 
develop ways of testing what genomic systems might look like in the absence ofselec
tion, comparing predictions with features observed, and then attempting to deduce 
the effects of selection. Such an analysis makes explicit the interacting roles of self
organization and selection in accounting for the features we see. 
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Unlike more familiar theories in biology, ensemble theories, by their very nature, 
predict distributions of features, not particulars. This in no way implies that such 
theories are not testable, for they are testable against the corresponding observed dis
tributions. In developing such theories, however, care must be taken to garner suffi
cient facts to generate the proper ensemble whose distributions constitute the null 
hypothesis. And selection is always operating, we may presume, both in tuning the 
ensemble and in locating organisms within it. That this be so appears unavoidable; 
that we must develop theories of parallel subtlety is the consequence. 



CHAPTER 12 

Differentiation: The Dynamical 
Behaviors of Genetic Regulatory 

Networks 

The aim of this chapter is to develop a framework for thinking about the integrated 
behavior of the genomic regulatory systems underlying ontogeny. In the preceding 
chapter, we examined the evidence showing that genes directly and indirectly regu
late one another's activity. In this chapter, we shall look in detail at such regulatory 
interactions. 

In overview, the problem is to find a way to think about genetic systems contain
ing thousands of genes whose products tum one another on and off. It is the inte
grated dynamical behavior of this regulatory system which coordinates the expres
sion of different genes in each cell type of the organism and underlies the orderly 
unfolding of ontogeny. From what we now know, it appears this regulatory system 
is extremely complex and, as suggested in Chapter 11, likely to be a rich web of feed
back loops rather than a simple hierarchial command structure. Further, chromo
somal and point mutations are continuously "scrambling" the "wiring diagram" and 
the "logic" of the regulatory system. The obvious question is this: How can such a 
genomic system manage to behave with sufficient order to control ontogeny? The 
answer I propose in this chapter is controversial: I suggest that much of the order 
required for ontogeny is spontaneously present in a vast class of complex genetic reg
ulatory systems. Selection may have less to accomplish than we have thought. 

Among the reasons my suggestion is controversial is that we have come to think 
of ontogeny as controlled by a "genetic program." The very thought that a "pro
gram" might have self-organized properties appears utterly foolish, but this sense of 
bewilderment is due to our underlying picture of a genetic program as being similar 
to conventional programs which operate on conventional computers. Conventional 
computers are von Neumann architectures which carry out sequential computation. 
In such computation, a central processing unit performs a single operation at a 
time-a multiplication, for example, or a comparison of two values to find which is 
larger. A program is an effective algorithm which arrives at a final solution in a step
by-step fashion and uses Turing's concept of recursively computable functions. Any-
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on~ famili~r wi~h programming !S acutely aware that minor changes in the sequence 
~f m~,tructlOns m a program tYPIcally alter output catastrophically. Hence the ques
tIon . What would a r~nd?~ .com~uter prog~am do?': seems nearly meaningless. 

It IS therefore a major mItIal pomt to realIze that, m whatever sense the genomic 
regul~tory syst~m const~tutes something like a developmental program, it is almost 
certamly not lIke ~ senal-processing algorithm. In a genomic system, each gene 
responds. to the vanou~ products of those genes whose products regulate its activity. 
All the dIfferent genes m the network may respond at the same time to the outputs 
of those genes which regulate them. In other words, the genes act in parallel. The 
network, insofar as it is like a computer program at all, is like a parallel-processing 
network (Rummelhart and McClelland 1986). In such networks, it is necessary to 
consider the simultaneous activity of all the genes at each moment as well as the tem
poral progression of their activity patterns. Such progressions constitute the inte
grated behaviors of the parallel-processing genomic regulatory system. And, as we 
shall soon find, it makes very precise sense to conceive of and analyze the expected 
self-organized behaviors of such parallel-processing networks. Doing so, however, 
requires that we develop insight into some of the main construction features of the 
networks. 

The spirit of the adventure is first to characterize two local features of the system: 
. the number of ~!}~~_orgel'l~productswhich directly regulate anyone gene and the 
~s that gene responds to those regulatory inputs.' We shall find that any gene 
appears to be directly regulated by only a few other genes. Put another way, the reg
ulatory network is sparsely connected. In addition, almost all known genes turn out 
to be regulated according to a special class of rules that govern their activity as a func
tion of the activity of the genes acting on them. This class, which I call "canalyzing," 
was introduced in Chapter 5. 

, The second step is to ask whether these two local features by themselves carry 
:\' implications about the integrated behavior and structure of genomic regulatory sys

tems constrained to have these local features. There are an enormous number, an 
entire ensemble, of possible genomic regulatory systems constrained to share these 
two local properties. Therefore, this adventure naturally leads us to study the average 
properties of members of such an ensemble and to assess whether those typical prop
erties are due to the local features. 

As we shall see, it is even now possible to demonstrate that almost all members of 
the enormous ensemble of genomic regulatory systems having these two properties 
exhibit many of the orderly properties seen in ontogeny. This unexpected but pow
erful spontaneous order must naturally lead us to suspect that the local features we 
have identified may harbor principles of order on which evolution has relied. 

In Chapter 5, I introduced the idea of a dynamical atlnlclor, such as a steady state 
or limit cycle, in the integrated behavior of a system whose variables influence one 
another. Any such attractor is a recurrent pattern of states ofthe variables of the sys
tem and typically occupies a small subvolume of the system's state space. In this iI, chapter, I shall interpret a~"as a recurrent pattern of gene activity, and hence 
I an attract or, in the integrated dynamical behavior of a coupled system made up of 
!thousands of genes and their products, all of which turn one another on and off. This 
identification is controversial but testable. It is also, I believe, the most natural and 
sensible image to hold of a cell type, given our picture of genetic regulatory systems 
and genetic circuits turning one another on and off in complex ways. For example, 
consider a stem cell population able to undergo repeated mitotic divisions and sus
tain itself as the same stem cell population while at the same time splitting off daugh-
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ter cells which follow some further pathway of developmental change. One is almost 
forced to think of such stem cells as exhibiting some form of stable recurrent patterns 
of gene expression-in other words, as an attractor. A similar clear exa~ple is cells 
in culture which maintain a stable phenotype over hundreds of generatIOns. It may 
be somewhat more controversial, but still reasonable and testable, to i:Qllracterizecell 
types along differentiation pathways as attractors. Gi~en this single interpretation ?f 
a ceTf1Ype-as-arrattractnr; 1 s1mll Snow that mathematIcal models of very large ge~etlc 
networks in which each gene is regulated by only a few other genes and IS constramed 
to use the canalyzing rules which occur in known real genetic circuits yield model 
cell types which fit many known features of real cell types. 

The network ensemble theory allows us to predict a number of fundamental fea
tures of cell differentiation in ontogeny: 

• The expected number of gene-expression patterns which recur in one cell type 

• The distribution of cell cycle times 

• The number of cell types in an organism 
• The similarity and difference in gene-expression patterns in different cell types in 
one organism 
• The existence of a large core of genes active in all cell type of the organism 

• The distribution of downstream cascading events resulting from a hormonal signal 
or mutation of a single gene 

• The inherent homeostatic stability of cell types 
• The fact that each cell type can differentiate directly into only a few other cell types 

• The fact that ontogeny must be organized around branching pathways of differ
entiation from the zygote to all the ultimate cell types in the adult 

Branching pathways of differentiation, present in all multicellular organisms pre
sumably since the Precambrian, are but one candidate example of a universal feature 
which may hardly reflect selection at all. Instead, such pathways may reflect self
ordered features of complex genomic regulatory systems so powerful selection can
not avoid them. At a minimum, the powerful self-order exhibited by the models we 
shall consider invites our attention to the central theme of this book: Order in organ
isms may largely reflect spontaneous order in complex systems. 

This chapter is organized into six sections. The first examines genetic circuits and 
attempts to define the two local properties noted abov-e:)ow connectivity and use of 
caml~LIlglunctions. The secoudsonsiders "hlrge-scale" aspects of cell diffe~ntia
tion, such as the existence of regulatory cascades, the similarityln protemand gene
expression patterns in different cell types, and the number of cell types in an organ
ism. The third section develops the need for ensemble theories giving the expected 
structure and dynamical behavior of genetic regulatory syStems. There I reintroduce 
the Boolean switching network models used to study complex genetic regulatory sys
tems, first considered in Chapter 5. The purpose of these efforts is to find the condi
tions required for orderly behavior in such large, complex networks. To do so, the 
~section considers both implausible and plausible models of genetic regulatory 
s,ystems. By doing so, we consider the entire range of possible models of genetic reg
ulatory systems within the idealization and framework of Boolean networks. This 
analysis reveals that biologically plausible networks built with our two observed local 
properties behave with marked spontaneous order. In the fifth section, I ask whether -
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the statistically expected behaviors of the biologically plausible class of genetic net
works match known features of differentiation and ontogeny. I shall claim that the 
answer is "yes." The theory appears to account at least for the features of ontogeny 
alluded to above. In the sixth and final section of the chapter, I discuss the famous 
metaplasias-homeosis iila transdetermination-seen in Drosophila, other insects, 
arthropods, and even humans. Evidence abounds for combinatorial features and an 
epigenetic code in ontogeny, precisely as expected from our network theory. 

SIMPLE GENETIC CIRCUITS 
AND THE BOOLEAN IDEALIZATION 

In this section, we examine simple genetic circuits known in viruses, bacteria, and 
multicellular eukaryotes. We shall uncover two major generalizations. First most 
gt:,Q~_ are r~gulated directly by!ather few otl!er mol~c.u~ar variabl~s. Sec~ regu
latedgenes aiiileaioveriYhelmingly t011ereguiated by a special and critical subset of 
the possible Boolean functions: the canalyzing functions Because of the central 
importance of Boolean networks when we are thinking about self-organization and 
evolution in genetic regulatory networks, I recall here some material originally pre
sented in Chapter 5. 

Throughout much of this chapter, I shall use the idealization, introduced by Sug
ita (1963), that a gene is either active or inactive, and its product either present or 
absent. Given this..,gn-off idealization, the effects of molecular signals controlling a 
gene are described by a logical switching function, or Boolean function, giving the 
activity state of the regulated gene as a function of the presence or absence of the 
regulating variables. This "binary" idealization is extremely valuable, for we shall 
shortly be considering model genetic regulatory systems comprising 10 000 or 
100 000 such genes, and the idealization allows us to obtain mathematical results. 
Like the physicist's idealization of gas molecules as hard, elastic spheres, the binary 
idealization is meant to capture the essential behavior of the entity in question, a gene 
and its activities. We must remember, however, that the idealization is false. "Inac
tive" genes in bacteria exhibit a low level of transcriptional activity such that an aver
age of fewer than 1 but more than 0 product molecules per cell are present. Further
more, an active gene can exhibit graded levels of activity. Thus while the binary 
picture captures important features, all it can do is give us the logical dynamical fea
tures of the regulatory circuitry and tell us how the circuitry behaves over time. (I 
shall discuss the uses and limitations of this idealization shortly.) 

Figure 12.1 a shows again the now familiar lactose operon. As described earlier, 
the operator is bound by the repressor molecule unless the metabolic product oflac
tose, allolactose, binds to a second site on the tetrameric repressor, altering the repres
sor's conformation and thus pulling the repressor off the bperator site (Muller-Hill, 
Rickenberg, and Wallenfels 1964; Burstein, Cohn, et al. 1965; Bretscher 1968; Zubay 
and Chambers 1971). When we use 1 to represent the bound state of the operator 
and 0 to represent the free state, the corresponding Boolean function is the "Not If' )( 
function. The adjacent promoter P is regulated by CAP, cAMP, core enzyme, and 
sigma factor. All four must be present for an active transcription complex to form 
(Zubay and Chambers 1971). This is the Boolean "And" function off our input vari
ables. The stru£t~al genes themselves-Z, Y, and A-are regulated by the operato1/.' 
the promoter, ~f'fhe "Not If' function (Figure l2.1b). J 

The lactose operon displays an interesting kind of "differentiation" into two alter-
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Figure 12.1 (a) First panel: The lactose operon in E. coli. The Z, Y, and A are structural genes; 0 
is the operator, P the promoter site, and R trans-acting repressor protein which binds the operator 
and blocks transcription unless itself bound by lactose or allolactose. The promoter is regulated by 
four trans-acting factors: cyclic AMP; core enzyme; sigma factor, which combines with core enzyme 
to form holoenzyme RNA polymerase for transcription; and CAP, a factor which binds cAMP. All 
four factors must be present for transcription to begin. Second panel: Boolean function describing 
regulation of the operator by repressor and allolactose. For the operator site, 0 = free, 1 = bound. _ 
For repressor and lactose, 0 = absent, 1 = present. Boolean function "Not If" specifies activity of Y '"T;J' p~ 
operator at next moment, given each of the four possible current states of regulatory inputs. Third I 
panel: Boolean function for promoter activity as a function of the four trans-acting variables regu-
lating it. Boolean function is "And." All four variables must be present for the promoter to be active. 
(b) Boolean function for transcription of the structural genes in the lactose operon. Transcription 
requires that the promoter be bound and active (1) and the operator be free (0). This is the "Not If" 
Boolean function. 
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native stable states, and this differentiation is readily captured, even in this simple 
binary picture. If E. coli is placed in a medium containing a high level of lactose, 
lactose enters the cell, converts to allolactose, and binds to the repressor, freeing it 
and allowing transcription of the adjacent structural genes Z, Y, and A. Gene Z cor
responds to beta-galactosidase, the enzyme that metabolizes lactose. Gene A's func
tion is not known. Gene Y, however, codes for a protein which is a specific permease 
for lactose. In the presence of this enzyme, lactose enters the cell far more easily. 
Therefore, once the operon is derepressed and Y is present, the external supply of 
lactose can be lowered to an intermediate level and, thanks to the permease, lactose 
will still enter the cell rapidly enough to keep the operon derepressed. 

This simple example exhibits three very important properties: 

1. Think of external lactose as a control parameter. If we begin an experiment with 
external lactose at a very low concentration, then smoothly raise it to a high con
centration, then smoothly lower it back to a low concentration, the response of 
the E. coli show~ysteresis. Specifically, at the same intermediate level of external 
lactose, the cell can be in either one of two alternative states, with the lactose 
operon either activated or inactive. Which state the cell is in depends on its history 
of external perturbation. 

2. This simple system can exhibit two alternative steady states, operon active or 
inactive, for an appropriate constant intermediate value of the external lactose 
concentration. Thus this tiny system is already a genetic feedback circuit with 
something like two cell types or, more modestly, two stable and different states of 
gene expression. 

3. Notice that if exogenous lactose were confined to vary from an intermediate to a 
high concentration (which it is not), then by shifting the concentration up, we 
could switch the operon to an active state. Ifwe thereafter lowered the concentra
tion to the intermediate level, the operon would remain active. It is obviously easy 
to make a genetic circuit which has two alternative steady states and in which the 
system can be switched to one of those states virtually irreversibly. 

Here is the start of a picture of irreversible differentiation: the attainment of a stable 
pattern of gene activity which, becauseotfiySteresis, cannot be reversed by the chem
ical signals that triggered the step, despite the identity of the genome. 

The Number of Boolean Functions of K Variables Is (22t 
We shall be seriously concerned with Boolean functions, and thus characterization 
of them is essential. The operator is controlled by two molecular variables: Rand 
allolactose. Since each regulating variable can be either present or absent, there are 
22 = 4 possible combinations of their presence or absence. For each such state ofthe 
two inputs, the Boolean function must specify the state of activity which the regu
lated gene will adopt. Any Boolean function of two input variables therefore must 
specify four response values, chosen to be either 0 or 1. Consequently, the total num
ber of possible Boolean functions of two input variables is (22)2 = 16 (Table 12.1). 
More generally, if a gene is regulated by K variables, the number of possible combi
nations of their presence or absence is 2K , and for each of these states, the response 
might be 0 02. 1. Henpe! tht\ number of possible Boolean functions of K variables is 
(22)K. =::t2 '92 r;) 12K;1 '0. 221( 

The rapid expl6sion lof possible Boolean functions as K increases is important. As 
Monod (1971) stressed, the existence of allosteric enzymes having regulatory sites 
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TABLE 12.1 The 16 Boolean Functions of K = 2 Inputs 

2 3 

0 0 0 
0 1 0 
1 0 0 

1 0 

2 3 2 3 2 3 2 3 

0 0 0 0 0 0 0 0 0 m 0 1 0 0 1 0 0 1 1 010 

0 0 1 0 1 0 0 100 

1 1 1 0 1 0 1 1 0 

2 3 2 3 2 3 2 3 2 3 2 3 

0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 
0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 1 

0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 
1 1 1 1 0 1 1 0 0 

2 3 2 3 2 3 2 3 

0 0 0 0 0 0 1 0 0 0 
0 1 0 1 1 0 1 0 0 1 1 

0 1 0 0 0 0 
1 0 1 1 

2 3 

0 0 
0 1 
1 0 
1 1 

Note: In each function, the four possible combinations of activity of inputs I and 2 each determine the activity of variable 
3 at the next moment. 

distinct from the normal catalytic site of the enzyme implies that utterly arbitrary 
cybernetic or logical control systems can, in chemical principle, be built. Therefore, 
we are not, or at least not yet, prohibited from conceiving of genes, or enzymes, hav
ing five regulatory variables which might realize any of the 232 = 5.9 X 108 possible 
Boolean functions. It is therefore of interest to ask the following central question: 
Can we find any constraints on the Boolean functions which appear to be used 
in genetic regulatory systems? The answer appears to be "yes" and of considerable 
importance. 

Cana/yzing Boolean Functions 

Consider again the lactose operon in Figure 12.1 before passing to others. The oper
ator, regulated by the Boolean "Not If" function, has the following property. If allo
lactose is present, the operator is free regardless of whether the repressor is present or 
absent. If the repressor is absent, then the operator is free regardless of whether allo
lactose is present or absent. That is, either regulatory input has one value which suf
fices by itself to guarantee one operatorslare:Notice that the opposite value of either 
input is unable by itself to guarantee the operator state. If allolactose is absent, the 
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Figure 12.2 Hypothetical gene regulated by two promoters and transcribed if promoter I is bound 
or if promoter 2 is bound but not transcribed if neither or both are bound. This corresponds to the 
Boolean "Exclusive Or" function and is not canalyzing. No single state of either input I or 2 can 
determine the activity of the regulated gene. 

operator may be free or bound, depending on whether the repressor is absent or pres
ent. If the repressor is present, the operator may be free or bound, depending on 

I whether allolactose is present or absent. As in Chapter 5, I here define a canalyzing 
function as any Boolean function having the property that at least one of the regu
lating variables has one value which alone suffices to guarantee one state of the reg
ulated locus. (The term "canalyzing" [Kauffman 1971a, 1974] was chosen to honor 
the fine biologist C. H. Waddington [1957], who liked to think about such things with 
respect to entire epigenetic "landscapes.") 

Notice next that the "Not If' Boolean function has two canalyzing inputs, since 
either allolactose alone, if present, or repressor alone, if absent, can guarantee the 
value of the operator (free). Also, the canalyzed, or guaranteed, state of the operator 
(free) is the same for both canalyzing inputs. That is, the canalyzed state is necessarily 
the same for both canalyzing inputs. 

Not all Boolean functions are canalyzing. Consider a hypothetical gene which is 
regulated by two promoters. The gene is transcribed if promoter 1 is bound or if pro
moter 2 is bound but not transcribed if neither or if both are bound (Figure 12.2). 
This is the Boolean "Exclusive Or" function. Note that no single state of the first 
promoter, free or bound, guarantees whether the gene shall be transcribed or not. 
Similarly, no single state of the second promoter guarantees whether the gene shall 
be transcribed or not. In all cases, the free or bound states of both promoters must be 
known in order to know whether the gene is transcribed or not. Thus the noncana
lyzing "Exclusive Or" function has no gene state which can be guaranteed by any 
single state of any single input gene. 

The Fraction of Boolean Functions that Are Canalyzing 
Decreases as K Increases 

We shall see shortly that almost all known regulated genes are governed, in the Bool
ean idealization, by canalyzing functions. Thus it shall become critical to ask whether 
this is due to chance. Almost certainly the answer is "no," for the fraction of the (22)K 
Boolean functions of K input variables which are canalyzing is a maximum for K = 
1 and decreases rapidly as K increases. 

As K increases, an upper bound on the number of the (22)K functions which are 
canalyzing is given by (4K)(22t- 1 (Gelfand and Walker 1984). Dividing this number 
by (22)K gives the fraction of Boolean functions of K variables which are canalyzing. 
This is a maximum for K = 2 and drops to less than 5 percent of the (22)4 Boolean 
functions offour inputs. We shall see in the next sections that, even where regulated 
genes have more than two inputs, the genes typically are regulated by canalyzing 
functions. This presumably reflects either selection or other causes. 
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Boolean functions idealize a gene to be either active or inactive as a function of the 
concentrations of the molecular variables which regulate the gene. A more accurate 
description notes that gene output can be a graded response to input. Nevertheless, 
as we saw in Chapter 5, the binary idealization yields results which can validly be 
extended to homologous systems of genes whose activities vary sigmoidally over a 
continuous range as the activities oftheir inputs vary smoothly (Walter, Parker, and 
Ycas 1967; Glass and Kauffman 1972, 1973; Glass 1975, 1977b, 1985; Glass and 
Pasternack 1978a, 1978b; Thomas 1979, 1984; Hopfield and Tank 1986a, 1986b; 
Kaufman 1988). The binary idealization is the limiting case of such sigmoidal 
response functions. Recall that such functions are characteristic of positive cooper
ative responses in allosteric enzymes and other cellular constituents, such as tetra
meric hemoglobin or multimeric cell receptors. 

Figure 12.3 shows the continuous function for the Boolean "Not If' function of 
Figure 12.1 and plots activity of the regulated gene vertically (ranging from 0 to 1) as 
a function ofthe activity level (minimum 0 and maximum 1) of its inputs, which are 
an inducer I and a repressor R. The function is a surface in this unit cube. The surface 
is at height 0 where the two input activities are 0 and rises to unit height 1 where I 
activity is maximal and R activity is minimal. I have drawn a sigmoidal surface, flat 
near the corners and rising steeply in the middle of the unit cube. Clearly, the values 
at the four corners of input activities correspond directly to the Boolean idealization. 
The interior of the unit cube is the entire function of which the corners are the skel
eton. The sigmoidal surface reflects typical cooperative kinetics. In the limit of high 
cooperativity, the steep part of the sigmoidal curve rises to a vertical cliff, or explicit 
threshold. As input activities cross above or below this threshold, the regulated gene 
switches on or off. In Chapter 5 we examined a specific small network coupling two 
variables which were governed by sigmoidal response functions of one another's con
centrations. Recall that the system exhibited two stable steady states corresponding 
to the "extermal" steady states of the homologous Boolean system but also contained 
an unstable steady state in the interior of the Boolean cube. That unstable steady state I 

lay on the separatrix dividing the basins of attraction flowing to the two stable steady 
states. 

o 
(X) 

R 

Figure 12.3 The continuous sigmoidal response of a gene to inducer I and repressor R is the ana
logue of the "Not If" Boolean function. Corner values of activity in the unit cube, where I and R 
take on minimum or maximum values, correspond to Boolean values for off and on states of I and 
R. Note that either an increase in R or a decrease in I alone can ensure decreased activity of the 
regulated gene. This is the continuous analogue of canalyzing in Boolean functions. 

) 
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The general issue of the relation between the dynamical behavior of discrete Bool
ean networks and that of homologous systems of continuous differential equations 
governed by sigmoidal functions deserves extensive investigation. Traditional math
ematical procedures allow study of the local stability of the steady states of nonlinear 
dynamical systems but are not easily used to obtain insight into the global behavior 
of complex nonlinear dynamical systems. In contrast, the Boolean idealization now 
appears, in a number of instances, to provide excellent qualitative insight into the 

,/ numbers, locations, and stability of attractors in systems whose components are gov
erned by a sigmoidal response function (Newman and Rice 1971; Glass and Kauff
man 1972, 1973; Glass 1975, 1977b, 1985; Glass and Pasternack 1978a, 1978b; 
Thomas 1979; Kaufman, Urbain, and Thomas 1985; Hopfield and Tank 1986a, 
1986b; Kaufman 1988). This usefulness of the idealization carries three implications. 
First, if analysis of Boolean networks finds ensembles which exhibit orderly dynam-

""lcs with small attractors, we have reasonable grounds to expect the same qualitative 
behavior in a wide class of continuous nonlinear dynamical systems. Second, the 
Boolean idealization is robust with respect to our basic questions. Third, the ideal
ization may prove a powerful mathematical technique for global analysis-ofthe com
plex nonlinear dynamical systems. 

The concept of canalyzing extends to continuous functions (Newman and Rice 
1971). Continuous versions of "Exclusive Or" of one of the two noncanalyzing Bool
ean functions of two inputs correspond to a saddle-shaped surface in the unit cube. 
In contrast, Figure 12.3 corresponds to one of the canalyzing Boolean functions, 
which are characterized by the fact that, in the unit cube, the continuous function is 
monotonic with respect to at least one regulating variable. Thus in Figure 12.3, cor
responding to the "Not If" function, if the activity of input I decreases while that of 
input R is held fixed at any level, the activity of the regulated gene is guaranteed to 
decrease. In contrast, for the noncanalyzing "Exclusive Or" function, the effect of 
the saddle-shaped surface is that, if the activity of one input increases, the activity of 
the regulated gene may increase or decrease, depending on the fixed activity of the 
second input. Such functions are not monotonic. Therefore, canalyzing Boolean 
functions correspond to continuous functions which are monotonic on at least one 
regulating variable. The fact that the fraction of Boolean functions which are can a
lyzing decreases as the number of inputs K increases carries over directly to the claim 
that the probability density of such continuous functions which are monotonic on 
one or more variables decreases as the number of regulating variables K increases. 

I Note also the interesting fact that the continuous canalyzing class of functions of 
I several variables offers the maximum possible control to at least one control variable. 

For any fixed activity level ofthe other regulating variables, unidirectional change in 
the activity of this one control variable is sure to yield unidirectional change in the 
activity of the regulated gene. It is worth a moment to stress this point. Either the 
canalyzing functions in their Boolean idealization or the fully continuous functions 
afford the maximum control possible by at least one input variable. In general func
tions of two or more variables, no single "input variable" has even this much control. 
It may be for this reason, as we are about to see, so many regulated genes are governed 
by canalyzing functions. 

Many Simple Circuits Use Canalyzing Functions 

Consider again the lac promoter, which is regulated by the "And" function on four 
inputs. This is a canalyzing function, since absence of any single variable guarantees 
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that the promoter is inactive. Each input is a canalyzing input, and again the cana
lyzed value of the promoter (oft) is necessarily identical for all canalyzing inputs. 

The structural genes in the lactose operon, Z, Y, and A, are directly regulated by 
the two cis-acting sites: promoter and operator (Figure 12.1 b). Transcription occurs 
only if the promoter is activated and the operator is free. This is the "Not If" Boolean 
function, which is canalyzing. If either the operator alone is bound or the promoter 
alone is inactive, transcription does not occur. 

Figure 12.4 shows components of the arabinose operon for E. coli. The probable 
sequence of genes is COIBAD. Genes B, A, and D are structural (Zubay, Gielow, and 
Englesberg 1971), 0 is an operator, and I is a promoter. The product C, a regulatory 
protein, appears to exist in two forms, PI and P2, which attach respectively to 0 and 
I. The complex Plat 0 inhibits transcription of BAD; P2 at I is required for tran
scription. L-arabinose is a specific effector, probably binding to either form ofC and 
stabilizing P2 over PI. This binding frees the operator from inhibition by C. The 
operator is therefore regulated by C and L-arabinose (Figure 12.4a). The operator is 
bound only if Cis presentand L~arabinoselsabsent. Again, this is the canalyzing 
"Not If" function. Activation requires CAP and cAMP. 

Figure 12.4b shows BAD transcription as a function of 0 and I. Transcription 
occurs only if 0 is free (0) and I is bound (1), the canalyzing "Not If" Boolean func
tion. The presumptive molecules controlling the I locus are RNA polymerase core, 
sigma factor, CAP, cAMP, C protein, and L-arabinose. This is the "And" function 
of six input variables. All six are canalyzing, since absence of each determines that 
polymerase is not bound at I. 

In the regulatory circuitry of bacteriophage lambda, the left operator OL complex . I ,I (\ 0 

but canalyzing. Lambda repressor C1 binds to OL and is removed during lytic induc- / I 
tion, presumably by a substance (X). However, the product of the lambda gene cro 
(also called tot) represses leftward transcription by binding at OL even in the presence 
of X (Kumar, Calef, and Szybalski 1970; Szybalski, Bovre, et al. 1970; Eisen and 
Ptashne 1971; Ptashne 1986). Thus OL is governed by the Boolean function in Figure 
12.5. This function of three regulatory variables is canalyzing: In the presence of cro 
protein, OL is bound regardless of the values of the remaining variables. 

Two features of all these regulated loci are (1) the number of regulatory variables 
per locus is low, from 0 for constitutive mutants to 6, and (2) when regulated, each 
locus is regulated by a canalyzing Boolean function. Both properties appear to gen
eralize to eukaryotes. 

C L-Arabinose Op 0 I BAD ly (1-.'0' .. 
0 0 0 0 0 0 _"5, w \1 ( :"1 

0 I 0 0 I I (:\., L 
I 0 I 1 0 0 [ ",' 
I I 0 
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a b 

Figure 12.4 The Boolean functions governing the activity of each component of the arabinose 
operon in E. coli. (a) Regulation of the operator. (b) Regulation of the structural genes. (From Kauff. 
man 1974) 
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Figure 12.5 Regulation of the left operator OL in bacteriophage lambda. (From Kauffman 1974) 

Genetic Circuits Controlling Cell Type and Cell Lineage 
in Saccharomyces cerevisiae 

Genetic control of cell differentiation is currently better understood in the simple 
eukaryotic yeast system than elsewhere. Yeast demonstrate canalyzing functions. 
Cells of yeast, Saccharomyces cerevisiae, are of three types: A, a, and A/a.-The three 
types differ in their ability to undergo transitions in the life cycle. The view presented 
here is summarized from Sternberg (1986). Haploid A and a cells are specialized for 
mating, each with the other. Mating produces diploid A/a cell, capable not only of 
mitotic division but also of meiosis and spore formation, yielding two A and two a 
cells. Both A and a cells can undergo mating-type conversion to the other type. One 
consequence is that the two types can generate a colony of A/a cells. 

Cell specialization results from differential tr. anscription Of~ll-type-Specific 
genes-A-specific genes, a-specific genes, and haploid-s~cific genes, he last being 
transcribed either in A or in a but not in A/a cells. Genes specific or A/a cells have 
not yet been found but may exist. Expression of cell-type-specific genes is controlled 
at the level of transcription, largely by the mating-type locus, MAT. The two alleles 
MAT A and MA Ta encode trans-acting proteins that regulate unlinked cell-type-spe
cific genes. MA Ta encodes two regulatory proteins, a 1 and a2, while MAT A encodes 
at least one, A 1. The a 1 protein is a positive regulator of a-specific genes, and a2 is a 
negative regulator of A-specific genes. Thus in a cells, the set of a-specific genes is 
turned on and the set of A-specific genes is turned off. In A cells, the set of a-specific 
genes is silent because a 1 is absent and the set of A-specific genes is expressed because 
a2 is absent. A third type of control is clearly combinatorial, with more than one 
trans-acting regulatory input. A combination of A 1 and a2, present only in A/a dip
loids and probably a DNA binding dimer, represses a wide variety of haploid-specific 
genes that are otherwise expressed in A or a cells. Thus the haploid-specific genes are 
regulated by AI-a2. In addition, MATal expression in A/a cells is turned off by Al
a2. 

In the Boolean idealization, the logical functions seen so far are "Yes" for acti
vators, "No" for inhibitors, and "Not And" for inhibition by A l-a2. Note that "Not 
And" is canalyzing, with absence of either A 1 or a2 alone sufficing to veto inhibition. 
In fact, the a-specific and A-specific genes are regulated by more than a single input 
and hence are more complex than "Yes" or "No." 

In mating-type interconversion, genetic information is unidirectionally trans
ferred to the MAT locus from either of two silent mating-type loci, HML and HMR, 
leaving a silent copy in place. This is the cassette model. A change in MAT yields a 
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switch in cell type because the proteins encoded by MAT regulate cell-type-specific 
genes. Mating-type interconversion requires the action of the HO gene and a group 
of DNA repair genes, all of which must function normally. Thus inaction of any of 
these genes blocks conversion. Therefore, again, the corresponding Boolean function 
is canalyzing. Mating-type switching is probabilistic but highly regulated. It occurs 
only in a or A cells and not in A/a cells, preferentially in the mother cell, and only 
over a specific short interval early in the cell cycle between a Start event, defined by 
a mutant's blocking of cells at an early stage in mitosis, and the onset of DNA rep
lication marking the start of the S phase. 

Regulation ofHO expression has revealed some of the cis-acting and trans-acting 
control mechanisms. Canalyzing functions abound. The HO gene encodes a site-spe
cific endonuclease which cuts MAT. Transcription of HO is precisely regulated, 
occurring only in A or in a cells, in the G 1 phase of the mitotic cycle between Start 
and S. Cis regulation ofHO involves two positive sites and two families of negative 
sites upstream (5') of the gene. These families lie in two major regions of upstream 
regulatory sequences, URS 1 and URS2. Removal of these regulatory sequences 
removes the constraint of HO to be synthesized only in the G 1 phase of mitosis. 
Trans-acting positive and negative regulators ofHO expression have been identified. 
These regulators together strongly support the existence of three pathways of negative 
control, all of which must be alleviated ifHO is to be expressed; thus the overall Bool
ean function is canalyzing. The three pathways are all controlled by canalyzing func
tions: 

1. Cell-type control. The HO gene is expressed only in a or in A cells, not in A/a 
cells, thanks to repression mediated by a l-A2. The Boolean rule is the canalyzing 
"Not And" function. 

2. Asymmetric control favoring mating-type switching, resulting from an interac
tion ofa positive regulator, SWI5, which probably relieves repression by a nega
tive factor, SIN. The Boolean function is the "If' function. Again, it is canalyzing, 
for HO is not repressed by this negative pathway ifeither SIN is absent or SW15 
is present. 

3. Cell-cycle control, probably mediated by another positive regulator, SW 14, acting 
on the CACGAAAA consensus sequence to repress HO transcription. This is the 
Boolean "Not" function. 

Finally, examples of "And" and "Or": Both SW15 and SW14 are necessary to acti
vate HO expression (the "And" function). In contrast, the CYC 1 gene requires either 
or both of two conditions to be met, each realized by the presence of either of two 
activators that act as distinct promoter elements (the "Or" function). 

Other Eukaryotes 

The ubiquity of canalyzing functions seen in yeast appear to be typical of those higher 
eukaryotes whose regulatory connections have been worked out. These include ste
roid receptors which bind steroids and regulate transcription of specific genes 
through DNA binding (Miesfeld, Rusconi et al. 1986). These receptors realize the 
Boolean "And" function: Transcription requires both the steroid and its receptor. 
The function is canalyzing, since absence of either input alone blocks transcription. 
Enhancer-like sequences have been found in Drosophila. For example, two distinct 
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enhancers flank and regulate joint-tissue-specific expression of two yolk proteins, 
YP 1 and YP2. One enhancer appears sufficient to cause synthesis in the ovaries; the 
second, to cause synthesis in the fat body (Garabedian, Shepherd, and Wensink 
1986). Each is thought to be regulated by a trans-acting factor. These yolk genes 
appears to realize the "Or" function with respect to these enhancers, since either 
enhancer alone suffices, when activated, to activate both adjacent genes. The "Or" 
function is also canalyzing: either input alone suffices to ensure transcription. Anal
ysis of other regulated genes in mammalian, maize, insect, nematode, and other sys
tems, so far reveals similar features. 

Local Features: Genes Appear to Be Regulated by Few 
Direct Inputs and by Canalyzing Boolean Functions 

The general summary of work over 20 years analyzing regulated genes in viruses, 
bacteria, plasmids, and now eukaryotes is simple. So far, almost all known regulated 
genes-structural and cis-acting-are directly controlled by rather few variables. 
The number ranges from zero for constitutively active genes (discounting TAT A 
boxes and so forth) to perhaps six or ten for genes such as HO, which appear to be 
the focal point for control. Also, virtually all regulated genes appear to be regulated 
by canalyzing Boolean functions. Only further work will establish whether this pair 
oflocal features holds widely in eukaryotic systems. 

As noted earlier, the fraction of Boolean functions which are canalyzing decreases 
rapidly as the number of input variables K increases. Thus, since canalyzing func
tions are widespread in organisms, we must explain their prevalence. Two plausible 
explanations ar~selection and chemical simplicity. That is, it may be that selection 
has ensured that, even when genes are regulated fiy several inputs, the functions are 
constrained to the canalyzing subset. Alternatively, it is almost certainly easier to 
construct molecules to implement canalyzing Boolean functions. For example, con
sider a repressor protein binding to an operator site. It is easy to imagine that the 
repressor has an allosteric site which is bound by either of two different molecules, X 
or Y, each of which suffices to alter the conformation of the repressor and pull it off 
the operator. The allosteric site need merely recognize X or Y. Conversely, it is hard 
to make a repressor which is pulled off the operator if X or ifY is present but not if 
both are present. That would presumably require two different allosteric sites-one 
for X and one for Y -and a complex interaction between the two. Thus this non
canalyzing "Exclusive Or" function is more complex molecularly than the simpler 

M.Jl ./.!, 0 (. canalyzing "Or" function. In short, I strongly suspect that the prevalence of canalyz-
1. ' \, ing functions largely reflects simple chemistry. 

The possibility that widespread use of canalyzing functions may reflect chemical 
simplicity is part of the evidence for a tentative and rather astonishing possibility: As 
we shall see, the two local features of few inputs per gene, which reflects molecular 
specificity, and canalyzing functions, which reflect chemical simplicity, already 
appear to account for much of the large-scale order we find in cell differentiation and 

[
ontogeny. If so, then we must entertain the hypothesis that much of that large-scale 
order is a direct reflection of fundamental features of polymer chemistry. 

LARGE-SCALE FEATURES OF CELL DIFFERENTIATION 

Before exploring the consequences of these two local features, it will be useful to con
sider three well-known large-scale features of cell differentiation: the existence of reg-
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ulatory cascades, the overlap in gene expression pattern at the RNA level and protein 
level iii"different cell types of one organism, and the number of cell types in an organ
ism. All three obviously are large-scale consequences of the integrated behavior of 
genetic regulatory systems. 

Regulatory Cascades 

In Chapter 11, we used the general idea of random directed graphs to consider the 
architecture of connections in genetic regulatory systems. We saw that, in a system 
containing 10 000 regulated genes connected at random by 20 000 regulatory 
arrows, there is a very high probability that almost every gene will have almost all 
other genes in the system as direct or indirect descendants via connected pathways 
emanating from the gene in question. The situation does not alter substantially if we 
become slightly more realistic and assert the existence of a large number of structural 
genes which are themselves regulated but have products that play no regulatory role. 
We may simply remove these structural genes from consideration when we are think
ing about the regulatory structure by which regulatory genes control the action of 
regulatory genes. We retain, of course, the trans-acting structural genes whose prod
ucts act on other cis-acting loci and hence are part of the regulatory system. 

In thinking about the regulatory architecture in Chapter 11, we temporarily sup
pressed concern about the response of each regulated gene as a function of the pres
ence or absence (or activity or inactivity) of its regulating variables. However, mere 
connections between two genes, direct or indirect, do not ensure that a change in 
behavior of one will alter the behavior of the second. We have already seen this. If 
gene C is regulated by genes A and B by the Boolean "Or" function and if A and B 
are both active, then C is active. If A is inactivated, the behavior ofC will not change. 
Thus alteration of A's behavior does not propagate through C to C's descendant 
genes. It follows obviously that the architecture of the regulatory system showing the 
connectivity of the directed graph structure is a necessary but not sufficient condition 
for the existence of regulatory cascades. The proper connections and the current state 
of activities of all the participants in a multi-input/multi-output network determine 
the ways in which alteration of the activity of one gene propagates through the net
work. Conversely, and obviously, if we alter the activity of a single gene and witness 
a cascade of alterations in activities of some number of other genes, we have at most 
a minimum estimate of the number of genes influenced by the initial gene. Other 
genes may in principle be influenced, but the current state of genes in the network 
may keep changes from propagating to them. 

Regulatory cascades are well known in viruses as well as in higher eukaryotes. In 
bacteriophage lambda, infection of E. coli results in either lysis or lysogeny, as noted 
earlier (Ptashne 1986). The lytic cascade involves a complex unrolling of 10 to 15 cis
acting and trans-acting loci which coordinate the expression of structural and regu
latory genes leading to replication of the phage DNA, synthesis of coat proteins, 
packaging, and cell lysis. A map of lambda and the main aspects of the regulatory 
cascade are summarized in Figure 12.6. Inspection of the cis-acting promoters and 
operators, as well as of antitermination sites, reveals that virtually all of them are 
guided according to canalyzing functions (Kauffman 1974; Ptashne 1986). 

The alternative developmental pathway open to lambda, ~geD¥, consists in the 
integration of the viral DNA into the host chromosome by precise integration at spe
cific sites. The lysogenic state is maintained by synthesis of the lambda repressor C 1, 
which feeds in a positive-feedback circuit to maintain its own synthesis from the 
maintenance promoter. Thus Cl forms a small feedback loop able to hold itself in a 
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Figure 12.6 (a) Schematic representation of bacteriophage lambda genome and major transcrip
tion control points. (From Kauffman 1974; see Ptashe 1986) (b) Regulatory cascade triggered during 
lysis by transient activation of cro. This cascade is an example of a forcing structure, discussed in 
Chapter 5 and in this chapter. 

steady state of activity. In fact, C I is involved in a circuit of considerably greater inter
est: It represses the gene called cro, while cro is able to repress C I, each acting on the 
other indirectly by competition at a promoter. During the onset oflysis from the lyso
genic state, cro is activated. If the product is abundant enough, cro suppresses CI and 
thereafter allows the lytic cascade to unroll (Figure 12.6b). 

Cl and cro: A Mutually Inhibitory Circuit with Two Alternative Steady States. 
The Cl-cro feedback system supports two states of differentiation. Each gene indi
rectly represses the other. Thus it seems reasonable that this little circuit be open to 
two alternative steady states: CI active, cro inactive or CI inactive, cro active. Nor
mally the former state is the lysogenic state, or immunity + state, where CI activity 
also renders the host E. coli immune from superinfection. The latter case, the immu
nity- state, cannot be seen because lysis is unrolling. In lambda missing Nand P 
genes, however, lysis cannot occur. In that case, both steady states can be seen. In 
fact, a kind of stochastic switching between the two states occurs. If lysogens are 
grown from an immunity+ cell, a small number spontaneously convert to the 

{ 
immunity- state. The reverse transition also occurs. Thus this small circuit sup
ports two "cell types," each able to differentiate into the other (Neubauer and Calef 
1970). 
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The Polytene Puffing Cascade in Drosophila melanogaster. Drosophila me/ana
gaster is a holometabolous insect. That is, it has four life stages. The fertilized egg 
hatches as a wormlike larva which undergoes three molting cycles separating three 
larval instars. The third instar forms a pupa, undergoes metamorphosis, and emerges 
as an adult. Male and female adults mate and begin the cycle again. Among the many 
features which have properly drawn geneticists and developmental biologists to Dro
sophila are its immense polytene chromosomes. These are 100- to 2000-fold lateral 
duplications of the normal diploid set of four pairs of homologous chromosomes. 
Each polytene chromosome has all lateral copies'synapsedlin proper register, such 
that even light microscopy reveals prominent banding patterns. Over the years, 
debates have raged concerning the number of genes per band. Drosophila has about 
5000 bands. It now appears that the insect has more genes than bands, but grounds 
persist to think that one band might be a unit of functional organization. 

Among the tissues in Drosophila having the most prominent polytene chromo
somes are the salivary glands, which secrete a specialized set of glue proteins during 
the onset of pupariation. Long before their products were known, however, these sal
ivary-gland chromosomes invited attention. Metamorphosis in Drosophila is trig
gered by an increased level of the molting hormone ecdysone. Examination of the 
salivary-gland chromosomes during the late-third-instar and early-to-mid pupal 
stages revealed that the diameter of specific chromosomal bands waxed and waned 
dramatically (Becker 1959; Ashburner 1970, 1972, 1974). Subsequently it was shown 
that addition of exogenous ecdysone to salivary glands cultured in vitro induced the 
same "puffing" cascade (Ashburner 1972; Ashburner and Berendes 1978). Thereaf
ter it was-eStablished that puffing is associated with transcription (Bonner and Pardue 
1977). Good evidence has long suggested that this cascade is a causal one during 
which a succession of genes are sequentially activated and repressed via protein prod
ucts of the cascade (Ashburner 1974). The cascade, which consists of about 150 dis
tinct puffs, each presumably containing at least one gene, is organized into early, 
middle, and late puffs. The early puffs are directly responsive to ecdysone. The mid- " ' 
dIe and late puffs presumably depend on the activity of the early ones, since inhibitors~k re ) """,.;h:V 
of protein synthesis during the activity ofthe early puffs prevent the puffing and accu-
mulation of RNA in the middle and late puffs. 

A few of the early genes have now been cloned, and mutants at one specific locus, 
B2 on the X chromosome, suffice to block the entire cascade induced by ecdysone 
(Chao and Guild 1986). The intron/exon structure of the B2 gene has been worked 
out, and work is now under way to uncover cis-acting sites in its vicinity which might 
playa role in its regulation (Chao and Guild 1986). This gene presumably acts on 
later genes in the cascade. According to one model (Ashburner 1974; Zhimulev, 
Vlassova, and Belyaeva 1982), transient activity by an early gene X, perhaps acti
vated by B2, feeds back on B2 activity, even in the continued presence of ecdysone, 
and feeds forward to middle and late genes to potentiate their activities. In this hypo
thetical feedback loop on B2, the B2 gene is regulated by the canalyzing "Not If' 
function, for the gene is active only if ecdysone is present and X is absent. Thus 
absence of ecdysone alone or presence of X alone inhibits B2 activity. 

If it is legitimate to conclude that the salivary-gland puffing cascade is a control 
cascade, then a single trigger molecule-ecdysone-unleashes alteration in the 
behavior of on the order of 150 "genes." While we do not know exactly how many 
true genes this number represents, we do know that at least 150 bands puff. Since 1 
Drosophila has about ~OOO ba~ds, .this implies that on the order of 150/5000 bands, 
or 3 percent, alter theIr behaVIOr In the presence of ecdysone. Thus 3 percent is a 
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rough minimum estimate of the number of genes directly or indirectly influenced by 
ecdysone in the salivary gland and probably by B2, since B2 deletion blocks the entire 
cascade. 

Similar cascades are well known in other insects, such as Chironomus (Beermann 
1952) and other species of Drosophilae (Berendes 1966). In D. meianogster similar 
cascades, not yet worked out in detail, occur during the onset of metamorphosis of 
several tissues. Many of these tissues have been analyzed at the protein level and 
reveal at least a dozen or more novel proteins whose synthesis appears to be 
unleashed by ecdysone. Since different cascades unroll in different tissues, it has long 
been supposed that ecdysone interacts, via specific receptors, with different DNA 
control regions in different cell types. 

Conclusions About Regulatory Cascades. The conclusions to draw from these stud
ies are that regulatory cascades certainly exist, that the consequences of altering the 
behavior of a single gene in a cascade can easily propagate to a few percent of the 
genes in the system, and that we can hope to eventually work out the statistics of the 
sizes of such cascades. More precisely, we can ultimately learn, for any arbitrary gene, 
how many other genes alter their activities when the activity of that first gene is 
altered. Experiments along these lines are now completely feasible._First" transfor
mation of specific cell lines containing a desired gene which is under the control of 
an arbitrary inducible promoter allows the desired gene to be activated at will in the 
host cell. By utilizing deletions of the gene of interest in the host cell and by control
ling the timing of activation of the introduced copy, we can study downstream effects 
on other genes at the RNA and protein levels. CoD.Y.eIS.ely, and in principle, we can 
study the cascading effects of deleting the activity of any single gene at a defined time 
by injecting antisense RNA to the mRNA of that gene. In principle, the antisense 
RNA binds to the sense mRNA and blocks its translation, thereby functionally delet
ing the gene product from the cell. 

It is important to analyze such statistical features of regulatory cascades. Current 
efforts to understand the detailed molecular mechanisms by which specific genes are 
regulated are highly useful, as are efforts to work out specific cascades. However, we 
must develop approaches to learn about the structure of the overall architecture of 
genomic regulatory systems. Sampling to establish the sizes of descent cascades from 
many points within the networklSclearly a useful way to proceed. Furthermore, once 
the distribution is established, we shall want to be able to deduce those statistical fea
tures from some deeper theory about the expected architecture and dynamic of 
genetic regulatory systems, not merely list them. Development of such a deeper the
ory is the aim of this chapter. 

Cell Types as Constrained Patterns of Gene Expression 

RNA Data. By comparing the gene sets transcribed into heterogeneous nuclear 
RNA in different cell types within one organism, workers have been able to examine 
the overall behavior of the genomic regulatory system underlying cell differentiation 
in a number of systems (Alberts, Bray, et al. 1983). The same studies carry over to 
analysis of the mature mRNA populations which appear in the cytoplasm. These 
analyses have yielded a number of major conclusions: 

1. Only a small fraction of the total DNA is transcribed. -~~~.---~- --
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2. The total number of dislill~t seq\l~nces transcribed ranges from about 17 000 for 
Drosophila (Levy andMcCarthy 1975;Arthur, Weide, et al. 1979) up to perhaps 
70000 to 100000 for mammals (Bishop 1974; Bantle and Hahn 1976). 

3. The abundances of different RNA sequences vl!1)'. enormously, from highly repet
itive sequences present in millions of copies per cclnogenes whose transcripts are 
present in one or fewer copies, on average, per cell (Britten and Kohne 1970; 
Alberts, Bray, et al. 1983; Davidson, Hough, et al. 1983; Darnell, Lodish, and Bal
timore 1986). 

4. A very large common set of genes is transcribed into heterogeneous nuclear RNA 
in virtually all cell types in the organism; this ,E0Il!mon core may range up to 70 
percent of the transcribed complexity (Hough-Evans, SmIth et al. 1975; Hastie 
and Bishop 1976; Chikarraishi, Deeb, and Sueoka 1978; Hough-Evans Ernst, et 
al. 1979; Alberts, Bray, et al. 1983). 

5. The differences between_dj[~rent cell types isra~all, typically on the order 
ofaJew percent of the total numoerorcmrerent sequences present. 

6. A .subset~f the sequences transcribed into heterogeneous nuclear RNA is pro-
cessed to mature mRNA and transported to the cytoplasm. 0+ (·,,'1 r-e. 

7. Qualitatively, the conclusions about heterogeneous RNA hold up for mature 
messenger diversity: A common set of 60 to 70 percent of the genes is expressed 
in all cell types as mRNA, the abundances vary enormously, and different cells 
typically differ in a few percent of the message sequences. Thus a typical plant cell 
might have on the order of 20 000 distinct mRNA sequences and differ from 
another cell type in the same plant in perhaps 1000 sequences (Kamalay and 
Goldberg 1980; Alberts, Bray, et al. 1983). Some evidence suggests that differ
ences in mRNA sequences from one cell type to another may often be greater than 
differences in nuclear RNA sequences. 

Protein Data. Analysis of the protein sets synthesized in different cell types in one 
organism has revealed essentially the features shown at the RNA level. Technical dif
ferences in the ways RNA sequence diversity and protein diversity can be analyzed 
must be borne in mind. The bulk of the RNA work has relied on hybridization of 
single-stranded RNA to single-stranded DNA. Competition experiments with radi
oactively labeled RNA from one tissue and unlabeled RNA from another tissue allow 
assessment of the overlap between the two tissues in kinds of RNA sequences tran
scribed and of their relative abundances. However, detailed analysis of the time 
course of anyone mRNA sequence is almost impossible by these techniques. Newer 
procedures for examining diversity at the RNA level rest on first cloning specific 
genes or fragments of genes (Grunstein and Hogness 1975) and then determining the 
concentration of the corresponding mRNA sequences over time. The concentration 
analysis entails hybridization of each kind of RNA sequence to its corresponding 
DNA sequence's complementary strand by dot-blot analysis (Benton and Davis 
1977). These techniques, while powerful, allow investigation of only several to sev
eral dozen genes and gene products at a time. Thus they naturally focus effort on 
finding and studying a few genes of interest. In contrast, two-dimensional gel elec
trophoresis (O'Farrell 197 5; Garrels 1979, 1983) has opened the door to parallel anal
ysis of up to 2000 proteins at once. 

Typically, analysis of different cell or tissue types taken from the same organism 
and taken at about the same developmental stage reveals surprisingly few differences. 
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For example, Rodgers and Shearn (1977) examined the differenii,maginaldis~j of D. 
melanogaster during the third-Iarval-instar stage and found only a. few differences 
among many hundreds of identifiable protein spots. Similar results are reported by 
Greenberg and Adler (1982). 

Since RNA data suggest that the total number of different RNA sequences is 
20000 or more (Levy and McCarthy 1975), the 1000 to 2000 proteins which can be 
visualized on two-dimensional gels are a 10 percent sample of the total diversity. One 
guesses, but does not know, that the 10 percent is representative. 

The major point to emphasize is that, in most higher eukaryotic organisms, a 
common set of proteins is synthesized in all cell types. Different cell types differ in 
only a few percent of the proteins synthesized (Alberts, Bray et al. 1983; Darnell, 
Lodish, and Baltimore 1986). This generalization may not hold up for very simple 
multicellular organisms, such as the cellular slime mold Dicteostylium discoidum, 
where the protein or RNA differences between the few cell types may be a larger frac
tion of the total diversity (Firtel 1972). 

In addition to studies of different cell or tissue types at one stage in development, 
two-dimensional gel electrophoresis has been used to analyze the time course of pro
tein expression patterns during development (that is, the ontogeny in organisms). 
Such work in Drosophila (Gutzeit and Gehring 1979; Sakoyama and Okubo 1981; 
Summers, Bedian, and Kauffman 1986) reveals that, over the whole developing 
embryo, hundreds of proteins translated very early in development later wane, while 
hundreds of others either wax or first wax and then wane. Thus a complex temporal 
pattern in which many proteins alter synthesis levels unfolds from the initial state of 
the zygote. Similar studies have been carried out in other organisms (for instance, 
Brandhorst 1976; Bedard and Brandhorst 1983). 

The general summary of these results is that, typically, a large core set of genes is 
transcribed in common in all cell types of an organism and that cell types differ in a 
"penumbra" of genes or proteins that represent only a few percent of the total num
ber of genes expressed in the organism. While it is clear that these cell-type-specific 
genes must be regulated, it is less clear whether and how the common-core genes are 
regulated. That core might be constitutively active, or it might form linked circuitry 
that mutually ensures its conjoint activity. It is also not clear what the functions of 
the core might be. One obvious proposal is that these genes represent"housekeep
iIig" genes-whose products are needed in general cell metabolism. However, this 
seemingly plausible hypothesis is not that plausible after a moment's thought. Esch
erichia coli has 2000 to 3000 structural genes which suffice for a rigorous life demand
ing metabolic flexibility. Why should cells in a multicellular organism, each cellliv
ing in a buffered internal environment, require an order of magnitude more diversity 
of structural genes to handle housekeeping tasks? And we must bear in mind that we 
have not measured the activities of nontranscribed cis-acting regulatory loci in this 
story. 

A rather unexpected possible role for the core genes will emerge shortly. I shall 
suggest that they correspond to a frozen component in a fixed state of mutually 
ensured activities within the genomic system. Recall from Chapter 5 that such a fro
zen component is a precondition for orderly dynamics in complex Boolean net
works. 

The Number of Cell Types in an Organism 

Different organisms have different numbers of cell types. While any biologist, not to 
mention butcher, would agree with this qualitative statement, it is difficult to quan-
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titate the differences. The problem is the criteria we should use in distinguishing cell 
types. The qualitative point is so simple and critical, however, that it often passes 
without comment. Since the earliest days of the cell theory and histology, it has been 
quite apparent that cell types are distinctly different from one another and do not 
intergrade. Over the years, biologists have used morphological and histological stain
ing procedures, as well as behavioral criteria, to analyze the distinct cell types of a 
wide variety of organisms. If we choose to utilize those procedures and criteria for 
counting cell types, we must bear in mind that analysis at the protein or RNA level 
may lead us to distinguish cell types which biologists now count as the same. On the 
other hand, we might reasonably hope that any discoveries we made at the protein/ 
RNA level would lead us to multiply the number of cell types in each organism by 
some fairly constant factor. Thus refinement of criteria will alter the number of cell 
types per organism but may not alter the proportional way that number changes as 
we move from simple organisms to more complex ones. 

Simple organisms have fewer cell types than complex organisms. For example, 
yeast has three, as distinguished above. Bacteria may have two: vegetative and spore 
forms. The mold Neurospera has about five (Baldwin and Rusch 1965). By similar 
criteria, the hydra, a simple coelenterate, has 13 to 15 (Macklin 1968), as do sponges 
(Borradaile, Potts, et al. 1958). Jellyfish are more complex, with perhaps 20 to 30 cell 
types (Borradaile, Potts, et al. 1958). Annelids have about 60 cell types (Borradaile, 
Potts, et al. 1958), and~ljhum::tn~_~Qout 254JAlberts, Bray, et al. 1983). There
fore, there must be some relation between the number of genes in an organism and 
the number of its cell types. Ifit is hard to count numbers of cell types, it is also hard~ 
to count numbers of genes. The simplest way to count genes is to count total DNA I 
per cell, a not too unreasonable choice. If this approach is used, we recall that many 
plants are polyploid, having extra copies of all chromosomes. Since strains virtually (' 
identical to polyploid strains have lower ploidy, we should probably use the mini
mum diploid DNA content per cell of members of that variety of plant. The virtue 
of using DNA content per cell to measure the number of genes is that very reliable 
data are available. The vice is that much ofthe DNA appears to be noncodonic and 
may play no genetic role at all. If we adopt the alternative approach and use measures 
of the number of distinct RNA sequences transcribed into heterogeneous nuclear 
RNA, we miss the nontranscribr;(d cis-acting regulatory loci, plus possible control loci 
in RNAitself,andso on. kcr-ii"bry !"« a" >lq/.7'~'- 40",,., ,,+rlic+v,rCi..( 

In Figure 12.7, I show a graph of the number of cell types, based on histological' 
criteria, versus the total DNA content per cell, across a wide range of phyla. The data, 1. 

on a log-log plot, are quite close to linear, indicating that the correlation between 1 
amount of DNA and number of cell types is a power law. Specifically, the data sug
gest that the number of cell types in an organism is crudely proportional to the square 
root of the DNA content per cell. This means that, in evolution, adding the next cell j 

type has required ever greater amounts of DNA. Suppose instead that we consider, 
for any organism, the number of cell types versus the estimated number of different 
RNA sequences transcribed in that organism. Thus for yeast, the estimated number 
of cell types is 3 and the number of transcribed genes is 4000. In Drosophila, as in 
annelids, the number of cell types might be about 60 and the transcribed complexity 
about 17 000. In humans the number of cell types is 200 to 300 and the transcribed 
complexity is about 100 000. Thus on the basis of measured complexity of RNA 1 
sequences, the number of cell types increases roughly linearly with, or perhaps a bit 
faster than, the number of genes. It certainly does not increase much more rapidly 
than linearly. That is, the number of cell types does not increase as the number of 
genes ·squared or as an exponential function of the number of genes. Since total DNA 
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Figure 12.7 Logarithm of the number of cell types in organisms across many phyla plotted against 
the logarithm of the DNA content per cell. Plot is linear with a slope of 0.5, indicating a power-law 
relation in which the number of cell types increases as the square root of the amount of DNA per 
cell. If total number of structural and regulatory genes is assumed proportional to DNA content, then 
the number of cell types increases as a square-root function of the number of genes. Number of 
attractors refers to predictions of numbers of model cell types in model genomic regulatory systems 
having K = 2 inputs per gene. 

is an overestimate of the number of genes and transcribed complexity is an under
estimate, we might safely guess that the true relation is somewhat less than linear. 
This statement says that, in evolution, progressively more genes are required for each 
additional cell type. Although it fits the general notion that more regulatory genes are 

I needed to coordinate gene expression, this image is quite naive. It is trivial to con
struct model genetic networks in which the number of model cell types increases 

I exponentially as the number of genes increases. Exponential growth is faster than any 
power law. 

In short, it is very much a nontrivial observation, across many phyla, that the 
number of cell types increases at something like a linear or square-root function of 
the total number of genes in an organism. Obviously, we would like to know why 
that might be true. And we might begin to wonder whether a property such as this, 
splayed across many phyla, represents selection or some deeper feature of genomic 
regulatory systems. 

THE CONCEPTUAL FRAMEWORK: CELL 
DIFFERENTIATION IN BOOLEAN NETWORKS 

This third section of the chapter develops a new conceptual framework to describe, 
analyze, and think about the coordinated behavior of integrated genomic regulatory 
systems containing tens or hundreds of thousands of genes. In this section and the 
next, I reintroduce Boolean networks as models of genetic regulatory systems and 
summarize a wide range of classes, or ensembles, of such networks. Because the 
material is unfamiliar to many readers whose background is in the biological sci-
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ences I should make the motivation clear: As we discuss many of the possible classes 
of Bo~lean networks, some of which are clearly not biologically plausible, our intu
itions will become tuned to the network construction requirements that allow the 
spontaneous occurrence of the kind of orderly dynamical behavior which must 
underlie ontogeny. Indeed, such emergent order arises in model regulatory systems 
which have local structure similar to that found in real genetic regulatory systems: 
Each gene is regulated by few other genes and is governed by a canalyzing function. 

Need for an Ensemble Theory 

We have now concluded with fair conviction that, in bacteria and viruses as well as 
in eukaryotes, most genes whose regulation is established are directly controlled by 
only a few regulatory inputs and appear to be regulated by one of the canalyzing Bool
ean functions in the binary Boolean idealization. In addition, it is clear that the Bool
ean function by which one gene is regulated may differ from the function describing 
another gene's behavior. Our ultimate aim is to understand how 10 000 to perhaps 
250 000 genes and their products are organized into a coupled network by which the 
activity of each gene is orchestrated into some form of harmony with the activities 
of all the others. We ultimately want to understand, as well, how such systems evolve. 
The latter necessarily involves understanding how the behavior of genomic systems 
changes as new structural and regulatory loci evolve and as new regulatory connec
tions are made, old ones broken, and regulated genes come to respond differently to 
their regulating inputs, thereby altering the logic of the developmental program. 
Thus it shall not suffice merely to understand one such network; we shall need a the
ory about how changes in the network change its behavior. 

How can we sensibly proceed? First, of course, we can continue to work out the 
molecular mechanisms of gene regulation. Second, we can discover local, small-scale 
properties of the regulatory network, such as those described abOve. With more 
tenacity, we can discover large scale features of patches of the regulatory architecture. 
Indeed, proposals to examine regulatory cascades, both upstream and downstream, 
by cloning cis-acting loci, by identifying trans-acting components as suppressor 
mutants able to suppress in trans, and so on are now rife. It is genuinely marvelous, 
in just the proper sense of that word, that such experimental work is now feasible. 
Based on the results we have obtained at each stage in this process, however, we shall 
want to begin to frame hypotheses about the overall organization and behavior of the 
integrated system of 100 000 or so genes. Then we need to be clear about the kind of 
problem we must pose to ourselves. 

If all we know about the genomic system is some set of small-scale features-such 
as numbers of inputs per gene, use of canalyzing functions, and perhaps local patches 
of cascades and small feedback loops-then the rational way to proceed, based on 
those local features, is to study the ensemble of all large regulatory systems, each con
strained to have those local properties. That ensemble comprises, in a real sense, all 
our guesses about possible large-scale genomic systems which can be derived from 
the known local features. From this, it inevitably follows that the typical large-scale 
properties of members of the ensemble must stand as our current best guesses about 
the large-scale features we expect to find in genomic systems, based on the local fea
tures we have discovered to date and used to construct the ensemble. As stressed in 
Chapter 11, the generic features of typical members of the ensemble are the proper 
null hypothesis. In the absence of outside forces and if we have generated the correct 
ensemble given known local properties, the null hypothesis gives the expected fea-
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tures in genomic systems. Of course, the most obvious outside force is selection' we 
shall return to selection acting on genomic regulatory systems, mentioned already in 
Chapters 3 and 5, later in this chapter and in Chapter 13. 

Methodological, Epistemological, and Ontological 
Consequences of an Ensemble Approach 

~cientists tend t~ eschew philosophy. Nevertheless, the task of understanding the 
Integrated behavIOr of a genomic system in the continuing process of selection and 
drift may necessitate changing how we manage this part of biological science. First a 
methodological issue. We are not likely to analyze an entire genomic system of 
1~0 000 genes and their interacting products in detail soon. Bacteriophage lambda, 
with a few dozen genes, took many people many years of work. Manfred Eigen play
fully defines a unit of work as onePh.ILciissertation. Many such units can be 
expected to elapse before all the details are worked out. Brute force reductionism is 
likely to either fail outright or else be very slow methodologically. Therefore, I con
tend, we genuinely have no alternative to a mixed methodology, based on discover
ing local features, analyzing the corresponding ensemble of genomic systems embod
ying those known features, and attempting to use the predicted features of ensemble 
members to predict corresponding large- and small-scale features of cell differentia
tion and ontogeny. In turn, however, any use of an ensemble theory leads us inevi
tably into a new pattern ofthi.nking, for the answers which an ensemble theory can 
provide are necessarily statistical distributions. No ensemble theory can be expected 
to assert that, in fact, gene-A-regulates gene B. Therefore, we can hope to predict 
means and variances of properties-in other words, qualitative aspects of develop
ment rather than specific cases. Therefore, testing and improving an ensemble theory 
reside in testing expected distributions and, where they fail, in attempting either to 
improve the ensemble by better understanding of local and larger features or to 
understand how outside forces such as selection modify the features we see from 
those predicted by the null hypothesis. 

These methodological implications of an ensemble approach immediately carry 
epistemological implicatiQIlS. From a practical point of view, we may never be able 
'to work out the details of the genomic regulatory system in a single inbred higher 
eukaryote. Even were we to succeed, the fluidity of the genome means that the reg
ulatory system in neighboring organisms, sibling species, and so forth, are dancing 
away from us faster than we may ever be able to grasp them. The practical episte
mological problem, in short, is that we may never to able to carry out the reduction
istic dream of complete analysis but will want nevertheless to understand how these 
systems work. An ensemble theory offers hope of such understanding. To the extent 
that known local properties engender an ensemble whose typical members exhibit 
many of the properties found in differentiation and ontogeny, then to that extent 
those properties do not depend upon the details of the genomic system. Therefore, 
we can legitimately explain those properties by understanding why they are typical 
of the ensemble in question. Indeed, the typical properties of such ensembles emerge 
as the new "macroscopic" observables of this new kind of statistical mechanics. 

These same issues arise in biology at levels other than genomic regulatory systems. 
For example, we want to understand the immune system. The immune response 
depends on the integrated action of the B-cell and T-cell network, including the anti
idiotype network (Jerne 1974, 1984; Kaufman, Urbain, and Thomas 1985; Kauf
man and Thomas 1987; de Boer 1988; Hoffman, Kion, et al. 1988; Kaufman 1988; 
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Perelson 1988; Sieburg 1988). Yet the structure and logic of the immune network in 
each.organism are unique not only because the organis~'s immune repert?ire is 
genetically unique but also because the structure and lOgIc change as a functlon of 
both antigenic history and the maturation ofthe immune response. Despite the fact 
that the immune network in each organism is shifting connections and local logic 
rapidly, we need theories about the integrated behavior of such systems. Brute reduc
tionism seems likely to fail by itself: Given any immune network, we shall need to 
know how minor variations in anti-idiotype coupling and repertoire expression alter 
dynamics. Some kind of ensemble theory over classes of immune networks seems an 
inevitable necessity. Again, the generic features of such ensembles emerge as the mac
roscopic observables which can be explained by the theory. 

The epistemological issue leads to an ontological one. If membership in some /' 
ensemble of genomic systems virtually ensures some spectrum of ordered features, 
then to account for the evolutionary origin of these features, we need only account j 
for the evolutionary occurrence of the ensemble itself. Thus I shall try to show that 
membership in the ensemble of genomic systems characterized by low connectivity 
and use of canalyzing functions accounts for much of what we see in ontogeny. If so, 
we need only to account for the evolution of such classes of regulatory systems in 
order to explain the spectrum of properties. And, as hinted at repeatedly, if we can 
show that selection or drift is unable to avoid those generic properties, then they 
should be widespread in organisms by virtue of membership in a common ensemble, 
not by virtue of common descent. 

The Marriage of Self-Organization and Selection: 
Selection Sustains the Useful Ensemble 

The ontological issue points to the marriage of self-organization and selection. Selec
tion constrains the ensemble being explored in evolution. In Chapter 5, we found 
conditions for orderly dynamics; order requires the percolation of unchanging frozen 
components across the network. We found three kinds of behavior: "solid," "liquid," 
and "gas," where solid corresponds to frozen unchanging states and gas to chaotic 
dynamics. Between them is the liquid interphase, corresponding to the most intricate 
behavior in such networks, where the most complex "computations" can occur. Pre-\ 
viewing the discussion below, genomic systems appear poised in the solid regime near 
the edge of chaos, but this positioning is unlikely to be happenstance. The most plau
sible hypothesis is that selection achieves this poised state. Thus the natural marriage 
of self-organization and selection first discovers the powerful order inherent in com
plex systems in the near-liquid regimes and then appeals to selection to achieve and 
sustain membership in this ensemble. The generic properties of this useful ensemble 
emerge as the quasi-universals characterizing ontogeny. 

Boolean Regulatory Networks as Logical Skeletons 
of Genomic Regulatory Systems 

Consider again a small Boolean network comprising three on-off genes (Figure 
12.8a). I assume each gene receives regulatory inputs from the remaining two. Gene 
1 is governed by the Boolean" And" function and is activated the next moment only 
if genes 2 and 3 are active at the present moment. Genes 2 and 3 are each governed 
by the Boolean "Or" function and hence are active at the next moment if either or 
both regulatory inputs are active at the present moment (Figure 12.8a). In Figure 
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Figure 12.8 (a) The wiring diagram in a Boolean network containing three binary elements, each 
an input to the other two. One element is governed by the Boolean "And" function, the other two 
by the "Or" function. (b) The Boolean rules of (a) rewritten to show, for all 23 = 8 states of the 
network at time t, the activity assumed by each element at the next time moment t + 1. Read from 
left to right, this figure shows the successor state for each state. (c) The state transition graph, or behav
ior field, of the autonomous Boolean network of (a) and (b), obtained by showing state transitions 
along trajectories through successor states connected by arrows. This system has three state cycles. 
Two are steady states, (000) and (111); the third is a cycle with two states. Note that (111) is stable to 
all single Hamming unit perturbations-[ for example, to (110), (101), or (0 11 )-while (000) is unsta
ble to all such perturbations. (d) Consequences of changing the rule governing element 2 from "Or" 
to "And." Such mutation alters some state cycle attractors and basins of attraction leading to old 
attractors. Here (000) and (111) remain steady state attractors, (000) becomes stable to all one-unit 
perturbations, and (111) becomes unstable to all one-unit perturbations. 

12.8b, these rules are rewritten. Each of the 23 possible combinations of activities of 
the three genes corresponds to one state of the network. Each state at one time 
moment causes all the genes to assess the values of their regulatory inputs and, at a 
clocked moment, to assume the proper next activity. Thus at each moment, the sys
tem passes from one state to a unique successor state. Over a succession of moments, 
the system passes through a succession of states, called a trajectory. Figure 12.8c 
shows these trajectories. 
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The first critical point is this: Since there are a finite number of states, the system 
must reenter a state previously encountered; thereafter, since the system is determin
istic and must always pass from a state to the same successor state, the system will 
cycle repeatedly around this state cycle. Theref~re, ~ach state cycle is an att~ctor i~ 
this dynamical system, and the set of states flowmg mto one state cycle or lyt!lg on It 
constitutes the basin of attraction of that s1ll1e_Gcleattractor. The state cycle IS called 
an attractor because it "attracts" trajectories flowing from all states which lie in its 
basin of attraction. The state cycles are also the "asymptotic," or "long-term," behav
iors of the genomic system because the system ultimately reaches one state cycle and 
cycles about it forever afterward if undisturbed by outside perturbations. 

The length of a state cycle can range from 1, a steady state which transforms to 
itself, to 2N. In the latter case all the states lie on a long cycle through which the system 
passes repeatedly. 

Any such network must have at least one state cycle attractor but may have more 
than one, each draining its own basin of attraction. And, as should now be familiar, 
each state either lies on or flows into one state cycle. Hence the state cycle(s) of the 
system are its dynamical attractors, and their basins partition the state space. Figure 
12.8c shows that our three-gene system has three state cycles. Each is a discrete alter
native recurrent asymptotic pattern of gene expression in the entire model genomic 
system. Left to its own, the system eventually settles down into one of its state cycle 
attractors and remains there. 

The Central Interpretation: A Cell Type Is an Attractor 

I shall make a single central interpretation of such genomic models: A cell type cor
responds to a state cycle attractor in the dynamical behavior of the genomic system. 
The immediate question to assess is whether this interpretation is sensible. It distin
guishes between two classes of patterns of gene expression: transient and recurrent 
asymptotic. Thus among the 2100 ()()() possible patterns of gene expression among 
100 000 genes in the on-off idealization of a eukaryotic genomic system, not all 
count as cell types. Rather, only those patterns which are recurrent asymptotic 
behaviors of the genome count as cell types. Note that an immediate consequence of 
this identification is that cell types are discretely different. Attractors lie in different 
basins of attraction and do not intergrade. 

My interpretation seems reasonable on a second ground. Cell types are con
strained and apparently stable recurrent patterns of gene expression. Attractors are 
precisely the kinds of dynamical objects which have the possibility to be constrained 
because only a subset of states occurs on an attractor. Attractors are likely to be rea
sonably stable to perturbation, since each typically drains some basin of attraction. 
Thus if perturbed from some attractor into the attractor's basin, the system will 
return to the same attractor. Small attractors located inside a volume of states con- ) 
stituting their basins of attraction are the natural image of stable systems exhibiting 
homeostasis. Homeostatic return of a perturbed cell to its previous pattern of gene 
activities after many possible chemical perturbations seems likely to be a fundamen
tal property of most cell types. 

The assertion that cell types are attractors is a hypothesis, not yet an established 
fact. In a moment, I shall discuss the beginning implications of this new view. First, 
though, it is well to consider some possible concerns and objections. The first concern 
is mere unfamiliarity. Developmental biologists are perfectly familiar with genetic 
circuits and cascades of genes switching one another on and off. The puffing cascade 
in Drosophila polytene chromosomes is but one example. Much less familiar is the 
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idea ?f thinking o~ the ?eh~vior of all the genes at the same time and hence following 
~ trajectory of theIr sWItchmg on and off in a state space. This state-space description 
IS merely the most natural complete description of the trajectories of the genomic 
system, however. The transient trajectories capture transient cascades. The attractors 
capture the final regions of state space into which the genomic dynamics traps itself. 

While we are all familiar with the idea of a chemical system which might have one 
or more steady-state behaviors, we are less familiar with the idea that each such 
steady state is a point attractor draining some surrounding basin of attraction. Once 
one is comfortable with the image of all genes simultaneously changing activities, 
however, and with the image of a trajectory of states through state space, the most 
natural distinction to make is between attractors and the transient states which lie on 

f 
trajectories flowing to the attractors. The attractors-whether steady states, oscilla

,tions, or even chaotic regimes-are the only persistent behaviors of the genomic sys-

. 
tem. :rhus it is natural to identify persistent cell types with attractors rather than with 
transients. 

As noted in the introduction to this chapter, the hypothesis that cell types are 
attractors is almost forced on us in certain circumstances. For example, in an adult 
organism, many tissues are maintained by the existence of a proliferating stem cell 
population. At some divisions a stem cell may give rise to both a stem cell daughter 
and a second daughter which differentiates to a further state. Since stem-cell popu
lations persist over hundreds of cell divisions, those cell types must be persistent, 
recurring states. Similarly, many kinds of metazoan and metaphyten cells can be 
grown in vitro and maintain a characteristic persistent differentiated state which may 
or may not differ from the state in vivo. The stable persistence of such cell types over 
hundreds of divisions again almost certainly demands a recurrent stable pattern of 
gene expression-an attractor. Similar examples are found in the iQ1aginal disc tis
sues of Drosophila melanogaster, described in detail below, where larvafdisetissues 
can be cultured by serial transfer in adult abdomen over numbers of years and main
tain a cell heritable committed state which is finally expressed in terminal differen
tiation to adult cuticular structures after exposure to ecdysone (Hadorn 1966; 
Nothiger 1972; Nothiger and Gehring 1973; Gehring 1976). 

Some cell types which make their appearance during embryogenesis along 
branching pathways of differentiation may prove to be transitory. Such types might 
simply be transient trajectories flowing to an attractor. It seems more probable, how
ever, that many such transitory cell types are transitory attractors whose existence 
reflects the fact that, in real genomic systems, different molecular variables may 
change concentrations or activities on different natural time scales. Thus half-lives 

( \ 
may be long for some mRNA sequences and proteins and short for others. The exis
tence of a heterogeneity of time scales complicates the simpler picture based on syn
chronous updating in model Boolean networks. In general in such systems, the slow 
variables can be thought of as parameters to the subsystem of fast variables. The latter 
fall rapidly to their attractor(s), but the locations ofthose attractors in state space may 
either change gradually or bifurcate abruptly into two attractors as the slower vari
ables change. The importance of such a heterogeneity of times scales lies, in part, in 
understanding cellular differentiation. In the picture I shall focus on, based on syn
chronous Boolean networks, each attractor is a cell type. Differentiation then consists 
in a transition from one attractor to another caused by some external perturbation. 

( /
' In a fuller theory based on a heterogeniety of time scales, cell types along branching 

developmental pathways would sometimes be attractors of the faster variables which 
change and bifurcate into different fast-variable attractorsas slower variables change. 
Here differentiation along such branching pathways can reflect both response to 
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external inductive perturbations and gradual changes in the slow variables which are 
internal to each cell. The probable bearing of the simpler to the fuller theory is likely 
to be similarity in the number of cell types into which each cell type can differentiate. 

A further complication may arise. Suppose we find evidence that in some organ
ism's development a specific gene is in some way deleted, amplified, or rendered her
itably inactive. Then such alteration merely alters the genomic dynamical system 
and alters the behavior of the remaining genes, which are free to be active or inactive. 
The modified system still has attractors, perhaps different from those of the initial 
system. It remains natural to think of those attractors as the cell types, but now we 
must take account of the fact that an added regulatory process has switched the geno
mic regulatory system irreversibly to a modified version with new cell type attractors. 
The entire process of development, then, would need to include a theory about con~ 
trol of such irn<.versible alterations and the behavioral options open to each alterna, 
tive version of the genomic syStem in different cell lineages. Therefore, understand~ 
ing such complications as irreversible activation or inactivation of specific genes will 
require an analysis of the dynamical behavior and attractors of the remaining geno
mic system. In short, development and cell types may be more complex that the sim
plest attractors we discuss here, but the former almost certainly include the latter as 
fundamental features. 

Natural Properties of Cellular Differentiation Conceived 
Within the Framework 

Given the identification of an attractor as a cell type, we have achieved a preliminary 
conceptual framework in which a number of properties are naturally expressed: 

1. If an attractor is a cell type, then we are interested in how many~tates occur on 
the attractor; that is, how constrained is the pattern 'of gene expression per cell 
type? Are the attractors small compared with the possible 2N patterns of gene 
expression? 

2. Turning genes on and off takes time. How lo~ would it take the genomic system 
to cycle through a cell type attractor? Again, are the attractors small? 

3. If a state cycle is a cell type, then the genome contains only a certain number of 
different state cycle attractors, and these are the different cell types within the 
genomic repertoire. flow l111lo11~§ are there? 

4. If different attractors are the different cell types, llQw similar are the patterns of 
gene expression on them? Is a core of common genes active in all cell types? Do 
cell types differ in a penumbra of gene activities outside that core? 

5. If an attractor is a cell type, then how stable is that cell type if the activities of one 
or a few genes are transiently reversed as a result of chance fluctuations in the 
chemical milieu of the cell? For example, the small genomic network in Figure 
12.8 has three cell types. Note that model cell type I-that is, state cycle 1-
responds to transient reversal of the activity of any single gene by flowing to either 
state cycle 2 or state cycle 3. In other words, model cell type 1 is unstable to any 
small perturbation. Conversely, state cycle 3 is stable when the activity of anyone 
gene is reversed. After each such perturbation, the system flows back to state 
cycle 3. 

6. If an attractor is a cell type, then differentiation is passage from one attractor to 
another. This passage can occur either as a result of asymmetric distribution of 
gene products or other regulatory variables to daughter cells or as a result of exog-
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·d . ·fl /$n enous III uctlve III uences. The minimal number of genes such as inductive stim-
ulus (a hormone, say) can directly influence is one. If each gene can have its activ
ity transiently reversed by such a stimulus, J?ow ~nygi1ferentcelltypes fan one 
cell type differ~n~iate into directly? Pictorially, how many basins of attraction are 
Close to" a.-given attractor ceUijpe located inside its own basin? For example, in 
the genetic network of Figure 12.8, cell type I can differentiate directly into cell 
type 2 or cell type 3 by altering the activity of a single gene. Cell type 2 can differ
entiate into cell type I or cell type 3 by properly timed reversal of the activity of 
a single gene. Cell type 3 is irreversibly locked into remaining the same cell type 
with respect to transient reversals of anyone gene's activity. 

7. II If one cell type can differentiate directly into a subset of cell types, how many of 
the cell types in the genomic repertoire can the first type ultimately reach by 
repeated differentiation along branching pathways? Can at least one cell type 
reach all the other cell types in the genomic repertoire? Such a cell type might be 
the zygote, able to reach all other cell types by branching differentiation. If no cell 
typecanreach all other possible cell types, what might the existence of unreach-
able cell types imply about ontogeny? -

8. If the activity of a single gene is transiently altered-by a hormone signal, for 
instance-how many downstream genes alter their activities in an avalanche of 
changes? How many steps does it take for that influence to propagate? What are 
the mean and variance of these properties for genes in the network? 

9. If a single gene is deleted, a single regulatory connection altered, or a single Bool
ean rule changed, how many downstream genes, on average, alter their behaviors? 
How many cell type attractors are altered? Do some cell types literally disappear 
and become transient patterns of gene activity which flow to other preexisting 
attractors, such that the mutant causes cells to differentiate into normal cell types, 
but by an aberrant pathway? For example, in Figure 12.8d, I show the conse
quence of altering the rule regulating gene 2 from "Or" to "And." The resulting 
basins of attraction have the same cell types (I and 3), but note that now cell type 
I lies in the center of a large basin of attraction and is stable to transient reversal 
of the activity of any single gene, while cell type 3 is now unstable to any such 
perturbation. If the developing system regulated by the small genome in Figure 
12.8a were subjected to persistent occasional reversals ofthe activities of one gene 
at a time, cell type I would not be seen for long and cell type 3 would persist. The 
mutation of "Or" to "And," however, means that cell type 3 would not persist 

r and cell type I would. Thus the mutation has left cell types intact but altered path
ways of differentiation between them. 

As you may now imagine, this list only begins to frame the questions which nat
urally emerge. Naturally, as well, the answers depend critically on the particular 
ensemble of genomic regulatory systems being considered. Therefore, the next, and 
fundamental, task is to explore the expected behaviors of diverse ensembles of geno
mic systems. The aim is to understand the requirements for the natural emergence 
of ordered properties in complex regulatory systems. 

ENSEMBLES OF GENETIC REGULATORY SYSTEMS: 
GENERIC PROPERTIES 

I now turn to the task of discussing properties of genetic regulatory systems drawn 
from different ensembles. I shall do so by recalling the main points of the detailed 
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discussion of Boolean networks from Chapter 5. Recall first the major result we 
found: Random Boolean networks, parallel-processing systems which are examples 
of massively disordered systems, exhibit three main regimes of behavior-ordered, 
chaotic, and complex. 

In the ordered regime, a frozen subnetwork, or component, of genes, each gene in 
a fixed state of activity 1 or 0, spans, or percolates, across the network, leaving behind 
functionally isolated islands of genes which may twinkle on and off in complex ways 
but which cannot communicate with one another through the frozen component. 
Attractors are small, few, and stable. Alteration in the activity of single genes typically 
does not unleash a large cascade of changes in the activities of other genes. That is, 
typically damage does not propagate beyond one functionally isolated unfrozen 
island of genes. Further, mutational alteration in network structure or logic does not 
cause massive changes in dynamical behavior. 

In the chaotic regime, it is the unfrozen component of genes-those not in fixed 
states of activity-which percolates across the network, leaving behind isolated fro
zen islands of genes in fixed states of activity. In this regime, attractors lengthen expo
nentially as N increases, and alterations in the activities of one or a few genes unleash 
cascades of change, or damage, which propagate through the unfrozen component 
to very many of the genes. Hence chaotic networks exhibit sensitivity to initial con
ditions. The hallmarks of chaos in large parallel-processing networks are attractors 
whose lengths scale exponentially with the number of genes and whose cell types, 
rather than exhibiting homeostasis, show massive sensitivity to initial conditions. 

The complex regime occurs at the boundary between the ordered and the chaotic 
regime. The transition from order to chaos is, in fact, a phase transition, driven by 
alterations in control parameters such as K, the number of inputs per gene; P, the 
internal homogeneity of Boolean functions as redefined below; or alterations in the 
fraction of canalyzing functions utilized in construction of the network. The fact that 
such simple parameters can tune where networks lie on the order-complexity-chaos 
axis suggests that selection might easily determine whether genomic networks are 
ordered, complex, or chaotic. 

The phase transition occurs when the unfrozen percolating component is just 
breaking up into isolated islands separated by genes in the frozen component. 
Because unfrozen islands are large but do not percolate across the entire system, 
damage propagates on all scales in a power-law distribution, with many small and 
few large avalanches of alterations in gene activities. As we have seen, the most com-
plex internal communication and computation can be attained in the complex D 
regime. For example, mutual information (MI) is defined as the sum of entropy of 
the activity states of two genes minus their joint entropy. MI is ° if both genes are in 
fixed states or if the twinkling pattern of activity of the first gene is random with 
respect to the second gene. Hence MI is 0 deep in the ordered regime and deep in the 
chaotic regime. In the complex regime, MI is maximum, even among distantly con-
nected genes. For this and other reasons, it is plausible to think that parallel-process-
ing systems in the solid regime but near the boundary of chaos could perform the 
most complex controllable behaviors and also adapt optimally in a fixed or changing 
world. One approach to testing this hypothesis is via adaptive games played between 
Boolean networks. If networks in the solid regime near the edge of chaos adapt and 
perform best, we shall have to suppose that selection attains and maintains such 
poised systems, whose generic properties would emerge as quasi-universals in biol-
ogy. 

Chapter 5 introduced the results on Boolean networks but did not do so in the 
context of genomic regulatory systems. Since our interest here is in discussing how 



472 ORDER AND ONTOGENY 

to think about genomic systems comprising thousands of coupled genes and their 
products, it is important to reconsider diverse ensembles of Boolean networks as spe
cific models of genomic systems. I emphasize that the ensembles in the chaotic 
regime are not. in my view, biologically plausible. They are studied merely to illus
trate their typical dynamical behaviors and, by the stark contrast, to underscore the 
construction requirements for, and implications of, spontaneously ordered dynam
ics in massive genomic networks. 

K = N: The Chaotic Grand Ensemble 

Networks in which K = N, where each gene is directly regulated by all other genes, 
are the most important chaotic ensemble. This is the benchmark Grand Ensemble. 
Its importance is twofold. First, all other ensembles are specialized subensembles of 
it, obtained by constraints either on the numbers of inputs per gene or on the set of 
Boolean functions among the (2 2t possible Boolean functions of N variables. Sec
ond, the Grand Ensemble is maximally disordered. Thus any order which may 
emerge as typical in such systems is surprising and, more important, may prove very 
robust and general. Indeed, signs of order with marked biological implications 
emerge even in this most chaotic of ensembles: they have remarkably few alternative 
attractors. 

Conceive, then, of a hypothetical genome with N binary genes, each directly reg
ulated by K = N genes. In other words, each gene is directly regulated by all genes. 
There is only a single wiring diagram. To study the typical properties of members of 
this or any other ensemble, it is necessary to sample a number of members at ran
dom. Mean properties of these members identify the typical properties of the ensem
ble. Thus the way to proceed mathematically is to construct, entirely at random, a 
large number of genetic networks having K = N and then analyze their properties. 
Figure 12.9a shows an example with five genes, each with an input from all K = N 
= 5 genes. Figure 12.9b shows the random assignment ofa Boolean function to each 
of the five genes. This assignment is the equivalent of randomly assigning to each 
state its successor state. Figure 12.9c shows the single state cycle and basin of attrac
tion of this network. 

This class of maximally disordered systems, sometimes called the random-map 
model because each state of a network passes at the next moment to a randomly cho
sen, but then fixed successor state, has received increasing attention (Kauffman 1969, 
1971a, 1971b, 1974, 1984a, 1986a, 1986c; Wolfram 1983, 1984; Gelfand and 
Walker 1984; Coste and Henon 1986; Derrida and Flyvbjerg 1987b; Derrida and 
Bessis 1988). In part, the interest reflects the relative analytic simplicity of this 
extreme case. 

In K = N networks, the expected median length of state cycles is 0.5(2N/2). Thus 
median cycle lengths increase exponentially as N increases (Kauffman 1969, 1971, 
1984a, 1986a, 1986c; Wolfram 1983, 1984; Gelfand and Walker 1984; Coste and 
Henon 1986). The implication is striking. In a model genetic system containing only 
200 binary genes, the expected state cycle length is 2100 = 1030. Suppose genes turn 
on and off in a microsecond. then traversing the state cycle would require 1024 sec
onds, or 3.17 X 1016 years. The estimated age of the universe is only on the order of 
14 X 109 years. Thus, since time began, the tiny system of 200 binary genes would 
have covered only one-millionth of the traverse around its attractor. This is enough 
to make a galaxy seem friendly, but consider these hyperastromical numbers in the 
context of realistic cell biology. Attractors are the natural candidates to think about 



T T+I 

A B C o E A BCD E 

0 0 0 0 0 I I I I 0 
0 0 0 0 I 0 0 I 0 I 
0 0 0 I 0 0 I I I 0 
0 0 I 0 0 I I 0 0 0 
0 0 I 0 I 0 I 0 I I 
0 0 I I 0 I 0 I 0 0 
0 0 I I I 0 I 0 0 I 
0 I 0 0 0 I I I 0 I 
0 I 0 0 I 0 0 0 0 0 
0 I 0 I 0 0 I 0 0 I 
0 I 0 I I I I I 0 I 

0 I I C 0 0 I I 0 I 
0 I I 0 I I I I 0 I 
0 I I I 0 0 I I 0 0 
0 I I I I I 0 0 0 I 

0 0 0 0 I 0 0 I 0 
0 0 0 I I 0 0 I I 
0 0 I 0 0 I 0 0 0 
0 0 I I 0 0 0 I 0 
0 I 0 0 I 0 I 0 I 
0 I 0 I 0 0 I I I 
0 I I 0 0 0 I I I 
0 I I I 0 I I 0 0 

a I 0 0 0 0 0 I 0 I 
I 0 0 I 0 0 0 I 0 
I 0 I 0 0 I 0 0 I 
I 0 I I I I I 0 I 
I I 0 0 0 I 0 I 0 
I I 0 I I 0 I 0 0 
I I I 0 0 0 0 I I 
I I I I 0 0 I I 0 

b 

(11001)~(10001)~(11110) 

( 11101) 

~ ~ (00111) 

~ (00110)~(01110)~(01000) 

~ 

I (10011) 
(01010) 

(10111)+0--(00010) C (11000) +--(01111)~(00000) 

I " '(01001)~(00001) 
(11011) ~ 

(11010) ~ (10100) ~ (10000) 

t 
(00011)~(00100) 

c 
Figure 12.9 (a) Wiring diagram for a network containing K = N = 5 genes, each receiving regu
latory inputs from all five. (b) A different random Boolean function of K = 5 variables is assigned to 
each gene. (c) State transition diagram of the network leading to a single state cycle. 
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as model cell types. Thus the time scale for traversing an attractor becomes impor
tant. N~tural cell time sca!es, such as th~ <z.ll cy~, are-on t~e order of hours. A micro
second IS a vast underestImate of the tIme reqUired to acttvate a gene or replicate a 
replicon. Nevertheless, the resulting time scale to explore an attractor is very much 
longer than the possible history oflife. Clearly, K = N networks, deep in the chaotic 
regime, are very poor candidate models of real genomic systems. 

Despite their massive chaotic behavior, K = N networks exhibit striking order in 
one respect: The number of attractors is only N/e (where e is the natural logarithm 
base) and thus a linear function of the number of genes. A tiny genome containing 
200 genes might take eons to traverse an attractor but would have only about 74 
attractors. A system containing 1000 binary genes would have a state space of 21000, 

or 10300, but only 370 attractors (Rubin and Sitgreave 1954; Kauffman 1969, 1984a, 
1986a, 1986c, 1986d; Derrida 1987a, 1987b; Derrida and Flyvbjerg 1987b; Derrida 
and Bessis 1988). Within one system, however, the basin sizes of these attractors dif
fer sharply. A few drain huge basins of attraction, the rest typically lie in tiny basins. 

This result should immediately strike a chord. We have seen that, as a maximum 
estimate, the number of cell types in organisms increases linearly as the number of 
genes increases. If we wish to think of an attractor as a cell type, then even in these 
maximally disordered systems we have already found the emergence of unexpected 
order. Even these maximally disordered systems begin to yield a scaling law that pre
dict the relation between genomic complexity and numbers of cell types across phyla 
in evolution. We shall see that this slow increase in number of attractors as N 
increases is a very robust property, holding for K < Nand reaching a minimum for 
K = 2, where the number of attractors increases as 'iN . 

In K = N networks, alterations in the activity of any single gene propagate changes 
to most other genes. A mathematically more precise statement of this property is 
that, as the number of genes in the system increases toward infinity, changes propa
gate to a finite and roughly fixed fraction of the genes. This sensitivity to changes in 
initial conditions reflects the fact that no frozen component percolates across the sys
tem. Avalanches of changes propagate widely through the enormous unfrozen com
ponent. This property, too, is very unlike the biologically observed cascades of alter
ations in gene activities unleased when the activity of some single gene is altered by 
a hormonal signal. In reality, typically a small fraction of genes alter their behaviors. 

In K = N networks, attractors are unstable to minimal perturbation. Thus unlike 
real cells and genomic systems, homeostasis is absent in K = N networks. Further, 
each attractor can differentiate into all other attractors by single minimal perturba
tions. This point is easy to understand qualitatively. Since the successor to each state 
is chosen at random from among the set of 2N states, neighboring states along trajec
tories show no similarities in patterns of gene expression. It follows immediately that, 
if the system is perturbed off its present state cycle attractor by the transient reversal 
of the activity of any gene chosen at random, the probability that the perturbed state 
returns to the perturbed cycle is simply proportional to the relative size of the basin 
of attraction of that attractor. Further, the probability that the perturbed state flows, 
or differentiates, to any other attractor is proportional to the size of the other basin. 
Consequently, considering all possible ways any single gene can have its activity tran
siently reversed on each state of each state cycle, we expect that each attractor has 
low stability and can differentiate directly into every other attractor. In short, each 
attractor is next to every basin of attraction in the sense that reversing the activity of 
some gene at some point on its cycle causes the system to jump into each of the pos
sible basins of attraction. This property, too, clearly does not occur in real cells, how-
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ever. In the ontogeny of all metazoans and metaphytens, any cell type differentiates 
directly to only a few other cell types. This deep property of ontogeny is not found in 
chaotic networks. 

Networks in which K = N "live in" uncorrelated adaptive landscapes. Deletion 
of any gene in such a network or, equally, considering it to be constitutively inactive 
changes the successor state assigned to fully half the 2N states and causes havoc with 
all attractors. Randomly changing the Boolean function assigned to any gene to one 
of the (22t other Boolean functions will equivalently alter half the successor state 
assignments and almost completely rearrange the dynamical attractors. We shall 
return in Chapter 13 to consider the adaptive capacities of genomic regulatory sys
tems. We can presage that discussion here by noting that, if we consider attractors as 
cell types and then model cell-type evolution by either deletion of mutants or alter
ations of the Boolean rules assigned to genes, then we shall not be surprised to find 
that profoundly chaotic K = N networks have nearly uncorrelated fitness landscapes 
with respect to such mutations. 

Chaos in K = N Boolean Networks 
of High Internal Homogeneity 

The first specialization from fully random K = N networks is meant to explore the 
obvious intuition that increasing convergence in state spaces might suffice to achieve 
short, orderly attractors. However, this intuition is wrong. We have just seen that 
fully random K = N networks have only N/e attractors (Kauffman 1969, 1984a, 
1986a, 1986c, 1986d) but that cycle lengths increase exponentially in N and equal 
the square root of the total number of states, 2N/2. Obviously, to be remotely reason
able models of genomic regulatory systems, attractor lengths, which reflect how con
strained a pattern of gene activity is on a cell type, must be very much smaller than 
this number. 

Recall from Chapter 5, where its implications for network behavior were dis
cussed, that the internal homogeniety P of a Boolean function is defined as the devi
ation of the fraction of 1 values or of 0 values from 50 percent of the 2K states (Gel
fand and Walker 1984). For example, a Boolean function with an internal 
homogeneity of 0.8 has either 80 percent 1 values and 20 percent 0 values or 80 per
cent 0 values and 20 percent I values in the 2K positions specifying the Boolean func
tion (Figure 12.10). 

In K = N networks, increasing P markedly increases convergence in state space 
and decrease state cycle length. However, the expected median state cycle length still 
increases exponentially as N increases (Kauffman 1984a): 

N 

Expected median cycle length = 0.5 (~) (12.1) 

Let B = I/VP; then, since B > I, cycle lengths increase as 0.5BN. Thus, according 
to these results for expected median cycle length, even K = N networks with fixed 
high P remain chaotic and do not exhibit biologically short and plausible state cycle 
attractors. If P = 0.8, a small genomic system comprising only 200 genes would have 
state cycles requiring 4.9 billion years to traverse at a microsecond per state transi
tion. 

The critical implication here is that no fixed P alone suffices to ensure that state 
cycles remain small as K = N grows large. Here I shall mean by "small" that state 
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Figure 12.10 (a) Wiring diagram for a network containing K = N = 4 genes, each receiving reg
ulatory inputs from all four. (b) Biased Boolean functions in which the probability ofa 1 response is 
nearly 0.8 and the probability ofa 0 response is nearly 0.2. (c) State transition diagram ofthe K = N 
= 4 network leading to a state cycle length 1 in which the central state ( 1111) transforms to itself. 

cycles do not grow faster than, say, linearly as N increases. Exponential growth is 
explosively faster than linear growth as N becomes large. Convergence due to fixed 
P alone is not sufficient principle of order as Nand K increase. 

Boolean networks with K ~ 5 and randomly chosen Boolean functions remain 
in the chaotic regime. They have attractors whose lengths increase exponentially as 
N increases and exhibit sensitivity to initial conditions. The mean-field argument on 
which these analytic results depend (Chapter 5) are based on PK, the mean value of 
P, for Boolean functions of K inputs: 
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The value of PK is a maximum for K = 2 and falls thereafter. For K 2:: 5, the mean
field assumption is reasonable and implies that, for fixed K, attractors increase expo
nentially as N increases. Expected median cycle lengths as a function of PK is found 
by substitution into Equation 12.1. 

The important result is this: Genetic networks having a modestly high number of 
inputs per gene, say K 2:: 5, and randomly chosen Boolean functions remain in the 
chaotic regime. They have state cycle attractors whose lengths increase exponentially 
as N increases and show sensitivity to initial conditions in the form of very large ava
lanches of change which propagates throughout the network. For these chaotic net
works, the cycle lengths increase far too fast as N increases for such attractors to be 
plausible models of cell types. 

While state cycles are long for K > 4, disordered networks have few attractors, 
and K = N fully random genomic systems have only N/ e distinct attractors. Recent 
analytic results strongly indicate that, for N 2:: K> 4, the number of attractors is at 
most a linear function of N and increases to N/ e as K approaches N. Letting a = P K 

- Y2 (that is, a represents the deviation of the mean internal homogeneity above 0.5), 
Coste (reported in Kauffman 1986d) was able to obtain bounds on the number of 
attractor cycles: 

log-- log ----

( 1) ( 1) 
N ~2 + a ,,; number of cycles,,; N ~2 - a 

Since the number of cell types in organisms is between a linear function and a 
square-root function ofthe number of genes, chaotic genomic systems are reasonable 
biological models with respect to predicting number of cell types as a function of 
genomic complexity. 

On the basis of the time needed to traverse chaotic attractors, the major instability 
of chaotic attractors in lack of homeostasis, and the high ruggedness of the fitness 
landscapes on which systems must evolve, we can tentatively conclude that real geno-II 
mic systems are very unlikely to lie in the chaotic regime. Hence if genomic regula- I 

tory systems do in fact have high mean connectivity, the kinds of Boolean functions 
present in the systems must be constrained in order that the systems have small . 
attractors which might be plausible models of cell types. Two reasonable candidate 
biases are (1) sufficiently high values of P relative to K and N to ensure a phase tran
sition to the ordered regime and (2) use of a high enough fraction of canalyzing func
tions to ensure a phase transition to the ordered regime in genomic systems. 

Sufficiently High Internal Homogeneity in the Boolean 
Functions in Boolean Networks Yields a Frozen Component 
and Dynamical Order 

Random networks with K = 5 or a similar modest number of inputs per gene and 
no constraint on the Boolean functions used lead to chaotic systems which have 
exponentially long state cycles as N increases, as just seen. It is therefore very impor
tant that, in large networks in which K remains reasonably small-between 4 and 
20, for example-sufficiently high internal internal homogeneity P leads to Boolean 
networks having small attractors and stable dynamical behavior. 

Recall the discussion in Chapter 5 of Po. a critical value of P above which the phase 
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transition to order takes place. Derrida and Weisbuch (1986) studied how altering P 
affected behavior networks which were regular lattices in which each binary element 
was influenced by its four or six immediate neighbors according to a biased Boolean 
function. They discovered the critical Pc value such that, for P > Pc, there arises in 
the lattice a large frozen component in which many binary elements become fixed 
either in the 1 state or in the 0 state. 

In the ordered regime, as a result of the presence of such a frozen component. the 
lengths of state cycles increase less than linearly with respect to the number of cle
ments in the lattice. Because such attractors are very small and homeostatically stahle 
to perturbations, such systems exhibit dynamical order. 

Frozen components are a precondition for the occurrence of short state cycles in 
large Boolean networks. When networks lack frozen components, chaotic dynamics. 
in the sense defined, ensues. Frozen components arise by at least two means: by per
colation of fixed states due to sufficiently high P (> Pc) in the Boolean functions rel
ative to the number of inputs to each site and by the formation of forcing structures 
built from canalyzing Boolean functions, as emphasized later in this chapter. I shall 
suggest that cells exhibit orderly behavior as a result of the formation offorcing struc
tures whose genes fall to fixed activities. 

These results raise the possibility that orderly dynamics in cells may arise as a 
result of Boolean functions in genomic regulatory systems which have P > Pc rather 
than as a result of any constraint to canalyzing functions. Testing this possibility 
would require, in part, discriminating whether, in the Boolean idealization, regulated 
genes are typically governed by high-P Boolean functions or by canalyzing Boolean 
functions. Among the Boolean functions of few inputs, there is a marked overlap 
between these two classes offunctions. The canalyzing "Or" function is also one with 
high internal homogeneity: P = 0.75. The overlap between these two classes of Boo 1-
ean functions dwindles as K increases (Gelfand and Walker 1984; Stauffer 1978b). 
Thus as the control rules governing genes with modest numbers of regulatory inputs 

. become known, it will become possible to discriminate between these hypotheses. 

\
. Since the evidence does not discriminate and does support the claim that genetic sys
tems are rich in canalyzing Boolean functions, I shall continue to base our discussion 
on the generalization that real genetic networks are built of genes regulated by can-
alyzing functions in the Boolean idealization. The biological implications of genomic 
order due to percolations of frozen components from P > Pc or forcing structures 
are similar in many but not all respects. 

K = 2 and Canalyzing Ensembles of Genomic Systems: 
The Crystallization of Order 

Massively disordered networks having random connections and logic among their N 
elements crystallize order under the simple constraint that K = 2. So too do networks 
which have a larger number of inputs per gene but are constrained to the canalyzing 
functions (Kauffman 1969, 1971a, 1971b, (974). As noted on page 198, a number 
of workers have studied these systems. 

Three major approaches to this problem were discussed in Chapter 5, but here I 
shall merely redescribe the numerical studies which detail the emergent order. 
Numerical simulations of randomly chosen members ofthe ensemble of K = 2 input 
networks in which the number of binary genes N ranges up to 10,000 have been car
ried out (Kauffman, 1969, 1971a, 1971b, 1974, 1984a, 1986a, 1986c, 1986d). The 
following are the dominant results: 
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1. The expected median state cycle length is v'N. That is, the number of states on 
an attractor scales as the square root of the number of genes. A 10 OOO-gene 
genomic regulatory system which is utterly random within the constraint that 
each gene is regulated by only two genes would ther~ore have a st~e space of 
2 10 000 = 103000 but settle down and cycle recurrently among a mere 10 000 = 
100 states. Thus in contrast to genomic networks having K > 4, where cycle 
lengths increase exponentially in N and rapidly become hyperastronomical, ran
domly assembled genomic systems having K = 2 spontaneously confine their 
dynamical behavior to truly tiny subvolumes of their state space. A system of 
10 000 genes which localizes its dynamical behavior to 100 states has restricted 
itselfto 10-2998 parts of its state space. 

2. The distribution about this median is skewed. Most networks have short state 
cycles, while a few have very long ones. If replotted as the logarithm of cycle 
length, the distribution remains skewed rather than becoming a familiar bell
shaped Gaussian distribution. 

3. The number of state cycle attractors is also about v'N. Therefore, a 10 OOO-gene 
system would be expected to have on the order of 100 alternative attractors. A 
100 OOO-gene system would have about 317 alternative asymptotic at1ractors. 
Then a genomic system containing 100 000 genes would flow to about 317 state 
cycle attractors, each having about 317 states. 

4. If the stability of each state cycle attractor is probed by transiently reversing the [; J('1 
activity of each gene on each state of the state cycle, then, for 80 to 90 percent of ~ 

t1 R Vlf' ,J 
all such perturbations, the system flows back to the same state cycle. Thus state J 

cycles are inherently stable to most minimal transient perturbations. 

5. When it flows back to the same state cycle, the perturbed system typically reaches 
that state on the state cycle which it would have reached in the same time interval 
had the system not been perturbed. Thus if one thinks of position around a state cin.Yll f..., 
cycle as carrying phase information, the system tends to return to the same cycle /'- ~ J 
after perturbation and maintain phase. ., • .j.. ~ 1/ 

6. For perhaps 10 to 20 percent of the minimal perturbations (transiently reversing ,_ r 
the activity ofa single gene), the system leaves the state cycle from which it was 0 
perturbed and flows to another. 

7. By such perturbation or signal-induced transitions, each state cycle can directly 
change to only a small number of other state cycle attractors in the system. Thus 
if the system has 100 000 genes and 317 alternative attractors, typically each can 
be triggered to flow to only a few of the 317 whenever the activity of any single 
gene is altered. It follows that many of the 10 to 20 percent of the perturbations 
which cause the system to change from attractor A induce change to the same 
neighboring attractor B. In short, a variety of stimuli acting on different genes in 
the system induce the same specific response. 

S. A large fraction of the N genes, typically 70 percent or more, fall to either a fixed 
active or a fixed inactive state, and that state is identical on all the alternative 
attractors of the genomic system. 

9. The mean difference in patterns of gene activity on different attractors is a few 
percent. 

10. Transient alternation of the activity of a single gene typically propagates and 
causes alterations in the activity of a small fraction of the total number of genes 
in the system. 



480 ORDER AND ONTOGENY 

II. Deleting any gene or altering its Boolean function typically causes only modest 
changes in attractors and transients. 

The high order seen in random K = 2 networks extends to networks having more 
than two inputs per gene, provided the rules controlling behavior, in the Boolean 
idealization, are confined to canalyzing functions. Further, the constraint to syn
chronous updating of gene activities can be relaxed; order persists in networks in 
which the timing of the changes of activities of the different genes is asynchronous 
(Thomas 1979; Fogelman-Soulie 1984, 1985a, 1985b). This is of central importance: 
Real genomic systems are limited neither to K = 2 inputs norto simultaneous updat
ing of the activities of all genes in the genome. Thus the fact that the order found in 
K = 2 networks extends to a far wider class of systems, those lying in the ordered 
regime, means that we can attempt to account for the order in organisms on the basis 
of the two observed local properties of genomic systems: few inputs per gene and a 
preponderance of canalyzing functions. 

Genomic Systems in Which K = 1: Harbingers of Genetic 
Subcircuits in Functionally Isolated Islands 

Genomic systems in the ordered regime having a modest number of inputs per gene 
limited to canalyzing functions shall emerge as our central interest. Because the 
genetic subcircuits within the functionally isolated islands of such canalyzing net
works are similar to K = I networks, it is particularly important to analyze this sim
plest set of networks. 

Consider a simple system containing N genes, each regulated by one gene. This 
constraint means that the wiring-diagram structure of such a network must fall into 
feedback control loops and descendant tails. Such tails may hang off the loops, since 
we have allowed one gene to regulate more than one gene. However, since no gene 
can have more than one regulatory input, loops cannot be interconnected. Since con
nections are made at random, the wiring diagram of K = I networks has the same 
statistics as the state transition diagrams of random K = N networks, with nodes 
interpreted as genes rather than states and the direction of arrows representing state 
transitions reversed. This interpretation yields loops with descendent tails of regu
lated genes. In K = N networks, the length of state cycles is of order square root of 
the number of states 2N. Similarly, in K = I random networks, the lengths of the 
wiring-diagram loops are on order square root of the number of elements N. Jaffe 
(1988) has shown that the total number of genes lying on feedback loops scales 
roughly as v;;2 VN . 

There are four Boolean functions of one input: "Yes," "No," "Tautology," and 
"Contradiction." If each gene is assigned one of these four at random, the conse
quences are quite trivial. "Yes" means that the input activates the regulated gene. 
"No" means that the input inhibits the regulated gene. Any gene assigned "Tautol
ogy" is constitutively active, regardless of the activity of its regulatory input. Those 
assigned "Contradiction" are permanently inactive. Each such fixed gene fixes the 
activities of those genes downstream of it governed by "Yes" or "No" until the next 
fixed gene is encountered. Thus if at least one gene per feedback loop is constitutively 
either active or inactive, that loop falls to a fixed state, as does its hanging tails. 

To make the system more interesting and applicable to the functionally isolated 
islands in more realistic genomic systems, let us require that only the Boolean "Yes" 
and "No" functions are used. Then each gene either copies the activity of its regu
latory predecessor or reverses that activity. Here is the simple result. Any feedback 
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loop must have either an even or an odd number of "No" Boolean functions. If the 
loop has an odd number, it must oscillate; it has no steady states of gene activities. If 
the loop has an even number, it has exactly two steady-state patterns of gene activity. 
Loops with even numbers of "No" functions can, however, oscillate through a state 
cycle. It is easy to show in general that the number of ways a loop of length L can 
oscillate is given by the factors of 2L (Holland 1960: Kauffman 1971 a, 1971 b). More 
recently, K = 1 networks have been analyzed by Flyvberg and Kjaer (1988) and Jaffe 
(1988). In particular, Jaffe shows that the number of attractors in K = 1 networks 
which do not use "Tautology" and "Contradiction" is an exponential function in N, 
while cycle length increases slowly (Table 5.1). 

Genomic systems in which K = 1 exhibit "combinatorial" attractors. A similar 
combinatorial character also arises from the joint activity combinations of function
ally isolated islands in Boolean networks in the ordered regime. Since K = 1 net
works fall apart into separate wiring-diagram loops, each of which may have descen
dent tails of genes, it is obvious that the different unconnected loops must behave 
ind~ of one another. Therefore, if each loop by itself has some number of 
dil'fefent attractors-say, two steady states, or I modes of oscillation-then the num
ber of alternative attractors of the entire network is given by the product of the 1\ 
attractors ofthe first loop times the 12 attractors of the second loop, and so forth. This 
is our first introduction to a property which shall become increasingly important. It 
shows that, for K = 1 networks, any attractor of the entire network can be thought '1 
of as being made up of a specific combination reflecting the choice of one among the 
1\ alternatives for the first loop, one among the 12 choices for the second loop, and 
so on. Then, if we want to think of a cell type as an attractor of the genomic system, 
it follows that K = 1 networks naturally have the property that each cell type can be 
described in a kind of combinatorial epigenetic code. The network has a specific num
ber of genetic decision-taking "circuits," the different independent feedback loops. 
Each can make It. 12, ••• alternative choices, which can be thought of as numbered 
from 1 to 1\ for the first loop, 1 to 12 for the second loop, and so on. Then each cell 
type is an attractor in this code, reflecting the combination of choices made by each 
decision-taking loop. Remember the Cl-cro feedback loop in lambda with the 
immunity + and immunity - alternative steady states. A genomic system with ten 
such loops would have 210 = 1024 cell types, each reflecting a specific combination 
of choices by the ten decision loops. We shall see below that such combinatorial 
behavior almost certainly occurs in metazoan ontogeny. Since real genomic systems) 
have more than K = 1 input per gene, however, we shall find combinatorial behavior 
arising from the combinations of activities of functionally isolated islands. 

Not all networks which contain multiple attractors have combinatorial attractors. 
For example, genomic networks with K = N have N/ e alternative attractors. It will 
by now be obvious to the reader, however, that these attractors are not due to the 
combinatorial behavior of unconnected and independent subsystems. Rather, they 
are basins of attraction which occur in systems of the highest possible wiring-diagram 
interconnectivity. 

With this background about the behavior of diverse ensembles of model systems, 
we can now turn to genomic systems that are based on known local properties. 

IMPLICATIONS FOR ONTOGENY 

We have now examined different ensembles of model genetic regulatory systems as 
a preface to asking whether any such ensemble might exhibit spontaneous order 
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which accounts for aspects of the order seen in cellular differentiation and ontogeny 
among real organisms. Known genomic regulatory systems are graced by two local 
features: 

1. Most genes are directly regulated by few other molecular variables. 

2. Within the Boolean idealization, most genes are regulated by canalyzing Boolean 
functions. 

Such constraints appear sufficient to specify an entire ensemble of model genomic 
systems whose typical members lie in the ordered regime. It would simply be foolish 
not to entertain the hypothesis that the ordered properties spontaneously present in 
this ensemble may bear on the ordered properties found in cell differentiation and 
ontogeny. In this section, we examine the match between theory and fact. 

State Cycle Attractors as Cell Types 

I introduced above the central interpretation I shall make: A cell type is an attractor 
of the genomic regulatory system. Whether we are thinking of Boolean models of 
genomic systems or of later, more sophisticated models; this identification distin
guishes between transient patterns of gene expression lying on trajectories which con
verge to dynamical attractors and patterns of gene expression which are "on" the 
attractor. In a loose picture, if you will, cell types are the stable, recurrent patterns of 
gene expression in the dynamical flow driven by the couplings among genes and their 
products. In the Boolean network models, then, the natural identity is that a state 
cycle attractor is a cell type. The immediate consequence is that the patterns of gene 
expression corresponding to one cell type are constrained to those which constitute 
the recurrent cyclic pattern. On the other hand, as we have seen, the attractors for K 
= N networks have on the order of 2N/2 states each. For even 100 genes, a cell type is 
localized to only 250 = 1015 patterns of gene expression. Even for K = 5, or perhaps 
K = 3, length of state cycle attractors increases exponentially as N increases. In con
trast, for K = 2 and canalyzing Boolean networks, state cycle attractors are on the 
order of only VN in length. Thus a genomic system having as many as 100 000 genes 
would localize its patterns of expression to 317 states through which it cycled repeat
edly. A set of 100 000 genes is big enough to be a reasonable and serious model of a 
genome; a set of 317 patterns of gene expression is small enough to be biologically 
completely reasonable for a cell type. Thus K = 2 and canalyzing networks exhibit 
adequate order in this respect without selection. 

How restricted is the pattern of gene expression in one cell type? The best available 
data which bear on this question examine, via two-dimensional gel electrophoresis, 
the patterns of protein synthesis for many hundreds of proteins simultaneously, in 
cell populations which are synchronized in the mitotic cycle. The general observation 
is that the synthesis rate is constant throughout the cell cycle for almost all the hun
dreds of proteins and waxes and wanes for a few percent of them. Thus, based on 
these data, a cell type is a very constrained pattern of gene expression. It should be 
borne in a skeptic's mind, however, that the variability in patterns of gene or protein 
expression in one cell type over its cycle might be substantially higher. Data from 
two-dimensional gels-indeed, most similar data-average over the behavior of mil
lions of individual cells. If transcription or translation were twinkling on and off, or 
up and down, in complex temporal oscillations over short intervals, so that the dif
ferent cells were not doing exactly the same dance, then data averaged over many 
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such cells would smooth out that variability. In short, on a microlevel, within one ) 
nucleus or cell, the patterns of gene expression or protein translation may well cycle . 
through a set larger than what we can currently detect. 

The identification of a cell type as an attractor raises a fundamental issue: Are cell 
types really attractors? That is, if we could reach into a cell and at any moment arbi
trarily switch on or switch off the activity of any single gene, or modulate translation 
of its mRNA, and so forth, would we find that the system typically returned to the 
recurrent pattern of expression experienced prior to the perturbation? The answer is 
that we do not know. The supposition appears absolutely reasonable, since cell types 
must be stable to a variety of biochemical fluctuations in their microenvironments, 
but the direct experimental proof is, to my knowledge, currently lacking. How might 
we obtain such evidence? As mentioned in the preceding chapter, it is now feasible 
to clone any cellular gene adjacent to an arbitrary controllable promoter and to intro
duce that construction into living cells. Thus it is possible to switch on or off the 
cloned gene at arbitrary moments in synchronized cell populations. If the cell's own 
copies of the gene remain present but inactive, then the exogenously introduced copy 
can be activated at will, and the cascading consequences upon other genes studied at 
the levels of transcription, translation, and beyond. Two-dimensional gel analysis 
is currently good enough to indicate how often such a perturbation relaxes 
back to the previously observed pattern. And if a transition occurs to another 
recurrent pattern, does that pattern correspond to a known cell type pattern of gene 
expression? 

Similarly, injection of complementary RNA which hybridizes to the mRNA of a 
specific gene can, in principle, block expression of the gene, allowing study of the 
cascading consequences. Does the pattern return to that perturbed? Does the system 
flow to another normal pattern of expression? to some new pattern? I should stress 
that the theory we are discussing suggests that cell types are attractors that are stable 
to most but not all perturbations in which the activities of any single gene are altered. 
Were a cell type stable to all such perturbations, then inducing differentiation from 
one cell type attractor to another by single hormonal signals to some specific sensitive 
gene would be impossible. 

Interestingly, although direct data do not yet firmly show that a cell type is an 
attractor, aspects of phase resetting in the cell cycle do suggest that the mitotic cycle 
is an attractor. We discuss this briefly next. 

Expected Cell-Cycle Times 

The expected state-cycle length for a K = 2 or canalyzing synchronous switching 
Boolean network is on the order of \IN . Thus, as noted, the recurrence time for a 
given state of gene activity is 100 for a genome of 10 000 and only 317 for a 100 000-
gene genome. This length does not change dramatically for asynchronous models, as 
just noted. Turning transcription or translation on or off requires time. For example, 
the time may be on the order of a few minutes in bacteria and on the order of a few 
tens of minutes in eukaryotes. Therefore, in a eukaryote cycling through 100 patterns 
of gene expression, the expected recurrence time is on the order of 1000 minutes, or 
16.6 hours. The first implication of the hypothesis that genomic networks lie in the 
ordered regime, then, is that cells can traverse their attractors in biologically reason
able lengths of time. Doing so, given that genomic systems have the established local 
features of low connectivity and canalyzing functions, requires no selection per se 
and is a self-organized property of this class of genomic regulatory systems. If cell 
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types are attractors, those attractors must be small enough to allow the attractors to 
be traversed on a short time scale. 

The most obvious cycling process in cells is the mitotic cycle. Therefore, let us ask 
if we can use the distribution of state-cycle lengths for each size network, plus the 
change in that distribution as network size increases, to predict anything about the 

" 

known distribution of mitotic-cycle times in organisms. Figure 12.11 shows, as a 
function of DNA content per cell, the distribution of mitotic-cycle times for organ
isms ranging from bacteria to mammals, for a diversity of cell types within each 
organism and under a broad range of conditions. The distribution of state-cycle 
lengths for networks containing 200 genes is shown, along with the square-root rela
tion of state-cycle length to numbers of binary genes. A surprising number offeatures 

I are parallel. First, the time scale, on the order of hours, is correct. It surely need not 
have been. Second, median mitotic time does increase as a square-root function of 
the DNA content per cell across this wide range of phyla. Third, even in a logarithmic 
plot for cycle time, both Boolean networks of the same size and cells of the same 

I genomic complexity show a similarly skewed distribution, with the bulk of the cases 
, having short cycle times and a few scattered examples having very long cycle times. 

The observed time scale of cell division (hours to tens of hours), the observed rela-
tion across phyla between genomic complexity and cell-division time, and the 
skewed distribution about the mean cycle time at each level of genomic complexity 
are basic features of cellular life. The ensemble theory of the distribution of cycle 
times in complex Boolean networks in the ordered regime fits the observed distri
butions. It would be premature to conclude that the theory accounted for the phe
nomena but even more premature to dismiss the theory. Indeed, at present, this 

\ approach is the only one able to predict the observed distributions. Other models, 
discussed next, consider in more detail the control of the mitotic cycle but do not 
bear on the distribution of cycle times across phyla. 

The oscillatory-network view is broadly consistent with, and can unite, much of 
the extant work done on the mitotic cycle. The cycle is typically analyzed in four 
periods: mitosis, the G I period between mitosis and the onset of DNA replication, 
the S period of DNA replication, and a subsequent G2 period leading to mitosis. 
There are three dominant lines of thought on control of mitotic time: 

1. A G I interval of indeterrninant length which leads stochastically into fixed S, G2, 
and mitosis intervals. 

2. A model of the mitotic cycle based on a collection of mutations which block cells 
in particular phases of the mitotic cycle. The best work has been carried out in 
years (Hartwell, Culotti, et al. 1974). The initial naive picture of the mitotic cycle 
was that of a simple cyclic sequence of events, each necessary and sufficient for 
the occurrence of the next. Then a mutant blocking one event would collect all 
cells at that stage of the cycle. The situation is more complex, however. There exist 
in yeast mutants which block DNA replication but allow rhythmic rounds of bud
ding to continue. Conversely, mutants which block budding but allow rhythmic 
rounds of DNA synthesis exist. Evidently, the cyclic causal hoop of events is a 
multiplexed web which has more than one cyclic pathway through it. 

3. A mitotic cycle governed by a central clock which is a limit-cycle oscillator, with 
a threshold concentration of one or more dynamical variables of the limit cycle 
needed to trigger downstream mitotic events (Kauffman and Wille 1975; 
Shymko, Klevecz, and Kauffman 1984). Limit cycles are attractors describing sta
ble oscillations (Winfree 1980, 1987). If perturbed off the limit cycle, the oscilla-
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Figure 12.11 Logarithm of cell replication time versus logarithm of the estimated number of genes per cell 
(assumed proportional to DNA content per cell). Solid line through biological data connects the median rep
lication times. Data from Boolean networks containing 1024 model genes show distribution of state cycle 
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Median state cycle lengths in Boolean networks with K = 2 inputs for different network sizes are shown, using 
all Boolean functions of two inputs and using all but "Tautology" and "Contradiction." (From Kauffman 
1969) 
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tory system returns to the limit cycle but may do so at a perturbed phase. Thus 
for any limit cycle, one can derive a mapping which shows the new phase attained 
as a function of the phase the system was at prior to perturbation, and the intensity 
of the perturbation. Such a mapping is a phase-resetting curve (Winfree 1980, 
1987). One virtue of a limit-cycle model is its capacity to account for observed 
phase-resetting behaviors when cells are subjected to temperature and other per
turbations, which are thought of as transiently driving the dynamical system off 
the limit cycle (Kauffman and Wille 1975; Willie, Scheffey, and Kauffman 1977; 
Shymko, Klevecz, and Kauffman 1984). The position regained on the limit cycle 
relative to where the system would have been measures the phase resetting due to 
the perturbation. Limit cycles in continuous state spaces, with continuous differ
ential equations, naturally show smooth phase resetting. For most small changes 
in the perturbation applied, the new phase is typically only slightly modified. l The fact that dividing cells show this smooth phase-resetting behavior strongly 
suggests that the cells are cycling along some kind of underlying attractor and 
return stably to it when perturbed. That is, smooth phase resetting suggests that 
cell cycles, at least, are attractors. In fact, the most recent work on components of 
the eukaryotic-cell cycle-including cyclin, kinases, and dephosphorylases-is 
entirely consistent with a limit-cycle theory having at least several biochemical 
variables. 

Qualitative predictions derived from older limit-cycle models remain to be 
tested with our new understanding. For example, ifthe mitotic cycle is controlled 
by a limit cycle of biochemical variables, one or more of which must reach a 
threshold to trigger mitosis or other cellular events, then appropriate perturba
tions (such as heat shock, inhibition of protein synthesis, or transient inactivation 

, of specific genes) should cause one or more cycles of subthreshold oscillations. 
These subcycles would cause skipping of the normally triggered event, which 
would occur one or more cycles later plus or minus some phase resetting also 
induced by the perturbation. Evidence for such skipped mitoses and subthreshold 
oscillations does exist in the older literature (Wille, Scheffey, and Kauffman 1977; 
Shymko, Klevecz, and Kauffman 1984). In a similar vein, a resting GO state might 
be thought of as a bifurcation in a central clock from an oscillatory regime to a 
steady-state regime. Further, if mitosis is governed by a limit cycle, then one might 
try to understand the transition in many early embryos from synchronous cleav
age divisions to asynchronous cleavage divisions as a consequence of the 
increased diffusion barriers between cells which drive systems from spatially 
homogeneous behavior to behaviors which propagate phase waves. 

Since real cellular systems have hundreds or thousands oflinked biochemicals, 
however, would one expect smooth phase-resetting behavior in such systems? 
Strikingly, even in the extreme form of discrete state on-off switching networks, 
the K = 2 or canalyzing ensemble shows this smooth property as well. If per
turbed off the state cycle, the system flows back onto it nearly in phase with an 
unperturbed copy (Gelfand and Walker 1984). Presumably, this behavior gener
alizes to continuous systems. Smooth phase resetting should occur even in large 
coupled nonlinear oscillatory systems in the ordered regime. 

The image of a cell type as a cyclic attractor in a complex network is a marriage 
of the limit-cycle picture and the multiplexed cyclic web of events picture. Imagine 
replacing the phrase "gene A turns on" with "event A occurs in the cell" and the idea 
of cis and trans control of gene expression with the more general notion of the entire 
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genomic system. Then as long as such a system has few inputs per event and as long 
as events are governed by canalyzing functions in the Boolean idealization, the num
ber of sequential states on attractors in the Boolean idealization will be about the 
square root of the number of processes each of whose presence or absence constitutes 
an event. The causal webs in such networks are multiplexed. Blocking one event or 
process often allows cycling to continue via other causal routes. Thus the similarity 
in the statistical distributions of cycle times in Boolen models and real cells can rea
sonably be taken seriously as a first step toward a theory of the distribution of these 
phenomena i,s~ells across phyla. Ty r c> 

Ahistorical Universals? 

Consider our hypothesis. We now have two consequences: 

1. Cell types should be constrained patterns of gene expression. 

2. Mitotic cycle times should show the distributions which are in fact observed 
across many phyla. 

We may then ask, Does the observed distribution reflect selection acting directly to 
attain cell cycle times which, for higher eukaryotes, typically range from several 
hours to around a day? Is the similarity across diverse phyla to be accounted for by 
descent from common ancestors? Or might it possibly reflect the spontaneous dis
tribution of properties in genomic systems with few inputs per gene (or event) and 
use of canalyzing functions? I have repeatedly raised the point that, in our current 
world view, where the only source of order is Darwinian selection, common ordered \ 
features across organisms are always accounted for by selection and descent from a 
common ancestor. Here, however, we have candidate properties which may be bio
logical universals of a different type. Granted that organisms are in the ordered 
regime due to membership in the canalyzing ensemble, which may itself reflect selec
tion, then these other properties may simply follow as otherwise ahistorical univer
sals. Such a picture does not violate the letter of Darwin, who noted that selection for 
some property might "carry along" other properties which were correlated with the 
first, but it does violate the Darwinian spirit, for the correlated properties are enor
mously ordered and so deeply generic to the ensemble of genomic systems in ques
tion that selection may not be able to avoid them. Thus the order becomes universal 
and entrenched, part of the way organisms must henceforth be. 

The Number of Cell Types Expected 

If a cell type is an attractor, then the number of attractors in the dynamical repertoire 
is the number of cell types of which that genome is capable. Therefore, an ensemble 
theory affords us a means to predict the expected number of cell types in an organism. 
For the canalyzing ensemble in the ordered regime, the number of cell types should 
grow as about a square-root function of the number of genes and processes in the 
genomic regulatory system, reaching 317 for humans with about 100 000 genes. For 
K > 5 to K = N, the number of attractors grows roughly linearly with the number 
of genes and processes which are coupled. Thus a robust conclusion is that this vast 
ensemble, from K = 2 to K = N, predicts that the number of cell types should be 
between a square-root and a linear function of the genomic complexity. 

Figure 12.7 plots the numbers of cell types against DNA content per cell across 
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many phyla, up to about 254 for humans. As noted earlier, the number of cell types 
increases as a square-root function of DNA content. If rough estimates of the number 
of structural genes are used instead of DNA content, the number of cell types 
increases roughly linearly with the number of structural genes. This number leaves 
out nontranscribed regulatory sequences and other components of the control cas
cades; thus, as concluded above, it seems safe to say, using the histologist's criteria, 
that the number of cell types does increase linearly and as a square-root function of 
the genomic complexity. Were finer-grained criteria used to discriminate cell types, 
the number of cell types per organism should increase fairly proportionally and 
hence not alter the logarithmic slope reflecting the power-law relation between geno
mic complexity and number of cell types across phyla. 

In summary, our best guess must be that the number of cell types increases as a 
fractional power of the number of genes. Since the number of attractors increases as 
the 0.5 power of the number of genes in the ordered regime and increases as the 1.0 
power of the number of genes in the chaotic regime, we may conclude that our geno
mic-network models in the ordered regime and perhaps near the boundary between 
order and chaos do in fact match and predict the relationship between number of cell 
types and genomic complexity across phyla. 

The C Value Paradox 

One of the puzzles in developmental biology is called the C value paradox (Alberts, 
Bray, et al. 1983). There are really two separable paradoxes: 

1. The complexity of any given genome seems to be poorly correlated with the com
plexity of the organisms generated by that genome. Thus mammals have nearly 
1000-fold the DNA per cell found in very simple metazoans, yet do not seem 
1000-fold as complex. 

2. Different metazoans of apparently the same complexity can have very different 
amounts of DNA. 

(I The ensemble theory we have now explored has bearing on the first paradox. In K = 
2 and canalyzing ensembles, the number of cell types increases only as a square-root 
function of the number of genes. Restated, as genomic complexity increases, it takes 
ever more new genes to add the next new cell type. 

Another Universal? 

The distribution of number of cell types per organism versus genomic complexity 
across many phyla may reflect selection sifting. It is hard, in light of the predictive 
capacities of the class of theories we are investigating, not to consider an alternative 
hypothesis. Build genomic systems constrained to the canalyzing ensemble and, 
without further selection, organisms will exhibit the observed distribution of cell 
types. The scaling law may be a universal. 

Homeostatic Stability of Cell Types to Perturbation: 
Toward a General Theory of Homeostasis 

We need a deep theory of homeostasis. What are the requirements in complex 
dynamical systems such that the systems settle down to constrained behaviors and, 
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in addition, those behaviors are stable to perturbations? How did such ordered 
behavior evolve? Homeostasis, at root, is the buffered capacity of a system to return 
after a perturbation. We now have the start of such a general theory, for we know that 
dynamical systems in the ordered regime exhibit attractors which are stable to most 
minimal perturbations. In K = 2 and canalyzing networks, the systems return to the 
same state cycle attractor for 80 percent or more of the possible minimal perturba
tions achieved by transient reversal of the activity of any single gene. Figure 12.12a 
shows a system of 30 state cycles. After perturbations, the system typically returns to 
the state cycle from which it was perturbed. If it passes to another state cycle, typically 
one or a few of the other 29 cycles are accessible from each state cycle. Thus each 
model cell type is stable to most perturbations and can "differentiate" into only a few 
others by transient reversal of the activity of any single gene. 

But what is this canalyzing ensemble? Low connectivity (K = 2) is just high 
molecular specificity. As emphasized above, canalyzing Boolean functions are just 
the simplest molecular kinetic rules to build. It is easy to make an enzyme which is 
activated by one or another allosteric effector acting on the same allosteric site. The 
site needs merely to bind one or the other indiscriminately. To create an enzyme 
which realizes the noncanalyzing "Exclusive Or" function, however, the enzyme 
needs two allosteric sites and must be active if either one but not both are bound. 
This latter condition is a difficult one to achieve. Then we are led to the hypothesis 
that large-scale dynamical homeostasis is an almost inevitable consequence of 
molecular specificity and simplicity. This general conclusion should apply to the evo
lution of autocatalytic peptide or RNA polymer systems. It should also apply to cell 
types, with a number of important implications. Foremost among these is that, even \ 
without further selection, the molecular specificity and simplicity which engender j 
membership in a canalyzing ensemble already purchase homeostasis for cell types. , 
A liver parenchyma cell will remain a liver parenchyma cell after most insults. 

Restricted Pathways of Differentiation 

If a cell type is an attractor, then differentiation is passage from one attractor to 
another, driven either by exogenous signals or by asymmetric distribution of cellular 
constituents at division. In the canalyzing ensemble, any cell type can be triggered to 
differentiate to only a few neighboring cell types by hormonal or other signals altering 
the activity of single target genes. This is a powerful property with many conse
quence. First, it necessarily follows that any single cell type can differentiate into 
many cell types only by following branching pathways of differentiation from the first 
cell type to its few immediate neighbors, from them to their few additional neighbors, 
and hence ultimately to a large set of cell types. In short, ontogeny must be organized 
around branching pathways of differentiation! And in fact, as far as we know, all met
azoans and metaphytens since the Paleozoic have ontogenies organized around such 
branching pathways (see, for instance, Conklin 1905). This is so commonly known 
that it has not even constituted a question. Yet there is nothing evidently necessary 
about its entrenched feature of ontogeny. Consider a sponge. If disaggregated into 
individual cells which are already differentiated, the ;;ponge will gladly reassemble 
itself into a working whole. We can easily imagine a sponge embryo proliferating into 
a large number of identical cells which might then differentiate into many different 
cell types. The many cell types might then arrange themselves into a sponge. The 
sponge does not work this way, however. Instead, it follows its rehearsed sequence of 
branching pathways of differentiation (Wilmer 1970). Why? Why, indeed? Is the 
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modus operandi of the sponge a consequence of selection? Has Darwin's force 
labored for 600 million years or more to achieve and maintain this feature of ontog
eny because it is essential? Or is it an unavoidable universal, so deeply generic to 
genomic systems that for 600 million years selection has been constrained to make 
do with this self-organized property? 

Further, if each cell type has only a few neighboring cell types and responds to any 
possible reversal of the activity of any single gene either by homeostatic return to the 
same cell type or, occasionally, by flow to one of these few neighbors, then each cell 
type is poised between few alternatives. Then a variety of exogenous stimuli, acting 
on different genes in the system, will necessarily trigger the same transition. This 
implies that the specificity of the response lies largely in the cell tickled and only 
slightly in the feather doing the tickling. As I discuss in more detail in Chapter 14, 
inductive phenomena are vital in ontogeny. Thus, in early vertebrate development, 
the infolded mesoderm in the gastrula comes to lie beneath and juxtaposed to the 
overlying ectoderm which has not invaginated. Inductive influences from the meso
derm cause the overlying ectoderm to differentiate into neurectoderm (Saxen and 
Toivonen 1962). This phenomenon led early investigators to search for the normal 
inducing agent. It was rapidly discovered that a variety of abnormal agents (pure 
chemicals, pH alterations, even pure water) could induce the ectoderm to form neu
rectoderm. That is, the embryonic ectoderm is poised, ready to be tipped into neu
rectoderm, by a variety of specific and nonspecific stimuli. Being poised, or compe
tent to respond in a restricted way (Waddington 1957, 1962), is not an accident; it is 
another expression of the fact that each cell type has only a few neighbors. Further
more, the capacity of a cell to be triggered by an inductive influence depends on the 
cell type. Hence the competence to respond changes during development as cells pass 
branch points along developmental pathways. All these are deep structures in the 
logic of ontogeny. All, I believe, are consequences of membership in the canalyzing 
ensemble. Selection has these properties to work with, like it or not. They, too, may 
be universals. 

Does an Organism Use All Its Cell Types: 
Implications of Restricted Global Reachability 

If a cell type is an attractor and if differentiation is passage between attractors induced 
by perturbations or signals, then it is natural to ask if any cell type can ultimately 

Figure 12.12 (a) A matrix listing the 30 state cycles of one network and the total number of times ~ 
one unit of perturbation, transient reversal ofthe current activity of a single gene at a single state of 
a state cycle, shifted the network from each cycle to each cycle. The system generally returns to the ~ 
cycle perturbed and hence exhibits homeostasis. Division of the value in each cell of the matrix by /"'I~~+ ~ I '-vr]~ 
the total of its row yields the matrix of transition probabilities between state cycle modes of behavior i, 1.1 

'-,.t' J:'. "7,,',1 under the drive of occasional random perturbations and constitutes a Markov chain. The transition"- , 
probabilities between two cycles are often asymmetric. (b). Transitions between cycles shown in (a). ~ j "'"'..,., '-

The solid arrows are the most probable transition to a cycle other than that perturbed; the dashed 
arrows are the second most probable. The remaining transitions are not shown. Cycles 2, 7, 5, and 
15 form an ergodic set into which the remaining cycles flow. If all transitions between cycles are 
included, the ergodic set becomes 1,2,3,5,6, 12, 13, 15. The remainder are transient cycles leading 
into this single ergodic set. Under the drive of occasional reversal of the activity of any single gene, 
cell types within the ergodic set can reach one another but cannot reach cell types not in the set. 
(From Kauffman 1969) 
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differentiate into all the cell types in the genomic repertoire. The generally expected 
answe.r is '~no." Typically, in the canalyzing ensemble, each cell type can directly dif
ferentiate mto only a few other types. The directed graph showing this (Figure 12.12) 
typically has the following features: 

1. No cell type can reach all cell types. 

2. A large number of cell types can mutually reach one another via one or more 
steps. Call this the "strongly connected set of cell types." 

3. Some cell types can reach this strongly connected set but cannot be reached from 
it. 

If we imagine that all cell types are attractors, therefore, one consequence is that typ
ically no cell type can differentiate into all legitimate cell types. Thus the genome 
must typically harbor unused cell types. 

We shall examine the implications of the strongly connected set of cell types 
below. Briefly, the existence of this set implies that other sets of cell types should exist 
which can transform into one another in a more or less complex web. Just such met
aplasias are observed. The implication of the fact that the genome uses only a subset 
of cell types in ontogeny is more immediate, however: Unused cell types may include 
cancers. 
-What might it mean if an organism uses only a subset of its cell types? At least one 
obvious hypothesis is this: Among the unused cell types, some may behave poorly in 
the integrated organism. For example, they might continue to undergo mitotic divi
sions without cessation. That is, some unused cell types might be cancers. Almost 
inevitably, then, we are led to suppose that improper combinations of activation of 
normal cellular genes can cause cancer. That is, we would not be surprised if there 
existed genes whose improper activation yields transformation (Braun 1968, 1969; 
Kauffman 1971c). Such improper activation would not logically require that the 
genome be mutant, in which case the malignant behavior would be a "disease of dif
ferentiation." In fairness to this body of theory, I note that this prediction was made 
in 1971, long before the discovery of first viral and then cellular oncogenes, which 
now is revolutionizing cancer research (Shih and Weinberg 1982). Placed in this 
framework, the oncogene story has some implications which have only been partially 
recognized. Obviously, chromosomal mutations such as translocations (Leder, Bat
tey, et al. 1983), rearrangements (Croce 1987), or promoter insertion (Hayward, 
Neel, and Astrin 1981; Adams, Harris, et al. 1985), which bring oncogenes under 
aberrant control, often playa role in carcinogenesis. Alternatively, abnormal differ
entiation in genetically normal cells may lead to aberrant activation of cellular onco
genes. Without or with such somatic mutational events, however, the resulting geno
mic system is capable of very many alternative cell types. The question, then, is 

{ whether it might be possible to trick cancer cells into differentiating into either nor
mal or benign cells. The general answer to this may be affirmative. 

Embryonal carcinomas are particularly interesting. In appropriate circumstances, 
they can be tricked into behaving benignly. Embryonal carcinomas derive from tes
ticular or ovarian cells which form progenitors to the germ cells. Such tumors form 
teratoma, in which tissue derivatives of the three major classes-ectoderm, meso
derm, endodern-are found. Thus teratomas may literally contain muscle cells, 
nerve cells, and hair follicles in haphazard array. In a beautiful set of experiments, 
Mintz and Illmensee (1975) constructed chimeric (mixed cell) mouse embryos in 
which some cells were from a normal mouse embryo and other, genetically marked 
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cells were from a testicular teratocarcinoma. The chimeric embryos were trans
planted into pseudopregnant females, and fully normal young mice were born. These 
young mice were a composite of cells derived from the normal embryo and the tumor 
tissue. In fact, over a set of such mice, the genetically marked tumor-cell deriVativeS) 
were found normally integrated into almost all tissues of the progeny chimeric mice. 
In brief, when exposed to the normal sequence of inductive and regulatory interac
tions, the tumor cells reverted from malignant to utterly benign behavior. 

These tumor reversion results can be found in other systems. For example, tumors 1 
can be induced in the tail of the newt by tar carcinogens (Braun 1968, 1969). If such 
tumors are induced on the basal region of the tail and the distal tail tip is cut off, the 
newt obliges by regenerating its distal tail. If this cycle of cutting and regeneration is, 
repeated several times, the tumor regresses and vanishes (Braun 1968, 1969). Pre- ,I 
sum ably, the normal regulatory factors brought into play during regeneration medi
ate this effect. Differentiation of a number of juvenile cancers,such as neuroblastoma 
and retinoblastoma, to nonmalignant mature cell types is well known in vivo (Braun 
1968,1969; Kauffman 1971c; Klein 1987). 

The differentiation from malignant to benign behavior is underscored by the large 
number of cases where somatic hybridization of spontaneous, virally induced, and 
chemically induced tumors results in low-tumorigenic or nontumorigenic cells 
(summarized in Klein 1987). Reversion from malignant to benign behavior has also 
been demonstrated by negative selection that killed transformed cells (Rabinowitz 
and Sachs 1970) and, more recently, by positive selection (for example, Noda, Selin
ger, et al. 1983). It seems clear that some genes act as tumor suppressor genes. For 
example, Knudson (1987) has suggested that retinoblastoma typically arises by the 
loss of both alleles of a specific gene (RB-l). Normally the retinoblast differentiates 
into a retinocyte that has irreversibly lost the ability to divide. A child who inherits a 
deletion for one copy of RB-l risks developing a retinoblastoma during its first years 
of life, but by age five, all retinocytes have differentiated. The child is no longer at 
risk even if the remaining copy of RB-l is lost. Apparently, a single copy of the gene 
suffices to suppress transformation to malignant behavior. The genetics of retino
blastomas suggests that abnormal inactivation of normal RB-l genes might suppress 
their suppression and hence allow transformation. 

As Klein (1987) points out, a number of malignancies can be induced to differ
entiate terminally in vitro. In some clear instances, suppression is mediated by small 
molecules produced by normal cells that diffuse in solid tissues through gap junctions 
and damp tumor cell precursors (Paul 1988). 

All these results suggest that, more often than we now suppose, it may be possible 
to induce malignant cells to behave benignly (Kauffman 1971c; Klein 1987). Any 
interest in this approach, however, must be tempered with the realization that most I 

tumors undergo progression during which a variety of chromosomal mutations build I 
up. The hope to trick such aneuploid cells into benign behavior may prove faint ' 
indeed. On the other hand, integration into such cells of a properly chosen set of nor- ! 

mal cellular genes, properly activated either together or in sequence might succeed 
in inducing a transformation to benign behavior even in badly aneuploid malignant 
cells. 

It should be noted that the hypothesis that the normal genome can generate cell 
types which are not normally utilized in ontogeny is clearly open to direct experi
mental investigation. As remarked above, high-resolution two-dimensional gels even 
now allow a fine-grained portrait of the pattern of protein synthesis in a large number 
of genes and are reliable enough to distinguish different cell types. One can hope 
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eventually to build up data on the normal cell types of any organism and then 
ask whether transient activation or inhibition of one or several genes causes a 
transition to a new stable recurrent pattern of protein expression which differs from 
known normal patterns in other cell types. Obviously one would have to rule out 
somatic mutations, but in general such studies are even now on the verge of 
feasibility. 

Can Mutations Alter Developmental Pathways 
and Not Cell Types? 

The existence of such atavisms as hens' teeth (Kollar and Fisher 1980) and whales' 
legs (Andrews 1921) and the evolution of differentiation raise an obvious question: 
Can there occur mutants which alter developmental pathways but not cell type? Such 
possibilities would be useful, and, indeed, Figure 12.8 shows an example. It is partic
ularly easy to accomplish such limited alteration in the canalyzing ensemble of geno
mic systems. A large fraction of the genes, up to 70 percent, fall to fixed active or 
fixed inactive states and then remain in the same fixed state on all cell types of the 
organism. Therefore, deletion of a gene which is normally fixed inactive on all cell 
types will not alter the cell types. However, that gene need not be inactive during the 
differentiation from one cell type to another when the differentiation is induced by 
exogenous stimuli or by asymmetric distribution of material at cell division. Con
sequently, deletion of such a gene can alter which stimuli cause which differentiation 
steps between which cell types, without altering the cell types themselves. In fact, the 
ways in which this occurs has surprising features in these model genomic systems: 
in general, a subset of differentiation pathways is selectively altered by a class of 
random mutations. Pathways of differentiation can be sculpted independently of 
cell types. 

Consider a Boolean genomic system containing L cell types. Suppose that 70 per
cent ofthe N genes are fixed either active or inactive; hence about 35 percent are fixed 
inactive. Numerical simulations were carried out deleting each fixed inactive gene 
one at a time and testing how the deletion affected the differentiation pathways 
between the L cell types. The possible transitions between the L cell types are con
veniently shown in a square L X L matrix whose left-hand column labels the cell 
type which is perturbed by all minimal perturbations to the N genes of each state of 
each state cycle and whose top row labels the cell type to which the perturbed cell 
type changes; Figure 12.12 shows an example. Since most often a cell type returns to 
the same cell type, the main diagonal in Figure 12.12a has the most entries. Since 
cell type A might be able to differentiate to B but B not to A, the matrix is not sym
metric. The frequencies in the boxes can of course be normalized to show the prob
ability, for all possible minimal perturbations, that cell type i changes to cell type j. 
The row totals are then 1.00, and the matrix is just a Markov chain. That is, the 
matrix shows the transition probabilities between any cell type and each ofthe other 
possible cell types, under repeated occasional random transient reversal of the activ-I ity of single genes. In this context, a mutation which deletes an inactive gene does 
not alter cell types but may alter the entries in the matrix and hence change the tran
sition probabilities between two cell types in the face of fluctuations. 

The striking results of the numerical simulations are: 

1. Any such deletion alters only a few of the L X L entries in the matrix and hence 
alters only a few pathways of differentiation. Thus mutations can tune one or a 
few transitions between cell types without altering all pathways at once. 
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2. Mosi'Qfthe fixed inactive genes caused an overlapping small subset of the LX L 
entries\in the matrix to be altered. Thus the same few differentiation steps are 
affected 'by most of the mutants in this class. 

3. Any particular entry in the matrix was much more likely either to increase or to 
decrease, for all or most of the mutants in the 35 percent tried! This is particularly 
interesting. It says that the next random mutation in this class of mutants is much 
more likely to increase or more likely to decrease specific transition probabilities 
between particular cell types. Thus not only are there mutants which can tune up 
or tune down differentiation transitions between specific cell types and hence 
open or close pathways, but the generic property of complex genomic systems is 
that those alterations do not change up or down with equal probability. Whether \ 
one is comfortable with the idea or not, the existence of preferred "directions" of 
alteration of developmental pathways implies something like "orthogenesis"-a 
tendency of evolution to occur in preferred directions not because of selection 
constraints but because the underlying system has preferred directions of change 
in the face of random mutations. 

These results make an experimental prediction. We know that a large number of 
genes are actively transcribed in all cell types, but we are led to the prediction that 
the genome should also contain a large number of genes which are not transcribed in 
any stable cell type. Just these nontranscribed genes are the prime candidates to play 
roles in transitions between cell types-that is, in differentiation between stable alter
native cell types. The results fit a second set offacts. The emergence and disappear
ance of sWsters of "whole-cloth" features in ways unrelated to phylogenetic lin
eages+~9Il!~l~ in short-are just what one would expect of genomic systems 
which allow differentiation pathways to be tuned in such a way that flow to particular 
cell types and tissue types is either cut off or opened up. 

Collective Order: Forcing Structures 
and the Percolation of Frozen Components 

Canalyzing Boolean networks crystallize orderly dynamics-in other words, they 
spontaneously lie in the ordered regime-because a specific kind of subnetwork, 
called an extended jorcing structure, literally crystallizes out of the dynamics of the 
network (Kauffman 1971a, 1974, 1984; Fogelman-Soulie 1984, 1985a, 1985b). The 
genes making up the forcing structure fall to fixed active or inactive states; the forcing 
structure percolates through the genomic network and typically leaves behind one or 
more unfrozen islands of genes free to turn on and off in complex patterns. These 
islands are functionally isolated from one another, and the combinations of alter
native behaviors ofthe set of isolated islands correspond to the alternative cell types 
exhibited by such a genomic system. 

The percolation of forcing structures and Derrida's annealed model are two ana
lytic approaches to understanding the emergence of order in random K = 2 Boolean 
networks and in the canalyzing ensemble. Both approaches were described in Chap
ter 5. Here I recall the features of forcing structures, describe some of their properties, 
and consider their biological implications. 

Forcing Structures and Their Fixed States. Percolating forcing structures fall to a 
fixed, "forced" state of gene activity. Consider a Boolean network in which each gene 
receives inputs from K = 2 other genes and each gene is governed by the "Or" func
tion, which is canalyzing. If a given gene is placed in the active state, then we are 
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assured that each of its descendant genes in the network will be in the active state at 
the next moment. In turn, all immediate descendants of these daughter genes will 
certainly be active the third moment. That is, if any gene is placed in the active state 
that active value propagates to all descendants regardless ofthe values of other input~ 
to those descendants (Figure 12.13). This is the simplest example of a forcing struc
ture. 

Genes A and B will be coupled by a forcing connection if three conditions are 
met: 

1. Gene A must be a canalyzing input to B. 

2. Gene A must itself be regulated by a canalyzing function on its own inputs. 

3. The canalyzed value of gene A (the value of A which can be guaranteed by its own 
inputs) must be the value which guarantees B. 

Thus, in this case, A is governed by the "Or" function, as is B. The value of A which 
can be canalyzed by its own inputs is I, and this is simultaneously the value of A 
which ensures that B shall be active the next moment. These conditions create a tran
sitive relation such that, if A forces Band B forces C, the forcing value at A propagates 
in two steps and forces C to its own forced value. Thus the first important point about 
forcing structures is this: When a forced value is propagating down a forcing struc
ture, the propagation is impervious to perturbations by other regulatory inputs to the 
cascade. 

Not all connections between two canalyzing genes are forcing. If A were con
trolled by the "And" function and B by the "Or" function, then A would not force 
B. The value of A which can be canalyzed is 0, not I, since A in inactive if either of 
its inputs is inactive. Since 0 at A does not ensure any value at B, the connection is 
not forcing. 

By the appropriate choice of Boolean functions, the forced value at different 
points in a forcing structure can be 0 or I. Figure 12.14 shows a forcing structure with 
different functions for the different genes; here a I value for A forces a 0 value for B, 
which in turn forces a I value for C. 
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Figure 12.13 Forcing structure among binary elements governed by.the Boolean. "Or" functio~. 
The forcing 1 value propagates down the structure and around the forcmg loop, which ev~ntually IS 

frozen into the forced state with 1 values at all elements around the loop. The loop then radiates fixed 
forced values downstream. 
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Figure 12.14 Forcing structure among binary elements governed by a variety of Boolean functions. 
Forced values propagate downstream through the structure and around the loop, which eventually 
falls to a frozen forced state. The loop then radiates fixed forced values downstream into the forcing 
structure. 

Forcing structures can include genes which are regulated by only a single gene. If 
A is governed by a single input gene B and if B is governed by genes C and D via a 
canalyzing function, then C can indirectly canalyze the behavior of A via B. Gene B 
can pass along the forced value from C to A. 

A second important feature of a forcing structure is that it can form forcing feed
b~ loops. The salient feature of such a loop is that it must have a steady state, in 
whlch all members are in their forced values. In that steady state, the loop is com
pletely impervious to perturbations impinging on it from outside. For example, the 
forcing loop in Figure 12.14 has four genes (A, B, C, E) and the forced values (1001). 
If placed in that state, each gene at each moment is forced, by the value of its forcing 
predecessor around the loop, to maintain that state regardless of the values assumed 
by its other input from outside the loop. Notice too that any forcing loop has three 
other properties: 

1. It has a second steady state, the complement of the first, with the value of each 
gene reversed, which is unstable to any perturbation. 

2. This instability reflects the fact that, if any input to genes on a forcing loop causes 
a loop member to assume its forced value, that value propagates ceaselessly 
around the loop thereafter and cannot be dislodged. Therefore the loop will tend 
to accumulate forced values and fall to the fixed forced steady state. 
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3. Once in that fixed forced state, the loop will radiate those fixed forced values to 
all forced descendants in the forcing structure. Therefore, the forcing loop and all 
its descendants will fall to a fixed steady state-the forced state-and remain in 
that state thereafter, regardless of the behavior of other genes in the network. 

This propagation of fixed behavior is the key consequence of forcing structures. The 
fixed behavior, percolating across the network, is precisely the crystallization of the 
ordered regime. ~ 

II' An added property arises if the forcing loop is multiply connected, with subloops 
\ J J"'" whose lengths or factors are relative primes. In that case, if any single gene is ever in 
\ .,\ the forced value, then at some fixed time later, given by the product of those primes, 

\1-,\'('1'<" .~ v"iall genes in the multiply connected loops will be forced. Such a mUltiply connected 
, ,,\\1\>\ forcing loop is said to be strongly connected (Kauffman 1971 a, 1971 b, 1974) . 
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Forcing Structures Are Expected to Percolate in K = 2 and Canalyzing Networks. 
Whether forcing structures do or do not percolate is a phase transition governed by 
the ratio offorcing connections to gene~n the genomic system. Above a critical ratio, 
forcing structures form. They form spontaneously in K = 2 networks and in K > 2 
networks biased':~e canalyzing functions. Thus the ratio of canalyzing to total 
functions in a genomic system is a control parameter which can tune whether geno
mic systems lie in the ordered, complex, or chaotic regime. 

The forcing structures in a genomic network are a random subgraph of the 
directed graph showing the full architecture of the wiring diagram of the genomic 
system. Our experience with the connectivity properties of random directed graphs 
in Chapter 11 leads us to expect phase transitions as the ratio of forcing connections 
to genes increases gradually. If forcing connections are imagined as being colored red, 
then as the ratio increases, only a few isolated connections are red at first; then small 
red trees emerge. We know that a threshold will be reached when the number of red 
arrows equals the number of genes, however, for suddenly large connected red forc
ing structures will emerge. That is, for a high enough ratio of forcing connections to 
total number of genes, such a large connected structure will suddenly crystallize, or 
percolate. This can be seen in Figures 5.5 and 5.6. 

Percolating forcing structures crystallize spontaneously in K = 2 networks and do 
not form when K > 2 unless choice offunctions is biased in favor of canalyzing func
tions. Eight of the Boolean functions of K = 2 inputs are canalyzing in the central 
sense, and four "Yes" or "No" on one or the other input can propagate a forcing 
value. Two functions, "Tautogy" and "Contradiction," are trivially canalyzing. 
Only "Exclusive Or" and its complement, "If and Only If," are genuinely noncan
alyzing. The probability that a regulatory connection between two genes each gov
erned by a canalyzing functions is forcing is ~, and since each gene has K = 2 inputs, 
the expected number of forcing connections is close to N. Forcing structures are 
expected to, and do, percolate. In K = 3 networks, the fraction of Boolean functions 
which are canalyzing is far smaller than in K = 2 networks and the expected number 
of forcing connections is substantially less than N. Here, forcing structures are not 
expected to, and do not, percolate. As K increases, the fraction of Boolean functions 
which are canalyzing decreases dramatically and very few forcing connections are 
formed; hence, in general, forcing structures do not crystallize. If instead of the full 
set of Boolean functions of K = 3 or K = 4 variables, only canalyzing functions are 
used, then the number of forcing connections is again N or greater and forcing struc
tures again percolate. 
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Very pretty numerical experiments by Fogelman-Soulie (1984, 1985a, 1985b) 
demonstrate this. She built K = 2 networks in a particularly simple way: on a lattice 
where each gene had four neighbors, two of which serve as input lines, and two as 
output lines. In this pre-fixed wiring diagram, Fogelman-Soulie assigned random 
Boolean functions of two inputs to genes in the lattice and followed the subsequent 
dynamics. As expected, large connected sets of genes fall to fixed 0 or 1 values. This 
is the forcing structure. Added to the forcing structure are all those genes which 
receive all their inputs from within the structure. When the latter is fixed, so are these 
genes. Fogelman-Soulie calls the extended forcing structure augmented by the ele
ments which receive all inputs from it the stable core. The stable core is functionally 
similar to the frozen component arising as a result of high internal homogeniety in 
the network (P > Pc, Figure 5.10). Like the high-internal-homogeniety clusters, the 
stable core percolates across the lattice. Figure 12.15 shows the forcing structure and 
stable core in a random K = 2 Boolean network. 

Because functionally isolated islands of unfrozen genes exist, cell types governed 
by genomic networks in the ordered regime should typically exhibit a combinatorial 
character. The random network in Figure 12.15 has one such nonforced cluster, and 
in Figure 5.10 there appear to be four nonforced clusters. Since these pockets of inter
connected genes are not forced, they are free to vary even when the forcing structure 
has fallen to its fixed values. Typically, a large system will have several isolated pock
ets, each free to behave in several ways. That is, each isolated unfrozen pocket will 
have its own alternative attractors as a small cluster of interconnected genes. 

Once the forcing structure falls to its fixed state and pockets are functionally iso-

Figure 12.15 Forcing structure found in random Boolean network containing K = 2 inputs. Thick 
arrows are forcing connections; thin connections are not forcing. Dashed arrows lead from binary 
elements which fall to forced values to further elements which fall to fixed values because all their 
inputs become fixed. Such secondarily fixed elements become frozen in active or inactive values 
when the forcing structure falls to its fixed frozen state. 
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lated from one another, the dynamical behavior ofthe full system is given by the fixed 
values of the percolating forcing structure and by the combinations of alternative 
behaviors of the functionally isolated pockets. In short, such systems inherently 
behave combinatorially. If the first pocket has x alternative attractors, the second has 
y alternative attractors, the third has z, and so forth. Then the possible alternative 
attractors of the entire system are the product of the modes, xyz. Each attractor of 
the whole system can be thought of as a particular combination of choices among 
the x possibilities of the first pocket, among the y possibilities of the second, and so 
on for all the functionally isolated pockets. These properties lead to a number of pre
dictions. In particular, cell types might be expected to exhibit a similar combinatorial 
character. And, indeed, they appear to do so. 

Functionally isolated pockets must be headed by recurrent genetic circuits with 
the property that each gene in the recurrent circuit is "alive." Such recurrent circuits, 
the analogue of master genes (Garcia-Bellido 1975), are the loci of developmental 
choice in the genomic system. Notice that, in a network in the ordered regime, any 
gene which is not part of the forcing structure must have at least one input which is 

~ -\. also not part of the forcing structure. Define such an input as alive (Aleksander 1973), 
W ) h7 a term meant to convey the fact that the "live" input is potentially free to be either 
~ ~ ~ctive or inactive. Thus each live gene must have at least one live input, and this 

-\7 ,\~ene-input combination must eventually form a live feedback loop. Therefore, the 
,\ '" t,J . functionally isolated pockets of genes each must contain at least one K = 1 input live 
I (J. b,( VIC, 1 feedback loop, which may have tails descendant from it. The live loop mayor may 
\J J S? not be as simple as a single gene which feeds back upon its own activity. There may 
K ;:::()} be cross-couplings between more than one such loop, or it may have partial K = 2 

connections within it. The conclusion to be borne away is that such pockets are 
headed by more or less simple feedback loops. Since these live loops can have more 
than one attractor each, they are the loci of developmental choice in the genomic sys
tem. 

Reemergence of Hierarchial Command Structures? In Chapter 11, we considered 
the military command structure made familiar by the Britten and Davidson (1969) 
model of genetic regulatory systems. In the simplest version of that model, master 
genes stand at the head of a descendant army of regulatory and structural genes, and 
control structural batteries of genes via a hierarch~l command tree. I argued that 
such hierarchical command structures would be extremely hard to achieve and 
maintain in genomic regulatory systems having more regulatory connections M than 
regulatory genes N, since richly webbed structures are generic when M> N. In richly 
webbed networks which lack a frozen component and behave chaotically, it is quite 
clear that nothing like a hierarchial command structure exists. Altering the behavior 
of any gene will propagate changes to most genes in the system. This connectedness 
is not found in real genetic systems. 

Conversely, the existence of a percolating frozen component raises again the pos
sibility of more or less hierarchial command modules. This possibility arises in two 
ways. Consider a small isolated island of genes headed by a single K = 1 live feedback 
loop which has descendant tails of regulatory and structural genes. Such a loop is 
logically identical to the master gene in charge of the descendant battery of genes. 
Alternative attractors in one loop, like alternative states ofa master gene, drive alter
native cascades in the descendant tails. However, the isolated islands need not be 
fully isolated from one another. In a random genetic network, a frozen component 



DIFFERENTIATION 501 

may percolate throughout the network and at the same time the remaining islands 
may be more or less sparsely connected with one another. Suppose that island A is 
fully cut offby the frozen component from inputs emanating from other islands but 
that a gene in A happens to regulate a gene is an otherwise isolated island B. Then 
the alternative attractors of A can modify and constrain the dynamical behavior of 
B. Similarly, B may be connected to an otherwise isolated island C. In this way, hier
archial commands without (or with) feedback can be built up among the nearly iso
lated islands. The critical point is this: When M > N, attaining and maintaining 
structurally hierarchical military command trees seem extremely difficult because 
the overwhelming majority of networks with more regulatory connections than 
genes are rich in feedback loops. If some form of hierarchical regulation is often use
ful, which seems plausible, but must occur in genomic systems rich in feedback 
loops, then the existence of a large frozen component is almost certainly an essential 
requirement. Given such frozen components and given the generic existence of iso
lated or near-isolated islands, selective sculpting of sparse connections among these II" 
islands should permit the easy adaptive evolution and maintenance of hierarchical 
command structures embedded in the frozen component. 

Harking back to the theme of adaptation to the edge of chaos and recalling that ! 
chaos emerges when frozen components just melt, it is also clear that, if genomic reg
ulatory systems are just on the "solid" side of the edge of chaos, when frozen com
ponents are just large enough to begin to percolate, then the ease of molding such I 
hierarchial connections among the nonfrozen, almost isolated islands should be opti
mized. 

The Expected Number and Sizes of Functionally Isolated Islands in Genomic 
Systems. If functionally isolated or nearly isolated islands are the carriers of alter
native developmental decisions via their alternative attractors, then it is important 
to have some crude idea of the expected number of such islands. Figure 12.16 shows 
numerical results giving the distribution of numbers of fully isolated unfrozen islands 
as a function of the number of the total of N genes which are not frozen. Thus 0 
unfrozen corresponds to a fully frozen network at a steady state. This analysis ignored 
the direction of connections among the unfrozen genes; hence more or less complex 
hierarchial dependent connections between subregions may exist within one fully 
isolated island. 

Figure 12.16a examines 1000 networks, each containing N = 100 genes; Figure 
12.16b examines 1000 networks, each having N = 1000 genes. The following results 
are clear. As the unfrozen fraction of the system increases, the number of isolated 
unfrozen islands first increases to a maximum and then decreases. This behavior 
reflects the fact that, when almost the entire system is frozen, few and small isolated 
islands exist. When the frozen component is nearly melted, the isolated islands merge 
into one large unfrozen island, which thereafter becomes the unfrozen sea. Thus the 
maximum number of isolated unfrozen islands occurs at an intermediate fraction 
frozen, which appears to be about 75 to 80 percent for these values of N. The total 
number of islands is quite small. The maximum was 13 in the N = 100 networks 
and only 27 in the N = 1000 networks. The mean numbers were, respectively, 2.7 
and 5.2. A small number of N = 5000 networks were examined, and the mean num
ber of isolated unfrozen islands increased to only 6.0. While the scaling laws for such .~) 
clusters are not known, I would guess that a genomic system containing 100 000 
genes mighthave on tlie order otTO'1012 functionally isolated unfrozen islands of 
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genes. If true, this result is remarkably encouraging. If isolated island are the loci of )~ 
developmental choice, then genomic systems comparable to those in humans may ) 
have only on the order of 10 to 12 functionally isolated clusters of genes. 

The number of cell types in a genomic system may bear a relatively simple relation \ 
to the number of functionally isolated islands. Make the undoubtedly oversimple 
assumption that each island is capable of only two alternative attractor modes of ~. 
behavior. Then the expected total number of attractors of the system is roughly 2 ' 
raised to the power of the expected number offunctionally isolated islands. For N = 
100, this yields 22.7 = 6.5; for N = 1000,25.2 = 36.7; and for N = 5000,26.0 = 64. 
Recall that, for K = 2, the expected number of cycle attractors is roughly ViII. The 
values 6.5,36.7, and 64 are quite close to the square roots of 100, 1000, and 5000. 
Thus understanding the scaling laws for the number of isolated islands may yield 
scaling laws for numbers of attractors in real genomic systems. 

The expected sizes of functionally isolated unfrozen islands can also be estimated, 
given the fraction of genes which are frozen. For example, assuming that about 80 
percent of the genes are in the frozen component, a genome containing 100 000 
genes, such as the human genome, would have about 20 000 unfrozen genes. Assum
ing that such a system would have 10 to 12 islands, each might contain about 2000 
genes. A plant having about 20 000 genes would have about 4000 ofthem unfrozen. 
If a system with 20 000 genes enjoys about eight islands, then each island might con
tain about 500 genes. We see in a moment that these cluster sizes come close to pre
dicting the observed differences between cell types. 

Stable Core and Combinatorial Penumbra. In K = 2 and canalyzing networks, 70 
percent or more of the genes fall to fixed active or inactive states; these genes are 
members of the forcing structure. The different state-cycle attractors, because of dif
ferent activities of the functionally isolated islands and perhaps because of the over
lapping downstream unfrozen genes which the islands may jointly control, typically 
differ from one another in the activities of a few percent of the genes. Therefore, these ! 

ensembles predict the existence of a large core of genes in fixed states of activity or I 
inactivity in all cell types of the organism and differences between cell types in the 
activities of only a few percent of the genes. 

Both the unchanging core and the rather small differences between cell types are 
found. As described earlier, a large core of genes is transcribed into heterogeneous 
nuclear RNA (hnRNA) in all cell types (Hough-Evans, Smith, et al. 1975; Kleene 
and Humphreys 1977, 1985; Chikaraishi, Deeb, and Sueoka 1978; Darnell, Lodish, 
and Baltimore 1986). A modest fraction ofthe hnRNA is processed and transported 
to the cytoplasm. While differences in cytoplasmic mRNA from one cell type to 
another may be greater than differences in hnRNA, the mRNA differences typically 
are in the sequences present in high numbers of copies (100 to 50 000) in one but not 
the other cell type. There is substantial cross-hybridization for cytoplasmic RNA 
sequences which are present in lower copy numbers. Thus it appears that different 
cells typically contain markedly overlapping sets of message sequences in the cyto
plasm as well as in the nucleus (Goldberg, Galau, et al. 1973; Axel, Feigelson, and 
Shultz 1976; Galau, Klein, et al. 1976; Hough-Evans, Ernst, et al1979; Alberts, Bray, 
et al. 1983; Darnell, Lodish, and Baltimore 1986). 

Let us now turn our attention from the RNA level to the protein level. Most pro
teins are synthesized in all cell types. As noted earlier in this chapter, two-dimen
sional gels typically exhibit a qualitative difference in some small percentage (perhaps 
15 percent) of the proteins in different cell or tissues of an organism. Some caution 
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is needed here, however. Examples of myeloid differentiation are known in which 
about 50 percent of the abundant proteins alter during differentiation (Lieberman, 
Hoffman-Lieberman, and Sachs 1980). Whether these differences extend to the rarer 
proteins is not clear. 

With caution, we may conclude with Alberts, Bray, et al. (1983) that, in plant cells 
having about 20 000 different RNAs transcribed, the typical difference between two 
cells is on the order of 1000 kinds of RNA. These differences are a kind of penumbra 
surrounding a stable common core of RNA and proteins which appears in most or 
all cell types of the organism. Note that the observation that plant cell types typically 
differ in the expression of about 1000 kinds of RNA is remarkably close to the esti
mates one would get for the mean sizes of functionally isolated islands in genomic 
systems containing 20000 genes. If the stable core comprises 80 percent of these and 
about eight unfrozen clusters partition the remaining 4000 genes, each cluster should 
contain about 500 genes. 

This predictive success of the canalyzing ensemble in the ordered regime is not 
trivial. There is good evidence for a frozen core and, as we see below, good evidence 
for combinatorial behavior due to unfrozen gene clusters. The ordered-network 
ensemble predicts the distribution of these properties in organisms. Order emerges 
in disordered Boolean networks, as far as is now known, either because of extended 
forcing structures or because of frozen percolation clusters. Otherwise, chaotic 
dynamical behavior is found in Boolean networks. Presumably, such chaos will be 
found in continuous homologues to Boolean networks. In networks with K > 3 and 
no bias in the choice of Boolean functions, neither orderly behavior nor a core and 
penumbra are found. In such networks, no genes are in fixed states of activity or inac
tivity in any cell type, and the typical differences in patterns of gene activities between 
attractor cell types is larger than for K = 2 or canalyzing networks. 

The hypothesis of a frozen stable core makes a number of predictions: 

1. The forcing structure must/all to its fixed state. Thus if the zygote is not already 
in a state such that the frozen component is yet frozen, early embryogenesis 
should witness a rapid cascade of alterations of activitits of very many genes. Note 
that until the stable core falls to its frozen state, genomic islands which shall later 
become functionally isolated are still functionally coupled. Influences can prop
agate widely across the genomic network. At some point, the frozen core becomes 
established. Thereafter, unfrozen islands are functionally isolated. If this view is 

(
' correct, temporal differences in gene activity cascades early in development 

should be larger than differences between cell types that occur later in develop
ment, after the stable core is frozen. Analysis of developmental profiles of protein 
synthesis in Drosophila melanogaster (Summers, Bedian, and Kauffman 1986) 
revealed a very large number of proteins which are actively translated in early 
development and fall silent later in many or all cell types. This pattern is not rare. 
Undoubtedly many of these proteins are uniquely required in early development, 
but a more subtle role of genes and proteins which fall quiescent in early devel
opment might be predicted. 

2. Such fixed inactive genes include those which playa role in controlling later dif
ferentiation between cell types via transient activation. 

3. Genes which are fixed active in all cell types are not merely constitutively active; 
although some might be constitutively active, many others are regulated by other 
genes in fixed active or fixed inactive states. 
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4. A function of such fixed active and inactive genes is to isolate the pockets of 
unfrozen genes which are loci of developmental choices. 

5. Insofar as those pockets are isolated, different cell types should exhibit somewhat 
combinatorially different patterns of gene expression. However, since the 
unfrozen clusters can be tenuously interconnected in a hierarchial command 
structure such that alternative choices of live recurrent loops high in the hierar
chial structure constrain the alternative choices of live recurrent loops lower in 
the hierarchial structure, the overall behavior may not be fully combinatorial. The 
failure of simple complete combinatorial behavior will also occur because more 
than one live-loop master-gene circuit may converge in the control of overlapping 
subsets of unfrozen downstream genes. Further data bearing on some of these fea
tures will be discussed shortly. 

Cascading Effects 0/ Transiently Activated Single Genes Are Limited. A further 
consequence of forcing structures is that the effects of altering the activity of any sin
gle gene are usually limited and do not propagate widely throughout the network 
(Kauffman 1974, 1984a; Fogelman-Soulie 1984, 1985a, 1985b; Stauffer 1987a). If 
the gene whose activity is altered is part of the forcing structure, the alterations typ
ically propagate either not at all or to only a few descendant genes. This limited prop
agation is due to the fact that the forcing structure is typically multiply connected
that is to say, many genes are forced by several of their inputs. Transiently altering 
the activity of the gene does not alter the activity of the descendant locus, whose other 
forcing input remains in its forced and forcing value. Genes which are part of the 
isolated pockets not within the forcing structure may propagate influence to many 
or all genes in the isolated cluster. Members of the head loops can potentially influ
ence all genes in the cluster. Members of descendant tails propagate influences to 
their fewer descendants. Numerical data show that, typically, alteration in the activ
ity of a single model gene cascades consequences to 0 to 15 percent of the genes in K 
= 2 and canalyzing networks. This value is fairly close to that seen in higher eukary
otes. For example, in the puffing pattern in polytene chromosomes, ecdysone 
unleashes a cascade of 155 puffs among about 5000 bands, or in about 3 percent of 
the potential puff regions (Berendes 1966; Ashburner 1970). If we use an estimate of 
six for the expected number offunctionally isolated islands in a genome containing 
5000 genes and 80 percent for the frozen component, then the expected maximal size 
of puffing cascades in unfrozen islands should be about (0.2 X 5000)/6 = 166. This 
number is remarkably close to the observed 155. Conversely, the data surely do not 
fit the expectations of genomic systems in the chaotic regime. There, cascades would 
propagate to thousands of other genes across the unfrozen sea (Stauffer 1987a, 1989). 

The Effects o/Deletion Mutations Are Limited. The effects of deletion mutants are 
similarly limited. If a gene which is active in some attractor cell types but inactive in 
one or more other cell types is deleted, the consequences of such a mutation include 
transformation from the former cell type(s) to the latter. We shall see that this trans
formation parallels homeotic transformations. Other effects include the formation 
of novel cell types-that is, attractors which did not exist before. The typical nUmber) I 
of genes affected by the deletion of one gene ranges from 0 to about 15 percent (Kauff- l 
man, unpublished results). Alterations do not spread widely. I 

Comparable experimental data are available on deletion mutants in cell lines and 
on cell lines transformed with a tumor virus. Typically a small fraction of the proteins 



506 ORDER AND ONTOGENY 

analyzed on two-dimensional gels alter their synthesis patterns (Strand and August 
1977, 1978). Rarely, a larger number is observed (Lieberman, Hoffman-Lieberman, 
and Sachs 1980). 

I stress again that these properties are not trivial. In chaotic K = N networks, delet
ing any single gene will alter about half the state transitions in the dynamical system, 
dramatically altering all attractors. Any mutant will therefore propagate alterations 
widely throughout the network. Presumably, the factor which limits propagation in 
K = 2 and canalyzing networks is the forcing structure. This is clearly a sufficient 
condition to limit propagation, but recall the results of Derrida and Weisbush men
tioned above and in Chapter 5, which show that high internal homogeniety alone can 
lead to frozen gene activity when the genes are present on a regular lattice. Thus there 
may prove to be principles other than forcing structures which limit propagation of 
alterations in genomic systems. 

Forcing Loops and Structures Exist in Lambda, E. coli, and Higher Organisms. 
Forcing loops and structures are not hypothetical, mathematical objects. They occur 
in known genetic circuitry. Consider again the now overfamiliar lactose ojJeron. 
Recall that the structural genes Z, Y, and A include the permease A. Once lactose 
enters the cell and switches on the operon, the permease permits the operon to 
remain active in the presence of a lower concentration of external lactose than would 
have initially sufficed to induce the operon. Thus let us, as before, constrain lactose 
concentration to vary from this intermediate level to high concentration levels. In 
this case, the lac operon is a self-reinforcing feedback loop. Once external lactose con
centration is high enough to activate the operon, the concentration may either 
remain high or fall to its intermediate value; in either case, the operon remains active, 
thanks to the induced permease. The active state is the forced value of this small forc
ing loop. 

Another familiar example of a forcing loop arises in ph_Q~phQ1)'l~li~nc:as(;ades, 
where a growth factor receptor which acts as a kinase and phosphorylates a down
stream cascade of proteins must itself be specifically phosphorylated in order to be 
active as a kinase. Once activated by binding the growth factor, the receptor is able 
to phosphorylate itself. Thus once into the forced phosphorylated state, the system 
maintains that active state on its own despite absence of the original growth factor 
whose binding to an allosteric site induced the initial phosphorylation. The forced 
active state of such receptors can, however, be overridden by additional molecular 
inputs-enzymes called phosphatases, which dephosphorylate the receptor. This fact 
urges me to note that conditional forcing structures can readily be constructed. A 
Boolean function may be conditionally forcing on some inputs if some other input 
is held in a specific value but not be forcing otherwise. Little theoretical work has 
been done on the structure and behavior of nested conditional forcing structures. 

Not only do forcing loops occur, but so do entire forcing structures. Figure 12.6b 
shows the regulatory cascade in lambda underlying the lytic response (Hershey 1971; 
Kauffman 1974; Ptashne 1986). Lambda is held as a lysogen, integrated into E. coli 
DNA, until the cell is damaged and then leads to the synthesis of cro. In turn, cro is 
the head of a forcing cascade which ensures sequential activation and repression of 
the lytic cascade, regardless of the presence oflambda repressor, Cl, or other regu
latory inputs acting on lambda in the lysogenic phase. Mating-type specific-gene 
expression in yeast, described above, is a forcing structure. It will be interesting to see 
whether the complex genetic system underlying sex determination in Drosophila 
(Baker, Nagoshi, and Burtin 1987; Gilbert 1988) turns out to be a forcing structure. 
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CELL TYPES AS A COMBINATORIAL EPIGENETIC CODE 

The final theoretical implication of percolating frozen components is that the result
ing functionally isolated islands which are the loci of alternative choices necessarily 
afford a more or less combinatorial character to cell types. Thus insofar as there are 
isolated islands in the genomic system, each with two or more alternative attractors, 
we can think of a cell type's attractor as being specified in a combinatorial code con- .)\ 
sisting in the alternative attractor choice made by each such unfrozen gene cluster. I) 
Thus a kind of epigenetic code is to be expected, in which each cell type is specified 
by a unique combination of choices made by the isolated clusters of genes. It is strik-
ing indeed, therefore, that very substantial evidence for such combinatorial epige
netic codes now appears to exist in Drosophila and elsewhere. 

Lessons in Metaplasias: Uncommon Developmental 
Pathways Suggest an Underlying Binary Combinatorial 
Epigenetic Code in Drosophila and Caenorhabditis 

Normal ontogeny unfolds along the normal branching pathways of differentiation. 
Metaplasias, by contrast, are rare deviations from those pathways, deviations in 
which one normal cell or tissue type transforms to a cell or tissue type proper to 
another region of the organism. To give a first example, crayfish will regenerate an 
antenna which is cut off. On occasion, however, a leg is formed in place of the 
antenna, arousing both social comment among the congeries of crayfish and proper 
interest among biologists. Such homeotic regeneration, as this example is called, and 
other metaplasias show the uncommonly expressed developmental opportunities 
which the genome affords. Darwin taught that anomalies are central in biology. The 
anomalies of metaplastic transformations hint that cells and tissues which normally 
develop along given pathways have unused n~hbQ!i~ath~ays. Thus the struc
ture, or patterns of transitions, along those unused pathways may-reveal something 
about the underlying logic of development. 

Nowhere are such metaplasias more abundantly known than among the arthro
pods and, among these, the Insecta, and among these, the best studied is the fruit fly, 
Drosophila melanogaster. The lessons drawn from Drosophila appear to extend to 
other organisms and will lead us to the nematode Caenorhabditis elegans, to 
humans, and to plants. Metaplasias in many of these organisms hint at an underlying 
combinatorial logic in ontogeny. 

Drosophila and Its Metaplas;as. Drosophila development passes through egg, lar
val, and adult stages. Adults (Figure 12.17) have a head; three thoracic segments 
called prothorax, mesothorax, and metathorax, each having a pair of legs; eight 
abdominal segments; and terminal genitalia. Three of the four major types of met
aplasias occur in Drosophila: (1) homeotic mutants; (2) phenocopies of homeotic 
mutants in normal flies; and (3) transdetermination of a cell-heritable determined or 
committed state in certain organ cultures. The fourth, homeotic regeneration, is not 
well documented in this insect. 

'~gomeos~" originally was a term reserved for metaplasias in which parts normal 
to one body segment were replaced with parts normal to another segment, such as 
the replacement of antenna by legs. More generally, the term now means replace
ment of one normal body part by another essentially normal body part. Among the 
thousands of mutants which have been recovered in Drosophila (Lindsley and Grell 
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Figure 12.17 Relation between larval organs, called imaginal discs, and the adult epidermal regions 
to which they give rise during metamorphosis. -.--

1968), a class of 40 to 50 are homeotic mutants (Gehring 1973, 1975, 1976; Postleth
wait and Schneiderman 1974; OuweneeI1976). An example is the dominant mutant 
Nasobemia, which transforms the antenna to a mesothoracic leg. Thus one finds flies 
with legs where antenna ought to be. Nasobemia sometimes also transforms the eye 
to a wing (Gehring 1966b, 1976). Similarly, opthalmoptera transforms eye to wing 
(Postlethwait 1974). Another surprising mutant is tumorous head, which produces 
growths in the head which are a transformation of head tissues into adult genitalia 
(Postlethwait, Bryant, and Schubiger 1972). 

Homeotic mutants can be either dominant or recessive, requiring either one or 
both parental homologues to be mutant in order for the transformation to be 
expressed. Some homeotic mutants are point mutations; others are deletions of chro
mosomal regions; others are due to transposition of extraneous DNA into the nor
mal, or wild-type, gene. 

Phenocopies of homeotic mutants can be produced by exposing normal fly 
embryos to chemical physical perturbations during development. For example, nor
mal flies have halteres on their metathorax and wings on their mesothorax. A famous 
cluster of home otic mutants, called the bithorax series, transforms thoracic and 
abdominal segments into each other. In particular, the bithorax mutant transforms 
the anterior part ofthe halteres into wings (Lewis 1978, 1981). However, it is possible 
to expose 1- to 3-hour-old normal Drosophila embryos to heat shock or to ether and 
recover adult flies in which the hal teres have been transformed into wings (Villee 
1945; Gloor 1947; Maas 1948; Capdevilla and Garcia-Bellido 1974; Ho, Bolton, and 
Saunders 1983; Ho, Tucker, et al. 1983; Ho, Matheson, et al. 1987). The heat or ether 
treatment has mimicked the effect of the homeotic mutant. Nevertheless, the adult 
fly subjected to treatment is genetically perfectly normal and gives rise to progeny 

I which are normal, not homeotically transformed. Thus the chemical or physical per-

I turbation has caused apparently the same transformation as that caused by the 
bithorax series, but in a wild-type fly. 
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It is true-but perhaps a bit shocking-that it is also possible to phenocopy the( 
normal morphology in a homeotic mutant. Thus Nasobemia can be made to yield 
progeny having antenna, not leg, where antenna ought well be, yet the subsequent 
progeny of that pleased, phenotypically normal fly will express the Nasobemia phe
notype that has leg in place of antenna. A variety of other treatments, such as salts 
(Sang and McDonald 1954), can phenocopy other mutants, and many homeotic 
mutants have been phenocopied (Villee 1943, 1944; Woolf 1949). 

Transdetermination refers to a change in the heritable committed state of saclike 
organs m thelarva,-called imaginal discs, from a commitment to mature into one 
kind of adult ectodermal tissue-for example, leg-to a commitment to produce 
instead a different adult cuticular structure-for example, wing (Hadorn 1967, 1978; 
Gehring 1973, 1975, 1976; Gehring and Nothiger 1973). Cells which shall form the 
imaginal discs are set aside early in normal development, either in the embryo or in 
the first larval instar molting cycle. During the three larval instar phases, each disc 
grows, reaching about 60 000 cells in the late-third-instar wing-mesothorax disc and 
20 000 or so cells in the other discs. During metamorphosis, the entire ectoderm of 
the adult is formed by the terminal differentiation of these discs. During this differ
entiation, the cells change shape and neighbors; deform into legs, wings, antennae, 
head parts, and so forth; and secrete proper cuticle and pattern elements in proper 
spatial arrangement. The larva contains left and right discs committed to form eye
antenna; clypeolabrium; humerus; mesothorax and wing; metathorax and haltere; 
pro-, meso-, and metathoracic legs; and the bilaterally symmetrical genitalia. In addi
tion, the ectoderm of the eight abdominal segments is formed by a burst of growth 
and maturation of small nests of cells, called abdominal histoblasts, in the walls of 
the larval abdomen. 

Imaginal discs afford the cleanest demonstration both of a heritable committed 
state and of the operational separability of that committed state from terminal dif
ferentiation. A third larval instar disc-say, the wing-mesothorax (wing for simplic
ity) disc-can be dissected free and cultured as an organ in the abdomen of an adult 
female. In that environment, the disc cells divide but do not differentiate. Continued 
proliferation over years can be maintained by removing the disc from the adult abdo
men, cutting the disc in half, and reinjecting each half into a different female host. 
At any stage, the capacity of disc tissue to differentiate into adult tissue can be tested 
by removing the disc from the adult abdomen and injecting it into a third-instar lar
val host. When the host undergoes metamorphosis, the molting hormone ecdysone 
acts on the injected tissue as well. In favorable cases, the resulting adult has in its 
abdomen a ball of cuticle formed by the injected disc tissue. This ball can be removed 
and studied. 

The first, and still impressive, result of such studies is that wing disc tissue exhibits 
a cell-heritable determined state. When cultured for up to ten years, wing disc tissue 
can still give rise to adult wing structures (Hadorn 1967, 1978; Gehring and Nothiger 
1973). Over ten years, the initial cells have undergone hundreds of divisions. There- '\ 
fore, the commitment to form wing cannot be due to the synthesis, once and for all, ) 
of some special RNA or protein molecules. Such molecules would be diluted out over I 
hundreds of divisions. Thus the determined state must be a heritable state which con- \ 
stantly regenerates itself over cell-division cycles. A second inference from this work J 
is the operational distinction between this determined state, which can be indefinitely 
maintained, and terminal differentiation, which can be indefinitely delayed and then 
induced by ecdysone. While the astonishing heritability of the determined state is 
important, no less so is the pattern of its jump changes. 

Transdetermination has occurred when cultured wing discs metamorphose into 
perfectly fine adult antennae! That is, the cultured disc tissue can jump to a new her-
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itable determined state specifying another disc type adult tissue (Hadom 1966; 
Nothiger 1972; Gehring 1976). Good evidence shows that this transdetermination 
jump is not due to a somatic mutation and that it is heritable once it has occurred 
(Hadom 1967; Nothiger 1972; Kauffman 1973, 1975; Nothiger and Gehring 1973; 
Gehring, 1976). Figure 12.18 shows the transdetermination steps which have been 
observed, with arrow lengths representing relative frequencies. I confess that I have 
long found this figure fascinating. Notice four features. First, there are allowed and 
forbidden single-step transdeterminations. Thus genital can change to antenna or to 
leg but not to wing, eye, haltere, proboscis, or mesothorax; antenna can change to 
genital, eye, wing, or leg but not to mesothorax, haltere, or proboscis. Second, there 
are pathways of sequential transdetermination. Genital can change to wing but must 
do so by way of antenna or leg. Proboscis can change to wing, again by way of 
antenna or leg. Third, number each tissue with the minimal number oftransdeter
mination steps needed to reach mesothorax. Thus mesothorax is zero steps; wing is 
one step; antenna, leg, eye, and haltere are two steps; and genital and proboscis are 
three steps. Each step closer to mesothorax is more probable than its inverse. Thus 
genital changes to antenna more readily than antenna to genital. Antenna changes 
to wing more readily than wing to antenna. It is as if mesothorax were a develop
mental sink and the remaining tissues tended to fall back into the sink. 

The fourth feature of Figure 12.18 cannot be seen from what I have explained to 
date. However, we shall see in Chapter 14 that, on the early embryo, the positions of 
cells which shall give rise to different parts of the adult are well specified in afate map. 
In that map, cells forming adult head are at the anterior end of the egg and cells form
ing adult thorax are somewhat posterior to those forming head. Next come cells 
which will form the abdomen, and finally, in the posterior, come the cells which will 
form the adult genitalia. In other words, the order of tissues in the adult is laid out in 

\ 

a homologous two-dimensional fate map in the early embryo. The fourth fascinating 
feature oftransdetermination is that it leaps long distances over the fate map. Even 
a rank nonbiologist will appreciate that genitalia and head are at opposite ends of the 
fly-and the fate map. Yet genital discs transdetermine readily to form head. Why 
is this important? Because one would like to believe that the metaplasias revealed in 
transdetermination show which developmental programs are neighbors of one 

@ 
Proboscis 

Genital 
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f'IrI Palpus + E® 
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Antenna ~ E .. lt ; w~ -: Meso@rax 
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Figure 12.18 Transdetermination between different imaginal-disc-determined st~tes in D. '!'l.e?a
nogaster. Arrows show observed transdetermination steps. Arrow lengths reflect relatIve probablittles 
of transitions. Dotted arrow into genital disc indicates that the transdetermination source to genitalia 
is not certain but is thought to be antenna. Circled numbers indicate minimum number of trans
determination steps separating a disc from the mesothorax determined state. (From Kauffman 1973) 
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another. In some sense which we want to understand, genital and antenna must have 
neighboring developmental programs, while genital and mesothorax do not. Then 
the implication ofthisjumping over the fate map is simple but very important: What
ever sense may exist to the phrase "neighboring developmental program," distant 
regions on the fate map can have neighboring programs. Here is a puzzle worth some 
struggle, for these metaplasias must be telling us something about the underlying 
logic of development in this slight fly. 

The final point to make in this overview of metaplasias in Drosophila is that the 
different processes exhibit very much the same transformations (Ouweneel 1976). 
For example, Nasobemia converts antenna to mesothoracic leg, and eye to wing
mesothorax (Gehring 1966a, 1966b; Stepshin and Ginter, 1972). These are both 
transdetermination steps in Figure 12.18. Tumorous head transforms genitalia to 
antenna (Postlethwait, Bryant, and Schubiger 1972), and eyeless opthalmoptera con
verts eye to wing (Postlethwait 1974). Bithorax alleles convert haltere to wing and 
wing to haltere (Lewis 1978, 1981). The haltere-to-wing conversion has been seen in 
transdetermination, but not the reverse. Thus almost all the transdetermination steps 
are mirrored by some homeotic mutant, and vice versa. Similarly, the capacity to 
phenocopy homeotic mutants causes transformations which are also seen in trans
determination. The major difference between the homeotic mutants and transdeter
mination is that each mutant causes a restricted subset of the transformations seen 
in transdetermination and in fact a restricted set of the transitions from anyone disc 
seen in transdetermination. Thus, Nasobemia converts antenna to leg and eye to 
wing but does not convert antenna to wing or to genitalia. It is important to comment 
here that one homeotic mutant can cause parallel transformations in more than one 
tissue. Nasobemia transforms antenna to mesothoracic leg and eye to wing. Another 
mutant transforms genitalia to antenna and haltere to wing. The implication of this 
will be brought out below. 

It is truly impossible to review these data and not come to at least the tentative 
conclusion that all these metaplastic transformations are showing that specific devel
opmental programs are neighbors of one another. The same neighbor relations are ) 
exhibited by all the forms of metaplasia in Drosophila. 

A Binary Combinatorial Epigenetic Code. The most natural model to account for 
the features of trans determination noted above posits that each imaginal disc is spec
ified by a "binary combinatorial epigenetic code" (Kauffman 1973, 1975). First, I 
consider a nonpredictive (because noncombinatorial) model in the general context 
of cell types as dynamical attractors. An entire disc is not a single cell type, but let us 
relax a bit and think of a tissue as an attractor. Transdetermination steps occur 
between at least eight separate tissues. Suppose as the most general hypothesis that 
we conceive of a genomic system with eight different attractors. Let us assign one 
attractor to each disc type; attractor 1 to genitalia, attractor 2 to antenna, 3 to leg, 
and so on. Can we use this model to make any predictions about which disc trans
determines to which disc with what frequency? Clearly not. Having specified an arbi
trary dynamical system containing eight attractors, one per tissue type, we are 
entirely free to imagine transitions between any of these attractors in any frequency 
distribution we wish. Thus consider an 8 X 8 matrix whose elements reflect the tran
sition probabilities between attractors. The probabilities per row must add up to 1.0, 
but that is the only constraint. Our hypothesis is a mere universal, and hence empty, 
redescription. 

Suppose instead we imagine that the determined state of each tissue is due to the 
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combination of choices made by several independent bistable (binary) genetic feed
back loops. There are eight disc tissues; thus if we wish to imagine that the deter
mined state in one tissue is specified by commitments carried by feedback loops with 
only two steady states each, we need at least three independent loops. Then we shall 
specify the determined state in one disc, say genitalia, by the combination of states 
on the independent feedback loops. Consider, to be concrete, the four discs genital, 
antenna, leg, and wing. Let I stand for one of the steady states of a bistable genetic 
feedback loop, such as the im + state of the C I-cro circuit in lambda (Neubauer and 
Calef 1970; Ptashne 1986; Reinerts 1987), and let 0 stand for the other steady state, 
such as the im - state ofthe C I-cro circuit. Then consider two independent feedback 
loops and specify genital as (00), antenna (10), leg (0 I), and wing (II) (Figure 12.19). 

There are three immediate consequences of this combinatorial hypothesis: 

1. Since each feedback loop is assumed to be independent and since transitions 
between the 0 and 1 states of each loop occur rarely but independently, it follows 
that the one-step transdetermination moves from each tissue reflect changes in 
only one of the two loops. Therefore, each disc can undergo only some of the pos
sible transformations. Put another way, there are allowed andforbidden one-step 
transitions. Thus genitalia can change in one step to antenna or to leg but not to 
wing. 

2. Sequences of transformations occur, by way of intermediates. Genitalia can 
change to wing via antenna or leg. 

The consequence is subtle: In a bistable system, if one choice is more stable than 
the other, the less stable transforms to the more stable more readily than the more 
stable transforms to the less stable. This inequality implies a directionality toward 
a combination of choices on independent circuits toward a developmental sink 
with all circuits in their more stable state. This directionality is lost if the circuits 
have more than two alternative developmental choices. Consider a 2 X 2 matrix 
showing the transition probabilities between the two states, calling those states 1 
and 0 (Figure 12.20). Again, each row sum of probabilities must add to 1.0. There
fore, if the I state is less likely to change to the 0 state than the 0 state is to change 
to the 1 state, it must follow that the 1 state is more likely to remain the 1 (more 
stable) state than is the 0 state. In short, because the feedback loop has only two 
steady states, if 1 is more stable than 0, then the 1-to-0 transition is less probable 
than the 0-to-1 transition. This constraint is missing in an 8 X 8 matrix because 
in that larger system there are too many degrees of freedom. The 2 X 2 matrix 
has only one degree offreedom per row. Let us, by convention, let 1 represent the 

(10) 

. /Antenna~ 

Genital ~ ... ~ Wing 
(00) ~ ~(II) 

Leg 
COl) 

Figure 12.19 Four disc tissues, each assigned a determined stat~ in terms of the c~mbina~ions of 
steady states of two bistable circuits, 1 and O. TransdetermmatlOn IS assumed to reqUIre f1lppmg one 
circuit to the other steady state. 
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Figure 12.20 The 2 X 2 transition matrix between states 0 and I. If I is more stable than 0, then 0 
transforms to I more easily than I transforms to O. 

more stable state of each bistable feedback loop. Then the O-to-l transition is 
more probable than the reverse. Thus the third consequence of our binary com
binatorial hypothesis is that, with the assignment of combinatorial code words to 
define the committed states in gentalia (00), antenna (10), leg (01), wing (11), it 
follows that each step toward wing is more probable than its inverse. In brief, an 
oriented flow toward a developmental sink emerges inevitably with a binary com
binatorial code. 

A binary combinatorial epigenetic code model makes a number of independent 
predictions. Notice that the circuit transition transforming genital to antenna, in the 
first of the two bistable circuits, is exactly the same transition as that occurring in the 
transition from leg to wing. Therefore, we must predict that if the gential-to-antenna 
transition is more probable than its reverse, it follows that the leg-to-wing transition 
is more probable than its reverse. The prediction is independent of the assumptions 
and is in fact true. Similarly, the same O-to-l transition in the second circuit which 
occurs in the genital-to-Ieg transition occurs in the antenna-to-wing transition. Thus 
if gential to leg is more probable than its reverse, we must predict that antenna to 
wing is more probable than its reverse. Again independent prediction, again true. 

In Chapter 14, I present a detailed model for the sequential establishment of the 
combinatorial code for the different imaginal discs shown in Figure 12.21. The 
model is based on sequential compartmentalization, discussed in Chapter 14. As you 
can see, four bistable circuits are used (Figure 12.21d), more than enough for eight 
imaginal discs but not yet enough for the known alternatively committed subregions 
of the Drosophila embryo. The data which led to those particular binary epigentic 
code word assignments are independent of the predictions listed in Table 12.2, most, 
of which derive from the postulate that, if transdetermination from x to y involves \ 
switching one bistable circuit while transdetermination from x to z involves the same 
switch for that circuit plus switching another circuit, then transdetermination from 
x to y should be more frequent than transdetermination from x to z. There are 37 
independent predictions, and all but two are true. The a priori probability of such 
success is very small. I do not wish to draw the conclusion that the combinatorial 
code in this model is correct in detail; it cannot be with two false predictions. How
ever, the very strong capacity to account for the ordering relations among the 
observed transdetermination transformations must be taken as encouraging support 
for some similar form of a combinatorial model. In fact, such a model receives sub
stantial further support, as we see next. 

A combinatorial epigenetic code model should also account for homeotic 
mutants. Destabilization of a master gene "choice" circuit might transform many 
disc tissues in parallel, and tissues which are transformed into one another by home-



a 

b 

c 

Figure 12.21 (a-c) Hypothetical sequence of compartmental boundaries subdividing the progress
ing blastoderm. Each boundary triggers a binary development commitment to one of two develop
mental fates. 



DIFFERENTIATION 515 

d 

Figure 12.21 (d) The four-digit combinations show, for each compartment, a proposed binary 
combinatorial epigenetic code word specifying the determined state of each major imaginal disc. 
(From Kauffman, Shymko, and Trabert 1978) 

otic mutants should be specified by neighboring epigenetic code words. In the sim
plest case, let us assume that a homeotic mutant acts on a single bistable circuit and 
destabilizes one of the two states, increasing the frequency of transition to the other. 
A concrete example would be a temperature-sensitive CI mutant in lambda, which 
could be induced to switch to the im - state by high temperature. It follows that such 
a mutant will cause the affected disc to undergo a transition which is only one pos
sibility from the larger set of trans determination transitions possible from that disc. 
Thus a mutant changing the second circuit from 0 to 1 in Figure 12.21 d will change 
antenna (10 10) to mesothoracic leg (1110). This is only one of the transdetermina
tion steps open to antenna, which can transdetermine to genitalia and wing as well 

TABLE 12.2 Predicted Relative Transdetermination Frequencies Derived from the Model 
Shown in Figure 12.21d 

Prediction Status Prediction Status Prediction Status 

H-W>H-A T A-W>A-H T L-W>L-E T 
H-W> H-L'.2 T A-L>A-W F L'.2 - W > L'.2 - H T 
H-W>H-E T A-P>G-P ? L-A>L-E T 
H-W>H-P T A-E>A-W F L'.2 - A > L'.2 - G T 
W-A>H-A T A-G> L'.2-G T L2-G>L3-A ? 
W-E>H-E T A-E>E-A T L,-P>L,-G ? 
W - L'.2 > H - L'.2 T A-L2>L2-A IT G-A>G-P T 
W-L>W-A T E-W>E-H T G-A>G-W T 
W-L>W-G T E-A>E-G T G- L2.3>G-W IT 
W-A>W-G T E-A>E-L T G-A>G-L2.3 IT 
W-E>W-P T E-W>E-L T G-A>A-G T 
W-E>W-G T G-L>L-G T 
W-E>W-A ? G-H>G-W ?F 

Note: L'.2 - A > L,.2 - G means that the model predicts that transdetermination from the first or second leg is greater to 
antenna than to genital. 

A = antenna 
E = eye 
G = genital 
H = haltere 

L=leg T=true 
P = proboscis F = false 
W = wing 
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as to leg. Furthermore, the supposition that there is a combinatorial code of inde
pendent bistable circuits implies that, if the mutant changes the second circuit from 
o to 1 in antenna, it might also change the same circuit from 0 to 1 in any or all other 
disc tissues where the same circuit is in the same 0 state. Thus, in particular, it might 
change from 0 to 1 in the eye disc, transforming the eye (1011) to wing (1111). This 
is precisely the change due to Nasobemia. 

The essential point to emphasize is that the hypothesis that there are independent 
feedback loops having more than one alternative state, say bistable, implies that each 
disc tissue is specified by a unique combination of the alternative states of each loop. 
Therefore, the same state of anyone loop occurs in more than one disc. Therefore, 
if a mutant destabilizes that state and tends to convert it to another state of the loop, 
the destabilization might occur in all tissues where the weakened state of that loop 

( occurs. Then the hallmark of combinatorial behavior is the occurrence of parallel 
transformations induced by the same mutant. On the other :tand, full independence 

. of isolated loops, whether functionally isolated or otherwise, is probably an idealiza-
tion. Hence lapses from complete fulfilling of these stringent conditions mean not 
that the combinatorial picture has no correct pieces to it but that full independence 
may not exist. 

As expected by a combinatorial epigenetic code, Drosophila is replete with parallel 
transformations caused by one mutant. Nasobemia has been mentioned several 
times. Another mutant (Shearn, Rice, et al. 1971) transforms genitalia to antenna 
and haltere to wing, and is captured in the O-to-l transition of the first circuit in Fig
ure 12.21 d. The ultrabithorax locus transforms mesothorax to metathorax and mes
othoracic leg to metathoracic leg (Lewis 1978, 1981). The engrailed mutant converts 
the posterior half of each segment of the entire body into a mirror-image anterior 
half (Morata and Lawrence 1975, 1977, 1978). Thus engrailed acts in half-segment 
units in parallel throughout the body. A large number of mutants, called the even
skipped or odd-skipped classes and discussed in detail in Chapter 14, act in half the 
segmental tissues of the body. 

If the combinatorial code in Figure 12.21 d is at all close to correct, it should also 
be the case than the known homeotic transformation in Drosophila are between tis
sues which require the changing of only a single feedback loop from 1 to 0 or 0 to 1. 
That is, if each tissue has a binary combinatorial code word, then different tissues 
differ by one or more bits, and the known homeotic transformations should strongly 
tend to occur between tissues with neighboring code words that differ in a single bit. 
Table 12.3 shows the known transformations and the required bit changes. Most 
changes are either one or, rarely, two bits. Since a random code predicts a mean of 
two bits, this model is very much better than chance. 

Evidence for Binary Decisions and Parallel Homeotic 
Transformations in Caenorhabditis elegans 

Caenorhabditis elegans, a small nematode which has made major contributions to 
developmental genetics in the last few decades (see, for instance, Kimble and White 
1981; Greenwald 1987), also shows evidence of binary developmental decisions and 
parallel homeotic transformations. The adult worm has only about 1000 cells, which 
arise in extremely precise branching lineages. Ablation experiments demonstrate 
that almost all cell fates are determined cell-autonomously, without reference to 
neighboring cells. Each lineage comprises sequential divisions in which a mother cell 
may give rise to two daughter cells which are either identical to or different from each 
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TABLE 12.3 Observed Homeotic Transformations and the Code Changes Required for 
the Code Scheme in Figure 12.21d 

Mutant Transformation 

Antennapedia 1 Antenna leg 2 
Pointed wing Antenna wing 
Nasobemia Antenna leg 2 ] 

Eye wmg 
Dachsous Tarsus arista 
Opthalmoptera2 Eye wing 
Hexaptera Prothorax ~ mesothorax 
Pedoptera Wing leg 
Tetraltera3 Wing haItere 
Contrabithorax Wing haltere ] 

Leg 2 leg 3 
UItrabithorax HaItere wing 

Leg 3 leg 2 
Tumorous head Eye genital 

Antenna genital 
Antenna leg 

Lethal( 3)III·1 0 Haltere wing 
Lethal(3)XVI-18 Genital antenna 

Genital leg 
Lethal(3)703 Antenna leg 
Lethal(3)1803R Genital leg 

Genital antenna 
Haltere wing 

Proboscipedia Proboscis ~ antenna 
Proboscis ~ leg 

Extrasexcombs4 Leg 2 leg I 
Leg 3 leg I 

Polycomb Antenna leg 2 
Lethal( 4 )29 Leg 2 leg I 

Leg 3 leg I 

Coordination 

Parallel 

Parallel 

Parallel [ 

Parallel [ 
Divergent [ 

Parallel [ 
Divergent [ 

Parallel [ 
Divergent [ 
Parallel [ 

Divergent [ 

Convergent 

Convergent 

Code change 

IOIO~ 1110 
101O~1111 

101O~lll0 

1011~1111 

IIIO~IOIO 

1011 ~ \III 
1101 ~ 1111 
l1\1~\l1O 

1I11 ~0111 
\III ~Olll 
1\l0~0110 

0\11 ~ 11\1 
011O~111O 

lOll ~ 0011 
101O~ 0010 
101O~111O 

Olll~ IIII 
0010 ~ 1010 
0010 ~ OlIO 
101O~ 1110 
0010 ~ 0110 
0010 ~ 1010 
Olll~ IIII 
1000 ~ 1010 
1000 ~ 1100 
lllO~ 1100 
0110~ 1100 
101O~ 1110 
IIIO~ 1100 
011O~ 1100 

Switches 
required 

I 
2 

1* 
I 
I 
I 
I 
I 
1* 
I 
I 
1* 
I 
2 

1* 
2* 

Note: A set of home otic mutants causing the same transformation is represented by one member. (I) Antennapedia, anten
napedix, aristapedia, aristatarsia; (2) opthalmoptera, opthalmoptera, eyes-reduced; (3) tetraltera, metaplasia, haltere mimic; 
(4) extrasexcombs, reduplicated sex comb, sparse arista. (From Kauffman, Shymko, and Trabert 1978) 

"More than one circuit must change to account for all the transformations due to this mutant. 

other but both different from the mother; alternatively, the mother cell may give rise 
to two daughters in which the mother cell is reiterated in one of the daughters but 
not in the other. Occasionally, cell fate is determined by cell-cell interaction, and an 
equivalence group of cells can replace any ablated cell. A number of mutants have 
been uncovered which transform fates among pairs of cells. Many of these mutants \ 
convert a sister cell such that it becomes identical to its normally different sister. 
Mutants causing the reverse transformation are known as well. Each of these pairs ; 
suggests a binary-decision circuit underlying the different states in the pair. Note that 
the same binary behavior is expected in simple "live" decision loops in canalyzing 
networks. If such a loop is a one-input live loop with an even number of "no" ele
ments, then it has two alternative steady states and is driven to either one or the other 
by proper deletion mutants. 

The telltale signal for a combinatorial code, however, lies in evidence that the 
same state of a decision circuit occurs in more than one cell type, such that a single 
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mutant converts a set of cell types to another set in parallel. In favorable cases, a 
second mutant should cause the second set to transform in parallel to the first set. 
The lin-12 mutant in C. elegans appears to be just such a gene. Let us characterize 
two cell fates, A and B, for each of a number of quite different pairs of cells. In the 
wild-type worm, both A and B occur. In a semidominant lin-12(d), both members 
of each pair adopt the A fate and so AA is formed. In the converse lin-12( 0) allele, 
both members of each pair adopt the B fate, forming BB. It is now clear that the 
semidominant allele is an overproducer and the (0) allele is an underproducer of the 
gene product. In all, lin-12 controls homeotic transformations between II pairs of 
cell types in distinct lineages, drawn from four development stages and in quite dif
ferent cell types-for example, neuroblasts and myoblasts (Greenwald 1987; sum
marized also in Gilbert 1988). 

Lin-12 shows that at least one mutant in C. elegans acts in parallel in many cell 
types, causing reverse transformations between binary alternatives. Apparently, in 
each cell type, the same binary decision occurs but carries different implications in 
each as a result of other differences. In summary, C. elegans clearly has several 
binary-decision systems, each acting in at least one pair of cells and lin-12 acting in 
11 pairs of cells. These data begin strongly to suggest that any cell type will be spec
ified at least partially by a binary combinatorial epigenetic code word. 

Metaplasias in Mammals 

While best studied in Drosophila, startling metaplasias exist in many other organ
isms, including humans. Those in humans demonstrate largely reversible transfor
mations among 14 tissues in two major sets, one belonging to endodermal germ layer 
derivatives, the other to mesodermal germ layer derivatives. The patterns of trans
formation parallel those expected of genomic systems in the ordered regime. 

Homologues for homeotic mutants in humans and other mammals have long 
been doubted, but Slack (1985) has published an elegant account of metaplasias and 
heterotopias in humans. "Heterotopia" refers to the formation during embryogen
esis of a patch of tissue proper to one region, in situ, in an improper position. "Meta
plasia" here refers to transformations taking place postnatally and hence probably 
due to injury and repair. Slack notes that the ectoderm of humans is not very richly 
embued with distinct regional characteristics, as it is in the arthropods, and that 
much internal tissue is muscle, cartilage, or bone, whose exact regional specificity in 
a very small patch cannot be determined. On the other hand, the epithelial lining of 
the gut, urinary system, and female genital system is highly specific and the kinds of 
cell types which occur are highly distinct in distinct regions. Slack carefully disallows 
cases where endodermal epithelium characteristic of one region might be present in 
another region solely as a result of cell migration. He considers only cases where the 
ectopic tissue patch is well integrated into the surrounding epithelium and can be 
assumed to have arisen in situ by an altered behavior of the committed stem cells at 
that point. Figure 12.22 presents a global overview of the transformations seen. Four 
features of this directed graph of transformations are immediately apparent. First, 
each tissue transforms to only a subset of the 14 tissues. Second, sequences of trans
formations occur. Third, there are two isolated basins, joined by urinary bladder and 
ovaries. Within each basin, different tissues can transform to one another metaplast
ically. One of these basins corresponds to the endodermal germ layer and includes 
epithelia of the intestine, stomach, esophagus, pancreas, oral cavity, gall bladder, and 
nasal cavity. The second basin corresponds to mesodermal germ layer derivatives 
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Figure 12.22 Graph of home otic transformations in humans in the epithelial lining of the digestive, 
urinary, and female reproductive systems. An arrow from tissue A to tissue B means that patches of 
B epithelium can be found in the epithelium of A. Thick arrows denote relatively common events, 
and thin arrows denote very rare ones. Only the epithelial component of each organ is transformed. 
(From Slack 1985) 

and includes the urinary and female genital systems. Within the endodermal basin, 
the pancreas is a developmental sink. No similar single sink exists in the mesodermal 
basin. Fourth, there is a tendency for directionality. Gall bladder and ovary, for 
example, can be left but cannot be returned to, and only four of the transformations 
are reversible, only one of these in the endodermal basin. 

It is uncanny that the endodermal basin is almost identical to the Drosophila 
transdetermination graph (Figure 12.18) when the identities pancreas = wing, stom
ach = antenna, intestine = leg, gall bladder = genital, and esophagus = proboscis 
are used. These identities merely point to the same directed graph structure, of 
course. Thus a simple combinatorial code fits these phenomena. On the other hand, 
the mesodermal basin is far more complex. I can find no simple combinatorial 
scheme for this basin, although one may well exist. 

What implications can be drawn from the metaplastic transformations of Figure 
12.22? Recall the behavior of model genetic networks having a very large number of 
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inputs per gene and random choice of Boolean function for each gene. In particular, 
reconsider the limitin~ case of K = N networks. We know that such a system has 
N/ e attractors. Sino/the successor to each state of gen~activities is drawn at random 
from among the')!' possible states, however, successive states along state-cycle attrac
tors are not si~ilar to one another at all. Thus if the network is pertl:lrtied off the state 
cycle by tr~)I'Sient reversal of the activity literally of any single gene at all states along 
the state .. eYcle, the chances approach 1 that the system willnndergo a transition to 

- each o/the other state-cyCle attractors for some of those. perturbations. If all possible 
pet1Urbations of any Single gene on all states of th~state cycle are considered, it is 
vi)1ually certain-that each stat~~ycle can be f.rattsformed to all other state-cycle 
attractors. That is, it is characteristic of K = N networks that each cell type can trans
form by some minimal perturbation directly to all cell types. This clearly is not what 
is occurring in the transformations see in Figure 12.22. Each cell or, more properly, 
tissue type can transform to only a few of the possible alternative types. This char
acteristic strongly implies that, if cell types are attractors, each has only a few other 
basins of attraction as its neighbors. These properties, as we have abundantly seen, 
are generic self-organized properties of genomic systems built with few inputs per 
gene and/or limited to canalyzing Boolean functions (Figure 12.12). It is well, there
fore, to rest with the obvious features of the transformations in this mammalian 
endodermal epithelial system. All are explicable as natural consequences of the 
framework we have developed throughout this chapter: Cell types can be thought of 
as basins of attraction in the dynamical behavior of integrated genomic systems 
underlying ontogeny. Canalyzing genomic systems have the property that any cell 
type can differentiate into only a few cell types. These properties obtain not only in 
normal development, viewed along normal developmental pathways, but also in all 
the known metaplasias. That the properties obtain in the metaplastic transforma
tions is extremely unlikely to reflect direct selection. It seems very much more prob
able that the property of having only a few neighboring cell types into which each cell 
type can differentiate is a fundamental consequence of membership in the canalyzing 
ensemble. That membership, not direct selection, ensures that ontogeny has been 
organized into branching developmental pathways for the past 700 million years or 
so. 

SUMMARY 

The genomic regulatory system can in part be characterized by its local features. 
These include the number of genes or processes directly regulating any given gene or 
process and the constraints which may exist on the ways the regulated locus responds. 
Almost without exception, known genomic systems have few inputs per gene. 
Almost all the genes are governed, in the Boolean idealization, by canalyzing func
tions. Constraint to a few inputs is the molecular equivalent of high molecular spec
ificity, however, and constraint to canalyzing functions reflects chemical simplicity. 
Thus these basic constraints in large part reflect aspects of organic chemistry. 

Asking what those local properties imply about the overall organization and 
behavior oflarge genetic regulatory systems led us to study ensembles of genetic sys
tems whose members had the known local features. In fact, this entire ensemble 
spontaneously exhibits many highly ordered dynamical features which closely par
allel known features of cellular differentiation. 
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The parallels uncovered are far from trivial. They allow us to make predictions 
about 

• The complexity of recurrent patterns of gene expression corresponding to single 
cell types 

• The distribution of cell-cycle times 

• The number of cell types in an organism 

• The homeostatic stability of cell types 
• The ability of any cell type to differentiate directly into only a few other cell types 

• The organization of ontogeny around branching pathways of differentiation 

We were also able to predict that cell types share a core of expressed genes and differ 
in the expression of a small fraction of the genes, that hormonal or other signals prop
agate to a small and characteristic fraction of the genome, and that mutations prop
agate alterations to a similar fraction. We found evidence supporting the prediction 
that an organism uses only a subset of its cell types and evidence for a combinatorial 
character to alternative developmental commitments in the metaplasias of Drosoph
ila and other organisms. 

The ensemble approach has methodological, epistemological, and ontological 
implications. The genomic system underlying ontogeny is vast in its complexity. 
Complete analysis of any such system lies ever before us. Meanwhile, practical prog
ress must use those features of this system which can be teased apart to build up an 
overall theory for the system's structure and behavior. Even were genetic regulatory 
systems fixed in structure rather than fluid over short evolutionary times, we would 
need to use some form of ensemble theory to state our current best conjectures of 
large-scale organization and behavior. 

If there is a single image to bear away from these efforts, it is that random genetic 
programs, defying our earlier prejudices, can exhibit very great order. To ignore the 
possibility that such order underlies the order of ontogeny is simply foolish. 

In Chapter 5 we found a "liquid" interface separating parallel-processing net
works into three classes: solid, liquid, and gas. "Solid" corresponds to the ordered 
regime due to percolation oflarge frozen components via forcing structures or inter
nal homogeneity clusters. "Gas" corresponds to chaotic dynamics having (l)~o
nentially long attractors as a function of the number of genes in the system an~ 
spreading avalanches of alterations in gene activity patterns following minor pertur
bations. B~ these hallmarksofcnaos arise when no frozen component percolates. 
The liquid region is the boundary between order and chaos. All the data and models 
we have reviewed in this chapter are consistent with the hypothesis that genomic &ys
tems across phyla are in the ordered, sqJjd !~gilll~, perhaps quite near the edge. Grant 
thatge~-rich in canalyzing functions waf tend to exhibit spontaneous 
order due to the percolation of frozen components. Self-organization interacts with 
selection at all times. Thus the hypothesis that selection tunes the detailed structure 
of genomic networks toward the edge of chaos is highly plausible. Such a poised state 
would yield stable attr~Cj9r§_as cell types, combinatorial features to development, 
evolvable hierarchial command structures among the unfrozen regions, cascades of 
alterations in gene activity which propagated to some (but not a vastly large) number 
of other genes, and the capacity to evolve cell types by altering the behavior of single 
isolated unfrozen islands without propagating alterations to all regions of the 
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genome. The testable intuition is that the genome, if poised near the edge of chaos, 
maximizes dynamically ordered complexity and evolvability. 

This chapter has explored the strengths of an ensemble theory. If evolution is itself 
f exploring an ensemble of systems, then the generic properties of that ensemble stand 
• as null hypotheses to account for the order we see. We need merely explain mem

bership in the ensemble in question. If it proves true that selection tunes genomic 
systems to the edge of chaos, then evolution is persistently exploring networks con
strained to this fascinating ensemble of dynamical systems. The generic properties of 
this perhaps most important ensemble emerge as the best hypotheses to account for 
the remarkable order in organisms. If this overall view proves useful, then the man
ifold marriage of self-organization and selection consists in constraint of genomic 
systems to this well-wrought ensemble as a result of selection's achieving systems best 
able to adapt and the emergence of the generic properties of that ensemble as quasi
universals in biology. 



CHAPTER 13 

Selection for Cell Types 

My purpose in this chapter is to explore some of the issues which arise in considering 
either the evolution of novel cell types or the potential "perfection" of existing cell 
types. In Chapter 2, 3, 5, and 12 we examined the character of adaptive walks on 
rugged fitness landscapes, Ashby's Ansatz for adaptive evolution in integrated 
dynamical systems, and the emergence of order in disordered Boolean models of 
genomic regulatory systems. In particular, in Chapter 12 we found that the sponta
neous order in the canalyzing ensemble of Boolean networks closely mirrors a num
ber of ontogenic features observed across many phyla. However, the "cell types" in 
such random networks are themselves random attractors in the dynamics of the reg
ulatory systems. These preliminaries lead us to ask (1) whether natural selection can 
mold the genomic regulatory system in order to achieve particular patterns of gene "'? 
expression in specific cell types and (2) whether and when the rugged character of 
adaptive landscapes may funiphe capacities of selection. 

Caveats are immediately in order. Theev()lotion of cell types since the Cambrian 
has included the generation of new structural genes coding for new proteins with new 
or modified catalytic or structural functions. As described in Chapter 4, formation 
of such genes has involved duplication of structural genes and their subsequent diver
gence in gene families; it has involved recombinations that united functional 
domains from each of the proteins being recombined; it has involved local muta
tional search either perfecting a given catalytic or structural function or marching 
toward good performance of some neighboring function. I shall not discuss all these 
fundamental aspects of the evolution of cell types. Instead, I shall focus on a simpler 
but still fundamental subproblem: part ofthe evolution of cell types has undoubtedly 
involved~.tillD.£inihepurelygQerneticaspects of the genomic system, such that 
different combinations of activities of the same set of structural genes come to eXist) 
as attractors. That is, the evolution of cell types has in part involved alterations in the 
regulatory system such that new cascades and new patterns of expression of the same 
structural genes arise. 

Thus the fundamental question examined in this chapter is the extent to which ) 
selection can mold cell types by altering the cybernetic regulatory system controlling 
their conjoint activities. A major conclusion reached, echoing the results from Chap
ters 2,3, and 5, is that selection is sharply limited by the ruggedness of the adaptive . ___ , __ .. ,,0 .... _._~_,_,_._.,_,_~."-..A. 
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landscapes on which the system evolves. Selection, we shall see, almost certainly can
not mold the cybernetic system to achieve arbitrary patterns of gene expression in a 
given cell type; instead, adaptation becomes trapped on local optima. A second 

r major conclusion, however, is that such trapping is less of a hindrance in genomic 
regulatory systems with few inputs per gene than in those with many inputs per gene. 
That is, the same class of model genetic regulatory systems which best captures the 
behavior of known genomic systems simultaneously appears best tuned to adapt 
well. Such networks lie ~.r.eginH~. and hence adapt on highly correlated 
landscapes. Conversely, networks with many inputs per element typically lie in the 
chaotic regime and adapt on very rugged landscapes. We shall therefore have to ask 
whether the occurrence of such ordered cybernetic systems in organisms may not 
reflect "second-order" selection for the class of regulatory systems which adapt well. 

The results critical to this chapter were discussed in Chapter 5 in the general con
text of the adaptive capacities of Boolean networks and draw on work done with my 
colleague R. Smith (Kauffman and Smith 1986). Here I present the broader context 
into which those results fit and briefly recapitulate the findings of Chapter 5. 

THE FRAMEWORK 

As we noted in Chapters 1 and 2, chromosomal mutations which move cis-acting 
regulatory sequences to novel positions adjacent to structural genes literally alter the 
regulatory wiring diagram of the genomic system. Similarly, either point or grosser 
mutations readily alter the behavior of a regulated locus. The simplest examples 
include mutation of an operator locus to a constitutively free state (Jacob and Monod 
1963; Monod 1971; Vogel 1971; Zubay and Chambers 1971). Examination of the 
capacity of selection to mold cell types requires, at the level of theory, an appropriate 
abstraction of our knowledge of genuine genomic regulatory systems. Given such an 
abstraction, our reasonable aim must be to understand some of the major issues 
which arise in the evolution of coordinated patterns of gene expression. Later, guided 
by those insights, we may turn back to experiments. Therefore, I shall persist in uti
lizing Boolean-network models of genomic regulatory systems and in using the cen
tral interpretation of a "cell type" as a dynamical (state-cycle) attractor in the rep
ertoire of a given genetic network. Given this identification of a cell type, the 
framework for this chapter is to examine whether selection can act on a population 
of mutating genomic regulatory systems (in which connections and Boolean rules 
assigned to individual genes are altered) and can thereby achieve genomic regulatory 
systems which have desired patterns of gene expression as the dynamical attractor 
cell types of the system. 

Recall from Chapter 5 the similarity of this question to Ashby's (1960) Ansatz. 
For Ashby, adaptation is based on identifying a subset of essential variables in a sys
tem. Those variables must be kept in bounds by the coordinated dynamical behavior 
of the system coupled to its environment (called the System). In any initial state, the 
System flows to some atrractor. On that attractor, the essential variables either are or 
are not kept in bounds. In the former case, Ashby alters nothing. In the latter case, 
he in effect introduces ajump mutation in some parameter setting, thereby altering 
basins of attraction. With the new basins, the System may flow from its current state, 
with some essential variables out of bounds, to a new attractor which keeps all essen
tial variables within bounds. If so, Ashby stops the adaptive process. If not, he allows 
another step change in some parameter to the system. Clearly, if we are examining 
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the extent to which selection can alter regulatory connections and Boolean rules in 
a mutating population of genomic regulatory systems in order to achieve some 
desired pattern of gene expression as a dynamical attractor, we are embarked on a 
version of Ashby's Ansatz. 

Another caveat is in order. What kind of question is being posed in asking whether 
selection can mold a model genomic regulatory system to achieve some desired pat
tern of gene expression as a dynamical attractor? Obviously we are in no position yet 
to guess which particular patterns of gene expression may be useful, nor do the Bool
ean models we shall consider assign real properties to individual genes. The under
lying task of interest is to characterize the adaptive landscape for genomic regulatory 
systems such that, whatever the patterns of gene expression which might be advan
tageous, we shall understand the extent to which selection for such advantageous pat
terns is either aided or limited by the statistical features of the adaptive landscape 
underlying the evolution of cell types. For this purpose, it is fully legitimate to choose 
any arbitrary pattern of gene expression as a "good" cell type, ask whether selection 
can begin by operating on an arbitrary genomic network, and ultimately achieve a 
network exhibiting the desired target pattern of gene expression as an attractor. 

I note that efforts to evolve parallel-processing networks to have attractors with 
desired properties follow in a tradition explored by Fogel, Owens, and Walsh (1966), 
who were among the first to attempt to apply evolutionary methods to evolving com
puter programs with desired behavior. More recently, Lenat (1977, 1980) has studied 
the capacity of evolutionary procedures to prove theorems and has suggested heuris
tics for biological adaptation. In these cases and in our current context, a major issue 
is to understand the structure of the fitness landscape and the limits this structure 
imposes on adaptive evolution. 

GENOMIC NETWORK SPACE 

In Chapters 2, 3, and 5 we discussed the concept of an ensemble of entities and their 
arrangement in a high-dimensional space such that each entity was next to its one
mutant neighbors. In the simplest case, an entity is a peptide of defined length and 
its one-mutant neighbors are other peptides ofthe same length but differing by a sin
gle amino acid. In the case of NKBoolean models of genomic regulatory systems, the 
ensemble consists of all networks having Nbinary genes and K inputs per gene. Each 
such network is a one-mutant neighbor of all networks differing in a single regulatory 
connection or single Boolean function. More precisely, any regulatory connection 
can be thought of as an arrow from the regulating gene or process to the regulated 
gene or process. Thus either the regulating or the regulated gene might be altered. A 
Boolean function of K variables assigns a 1 or 0 value to each ofthe 2K possible com
binations of activities of the K input variables. Thus we can define the one-mutant 
neighbors of any Boolean function to be those which change a single bit in the 2K 
positions either from a 1 to a 0 or from a 0 to a 1. 

Consider a genomic system with N = 1000 and K = 2. The number of regulatory 
connections is KN = 2000, and each is subject to mutation in either the regulating 
or the regulated gene. If the origin or termination of any regulatory connection can 
be changed to any other connection, there are 2 X 1999, or 3998, one-mutant neigh
bors with respect to regulatory connections. Similarly, each Boolean function of 
K = 2 inputs has four bit positions, and hence each admits offour neighboring Bool
ean functions. Thus any such NK network has 4000 one-mutant neighbors with 
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respect to Boolean functions. Therefore, we may consider two one-mutant spaces: 
that induced by alterations of regulatory connections and that induced by mutation 
in Boolean functions. It mayor may not be the case that the adaptive landscape is 
statistically similar for these two distinct "move" generators. The full space, of 
course, allows both kinds of mutations, so that, in the full space, each network has 
almost 8000 neighbors. 

In Chapters 2, 3, 4, and 5, I discussed the idea of an adaptive walk which is con
strained to start at some initial entity and pass via/mer one-mutant or j-mutant var
iants to a local optimum. Such an optimum is any entity which is fitter than all its 
one-mutant or j-mutant neighbors. We saw that the one-mutant case allows us to 
characterize the statistical properties of the adaptive landscape in a constant envi
ronment (such that the fitness of each entity is constant in time). Those properties 
include number oflocal optima, expected lengths of adaptive walks to local optima, 
number of alternative local optima accessible from any initial entity, similarity of 
local optima, and fitness of the accessible local optima with respect to the mean fit
ness of entities in the space. It is natural, in assessing these statistical properties, to 
idealize the adaptive behavior of a real population driven by mutation and selection 
to a limiting case in which mutation frequency is low relative to population size and 
fitness differentials. Then, on a slow time scale, fitter variants are encountered. Any 
such variant either dies out or, once above a rough threshold frequency in the pop
ulation, invades the population essentially deterministically and on a fast time scale. 
Recall that Gillespie (1983, 1984) has shown that such a process can be considered a 
continuous-time, discrete-state (here "entity") Markov process. The adaptive pro
cess first is "resident" at a single entity over long time periods and then jumps prob
abilistically to any of its fitter one-mutant neighbors on a rapid time scale. Thus this 
limiting case oflow mutation rate samples the one-mutant fitness landscape in ques
tion and proceeds via one-mutant fitter variants to or toward local optima. 

I simplify this behavior of an adapting population in the models below and con
sider an adaptive process in which, at each generation, all copies but one of the cur
rent fittest network are subject to a single random mutation in connections or in 
Boolean function. Each copy is examined to assess whether or not it has a state-cycle 
attractor best matching a predetermined target pattern of gene expression. The entire 
population of networks then moves in a single step to the fittest variant, and the adap
tive walk iterates from that new network. For concreteness, we may normalize the 
fitness of any network to lie between 0.0 and 1.0 by taking as its fitness the fractional 
match between its closest attractor and the predefined target pattern of gene expres
sion. 

It is important to stress that it is trivally possible to build model genomic networks 
in which any single desired pattern of gene expression by N genes is achieved as a 
stable steady-state attractor. It suffices to assign the Boolean function "Tautology," 
corresponding to constitutively active, to any gene which is to be active in the target 
pattern; similarly, it suffices to assign the Boolean function "Contradiction" to any 
gene which is to be inactive in the target pattern. There may of course be very many 
other genomic networks having any specific single target pattern as a steady-state 
attractor. Thus failure of a selection regimen to achieve networks capable of match
ing a single desired target pattern cannot be due to a mathematical impossiblity of 
constructing such networks. By contrast, it might be the case, were we to seek net
works which had some number of predefined target patterns as steady-state attractors 
while the class of networks under selection were constrained to, say, K = 2 inputs 
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per gene, that such requirements were mathematically inconsistent. In the analysis 
below, therefore, I limit attention to cases where selection attempts to find networks 
matching a single target pattern of gene expression. 

Adaptation in the Space of Genetic Networks 

The results reported in Chapter 5 show the following: 

1. Long-jump adaptation confirms the Universal Law. In Boolean networks, a long 
jump consists in mutating half the connections in the networks, or one-quarter of 
the bits in the Boolean function of the networks, and then assessing the popula
tion for fitter variants. In the long-jump case, the expected waiting time to find 
the next improved variant doubles after each improvement step. Further, the 
cumulative number of improvement steps S increases as a logarithmic function 
of the number of trials, or generations, G:S = log2 G (Figure 5.11). 

2. In long-jump adaptation the complexity catastrophe described in Chapter 2 arises. 
As the complexity of the network N grows larger, the mean fitness attained at any 
fixed generation declines toward the mean fitness in the space of genetic networks, 
0.5. This relationship implies that, as genomic systems grow larger, adaptation by 
long-jump searches in genomic space becomes an increasingly poor strategy 
because such searches jump beyond the correlation spaces of the landscapes. 

3. Adaptation via one-, two-, or five-mutant variants in K = 2 and K = 10 networks 
(Figures 5.12 and 5.13) exhibits six general features: 

• Adaptation never reaches the global optimum of a perfect match to the desired 
target pattern of gene activities. 

• The waiting time to find fitter variants increases as fitness increases. 

• As the mutant search range increases from 1 to 5, the fitness attained at local 
optima increases. Searching is therefore optimized by tuning the search range to 
the structure of the landscape. 

• In K = 2 networks, the fitness attained at local optima falls as N increases 
(Table 5.5). Thus even adaptation via fitter one-mutant neighbors confronts the 
complexity catastrophe. One expects that, as N increases, the fitness attained at 
local optima will dwindle to nearly that found in unselected networks in the 
space of genetic networks. 

• The correlation structure of K = 2 landscapes is much smoother than that of 
K = 10 networks (Figure 5.14). 

• If the activities of only a subset of the N genes are considered important and 
measured against a target pattern of desired gene activites while the rest of the 
N genes are hidden variables not directly affected by selection, selection still does 
not achieve the global optimum of a perfect match for the subset. The fitness 
level attained seems roughly the same regardless ofthe fraction of important and 
hidden variables. 

These results carry a number of important implications. Foremost, in this limit 
of strong selection relative to mutation rate, where the population can always move 
"uphill' to the fitter variant, the general failure of adaptive walks via fitter one-
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mutant variants to find networks which match a target pattern of gene expression 
strongly suggests that real natural selection cannot (often or at all) mold genomic 
systems to achieve arbitrary desired patterns of gene activities as cell types. Instead, 
trapping of the adaptive walk on local optima prevails. The results go further. The 
multimutant cases also fail to reach networks with a fitness of 1.0 in 100 generations. 
The number of neighbors having two or five mutations is extremely large. Because 
all neighbors cannot be searched, we cannot be sure that any given network is a local 
optimum with respect to all two- or all five-mutant neighbors. Thus although mul
timutant search does not attain perfect networks, it remains conceivable that, in a 
sufficient number of generations, a two-mutant or five-mutant search might achieve 
a perfect network. It seems unlikely, however. 

Thus for complex genomic regulatory systems, in the limit of long-jump adapta
tion and in the limit of one-mutant adaptive walks, it seems virtually certain that 
even strong selection cannot begin with an arbitrary genomic regulatory system and 
follow adaptive walks to achieve precisely defined cell-type patterns of gene expres
sion. It remains conceivable, but does not appear too hopeful, that either an adaptive I· process with an intermediate search range or one with a spectrum of mutants per 

I 
individual might typically be able to achieve networks having any arbitrary desired 
pattern of gene expression as attractors. Only further mathematical work will answer 
this question. 

In short, we must begin to reckon with the fact that the adaptive landscape in 
which the cybernetic aspects of the genomic system evolve is very rugged, reflecting 
the fact that such networks pose complex combinatorial optimization problems. 
Adaptive walks in the simplest case of constant fitness landscapes and very strong 
selection march uphill to a local peak which, generically, is substantially below the 
global optimum fitness. 

The second general result is that the rate of finding fitter variants slows, implying 
that the number of fitter j-mutant variants decreases as fitness increases. Thus adap
tive walks can in principle branch in different directions, but the rate of branching 
decreases as fitness increases. This relationship very strongly implies that, from an 
initial state of moderate fitness and in a fixed fitness landscape, strong selection can 
follow adaptive walks to a fairly large number of alternative local optima. Multiple, 
if suboptimal, solutions to the cybernetic task of coordinating gene expression are to 
be expected. As the fitness of the initial entity increases, the number of alternative 
optima accessible decreases rapidly. Highly fit entities can walk only uphill to a single 
local optimum. Thus bushy radiation from initial genomic systems of moderate fit
ness which move toward alternative solutions to the adaptive problem and quiets to 
stasis as fitness increases in a fixed fitness landscape is essentially built into the struc
ture of complex combinatorial optimization processes. 

A third feature of adaptation is that, as the mutant search range increases from 1 
to 5, the fitness achieved increases. While increasing the range from I to 5 helps the 
adaptive process, increasing it very far toward the long-jump limit hurts. Intuitively 
we know that the system isjumping beyond local good hills and wasting time search
ing far away. This constraint is related to the concept of an optimal search range, 
tuned by the rate of uncovering fitter variants, which can be readily obtained by 
assuming that the mutation rate is heritable. Then ifit currently pays to search farther 
away, such mutants will find fitter variants and carry the high mutation rate with 
them. Alternatively, ifit currently pays to search nearby, then entities with low muta
tion rates will find fitter variants faster and will carry the low mutation rate with 
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them. A heritable mutation rate in principle allows selection to tune the search range ~ 
to the statistical features ofthe adaptive landscape as they are encountered. As noted ) 
in Chapter 3, this is a mechanism which is familiar in evolutionary biology and even 
in engineering applications of mutation selection search procedures but whose use 
in evolution has been doubted by serious evolutionary biologists (Crow 1987). 

The fourth important feature is that even K = 2 networks suffer the complexity 
catastrophe. Because they adapt on more correlated landscapes than do K = 10 net
works, however, K = 2 networks appear to suffer that catastrophe more gradually. 
The complexity of K = 2 networks was varied from N = 20 genes per network to 
N = 100 genes, and the adaptive process was restricted to one-mutant search. 
The salient result is that, as N increases, the fitness achieved decreases from 0.90 for 
N = 20 to 0.78 for N = 100, a decrease which is not as great as in the long-jump 
adaptation, where the fall is from 0.88 to 0.67 as N increases from 20 to 100. The fact 
that limitation of selection to a subset of important genes while the rest remain hid
den variables does not help attain higher optima strongly suggests that, as N grows, 
the match of any fixed "important"jraction of the N to a desired pattern of activity 
will also fall toward 0.5. 

These results imply that, however adaptation is carried out-via fitter neighboring 
mutants or via long-jump adaptation-as the complexity of the genomic cybernetic 
system under selection increases, the expected capacity to match even a single desired 
target pattern of gene expression falls to the match expected by any randomly chosen 
unselected network (0.5). The complexity catastrophe limits selection. 

In Chapters 2 and 3, we examined the NK family of landscapes and found that, 
for K = 2, the fitness of optima attained appeared to be independent of N. On those 
landscapes, the complexity catastrophe could be completely avoided as long as K "2

IJ J 
remained fixed small as N increased, perhaps even if K increased slowly as N -\1-\ 
increased. In the present case, we are considering the dynamical behavior of disor-
dered Boolean switching networks. The results suggest that, even for the K = 2 case 
where order emerges spontaneously, the complexity catastrophe still arises. 

If these results are generally applicable, they suggest that attaining specific coor
dinated patterns of gene expression becomes progressively harder as N increases. 
Truly large genomic systems may therefore be constrained to cell types in which, at 
best, the activities of rather jew genes can be prescribed with precision. Guessing 
ahead to the capacity of selection to build specific patterns of gene expression in a 
number of different cell types in one organism, we would expect that, in anyone cell 
type, a modest number of genes might have their activity specified with precision, 
but those same genes might well express themselves "adventitously" in a number of 
the other cell types of the same organism. We return below to evidence which sug
gests that this may well be true. 

The fact that both genetic networks of low connectivity and those constrained to 
utilize canalyzing Boolean function spontaneously exhibit a highly correlated adap
tive landscape, while high-connectivity networks do not, raises the very important 
possibility that the current apparent prevalence of regulatory systems oflow connec
tivity and/or rich in canalyzing functions may reflect selection itself. If it is the case 
that low-connectivity networks are better able to adapt and can climb through fitter 
one-mutant variants to rarer optima in spaces of complex genomic systems, then it 
requires no group selection argument to note that natural selection will tend to enrich 
populations founded by entities which, thanks to the correlation structure of their 
adaptive landscapes, can better adapt. Therefore, we are forced to confront the idea 
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that selection can alter the very ensemble of genomic systems in which adaptive evo
lution is occurring. Therefore, as discussed in Chapter 5, we must conceive of a kind 
of second-order theory: 

1. What kinds of systems-genomic, protein, hierarchial-have correlated land
scapes which circumvent in part the general tendency for local optima to fall 
toward the means of their spaces as the complexity of entities under selection 
increases? 

(7 2. Since in coevolution or in the face of high mutation rates, maintained fitness can 
be higher on more rugged than on less rugged landscapes, optimal adaptation may 
typically require a compromise between smooth and rugged landscapes. What 
kinds of genomic systems match this optimum ruggedness oflandscape structure? 

When can Darwin's selection, acting predominantly on individuals, yield organ
isms having the property that their mutant landscapes are well correlated? Protein 
domains, low-connectivity genomic networks, and hierarchial construction in 
organisms, modular in each case but in different ways, all suggest that selection 
reliably molds entities to have "good" landscapes. We obviously have much to 
learn about this problem. 

Can Recombination Aid Adaptation 
in Regulatory Networks? 

In Chapters 3 and 5, we considered the power of selective hill climbing based on 
recombination rather than mere accumulation of single advantageous point muta
tions. In protein space, for example, recombination allows new combinations of 
functionally independent domains on two initial proteins to be joined in a single 
mutational step. By contrast, achieving this on any amino acid substitutions would 
require that many point mutants accumulate in either parental protein alone. Recall 
that the usefulness of recombination almost certainly depends on the ruggedness of 
the fitness landscape. For a fully uncorrelated landscape, it seems unlikely the recom
bination is a useful strategy. For recombination to be useful, it is plausible that it 
must be possible to marry two partial solutions to a task with reasonable chances that 
the recombined trial solution is as good as or better than the initial partners to the 
recombination event. 

Recombination certainly occurs in real genetic systems. Insofar as the genomic 
systems in two parents are not identical, such recombination may generate an off
spring system whose detailed wiring diagram and logic differ from those of either par
ent. Indeed, presumably this differing from one generation to the next is an utterly 
common phenomenon. Why does it not lead to chaos? Presumably, such recombi
national alterations in the genomic system do not often drastically alter the system's 
behavior. 

No studies have yet been carried out with K = 2 networks in the ordered regime 
or K = 10 networks in the chaotic regime to test whether recombination can be a 
useful strategy for adaptive hill climbing toward desired patterns of gene activity. 
However, I believe it is reasonable to anticipate that such recombinational moves are 
more likely to be useful for K = 2 networks than K = 10 networks. I anticipate this 
on two general grounds. First, K = 2 networks adapt on more correlated landscapes. 
All alterations yield, on average, smaller effects on dynamical attractors than in 
K = 10 networks. Further, in K = 2 networks in the ordered regime, a large fraction 
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of the genes fall to a fixed active or inactive state. This frozen core isolates islands of 
genes which influence one another within an island but do not influence genes in 
other islands. Consider recombining two similar genetic networks having a large 
overlap in the frozen component. Break each system into two fragments, and glue I 

the complementary fragments together to form the recombined system. Ifthe broken 
regulatory connections fall largely in the frozen component, the rejoins will hardly 
alter the dynamical behavior of the recombined system; only recombined connec
tions to the isolated islands will have marked influence. Thus such recombination 
events will not create mass havoc. In contrast, the same operation on two fairly sim
ilar chaotic systems having K = 10 inputs per gene and no frozen component can be 
expected to alter dynamical behavior drastically. Therefore I surmise, but do not 
know, that recombination may often be useful in K = 2 networks or, more broadly, 
in networks in the ordered regime which result either from percolation of forcing 
structures or from networks which achieve frozen components by virtue of high 
internal homogeneity in their Boolean functions. 

Population Selection as Complexity Increases: 
The Error Catastrophe Again 

The simulations and analysis I have reported concern the character of adaptation 
only where selection is always strong enough to pull an adapting population to the 
next fitter variant. The structure of the fitness landscapes for K = 2 and K = 10 
Boolean networks clearly is multipeaked and quite rugged. The flow of an adapting 
population across such landscapes as a function of population size and mutation rate 
remains to be examined. Nevertheless, experience with the NK family oflandscapes 
makes it clear that, as the mutation rate increases-or, for a fixed mutation rate, as 
the complexity of the system increases-populations will eventually suffer from the 
error catastrophe. Selection will become too weak to hold the population at or near 
local optima. Thus the population will flow down from the peaks and across more 
or less vast tracts of network space among large numbers of nearly neutral mutants. 

Conclusions and Caveats from the Theory 

The conclusions to be drawn from even these preliminary models are these: 

1. Complex genomic systems adapt on rugged fitness landscapes which have many 
local optima. It is very unlikely that selection for any arbitrary overall pattern of 
gene expression as a cell type can achieve such a goal. Adaptation arrests on 
optima far short of any such goal. While the image of selection trying to achieve 
a specific arbitrary pattern of gene expression is obviously improper, the conclu
sion is not. It asserts that, whatever may be advantageous, trapping on local 
optima will block attainment of arbitrary useful patterns of gene expression. 

2. As the complexity of genomic systems increases, long-jump adaptation alone 
would lead to systems whose attainable fitness falls toward mean properties of the 
ensemble of systems under selection. The same holds true as complexity 
increases, if the fitness landscape is sufficiently uncorrelated. 

3. These limitations can be delayed only if the landscape is sufficiently well corre
lated. Genomic systems which have few inputs per gene and those which have 
canalyzing functions appear to meet these requirements. Both have small attrac-
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tors, and hence both exhibit homeostasis and thereby also adapt on correlated 
landscapes. While systems having few inputs per "gene" slow the rate of onset of 
the complexity catastrophe, they cannot avert it. As the genomic system becomes 
more complex, it appears that the match of any fixed fraction of genes to a desired 
target pattern falls toward chance levels. 

4. It remains possible that, as N increases, an ever-larger number of genes can be 
selected to match a target pattern but the number which matches increases less 

. than linearly as N increases. If so, then larger genomes could specify with precision 
the activities of more important genes, constituting a smaller fraction of the 

; genome. 

5. Our analysis has been limited to the oversimple case of selecting on Boolean net
works to achieve only a single target pattern of gene expression as an attractor. If 
attractors are the proper model for cell types, and if an organism has several hun
dred cell types, then selection for specific patterns of gene expression on each cell 
type must juggle the joint requirements of this regulation. Even selection of a sin
gle attractor to match a single target pattern meets with very limited success, and 
even such modest success may degrade drastically if selection must attain a single 
genomic system which has many attractors each matching a different desired and 
arbitrary pattern of gene expression. 

6. Boolean networks in the ordered regime but on the edge of chaos may be those 
having both the capacity to perform the most complex computations and the opti
mal landscapes for adaptive evolution. Because most mutants cause minor 
changes in behavior but some cause drastic changes, such networks live on land
scapes which are typically smooth but harbor directions of sharp change. These 
features allow such networks to rapidly alter behavior in drastic ways if the envi
ronment or task changes rapidly. 

I 7. Selection may be able to act in a second-order way to achieve systems which adapt 
on properly correlated fitness landscapes. Such action does not require group 
selection; it requires only that entities with properly correlated landscapes more 
often find fitter variants and hence are selected and carry with them those con
straints which ensure a correlated landscape. \ 

8. Molecular specificity and simplicity appear to be sufficient conditions to achieve 
molecular dynamical systems-genetic, autocatalytic, antiidiotype networks-of 
low connectivity. These molecular features would be expected to be selected for 
by virtue of the increased catalytic and recognition efficiency due to that specific
ity. Thus selection for molecular efficiency will purchase, at the same time, both 
globally ordered dynamics and integrated systems able to adapt. This duality 
should be a strong part of the answer to Dyson's (1985) request for a theory of 
emergent homeostasis. 

9. Selection for cell types is limited not only by the abundance oflocal optima but, 
as complexity increases, by the encroaching failure of selection to overcome the 
effects of mutation. We recall from Chapters 3 and 6 that, in the face of high muta
tion or in the face of non fixed landscapes resulting from environmental changes 
or coevolution, high maintained fitness may require the entities to adapt on more 
rugged landscapes. Such landscapes may have lower peaks than smoother land-

, scapes do, but the gradients toward the peaks are steeper, thus helping to offset 
mutational forces or landscape deformation. Thus there may be an optimal land
scape ruggedness which preserves attainable high optima as complexity increases 
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but has steep enough loss of fitness in enough directions to allow selection to hold 
entities at such high optima in the face of mutation. In short, additive fitness, or 
gently rounded optima, yield the error catastrophe as complexity increases: Muta
tional forces overwhelm selection forces. Conversely, very uncorrelated land
scapes confront the first complexity catastrophe: Attainable optima fall toward 
the mean of the ensemble as complexity increases. Selection may thread a path 
between these new Scylla and Charybdis in constructing systems whose land
scapes are rugged in the "right way." 

EXPERIMENTAL AVENUES 

Two lines of thought spring to mind when we consider ways of testing our hypothe
ses. The first revolves around two questions: Are genomic regulatory systems likely 
to be highly variable? Is such variability open to experimental verification? If selec
tion for regulatory network structure and logic is based on additive models, high var
ability seems inevitable. In this case, selection in the face of known mutation rates 
appears unlikely to hold adapting populations very close to possible local optima. In 
Chapter 11 we used an additive model and calculated that, based on estimated rates 
of chromosomal mutations moving cis-acting regulatory loci, a genomic system with 
on the order of25 000 regulatory connections would have about 10 percent "incor
rect" with respect to single global optima. This result should carry over to accumu
lation of mutants affecting the regulated behavior of genes and thus their Boolean '\ 
functions in the binary on-off idealization of gene expression. If each of 100 000 
genes is regulated by a Boolean function on some regulatory inputs and if mutations 
modify such rules at about 10-\ then the same argument leads to the expectation 
that 25 percent or more of such rules should be incorrect with respect to spaces with 
single global optima. If so, then the regulatory system should drift and vary consid-

erably. ') The additive-landscape idealization that underlies such a calculation is, of course, 
unrealistic. More sensible work is needed-as a function of mutation rate, landscape 
ruggedness, population size, and extension to diploid models-to achieve reasonable 
insight into the expected precision in the genomic architecture and logic. Neverthe
less, a plausible first guess is that considerable variability should be found. 

This guess should be directly testable by exploration of the variability in the reg
ulatory architecture and behavior of actual populations. Proper experimental 
approaches to this line of testing can be based on analysis of tissue-specific patterns 
of protein expression or gene expression in different isolates of one inbred strain of a 
species or in sibling species. 

Analysis of sibling species is showing very high regulatory varibility. Work on the 
rich sibling species of Hawaiian picture wing Drosophila has analyzed tissue-specific 
patterns of enzyme expression for eight enzymes in 13 tissues across 23 species and 
is summarized in Dickinson (1980a, 1980b, 1980c, 1988). The general observation 
is that each enzyme chosen is expressed in a core set of tissues in all 23 species but 
twinkles on and off-present and absent-in the remaining tissues. Among the m~t ) . 
interesting features of this twinkling is that it does not fit neatly into the best guesses 
for the phylogenetic branching lineage of the sibling species, nor do the twinkling' 
patterns for different enzymes across the 23 species fit parsimoniously into the same 
branching lineage. In analyzing these patterns, Dickinson (1988) has been led to sup-
pose that selection is capable of ensuring the expression of each gene in the core of 
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/' r tissues, where it may be critical, but that the complex structure of genetic regulatory 
systems with combinatorial regulation of many genes implies that the same gene will 
be expressed more or less randomly in a variety of other cell types of the same organ
ism. Cavener (1987) has reached somewhat similar conclusions. 

The failure of the expression patterns of enzymes to fit naturally into a phyloge
netic lineage is reminiscent of the quixotic disappearance and recurrence of small 
bristle clusters and other pattern elements in the same set of Drosophila species (Gar
cia-Bellido 1983). In all these cases, it can be argued that the different sibling species 
have enzyme patterns or bristle and pattern elements which reflect maximally 
adapted phenotypes in the local microenvironment. Conversely, the constancy of 
enzyme expression in a core of tissues and the quixotic expression in the remaining 
tissues suggest that selection, at best, can control gene expression in the core but not 
in the remaining tissues, which exhibit imprecise behavior. Ruling out selective inter
pretations will be forever difficult in sibling species studies. Ultimately, testing iso
lates of inbred strains directly and assessing the rate of mutation of regulatory ele
ments will help establish where and when selection can maintain cybernetic systems 
and with what precision. 

The second line of thought asks how we might test the premise that, if many local 
optima exist, all suboptimal for any target pattern of gene expression, selection for 
any specific pattern of gene expression should become trapped on a local optimum 
well short of the target pattern. The experimental difficulty lies in conceiving of pro
cedures to select for combinations of expression of a set of genes embedded in the 
genomic system of an organism. Such selection schemes are on the edge of feasibility. 
For example, a number of structural genes coding for enzymes for a connected met
abolic pathway not present in a given cell, and in which the terminal metabolite was 
utilizable by the cell as food, might be inserted at random locations in the genome of 
the host cell, and selection for their joint synthesis sought by supplying substrates for 
various enzymes in the pathway. Such studies might reveal that sequential selection 
starting with expression of the enzyme required at the bottom of the pathway and 
followed by expression of its predecessors could succeed, or such selection might 
show that the coupled genomic system typically makes joint expression extremely 
difficult to achieve. Either answer is interesting. 

SUMMARY 

This chapter has begun to explore the capacity of selection to modify cell types or to 
coordinate patterns of gene expression. We have uncovered two familiar limitations. 
First, selection is limited by the structure of the fitness landscape. Second, we expect 
tnar selection in the face of mutations cannot hold a population-at optima. With 
respect to the first limitation, adaptation becomes trapped on local optima. Even 
strong selection for arbitrary desired patterns of gene expression is unable to achieve 
those patterns via fitter mutants which alter the wiring diagram and the logic of the 
genomic regulatory system. Adaptation climbs to local optima quite far below the 
global optimum of a perfect match to the desired pattern. However, landscape rug
gedness for genetic networks in the ordered regime, where there are few inputs per 
gene, differs from ruggedness in those in the chaotic regime, where each gene is reg
ulated by many other genes. In the former case, the landscape is highly correlated 
and the fitness of attainable optima recedes only slowly as N increases. This echos 
the results in Chapters 2 and 3 for the NK family of rugged landscapes, where, for 
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small K, the fitness of attainable optima does not decrease at all as the number of 
traits in the organism N increases. In both cases, low connectivity (low K) corre
sponds to systems whose fitness landscapes are highly correlated. Both are the kinds 
of highly complex systems which can adapt well because each adapts on a good fitness 
landscape with high and attainable optima that do not recede as N increases. 

The second limitation is due to the mutation/selection error catastrophe. We have 
not carried out numerical studies of this problem for K = 2 regulatory networks, but 
from experience reported in Chapter 3, we anticipate that, in the face of continuous 
mutation, selection will be limited in its capacity to hold adapting regulatory net-
works at the attainable good local optima. As the number of genes and hence the 
complexity of the network increase, the fitness of such optima declines gradually. 
Further, as N increases, the average fitness loss due to a single mutation becomes :/111) 
smaller. Correspondingly, the selective force tending to restore the mutation to the sit,)J "t;
optimal state becomes less. In parallel with results on the mutation/selection error --'~r 
catastrophe discussed in Chapter 3, mutation ultimately becomes a stronger force 
than selection as N increases, and the population falls from the attainable local 
optima toward the mean of the underlying space of genetic systems. The population 
wanders the foothills of the adaptive cybernetic landscape. Given plausible numbers 
for the rate of mutation and the number of genetic regulatory connections in a higher 
eukaryote, it is reasonable to guess that selection may well not hold populations 
closely clustered about optima in the space of genetic networks. 

Results for fixed landscapes must be extended to ever-deforming landscapes due 
to environmental changes or coevolution, as discussed in Chapter 6. There we saw 
that, up to a point, the more rugged the landscape, the better a system may fare. Opti
mization of network architecture and logic for the capacity to adapt and coadapt 
appears to be a subtle problem. 

If indeed it is the case, and can be shown experimentally, that selection does not 
hold populations clustered very narrowly about a wild-type genomic regulatory sys
tem, then actual genomic systems are diffusing in a space of possible genomic sys
tems, perhaps well below local optima. Then actual genomic regulatory systems are 
imprecise, drifting, and suboptimal. If this is true, then such systems should remain
ing fairly typical members of the space of genomic systems in which evolution is 
occurring. Further, if optimal networks, both in terms of complexity of task per
formed and in terms of capacity to adapt, lie in the ordered regime at the edge of 
chaos, then selection must hold networks in this poised ensemble. The generic fea
tures of this ensemble emerge as possible quasi-universals. Thus, again, we return to. 
the recurrent general theme of this book: Complex systems, contrary to our nai\t 
beliefs, exhibit self-organized behavior. Insofar as selection tunes the ensemble 
explored but is unable to avoid its generic properties, those quasi-universal features 
may be expected to shine through across the eons and across phyla. 

--------

! ' 





CHAPTER 14 

Morphology, Maps, and the Spatial 
Ordering of Integrated Tissues 

The two fundamental problems of developmental biology are cell differentiation and 
morphogenesis. In the preceding several chapters, we examined some of the ways in 
which cell differentiation may exhibit ordered properties based on the spontaneous 
order inherent in a wide class of genomic regulatory systems. The intellectual theme 
was an exploration of the possibility that such spontaneous order may account for 
the origin and persistence of basic aspects of ontogeny, such as the existence of 
branching developmental pathways and the homeostatic stability of cell types. We 
repeatedly encountered the fundamental problem of understanding the relation 
between such "spontaneous order" and the effects of selection. In this chapter, we 
turn to an equally vast topic: How can we understand the genesis of ordered tissues 
and organs in multicellular organisms? This problem is indeed vast, for it encom
passes more than the familiar issues of understanding the developmental mecha
nisms which faithfully unroll in ontogeny and the ease with which those mechanisms 
were "found" in evolution. In addition, the problem also involves asking whether 
any such mechanism can properly be thought of as having generated a distinct/amity 
0/ natural forms and, if so, whether and to what extent selection can modify those 
natural forms. That is, we must again ask (1) whether the morphologies of organisms 
to some extent represent the "self-organized," or natural, forms readily constructed 
via known developmental mechanisms and (2) how we must conceive of the inter
action between such forms and selection. 

This problem is an old one, yet one never well formulated. Let me be explicit. Cells 
are bounded by a bilipid membrane. Such membranes form readily in an aqueous 
environment and, for simple surface-energy reasons, readily form a closed spherical 
surface enclosing an aqueous interior. Many properties of cells depend critically on 
this simple self-organized property of lipids in water. Are the formation of such 
bounding membranes and their spherical form "achievements" of the genome and 
natural selection? To ask this question is to realize that many aspects of organismic 
form must reflect the natural properties ofthe building blocks from which organisms 
construct themselves. How much of what we see reflects such properties, and how 
does selection enter into the picture? D' Arcy Thompson (1942) wrote ajustly famous 
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book, On Growth and Form, in which he showed myriad examples in which organ
ismic forms appeared closely analogous to forms generated on purely physical bases. 
For example, soap bubbles, as a result of surface tension and the contraction of each 
bubble to a minimal energy surface, cling to one another and form corners having 
very specific angles. Figure 14.1 shows two views of a species of Radiolaria, whose 
surface is covered with protoplasmic bubbles meeting at angles almost exactly like 
the angles seen in soap bubbles. Radiolaria deposit calcium crystals in the interstices 
between protoplasmic bubbles, forming spicules in a regular "cage." 

Thompson argues, of course, that this morphology can be explained "purely" on 
physical grounds. In so arguing, he is making two distinct points, one correct, the 
other inadequate. First, he properly draws our attention to the fact that the genome 
can generate an organism only by making use of a variety of developmental mecha
nisms which depend on very many physical and chemical principles beyond the gen
ome's raw capacity to coordinate, in time and space, the synthesis of specific RNA 
and protein molecules. Thus, surely, the natural ways such mechanisms construct 
forms must impinge on the forms we see. However, Thompson eschews much men
tion of selection. Yet selection occurs. Thus our fundamental problem is how to 

[ think about the relation between selection and the natural form generated by differ
ent classes of developmental mechanisms. We understand design principles, more or 
less, but we have virtually no coherent research program in biology attempting to 
understand this other utterly basic problem. As if all we see reflects selection alone, 
accidents, and remnants of past designs. 

My aim in this chapter, therfore, shall be to discuss a number of aspects of pattern 
formation. Each aspect appears to be underwritten by a mechanism or class of mech
anisms which can be expected to arise readily in evolution. Each generates either a 
family of related forms or a set of well-ordered properties in ontogeny. In examining 
these natural consequences of a variety of developmental mechanisms, we may begin 
to discern how to formulate the question of the relation between something like nat
ural forms and selection. 

Figure 14.1 Radiolaria, whose surface is covered with protoplasmic bubbles meeting at angles sim
ilar to the angles seen in such minimal-energy surfaces as soap bubbles. Calcium crystals in the inter
stices form a regular cage of spicules. (From Thompson \966) 
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The problem of pattern formation can be teased into at least two separate issues. 
First, how does the zygote give rise to different cell types in a spatially ordered way? 
Second, how does a collection of one or several cell types give rise to morphology? In 
the first part of this chapter, I explore whether we can begin to identify sources of 
order lying behind the ways a zygote may give rise to a spatially ordered arrangement 
of different cell types in a tissue, an organ, or an organism. In particular, in the first 
section I discuss the evidence for intercellular inductive interactions which lead the 
responding tissue to differentiajej"nnew-dlrecti~~s:Ma~y of the ideas which came 
up in earlier chapters viewing cells as"poiseO''""oetween only a few alternative path
ways of differentiation apply here as well. Induction appears to be one of the most 
fundamental means of engendering spatial heterogeneity in cell types in one or sev
eral interacting tissues. Beyond such local interactions, phenomena of pattern dupli
cation and regeneration following wounding or grafting experiments give evidence 
of long-range order in tissues. All this evidence leads us, in the second section, to 
introduce the concept of "positionalillfurmation" and the related idea that regen
eration is organized by the- "smoothing out" of positionaHl!formation discontinu
ities caused by grafting or wounding. Limitationsofihe positional-information par
-adigm lead us, in the third section, to the famous Turing model of pattern formation. 
This class of models is able to generate beautiful standing wave patterns of the bio
chemicals in a tissue in specific spatial patterns. Astonishingly similar patterns 
appear to arise in the development of several organisms, including Drosophila mela
nogaster, discussed in detail in the fourth through eighth sections, where we also con
sider similar mechanochemical models which lead to formation of morphologies. 
Throughout, we shall find clues that many developmental mechanisms may lie to 
hand for evolution. Simultaneously, each mechanism generates a family of forms, 
some readily and others with difficulty. Selection may be constrained to the former. 
These themes are brought together in the final, ninth section. 

Let us be Kantian for a moment. What must cells be such that a collection of them 
can organize into a spatially ordered array of distinct cell types? Ahrst prerequisite 
is that the cells must be able to become different from one another. S.erond. the for
mation of a spatially ordered array of cell types requires that, whatever the cell types, 
their arrangement in space be provided for. Tllir9." ifthe formation of the spatial pat
tern of cell types initiates with a single cell, rather than as a process of aggregation of 
preexisting cell types, then that cell must undergo mitosis. Two major alternatives 
for mitosis immediately arise: Ei~ach cell, at division, autonomously "com
putes" the kind of cell type each daughter cell is to become and the position each 
should take by virtue of the past history of the clone of cells from which it, the mother 
cell, derives or, alternatively, each cell consult the surrounding cells within some 
range and bases its future differentiation and mitotic behavior on the information it 
receives from its neighbors. The first alternative leads us to consider mechanisms I 
whereby cell might count mitotic divisions and partition different instructions to two 
daughter cells when appropriate conditions are met. The second alternative leads us , 
to consider how cells might talk to their neighbors, what they might learn, and what i 
they might be able to do with what they learn. Obviously, organisms can and do util- \f 

ize both strategies. 
I intend to focus on the second strategy for the bulk of this chapter. However, 

organisms such as Caenorhabditis elegans (Chalfie, Horovitz, and Sulston 1981; 
Kimble and White 1981) forcefully demonstrate that "clorialcomputation"is a pow
erful and pervasive general means of producing tissues,crrgans, and organisms. Yet 
formation of an ordered array of cell types by clonal computation, in which each cell 
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ignores its neighbors and bases its behavior on its present state and presumably on 
its recording of the past history of the clone, is a logical subproblem of the broader 
problems which arise when cells can also talk to their neighbors. In the latter case, 
cells may carry clonal histories as well as consult their neighbors. 

INDUCTION AS A BASIC 
INTERCELLULAR CONVERSATION 

In this section, I show the parallels between the phenomena of induction and the 
natural properties of cells when modeled by canalyzing Boolean networks. The deep
est features of induction appear to be generic to this class of regulatory networks. 

If cells are to talk with one another and, by virtue of the exchange, coordinate in 
space and time the proper formation of different cell types relative to one another, 
then the most basic requirement of such interaction must be that one of the inter
acting cells should change its behavior. In the simplest case, two cells can influence 
each other by being in very close proximity; in more complex cases, one cell may act 
on the other at a distance by virtue oflong-range chemical signals, such as hormones, 
electrical signals, or, presumably, mechanical force signals. We begin with the sim
plest case and consider direct cell-cell interaction by virtue of either membrane con
tact or short-range chemical signals. Such interactions, mediating alteration in cel
lular behavior and differentiation, are the well-known inductive interactions. 

Since Spemann and Mangold's work (Spemann and Mangold 1924; Spemann 
1938) on the dorsal lip of the newt blastula-stage embryo demonstrated the capacity 
ofthe transplanted dorsal lip to organize the formation of a new primary embryonic 
axis, developmental biologists have devoted enormous attention to such inductive 
processes. Figure 14.2 shows the newt blastula and the subsequent gastrulation and 
neurulation in the early newt embryo. The newt egg is mesolecithal, having a mod-
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erate amount of yolk. Cleavage divisions are complete but unequal. This imbalance 
results in a blastula having a thinner animal wall and a thicker vegetative one. The 
animal pole region is darkly pigmented, the vegetal pole is clearer, and the marginal 
region between them, broader on one side of the equator than on the other, is the 
gray crescent. These three regions correspond roughly to the future three main germ 
layers: the animal region will constitute the outer germ layer, or ectoderm; the veg
etative zone will form the inner germ layer, or endoderm; the middle zone will form 
the middle germ layer, or mesoderm. The future ectoderm comprises two main areas: 
the presumptive central nervous system and the presumptive epidermis. In the 
anlage, or formative zone, of the mesoderm is the material for the notochord, occu
pying a large middle part of the gray crescent; on each side of the notochord are 
located the materials for the myotomes. The lateral and ventral parts of this marginal 
zone correspond to the mesodermal linings of the body cavity, the kidneys, and so 
on. The endoderm forms the primitive gut, the lining of the gut, and the glands of 
the digestive system. 

Segregation of these regions of the blastula into three germ layers occurs in gas
trulation. As shown in Figure 14.2, the cell layer forming the surface of the hollow 
blastula invaginates through the blastopore to form the gastrula; the inward-migrat
ing sheet of cells, the mesodermal mantle destined to form the primary mesoderm of 
the embryo, extends forward just beneath the overlying presumptive neurectoderm. 
Eventually, this mantle extends around the ventral, vegetal half of the embryo as 
well. Gastrulatin is followed by the formation of the neural tube, comprising the pre
sumptive forebrain, midbrain, hindbrain, and spinal cord. The initial ectodermal 
cells overlying the inward-migrating mesodermal mantle, if cut free of the embryo I. 

before contact between these two cell layers and cultured independently, remain sim- i 
pIe primitive ectoderm. This and other experiments demonstrate that the mantle acts \ 
on the overlying layer of cells which has not invaginated and triggers the conversion \ 
of those cells from progenitors of ectodermal cells to neurectodermal cells. This trig- ~ 
gering constitutes primary induction (Spemann 1938; Saxen and Toivonen 1962; 
Jacobson 1966). 

The inductive capacities of different regions of the invading mesodermal mantle 
differ. The most advanced, or leading tip, induces the overlying ectoderm to form 
neurectoderm which will form forebrain. More posterior regions, closer to the blas
topore, induce the overlying ectoderm to become neurectoderm which will form 
more posterior regions of the primary nervous system. The most posterior region of 
the invaginating tissue, which folds inward through the blastopore last, induces the 
overlying ectoderm toward mesodermal fates. 

This primary induction in vertebrate development is merely the most well known. 
Another example is the cascade ofthree major inductive events between two adjacent 
sheets of cells which occurs in the formation of the vertebrate eye. Briefly, the optic 
stalk originates as an evagination from the posterior part of the forebrain. The stalk 
contacts the overlying ectoderm and induces the latter to form lens, while the stalk 
is induced to form the optic cup, which invaginates to form a double-layered struc
ture whose inner layer becomes the retina and whose outer layer becomes the pig
mented epithelium of the eye and iris. In turn, the lens induces the ectoderm which 
re-forms over it to differentiate into cornea. 

Formation of most glandular tissues in vertebrates requires inductive interactions 
on the endoderm ally derived cell which will form the tubes and secretory cells of the 
given gland from the surrounding mesodermally derived mesenchyme cells (Alberts, 
Bray, et al. 1983; Gilbert, 1988). In most of cases, the inductive capacity is specific 
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to the particular local congregation of mesenchyme cells and is presumed, based on 

\ 
the capacity to induce when tissues are separated by small-pore filters, to be due to 
one or more small molecules. Specificity is sometimes shared, however. If salivary 
gland mesenchyme is grafted in place of mammary gland mesenchyme around the 
developing tubes which normally form the mammary gland, then the branching 
morphology of the tubes comes to resemble that of the salivary gland, but the glands 
still secrete milk proteins upon appropriate hormonal stimulation. 

Analysis of primary and secondary induction in normal embryogenesis has led to 
the development of two major concepts: the inductive capacity of an inducing tissue 
and the competence of the responding tissue to be induced (Waddington 1940, 1957, 
1966). It is important to stress that each capacity shows a characteristic spatial extent 
in the embryo, a distinct time course during which it may first wax and then wane, 
and a spectrum of specificities in action or response. 

The spatial extent issue is interesting. The general picture arrived at by classical 
embryologists is that the areas which are either inductive or competent to respond 
first to primary induction and later to secondary induction become progressively 
smaller. That is, the primary competent field of cells for primary induction is the 
entire presumptive ectoderm and, as we know from Mangold's demonstration offor
mation of a secondary embryonic axis, extends even to the presumptive endoderm. 
Once the neurectoderm has formed, however, it creates restricted fields of cells 
underlying the ectoderm which forms over the neural tube. Thus only subregions of 
the neural tube are able to form the optic stalk, or otic stalk. In secondary induction 
of the overlying ectoderm, induction is acting on cells which have already been 
induced to form ectoderm. In the induction of nephric tubules, the responding tissue 
is already determined as mesenchyme and so on. Similarly, the time course ofinduc
tive ability, or capacity to respond, exhibits increases and decreases. Thus the capac
ity of the ectoderm to respond to the primary mesoderm by forming forebrain wanes 
prior to the capacity to form hindbrain or spinal chord. Cells not yet determined to 
form ectoderm cannot yet respond to the optic stalk to form lens. Finally, specificity 
of action by a given inducing tissue is not complete, nor is the specificty of response 
ofa given responding tissue. A region of the invading mesoderm will induce a spec
trum of responsesjrom the same overlying tissue. This latter point is typical and very 
important. It states that, in response to a given inductive stimulus, a limited range of 
responses is found. For example, classical work by Saxen and Toivonen (1962) exam
ined the response of the newt ectoderm to induction by guinea-pig liver. Tissues rang
ing from forebrain, nose, eye, and balancer, which are archencephalic derivatives, to 
spinal cord, fin, myotomes, and notochord are found. While a small area of respond
ing tissue may be induced in several directions, not all directions are accessible. Thus 
no endodermal structures are formed. 

Analysis of normal and heterogeneous inducers has revealed another fundamen
tal feature of primary and secondary induction: Many different inductive agents trig
ger the same response in the induced tissue. Saxen and Toivonen (1962) analyzed 
such diverse inductive agents as retina, bacteria, liver, bone marrow, kidney, and 
skin. Even a simple chemical agent, such as methylene blue, or an alteration in pH 
was found sufficient to induce ectoderm to form neurectoderm. The capacity of a 
wide range of biological and non biological stimuli to evoke the identical transfor
mation is evidence that the channeling of the response into a few alternative induc
tive responses lies in the responding tissue. Further, the wide stimulus range is strong 
evidence that there is unlikely to be some single "trigger gene" or process which con
stitutes the final common pathway of an inductive response and on which all these 
disparate stimuli act. 
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Very much worth noting is the profound similarity between the variety ofhetero
geneous inducers which can cause the same transformation and the phenomena of 
phenocopying and genetic assimilation (Waddington 1942, 1956; Ho, Bolton, and 
Saunders 1983; Ho, Tucker, et al. 1983). Recall that a number of home otic mutants 
convert one tissue or structure to another in Drosophila melanogaster. In particular, 
members of the bithorax complex of genes transform third thoracic segment into 
second, or second into third, and also convert different abdominal segments to one 
another. Treatment of normal early embryos with ethyl ether results in some adults 
having third thoracic segment transformed to second, or second to third (Gloor 1947; 
Capdevila and Garcia-Bellido 1974; Ho, Bolton, and Saunders 1983; Ho, Tucker, et 
al. 1983; Ho, Saunders, et al. 1987). This procedure is called phenocopying a home
otic mutant. That the fly is genetically normal is revealed by its normal progeny. 
Waddington (1942) carried out selection experiments for ease of phenocopying \ 
bithorax transformations. After a number of generations, a population of flies was ' 
achieved which exhibited the transformations in the absence of ether. Thus genetic 
modifiers had been collected in such a population, modifiers which mediated the 
same transformation as that induced by ether. This accretion of modifiers has been , 
called genetic assimilation. Genetic analysis showed that these modifiers were not 
members of the bithorax complex of genes. Different selection experiments yielded 
different populations exhibiting the same transformation, typically due to the assem
bly of a different collection of modifier genes. Meanwhile, Maas (1948) showed that 
heat shock in early embryogenesis in Drosophila also phenocopies the bithoraxtrans
formations. 

What does phenocopying imply? First, it is clear that a variety of external stim
uli-here ether and heat-can cause the identical transformation in the developing 
organism. Second, those transformations which are readily evoked by external stim-I' 
uli appear readily open to genetic assimilation, assembling a constellation of genes 
which thereafter causes the same transformation in the absence of the external stim
ulus. Third, often the set of modifier genes so assembled is not identical to a single I 
major gene which causes the same transformation as a dominant or recessive. For 
example, a recovered mutant mimicking some of the bithorax transformations is in 
a totally different gene, now known to code for an RNA polymerase (Greenleaf, 
Weebs, et al. 1980)! 

These facts have curious consequences. Clearly the fact that a restricted number 
of transformations are caused by a variety of external stimuli and by a variety of 
mutants, acting either alone or in combination, demonstrates that the cell types or 
tissues in question are poised between few alternatives. Since cell and tissue types are 
complex systems, this poised character very strongly suggests, but does not prove, 
that variations at many different points in the system cause the same transformation. 
This raises two important questions: What kinds of genomic cybernetic regulatory 
systems have this poised property? Does the existence in organisms of these poised 
properties reflect a selective achievement of adaptive evolution? 

In Chapters 12 and 13, we examined the dynamical behavior of Boolean model 
genomic regulatory systems. In that analysis we identified a cell type as an attractor, 
a state cycle, in the dynamical repertoire of one genomic regulatory system. Given 
that identification, we have a way of thinking about induction and part of the process 
of differentiation. The natural sense of "neighboring cell type" derives from asking 1 
which ?t~er cell ty~es a given cell t~pe c~n differentiate into by transient reversal of 
the activity of any smgle gene. One Imagmes here that an exogenous inductive stim
ulus-a hormone or an ether, say-transiently reverses the activity of some single 
gene. Any such single perturbation may leave the cybernetic system in a state which 
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. lies in the original basin of attraction and hence returns to the same state-cycle-attrac
tor cell type, or it may be left in a state which lies in a different basin of attraction 
and hence flows to a different state-cycle-attractor cell type. Figure 12.12a shows the 
transformation induced among 30 model cell types in a typical genomic regulatory 
system having K = 2 inputs per gene. The salient facts are that, after most pertur
bations, the cell returns to the same attractor and hence remains the same cell type. 
After some perturbations, however, the cell flows to a small set of different cell types. 
Thus, as stressed in Chapter 12, any cell type is stable to most perturbations and can 
directly differentiate into only a few other cell types. With respect to our current inter
est, note also that very many different stimuli cause the identical transformation 
from cell A to cell type B. Thus cell type A is poised between few alternatives, and 
many stimuli cause transformation of A to the same one of its few accessible neigh
bors. Indeed, given that the genomic system has many genes and has attractors, each 
having only a few neighbors, it is almost necessarily the case that a number of stimuli 
acting on different genes in the cybernetic system will cause the same transformation. 

Genetic assimilation shows that exogenous perturbations can cause the same 
transformation of developmental pathways as those caused by selection on sets of 
modifier genes. This, too, suggets that the cell types of the genomic system are poised 
such that either minor external perturbations or alterations of internal components 
cause the same transformation. In our model studies of the effects of deletion of 
model genes frozen in the inactive state, discussed in Chapter 12, the same phenom
enon was observed. Many such liiutations increased or decreased the probability of 
the same few transitions among those model cell types which already existed in the 
wild-type genetic network. In short, the model cell types are poised to differentiate in 
restricted directions, and a class of mutants can increase or decrease the probability 
of just those transitions. 

We reach an important conclusion. Poised cell types, having only restricted ave
nues of differentiation open to them and the capacity to integrate and channel diverse 
stimuli acting at divergent points in the regulatory system, are inherent, generic prop
erties of genomic systems which have few regulatory inputs per gene. Such systems 
are poised in the sense that genetic assimilation on a variety of modifier genes will 
increase the same transitions. In short, the existence of genomic regulatory systems 
possessing the proper dynamical features for exhibiting the known patterns of induc
tive transformations is "built into" the class of genomic systems which best models 
real genetic cybernetic systems. As with other self-organized properties in this class 
of genomic regulatory systems, we may ask whether these constrained patterns of 
inductive transformations per se reflect selection or not. I stress that our question is 
not whether the particular inductive transitions observed are the consequence of 
selection, but whether the fact that the genomic system has the property that such 
transitions occur between poised cell or tissue types is itself selected. Once asked, as 
in parallel questions in earlier chapters, the answer is not obvious. What is obvious, 
however, is that selection to hold genomic regulatory systems in the "good" class of 
those governed by few inputs and rich canalyzing functions is sufficient to account 
for this fundamental property of developing systems. 

Induction of New Cell Types and "Dedifferentiation" 

The cases of induction discussed above required transient interaction between induc
ing and induced tissues at specific stages of development when each tissue was com
petent to either induce or be induced. In contrast, there is substantial evidence that 
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persistent interaction between cells is often required for maintenance of each cell's 
morphology and function. Evidence supporting this first came to light in the analysis 
of cells in tissue culture. As Weiss (1939) noted, many explanted cells gradually lose 
their former differentiated aspect and distinguishing cytological features: 

Eventually, all cultivated cells appear in only three forms: closely packed epithe
lial cells, loosely connected mesenchyme, and free amoeboid cells. Originally, it 
had been thought that this abandonment by the cells of their specialized aspects 
meant a real reversion to a more primitive level of differentiation, and that iden
tical appearances were indicative of identical character. Continued studies, how
ever, have made it clear that the character of a cell cannot be judged by external 
appearances. Although superficially they resemble one another, the explanted 
cells obstinately preserve many of their functional distinctions even over prolonged 
periods of cultivation in vitro . ... Cultivated glandular cells of the intestine and 
pigment cells of the eye may become very similar in shape and general conduct, 
but under the proper conditions the former still resume the production of diges-
tive enzymes and the latter of black pigment. ... Thus, ... differentiation of cel-
lular character in a vertebrate is irreversible . .. ; only modulations are reversible. 

The "proper conditions" to which Weiss refers are those in which the different cell 
types in a tissue are cultivated in close proximity, forming an aggregate inside of 
which the diverse cell types reverse their modulation to take up again their normal 
cytological and synthetic patterns. 

If inductive interactions can occur between tissues in embryogenesis, and if het
erogeneous inducers such as guinea-pig bone marrow can act to induce neurulation 
in the newt, it would be astonishing if cell-cell interactions did not also engender 
modulations in cytology and gene expression as a result of persistent cross-talk. What 
would it mean to develop a theory about such modulations? I consider next some 
initial steps. 

Tissues as Sheets of Interacting Cells 
Exchanging "Microhormones II 

In Chapter 12 we considered Boolean models of genomic regulatory systems. Each 
model network stands for the genome in a single cell. We presume that, in almost all 
metazoans and metaphytens, the genomic system is identical in all cell types of the 
organism. Conceive, then, of a tissue as a two-dimensional sheet of cells, each cell 
endowed with the same genomic regulatory system, modeled as a Boolean network. 
Add to our previous discussion the general idea that products of a subset of genes can f' 
reach neighboring cells in the tissue. There are indeed a number of cellular mecha
nisms which do mediate such transfer. Most simply, a product can diffuse out of the 
initial cell and is small enough to pass via gap junctions to neighboring cells. Alter
natively, a product cannot pass out of the initial cell, but a metabolite whose synthesis 
the product controls can diffuse to neighboring cells. In a third alternative, a product 
is vectorially excreted from the initial cell and binds to surface receptors on a neigh
boring cell; from there it may act via second messengers or via pinocytosis into the 
nieghboring cell. 

Let us call these migrating gene products "microhormones," where the name is 
meant to imply that such products act only locauy; on theiiimmediately neighboring 
cells. Thus "microhormone" is a renaming of untold many local inductive agents. 

The set of genes whose products can reach neighboring cells can be thought of as 
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a kind of external, or positional, regulatory network, for it is these genes whose prod
ucts mediate cell-cell interaction and begin to control the arrangement of cell types 
in the tissue. 

Emergence of Novel Cell Types in a Spatial Pattern 
in Tissues 

What happens in a tissue, or sheet of cells all of which contain the same genomic 
regulatory system, when a subset of the genes in the network make products which 
can reach neighboring cells? The general answer turns out to be threefold. First, the 
interactions generate a variety of novel cell types whose continued existenc;a$1hose 
cell types requires persistent contact and exchange with the neighboring cells. Sec
ond, the number of novel cell types which arise is strongly dependent on the fraction 
of genes whose products can reach neighboring cells-in other words, on the fraction 
of genes producing microhormones-and appears to reach a peak at about 15 to 20 
percent microhormones. ~d., primitive spatial order of cell types in the tissue 
arises spontaneously. 

The first two results were evident in my own early unpublished numerical studies, 
and all three results are clear in work carried out by Jackson, Johnson, and Nash 
(1986). An organism is modeled as a one-dimensional-growing line of cells. Inside 
each cell is a copy of the same small genomic regulatory system. In addition, each 
cell is provided with a schematic cell cycle which governs the conditions under which 
the cell will divide or cease division. This oversimple model of the cell cycle is not 
important in its own right; it merely provides internally generated rules such that a 
group of adjacent cells can divide and ultimately form a tissue which mayor may 
not cause cell division to cease. The critical questions concern the consequences of 
microhormones. Jackson, Johnson, and Nash further constrained microhormones 
to be vectorial, that is, to act only on neighboring cells and not the synthesizing cell. 

Mathematically, the problem is simple to state. Each copy of the genomic regu
latory system, one copy resident in each cell, has a set of attractors, or cell types, to 
which it will settle if the cell is left in isolation. A tissue of interacting cells-either a 
one-dimensional line of cells or a two-dimensional sheet of them in which all cells 
"compute" the next activity value of all genes at the same synchronous instant-is 
just a large iterated array of the identical Boolean network with synchronous state 
transitions. Thus a state of the tissue is just the current activity of all genes in all cells 
at one instant. Over a succession of moments, the tissue will pass from state to state. 
Ultimately, the tissue falls onto an attractor. That is to say, the tissue settles down to 
some recurrent pattern of gene expression in which each cell necessarily exhibits its 
own recurrent pattern of gene expression. ! We can now ask whether any individual cells in the tissue are exhibiting novel cell 

I type state cycle attractors which were not possible in an isolated cell containing the 

\
' same genomic regulatory network. That is, we can ask whether cell-cell interactions 
. generate new cell types. The generic answer is "yes." In the study carried out by Jack

son, Johnson, and Nash (1986), each attractor was scored by the fraction of time each 
gene was active, in 20 percent intervals. Thus these workers may have categorized as 
identical many cell types which differ upon more detailed analysis. Nevertheless, they 

J. found that the formation of new cell types occurs and is most common when about 
20 percent of the genes are microhormones (Figure 14.3). Further, they found that, 
as the number of genes in the network increases, the probability that new cell types 
are formed also increases. In my own earlier work, using detailed state-cycle identity 



MORPHOLOGY, MAps, AND INTEGRATED TISSUES 547 

c 16 lIS 
£; 
~ 
0 14 

::::= 
011/) 
C Q) 
'0 g; 12 -61-
0= 
~ Q) 
c...u 

10 ~ '0 o ~ 

~1l 
8 Q) E z ::;, 

E Z 

.g~ 6 C .-
lIS .21 a: ~ 

..... 0 
o Q) 4 Q) s:-
Ol-
lIS 
"E 
Q) 2 ~ 
Q) 

c... 

0 20 40 60 80 100 

Percentage of External Communicating Genes 

Figure 14.3 Probability of induction of novel model cell types in a one-dimensional organism as a 
function of the fraction of Boolean genes whose products (microhormones) communicate with 
neighboring cells. Increasingly high curves reflect increasing numbers of genes in the model genome. 
(From Jackson, Johnson, and Nash 1986) 

to characterize each attractor cell type and fairly large genomic systems (50 to 100 
genes), I found that virtually all networks with 15 to 20 percent of the genes taken as 
microhormones formed new cell types by virtue of tissue interactions. The total 
number of novel cell types of which a given network was capable of producing by 
such interactions was not noted to be very large. Good numerical data are no longer7 
available, but, crudely, an isolated copy could double the number of cell types. ' 

These model Boolean networks yield three fundamental conclusions: 

1. Tissue interactions typically yield new cell types in model tissues which couple 
adjacent cell via microhormones. 

2. The number of new cell types generated is maximally on the approximate order 
of the number of cell types of which an isolated cell is capable. 

3. Most surprising, the capacity to engender new cell types is coupled to the fraction (\j ~ i 
of the genes whose products can reach neighboring cells. The maximum occurs ~." 1V'f' " 
when around 20 percent of the genes produce microhormones. i p. f D..:1i:, {J'-'{t/<t. ''1 ~ 

I s"zeLt I" (11k« L.,.,) lc·ll. --' 
These results powerfully suggest that attaming novel cell types by cell-ci!ll inter

actions lies to hand in evolution. The results also hint that, as a result of the generic 
properties of the class of genomic regulatory systems under selection, selection may 
be constrained in the numbers of induction-dependent cell types which can be cre
ated through the use of microhormones. 

Jackson, Johnson, and Nash found that primitive spatial order oftwo types arises. 
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Given the assumptions that the organism is a growing line of cells and that cells can 
divide and both daughters will be in the identical state, it is not terribly surprisingly 
that adjacent blocks of cells in the same state, and cell type, emerge in the growing 
tissue models. It is far more interesting that simple cell patterning arises. Thus a spe
cific gene is active in every third cell along the posterior half oftne model organism. 
Presumably, this patterning reflects a cascade of mutual inductive effects along a line 
of cells, effects which set up a repeating pattern of alternative cell types in the tissue. 
It is not grand, but it is spatial order. Indeed, as Jackson and his colleagues hasten to 
point out, the spatial order is reminiscent of regularly spaced bristle patterns in Dro
sophila, where it is known that formation of the adjacent bract from one epidermal 
cell is dependent on an inductive signal passing to that cell from the nearby cells 
forming the bristle and its socket (Bryant 1984). 

The Boolean network models are idealizations for a more general class of model 
cybernetic systems utilizing continuous nonlinear equations. The analogues of state
cycle attractors in Boolean networks are dynamical attractors of the system of ordi
nary differential equations describing the behavior of the intracellular variables. The 
continuous-variable analogue of the on-off "positional variables," or microhor
mones, passing between cells in the iterated network model of a tissue consists in 
describing those spatially distributed subsets of variables via partial differential equa
tions. Thus the entire system is a linked dynamical system in which a subset ofvari
abIes pass between cells and hence are described by partial differential equations. 
Note that the general concept that the entire tissue falls to an overall dynamical 
attractor which may be spatially heterogeneous will carry over to continuous nonlin
ear models. I shall return to this idea in the final section, for the spatially inhomo
geneous pattern of the external, or positional, variables naturally constitutes what we 
might want to call a map. Further, the attractor to which each cell flows, governed 
by its initial conditions and by the values of the positional variables constituting the 
map, corresponds to the interpretation that cell makes based on location in the tissue. 
The interpretation made by the cell constitutes its "decision" based on location. 

What lessons can be drawn? Most fundamentally, induction of novel cell types, 
establishment of spatial heterogeneity, and setting up of simple spatial order are vir
tually inherent in almost any genomic system which has highly localized attractors 
as cell types when those cells are coupled to one another via a subset of their products. 
These are deep properties of genomic systems which probably require little or no 
selection other than membership in the proper class of genomic systems and the wit 
to allow a subset of products to move between cells. Adaptive selection to achieve 
"good" patterns of "good" cell types is a different matter entirely. 

Summary: Inductive Interactions Are Generic 
in the Canalyzing Ensemble 

Local inductive interactions are critical features of ontogeny in higher plants and ani
mals. Identification of the kind of underlying cybernetic regulatory structure which 
permits the types of inductive interactions that we know to occur can be attempted 
by asking what kinds of genomic regulatory systems exhibit induction, competence, 
and simple spatial order as generic properties. We have succeeded in identifying suf
ficient conditions. Genomic systems in the ordered regime have the requisite prop
erties. Genomic cybernetic systems of high specificity, such that each gene is regu
lated by few other genes and products, generically are in that ordered regime. 
Consequently, cell types are poised. Many alternative external stimuli cause the same 
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transformation. Many alternative mutations increase the probability of the same 
transformation. Selection of such mutations will cause genetic assimilation for those 
transformations induced by the external stimuli. Microhormonal interaction 
between cells carrying the same genomic system generates new cell types whose con
tinued maintenance requires continued inductive interactions. Simple spatial pat
terning arises spontaneously. 

In contrast, genomic systems in the chaotic regime do not exhibit these properties. 
Here, almost any perturbed attractor has access to all other attractors. In other words, 
each cell-type attractor is not poised between few alternatives. Thus the fact that cells 
are poised strongly suggests that cell genomic systems are in the ordered regime. 

EVIDENCE FOR LONG-RANGE ORDER IN TISSUES: 
DUPLICATION, REGENERATION, AND POSITIONAL 
CONTINUITY 

The philosopher Ludwig Wittgenstein once remarked that avoidance of errors was 
significantly enhanced by consideration of more than one theory for the same phe
nomenon. His advice is worthwhile. In this section, I review the concept of positional 
information and describe some of the basic phenomenology of epimorphic pattern 
regulation. I then consider the relative merits of three alternative possible "coordi
nate systems" for that positional information-polar, Cartesian, and spherical-and 
show that none of these models can account for all the current data. Despite the inad
equacies, however, it shall emerge that many features of pattern regulation can be 
accounted for by a very simple general developmental mechanism for achieving 
"positional smoothing" which almost certainly "lies to hand" in evolution and has 
probably recurred many times. Thus the kinds of spatial order entailed by such posi
tional smoothing appear hard to miss in evolution. The incapacity of this mechanism 
to account for all the data leads to a critique of an entire class of theories, however, 
and emphasizes the need to focus on theories which link the geometry of a tissue to 
the presumptive profiles of positional fields within the tissue. This approach leads, in 
the subsequent section, to the development of a large class of theories, all of which 
derive from the famous English mathematician Alan Turing. These theories natu
rally have the property that spatially organized patterning arises spontaneously, and 
the expected pattern accord remarkably well with those seen in a variety of devel
oping organisms. Nevertheless, even Turing's broad ideas appear to be too simple, 
and in a subsequent section of the chapter I consider ways to extend his fundamental 
ideas in testable ways. 

Positionallnformcttion 

In the past two decades, a resurgence of interest in spatial patterning in developing 
organisms has followed Wolpert's (1969, 1971) reformulation of this fundamental 
problem in terms of the concept of positional information. Prior to Wolpert's intro
duction of this concept, the dominant theory guiding research postulated the exis
tence of developmental fields, or regions of cells, possessing "prepatterns" -in other 
words, nonuniform spatial distributions of hypothetical biochemical substances in a 
tissue. Local concentration peaks of these substances would induce the formation of 
specific pattern elements, such as digits, sensillae, or bristles (Stern 1968). 

In contrast to Stern, Wolpert proposed the more abstract idea that, through access 
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to a underlying positional coordinate system, cells within a developmental field pos
sess positional information about their location with respect to the boundaries of the 
field. The behavior of each cell in the field was assumed to be due to two independent 
processes. The cell first assesses its positional information, then interprets this infor
mation according to the type of cell it is, and finally forms a specific structural ele
ment in the overall pattern (I note parenthetically that Wolpert's distinction between 
positional information and interpretation lay behind my use of these terms in the 
previous section in reference to linked partial differential equations and ordinary dif
ferential equations, where the former constitute a map and the latter drive the cell to 
an attractor.) 

Among the kinds of data which initially lent support to Wolpert's idea are the 
much-noted homeotic mutants in Drosophila melanogaster. An example is the 
mutant Antennapedia, which converts antenna to second leg. A quite surprising 
additional feature of this mutant is that it converts distal antenna to distal leg (Pos
tlethwait and Schneiderman 1971). In Wolpert's terms, the cells in the prospective 
distal area ofthe antennal imaginal disc, which metamorphoses to an adult antenna, 
"know" both that they are "distal" and that they are "antenna." The homeotic 
mutant converts the cells' determined state from antenna to leg, but the cells con
tinue to assess their local positional information, continue to know that they are "dis
tal," but now interprete that information in light of their new "leg" state-and so 
form distal leg. Similar results are known for many other home otic mutants. 

The chief difference between Wolpert's positional information and Stern's pre
pattern is that positional information is free of assumptions about the existence of 
specific biochemical "morphogen" peaks underlying the subsequent differentiation 
of specific pattern elements. This freedom in one sense makes the theory of positional 
information less predictive; yet it allows for two important possibilities: 

1. The positional information in all the developmental fields of one organism might 
be identical. 

2. The positional information system in all organisms might be identical! 

The general success of the positional-information concept led to a search for the 
coordinate system which supplies the information. At present, polar (French, Bryant, 
and Bryant 1976), Cartesian (Cummins and Prothero 1978; Kauffman 1978; Win
free 1980, 1984; Kauffman and Ling 1981; Lewis 1981, 1982; Kauffman 1984b; 
Totafurno and Trainor 1987), and spherical (Russell 1978) coordinate system mod
els have been proposed. The differences among these models are not trivial. Although 
it is always possible mathematically to transform from one coordinate system to 
another, the "forces," or tissue properties, which must be postulated to explain the 
observed features of pattern regulation differ sharply in the different models. In gen
eral, the "morphogens" have not been found. Nevertheless, one task in this area of 
biology consists in efforts to discover the simplest theory and postulates about cells 
to account for the known data. A realistic hope has been that the proper formulation 
will both provide macroscopic laws describing the behavior of integrated tissues and 
aid in the discovery of the underlying molecular variables. It is, furthermore, of par
ticular importance to our efforts in this book to assess the extent to which ordered 
properties of organisms are readily accessible to adaptive evolution, to discover-as 
we shall in this section-that beautifully ordered features of pattern formation may 
well rest on very simple general laws. 
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The Phenomena 

To assess the relative success of the alternatives that have been proposed, it is nec
essary to review briefly at least some of the major phenomena of pattern generation 
and regeneration. 

Intercalary Regeneration 0/ Intervening Structures. If an amphibian limb capable 
of regeneration is transected proximal and distal to the elbow and the distal wrist 
fragment then is grafted to the proximal shoulder stump, cells proliferate in the 
wound area to form a blastema, followed by eventual regeneration of the missing 
elbow region, with the normal bone and pattern elements in the proper proximal
distal order. This process is called epimorphic pattern regeneration. The defining fea
ture is that the old tissues, here proximal shoulder and distal wrist fragments, remain 
intact, while new cells grow and intercalate the missing pattern elements. The fact 
that the intercalated pattern elements are regnerated in the proper proximal-distal 
order is ubiquitous and fundamental (Slack 1980). Juxtaposition of normally non- '\ 
adjacent tissues from a single developmental field is generally followed by regenera
tion, in the proper spatial order, of the structures normally lying between the juxta
posed tissue edges (Mittenthal 1981). This notion of betweenness is necessarily 
central to any theory of pattern formation. Another fundamental feature of this 
example is its suggestion of long-range order. That is, the reestablished pattern ele
ments require specification of the fates of a reasonably large number of cells in a spa
tial order lying between the bounding proximal and distal stumps. The fact that the 
order carries linearly over a reasonably large number of cells (perhaps 100 or so) in 
the blastema between apposed stumps does not entail that the positional signals pass 
otherwise than between adjacent cells. Surely, however, this fact does hint that the 
process differs from local induction of a transition of cell types A to cell type B in the 
presence of cell type C. It is, in fact, the serially ordered betweenness of such inter
calary regeneration which points to the existence of a system mediating long-range 
order. 

The simplest physical model to account for betweenness in intercalary regenera
tion postulates the existence of one or more chemical concentration gradients span
ning the tissue, with the various concentration levels specifying the positional infor
mation of cells at each point in the domain. As shown in Figure 14.4, in which a 
proximal-distal gradient along an amphibian limb is envisioned, surgical removal of 
the elbow and grafting of wrist to shoulder create a discontinuity in the gradient at 
the graft junction. If one imagines that gradient concentrations are held fixed in the 
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Figure 14.4 [S], the concentration gradient of substance S, provides proximal-distal positional 
information in amphibian limbs. Serial threshold levels specify pattern elements A, B, ... I. Removal 
of the limb midregion, denoted by D,E,F, and grafting create a discontinuity which stimulates cell 
proliferation. Diffusive smoothing of gradient discontinuity regenerates the missing gradient levels 
(wavy lines) and structures D,E,F. (From Kauffman 1984) 
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old tissue fragments while diffusion occurs in the new cells of the wound blastema, 
then simple diffusive averaging of the concentration discontinuity at the graftjunc
tion smooths over the discontinuity, re-creating all the intervening gradient values 
in proper spatial order. In fact, the utter simplicity of this argument does much to 
explain the persistence of faith in morphogen gradients, despite the difficulty devel
opmental biologists have had in finding the presumptive biochemical morphogens. 

For the remainder of this section, I adopt the postuate that position is specified by 
graded scalar properties in tissues, such as chemical concentrations, although it is 
important to stress that discrete models, such as the genetic networks forming a tissue 
discussed in the previous section, require attention. In fact, we shall return to such 
networks later. Given the postulate of positional gradients, a fundamental question 
is the extent to which the simple property of diffusive-like averaging of gradient dis
continuities can account for pattern formation and regeneration. This simple prop
erty turns out to be very powerful indeed. So much so that it may stand as another 
deep property of organisms which is very nearly inevitable. 

Sequential Formation of Positional Axes in Development. In several systems, posi
tional axes appear to be established sequentially during development. In classical 
experiments, Harrison (1918, 1921) removed the right forelimb bud of the amphib
ian Ambystoma and grafted in its stead the left forelimb bud. Such grafts must either 
invert the anterior-posterior limb axis while keeping the donor and host dorsal-ven
tral axes aligned or invert the dorsal-ventral donor and host axes while keeping the 
anterior-posterior axis aligned. Harrison found that, ifvery early left limb buds were 
grafted onto the right, they developed into normal right limbs. Iflate left limb buds 
were grafted, they formed normal left limbs with the axis which was inverted at sur
gery still inverted with respect to the host. But ifleft-to-right grafts were made at an 
intermediate stage, the outcome depended on which axis was inverted at the graft 
junction. If the anterior-posterior axis remained normally aligned and the dorsal
ventral axis was inverted, the donor left limb bud formed a right limb; if the dorsal
ventral axis remained aligned and the anterior-posterior axis was inverted at the graft 
junction, the donor left limb bud formed a left limb which remained inverted at the 
donor-host junction. Harrison inferred from his results that the donor anterior-pos
terior axis becomes autonomously self-sustaining before the dorsal-ventral axis does. 
Similar data suggest that the amphibian eye and limb axes are established sequen-

I tially, although the status of the data on the eye is in dispute (Hunt 1975). 

Distal Transformation. If an amphibian limb is transected-for example, at the 
elbow-the proximal stump can form a regeneration blastema and regenerate the 
distal limb (Harrison 1918). If the digits of the transected distal fragment are 
implanted into a host flank to establish an adequate blood supply to the distal frag
ment and the limb is then cut, the cut surface at the elbow, which initially faced prox
imally, forms a regeneration blastema and regenerates a second distal wrist and hand 
structure which is mirror-symmetric to the implanted distal limb (Harrison 1918, 
1921). That is, if the implanted hand is a left hand, the regenerated second hand is a 
right hand. Except for handedness both the proximal stump and the implanted distal 
limb fragment regnerate the same set of distal limb structures from the cut surfaces 
at the elbow, identified as a regenerate hand on the proximal stump and a duplicate 
hand on the implanted distal limb fragment. The fact that both fragments form distal 
limb has been called the "rule of distal transformation" (Rose 1962). Similar results 
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have been found in many insect legs and in the imaginal discs of Drosophila, as dis
cussed further below. 

Supernumerary Limbs. Among the most striking observations in pattern regula
tion is the induction of supernumerary limbs following grafting. After both the ante
rior-posterior and dorsal-ventral axes of amphibian limbs are fixed, transplantation 
of a left distal limb to a right proximal stump which reverses the anterior-posterior 
axis of the donor relative to the host but leaves the dorsal-ventral axis aligned typi
cally results in the formation of two super numerary limbs at the anterior and pos
terior margins of the donor-host junction. If, instead, the anterior-posterior axes of 
host and graft are aligned but the dorsal-ventral axes are inverted, the two super
numeraries emerge from the dorsal and ventral margins of the host-donor junction. 
These supernumerary limbs generally have the handedness of the proximal stump 
(Harrison 1918, 1921; Bryant and Iten 1976). Similar results have been found in 
transplantation of cockroach limbs (Bulliere 1970; Bohn 1972). 

Rotation of a left distal limb by 180 degrees and regrafting to its own stump give 
a more variable range of results. After such a rotation, the limb may partially rotate 
back toward its normal alignment; sometimes zero, one, two, or more supernumer
ary limbs are formed at the graft site and have either the same or opposite handedness 
(Bulliere 1970; Bohn 1972; Bryant and Iten 1976; French, Bryant, and Bryant 1976). 

Duplication and Regeneration by Complementary Tissue Fragments. Distal trans
formation by both proximal and distal amphibian limb fragments is one example of 
duplication and regeneration by complementary fragments of a developmental field. 
The phenomenon is common, however, and has been studied in greatest detail in the 
imaginal discs of Drosophila. As we noted earlier, D. melanogaster is a holometab
olous insect with egg, larva, pupa, and adult stages. During metamorphosis, the larval 
ectoderm lyses and the ectoderm of the adult is formed by the terminal differentia
tion of special larval organs called imaginal discs (Gehring and Nothiger 1973). In 
the late-third-instar larva, each imaginal disc is a two-dimensional sheet of cells form
ing the surface of a hollow sphere. The columnar cells on one hemisphere form the 
imaginal disc proper, while thin squamous cells on the other hemisphere form the 
peripodial membrane, which is lost during metamorphosis. Imaginal discs are found 
as bilaterally symmetric pairs, each destined to form specific left and right regions of 
the adult ectoderm: the left and right first leg discs from the two prothoracic legs; the 
two wing-thorax discs form the left and right mesothoraces and wings, and so forth. 

By injecting specific fragments of each disc into host larvae which undergo meta
morphosis and then recovering the metamorphosed implanted tissue from the abdo
men of the now-adult host and characterizing the adult cuticular structures formed 
by that disc fragment, it has been possible to construct a fate map of each part of each 
imaginal disc. The fate map of the wing-thorax disc (hereafter wing disc) is shown in 
Figure 14.5a. Note that the upper and lower margins of the disc along its longitudinal 
axis forms ventral and dorsal thoracic structures, while the midregion of the disc 
forms wing structures. During metamorphosis, the wing disc folds along an arc run
ning from the anterior to the posterior disc margin. This folding apposes ventral and 
dorsal thorax areas and also apposes ventral and dorsal wing hinge and wing blade 
areas, creating a bag that everts through the peripodial membrane. The center of the 
disc forms the distal wing tip, while an arc running from anterior to posterior disc 
edge corresponds to the wing margin. 
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Figure 14.5 (a) Fate map of Drosophila wing disc. AC, axillary wing process; AL, alar lobe; ANWP, 
PNWP, anterior and posterior notal wing processes; AP, axillary pouch; AS 1-4, first to fourth axil
lary sclerites; DC, dorsocentral bristles; DR, double bristle row (distal wing margin); HP, humeral 
plate; NP, notopleural bristles; PA, postalar bristles; PCo, MCo, DCo, proximal, medial, and distal 
costa; PR, posterior row of hairs; PS, pleural sclerite; SA, supraalar bristles; Seu, scutellar bristles; 
Sc4, Sc3, Sc5, sensilla campanifomia on ventral radius; Se4, Sc25, Sc12, sensilla campanifomia on 
proximal dorsal radius; Teg, tegula; TR, triple bristle row; UP, unnamed plate; YC, yellow club. (Fate 
map from Bryant 1975)(b) Fate map as in (a). Lines show positionS of single cuts. Arrow across each 
line points from the fragment which regenerates to the fragment which duplicates. (From Kauffman 
I 984b) 
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Grafting experiments are not yet feasible in Drosophila, but analogous experi
ments can be performed by cutting the wing disc into known fragments and injecting 
each fragment into the abdomen of an adult female. In that environment, the disc 
fragment heals its cut edge. In the healing process, tissue regions which are normally 
nonadjacent are apposed, and new cells grow in the wound area. After a week in cul
ture, a disc fragment's mass typically doubles. After such culture, the fragments may 
be recovered and injected into host larvae for metamorphosis, then recovered from 
the emerged adult. By comparison of the patterns of hairs, sensillae, and bristles 
which form when a known disc subfragment is injected directly into larvae for imme
diate metamorphosis, it is possible to characterize the pattern regulation which 
occurs in the cultured fragment. The following are the dominant results (Bryant 
1975, 1978): 

1. If the wing disc (Figure 14.5b) is cut into two fragments of unequal size by a 
straight cut, the smaller fragment duplicates some or all of its pattern elements. 
In favorable cases, a mirror-symmetric duplicate is generated whose symmetry 
axis lies along the position of the cut. The larger complementary fragment regen
erates the pattern elements normally formed by its smaller complement. Thus 
complementary fragments exhibit complementary behavior: One regenerates, 
one duplicates (Figure 14.6). Therefore, it is possible to draw an arrow across each 
such single straight cut on the disc, pointing from the fragment which regenerates I' 
to that which duplicates. As shown in Figure 14.5b, such arrows point radially 
outward from a small region in the interior of the disc. The polarity of regenera
tion and duplication reverses around this interior point. 

2. If the disc is cut into arbitrary three-quarter and one-quarter pie sectors, the for
mer regenerates, and the latter duplicates. 

Figure 14.6 Duplicated wing disc fragment following one week in culture. (From Kauffman 1984b) 
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3. If an interior "distal" circular region containing the region from which arrows 
radiate is cut out and cultured, it duplicates. If the corresponding outer "proxi
mal" annulus is cultured, it regenerates the central distal region. Similar results 
have been found in the leg disc (Schubiger and Schubiger 1978). 

4. If two narrow normally duplicating crescent fragments cut from opposite edges 
of the disc are mixed, they regenerate the intervening pattern elements spanning 
the disc (Haynie and Bryant 1976). 

Polar, Cartesian, and Spherical Coordinate Systems 

The first major advance in predictive use of the positional-information hypothesis 
lay in the formation of the polar coordinate or clockface, model for pattern regula
tion in epimorphic fields by French, Bryant, and Bryant (1976). The initial model 
was based on results described in amphibian limbs, cockroach limbs, and imaginal 
discs and is well illustrated by application to the wing disc of Drosophila. 

The existence of an apparently special region in the wing disc about which the 
direction of regeneration reverses, called the high point, suggested that cells might 
measure their distance in the tissue from this special point. This conjecture raised the 
possibility that the position of cells in the wing disc is specified by a polar coordinate 
system having the high point as its origin. Since the wing disc is a two-dimensional 
surface, an azimuthal angle must be measured. Were an angle specified by a single 
scalar variable, that variable would necessarily be discontinuous along some radial 
line from the high point, but Bryant found than anyone-quarter pie wedge fragment 
duplicated, while its three-quarter complement regenerated. If an azimuthal discon
tinuity were present, the one-quarter fragment containing it should behave differ
ently, and regenerate. In other words, if cells measure angle, they do so seamlessly. 
Thus the model postulates that cells measure radial distance from a distal high point 
and angle seamlessly, modulo 27r. 

In order to account for the bulk ofthe data on epimorphic regeneration, the polar 
coordinate model initially proposed two rules of intercalary regeneration and a third 
special rule for distal transformation: 

Rule 1. If cells having different radial values are apposed, cell proliferation 
will be stimualted and the missing intervening radial values will be 
restored to a resting radial gradient; then proliferation will cease. 

.. Rule 2a. If cells having different angular values are apposed, cell proliferation 
will be stimulated and the missing angular values will be intercalated 
back to a resting angular gradient. 

Rule 2b. Since two angular arcs around a 27r circle of values join any two jux
taposed angular values, a choice rule is needed. The simplest pos
tulates that angular intercalation occurs along the shorter arc. 

Special Rule 3. The complete circle rule: If a complete circle of angular values at a 
proximal radial level is exposed, distal regeneration occurs. The spe
cial nature of rule 3 will be discussed later. 

Duplication and regeneration by complementary fragments of the wing disc are 
explained by rules 2a and 2b. Figure 14.7 shows a single straight cut on the wing disc, 
yielding a narrow anterior fragment and a broad posterior fragment. During culture 
in an adult abdomen, the narrow anterior fragment folds over, apposing the cut edge 
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Figure 14.7 The polar coordinate model of the wing disc. Radial values (1-6) are measured from 
the high point in the middle of the disc. Angle () is measured without discontinuity, modulo 211". A 
straight cut anterior to the high point creates a narrow anterior fragment and a wide posterior frag
ment. Wound closure juxtaposes discordant angular values, leading to duplication of the narrow 
fragment and regeneration of the wide fragment. (From Kauffman 1984b) 

such that the ventral and dorsal thoracic regions heal together and ventral and dorsal 
wing blade regions also heal together. This healing juxtaposes cells having similar 
radial values but discordant angular values. This discontinuity stimulates cell prolif
eration and smoothing of the angular discontinuity along the shorter angular arc. 
Since this shorter angular arc is the arc already present in the original narrow anterior 
fragment, the positional values in the new cells form a mirror-symmetric duplicate 
of those in the original anterior fragment, and the fragment duplicates. 

The positional values present along the cut margin of the large posterior fragment 
are identical to those along the cut margin of the narrow anterior fragment. If the 
wound on the broad fragment heals in a similar way, the pairs of positional values 
apposed in the posterior fragment must be similar to those apposed in the anterior 
fragment. Therefore, the posterior fragment must intercalate, along the shorter angu
lar arc, the same intervening positional values as did the anterior fragment. There
fore, the posterior fragment regenerates. 

!F\.'.t.9.:.· . ~ 

The polar coordinate model demonstrates a more general result. Whatever the 
coordinate system specifying position in a developmental field may be, the positional 1 
values along the two margins of a cut are identical. If the two fragments heal in sim
ilar ways, both will appose essentially identical pairs of positional values. Therefore, 
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if subsequent pattern regulation is governed by diffusive-like averaging of positional 
disparities, both complementary fragments must re-form the same set of structures. 
If one fragment duplicates, the second, complementary fragment must regenerate. 
The prediction of complementary behavior in complementary fragments of a field is 
a coordinate-free property which follows directly from the postulate that regeneration 
is determined solely by the apposition of discordant pairs of positional values. 

Since the polar model is symmetric about the high point, a narrow posterior frag
ment will duplicate and its complement will regenerate. Also, anyone-quarter wedge 
will heal its cut margins and duplicate, and its three-quarter complement will regen
erate. 

Intercalary Regeneration, Betweenness, and Convex Sets 

A central feature of the postulates of intercalary smoothing is that only those posi
tional values lying between the apposed values can be re-formed. This constraint 
leads to a critical restriction in the predictive consequences of any given coordinate 
system, since the constraint implies that diffusive-like smoothing can re-create only 
positional values lying in the convex set bounded by the positional values in the 
apposed tissue edges (Kauffman 1984b). This restriction in turn implies that different 
coordinate systems may demand different special cellular behaviors beyond simple 
diffusive-like smoothing to account for the data. 

The concept of a convex set and the limitations it imposes can be brought out in 
the polar coordinate model. Radial positions can be visualized without loss of gen
erality as a radially symmetric gradient whose conelike peak is at the distal high point. 
Figure 14.8 shows a wing disc from which the distal high-point region has been 
removed, thus removing the radial gradient's peak. In the remaining outer proximal 
annulus, only lower values of the radial gradient are present. Therefore, no juxta
position of tissue edges in the proximal annulus can lead to diffusive-like filling in of 

,t the missing high-points radial peak. In a polar model, the region containing the origin 
does not lie between the positional values in the proximal annulus. That is, the region 
around the origin is not in the convex set of all those positional values derivable by 
averaging any pairs of positional values present along the cut margin of the proximal 
annulus. Thus if the "high point" is cut out, it cannot be regenerated by the proximal 
annulus. 

The implication of this feature of any polar coordinate model is that averaging of 
positional discontinuities cannot lead to re-formation of the distal peak, and some 
special rule is needed to re-create the missing peak by processes other than positional 
smoothing. In the initial formulation of the polar model, special rule 3, the complete 
circle rule, was proposed. According to this rule, exposure of a complete circle of 
angular values at a proximal level leads to regeneration of missing distal radial values. 
With the assumption of this rule, the model accounts for the capacity of a truncated 
amphibian limb to undergo distal transformation and regenerate distal wrist and 
hand structures from a proximal shoulder stump. The same rule accounts for distal 
regeneration by a proximal wing disc annulus and duplication of the high-point 
region when that region is cut out and cultured. Finally, rule 3 accounts for the strik
ing observation that grafting a left hand to a right stump yields two supernumerary 
limbs at the positions of maximal discord in the angular values. Such a graft creates 
two complete circles of angular values at the radial level of the graft. These circles 
undergo distal transformation and yield two supernumeraries having the handedness 
of the host. 

The polar coordinate model has been successful in the best sense. It has stimulated 
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Figure 14.8 Polar coordinate system on wing disc with distal high point region (shaded area) 
removed. Remaining proximal annulus lacks missing distal radial values. Thus tissue contact and 
positional averaging cannot intercalate the missing values. (From Kauffman 1984b) 

a great number of experiments which have helped shed light on pattern regeneration 
and its macroscopic lawlike properties and, inevitably, have uncovered weaknesses 
in the model. 

Note that special rule 3, or any modified form of it, is formally equivalent to pos
tulating a special mechanism beyond diffusive-like averaging of positional values to 
regenerate a missing radial gradient peak. While such a postulate is not a flaw, its 
status should be made explicit. We shall see shortly that distal regeneration does not 
require such a special process in Cartesian and spherical coordinate systems. Further, 
if special mechanisms exist to re-create missing gradient values, then those mecha
nisms are of central importance: They are likely to playa role in the initial establish
ment of positional gradients as well as in subsequent pattern regulation. The forms 
of special mechanisms suggested depend on the choice of coordinate system. Thus 
different coordinate systems suggest that different cellular properties beyond diffu
sive averaging are required to account for the data on pattern formation. 

Transverse Gradients, or 
a Modified Cartesian Coordinate System 

Several workers have independently suggested a modified form of a Cartesian coor
dinate model to account for the data on epimorphic pattern regulation (Cummins 
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and Prothero 1978; Kauffman 1978, 1980; Kauffman and Ling 1980; Winfree 1980, 
1984; Lewis 1981, 1982). Figure 14.9a shows the Drosophila wing disc with roughly 
orthogonal monotonic anterior-posterior and ventral-dorsal gradients of two chem
icals, X and Y. Lines of constant concentration are bowed outward on the disc, sym
metrically about the high point. Figure 14.9c shows the "image" of the cross gradient 
in XY morphogen space, or tissue specificity space (TSS) (Winfree 1980, 1984). In 
this image space, lines of constant concentration are straight, and so what is a convex 
line in (a) becomes a straight line in (c). Similarly, a straight cut on the actual wing 
disc corresponds to a concave line in (c). The model assumes that a cut wing disc 
fragment heals its cut margins, apposing nonadjacent positional values, and that sim
ple diffusion smooths discontinuities in X and Y and fills in the convex set bounded 
by the apposed XYpairs along the cut margin. As shown in Figures 14.9a and 14.9c, 
the bowing of lines of constant X and Y concentration on the disc implies that dif
fusive smoothing of X and Y discontinuities in new cells of a large posterior fragment 
of a single straight cut will fill the shaded convex set and regenerate anteriorly to the 
anterior-most value present along its cut margin. The complementary anterior frag
ment apposes the same pairs of discordant values and duplicates to the same anterior
most value. 

Symmetric convex bowing of X and Y concentrations about the high point 
ensures that th~ direction of regeneration reXCrses about the high point. A large ante
rior fragment fr;m a straight cut will regenerate postenoify,its-alltenor complemen
tary fragment will duplicate. Similarly, anyone-quarter fragment which apposes its 
two cut margins will duplicate, its three-quarter complement will regenerate. There-I· fore, a transverse gradient Cartesian model can yield reversal of the direction of 
regeneration about a high point without the assumption that the high point is a spe
ciallocus from which cells measure position. 

Notice next that distal regeneration is a direct consequence of simple diffusive
like smoothing of discontinuities. As shown in Figure 14.9b, deletion of the high
point leaves a proximal annulus. Wound healing apposes tissues around the circular 
cut margin, creating discontinuities in X and Y concentration gradients. Since it lies 
in the convex set reached by diffusive smoothing from the proximal annulus, the dis
tal high-point region is regenerated. Similarly, the high-point region itself closes like 
a purse string, heals, and duplicates. By the same argument, a truncated amphibian 
limb will regenerate the distal wrist and hand from the proximal shoulder stump, but 
if the fingers of the distal fragment are implanted into the flank of the host and regen
eration occurs from the cut elbow surface, a second hand, mirror-symmetric to the 
implanted hand, will be formed via distal regeneration. 

Figure 14.9 (a) A Cartesian coordinate system with two monotonic gradients showing concentra
tion profiles on wing disc. Chemical Y has ascending concentration levels 1-8; X has ascending con
centration levels A-H. A straight cut creates a large posterior fragment which heals by folding in half 
and juxtaposing opposite ends of the cut margin. For this cut, such folding leads to a discontinuity 
in Y values but not in X values. The convexity in lines of constant concentration (isocones) ensures 
that simple diffusive smoothing of X and Y concentrations leads to regeneration out to the anterior
most X isocone (B) contained along the cut margin of the posterior fragment (stippled area). Simi
larly, the smaller anterior fragment heals the same way and duplicates to the B isocone. Symmetry 
of convexity in the X and Y isocones about a central region implies that the polarity of regeneration 
will alter about an apparent high point in this region. (b) Removal of central high-point region leads 
to regeneration by outer proximal annulus and duplication by central region as purse-string-closure 
juxtaposes the positional values around the cut margin and. di~usive smo?thing r~-cre~tes mis.sing 
distal positional values. (c) Tissue specificity space (TSS) asslgmng each pomt on wmg diSC a umque 
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concentration value of chemicals X and Y. Concave lines are images in XY morphogen space, or 
TSS, of straight cuts on wing disc from (a). A single straight cut from I to I' on disc lies along the 
concave arc from I to I' in TSS. Wound healing apposes the wound margin in the posterior fragment, 
causing positional discontinuities which are smoothed by diffusion to fill and hence regenerate the 
convex set (shade area) bounded by the cut margin. Anterior fragment heals in a similar fashion, 
juxtaposing the same sets of positional values, and duplicates to the straight edge of the shaded area. 
(From Winfree 1984) 
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Figure 14.10 For the concentrations of chemicals X and Y, a schematic picture of anterior-pos
terior and dorsal-ventral Cartesian coordinates for left and right limbs, projected onto a plane. Posi
tion at the middle values of the two variables (4,D) corresponds to the distal limb tip. Grafting a left 
distal limb to a right proximal stump leads to smoothing of discontinuities in X and Y (CD and DE) 
and the formation of two supernumerary distal limb tips having the handedness of the host proximal 
stump, at the positions of maximal disparity of host and graft axes. (From Kauffman 1984b) 

Finally, a simple transverse gradient model explains the striking observation that 
grafts of distal left limbs to proximal right stumps generate two supernumerary limbs 
which have the handedness of the host. (Figure 14.10). 

Comment 

Analysis of the Cartesian coordinate model, which need not be truly Cartesian in the 
sense that the x and y axes need not be strictly orthogonal, shows that very many of 
the phenomena mentioned above with respect to epimorphic pattern regulation can 
be accounted for quite simply by assuming preexisting transverse gradients of mor
phogens and assuming that juxtaposition of discordant p~nalvaIues leads to a 
diffusion which simulates averaging of gradient discontinuities to fill in the convex 
set of accessible gradient values. Thus an extremely simple set of postulates leads to 
regeneration in proper spatial order, to duplication and regeneration by complemen
tary fragments of a developing field, even to the .marvelous formation of supernu
merary limbs. All that are needed are unique positional information in two dimen
sions and averaging. 

But the phenomena covered occur in organisms as disparate as cockroach, newt, 
and Drosophila. Does this broadness imply that the identical molecular system medi
ates positional information in all such organisms? That would be remarkable if true. 
It seems far more likely that a variety of molecular mechanisms may behave as !f 
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they were scalar morphogens, capable of smoothing discontinuities. Indeed, I find 
myself strongly tempted to say that these widespread properties of regeneration are 
macroscopic, lawlike, quasi-universal aspects of tissue organization (quasi-universal 
simply because they follow so simply from so many mechanisms that may act 
between cells to coordinate cell differentiation in space). Our analysis of genetic reg
ulatory systems in Chapter 12 and earlier in this chapter already shows that such sys
tems typically have many cell types in their repertoire and that, given almost any 
kinds of interactions between cells, local inductive interactions will generate different 
cells types at different spatial positions. Microhormones which pass between cells are 
almost bound to arise. Pick your favorite microhormone morphogen, let it com
municate between cells, and graded levels are almost bound to occur. If different 
genes respond at different threshold levels of a microhormone, different graded levels 
readily elicit different responses from different cells. Juxtapose distant cells, smooth
ing of those gradients occurs, and the story follows. This part of the ordering in space 
quite lies to hand. 

SphericalCoordinateA4odel 

The final model we consider was proposed by Russell (1978) and consists in a spher
ical coordinate system based on three orthogonal gradients to form a tissue specificity 
space. Position in a tissue is specified by a solid angle, cJ> and (J, corresponding to la1:.. 
,We and longitudinal angJ,es on the earth. Each positional value is a unique ray at a 
constant x:y:z ratio emanating from the origin. That is, each ray is a line of equiva
lent positional values in xyz space. The longitudinal angle cJ> is defined by the ratio 
of x and y in the equatorial plane, and the latitude angle (J is defined by either the x:z 
or the y:z ratio. The image in xyz space of a two-dimensional tissue is a two-dimen
sional spherical surface pierced by a set of solid angle rays emanating from the xyz 
origin, which does not normally lie in the physical tissue (Figure 14.11). 7 

The spherical coordinate model can account for almost all the data based only on 

z 

¢'~" 
Figure 14.11 Russell's (1978) spherical coordinate model. The variables x,y, and z are orthogonal 
gradients. Position is specified by ratios of x:y:z with respect to the origin. Each ratio is a ray at a 
unique solid angie cf>B. The diagram shows a disc as a spherical surface (dotted region), with an ante
rior fragment cut off. Wound healing in the anterior fragment creates an additional, new xyz surface 
(parallel lines). Rays cf>B pierce both surfaces of the anterior fragment, and hence the anterior frag
ment duplicates. The posterior fragment forms the same new xyz surface and regenerates. (From 
Kauffman 1984b) 
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the concept of diffusive smoothing. This is most easily visualized in the wing disc by 
remembering that the disc is topologically almost a spherical surface, the disc proper, 
backed by the peripodial membrane. (The sphere has a hole where the traceal tube 
enters, but this detail does not matter for the theory.) Let this tissue spherical surface 
be embedded in xyz space such that the surface surrounds the origin. Then each solid 
angle ray pierces the closed two-dimensional surface of the image once (Figure 
14.11), specifying the positional angles 4> and o. Suppose now that a narrow anterior 
fragment is cut from the wing disc and cultured. The cut margin purse-string-closes 
the wound and heals. Then smoothing of X, Y, and Z discontinuities in the new cells 
in the wound area forms a second surface in xyz space, a surface whose edges join 
those of the original anterior fragment image (Figure 14.11). Rays from the origin 
pierce both the new surface and the original surface; hence the narrow fragment 
duplicates completely. The broad posterior fragment wound heals similary and 
hence forms the same new image surface in xyz space in the new cells of the wound 
area. These cells are pierced by the same rays that pierce the anterior fragment; hence 
the posterior fragment regenerates completely. 

The model is spherically symmetric. Therefore, not only do narrow anterior, pos
terior, ventral, or dorsal fragments duplicate while their broad complements regen
erate, but a distral fragment containing the high point will purse-string-close, creating 
a second image surface in the new cells in the wound area. This second surface will 
be pierced by the same rays which pierce the high point region and therefore will 
duplicate the high point. Equally, the proximal annulus will regenerate distally. 
Finally, this model directly explains distal regeneration proportional to the proximal 
arc cultured and the incidence of supernumerary limbs. 

The spherical coordinate model is very elegant. Indeed, I shall return to a version 
of it called the four color wheels model later in this chapter, where I try to account 
for a number of mutants which cause deletion and mirror-symmetric duplications 
of major body plan elements along the anterior-posterior axis of the embryo. Despite 
the elegance of Russell's attempt, however, it suffers the same failing that the polar 
and Cartesian models do: It cannot account for all the data based solely on diffusional 
smoothing. 

The Inadequacy of Simple Diffusive-like Smoothing 
of Positional Discontinuities 

The lawlike behaviors just described presume the preexistence of morphogen gradi
ents. Those hypothetical spatial inhomogeneities must come from somewhere in 
development. Thus any body of theory resting solely on smoothing must be inade
quate. It is worth asking, however, whether pattern regeneration by itself provides 
direct evidence of the inadequacy of this simple view. The answer is a strong "yes." 
A direct implication of these models is that any two complementary fragments of the 
same developmental field must regenerate the same new pattern elements. If one 
fragment regenerates, the other must duplicate. This consequence is coordinate-free 

, and follows from the postulate that regeneration is driven entirely by the set ofposi
tional values apposed along the wound margin. Since a single cut unveils the same 
positional values on both fragments, both enjoy the same convex set of possibilities. 
Thus, with only positional smoothing, it is impossible for both fragments to regen
erate all missing pattern elements. Specifically, the duplicating fragment must not 
regenerate as well. 

In a number of experiments using long-term culture, however, it has proved pos-
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sible to obtain essentially complete regeneration by small disc fragments which nor
mally only duplicate. For example, results in our own laboratory showed that narrow 
anterior wing disc fragments, which normally duplicate, can regenerate pattern ele
ments reaching as far as the posterior wing disc margin (Kauffman and Ling 1980). 
Similarly, Karpen and Schubiger (1981) and Schubiger and Karpen (1981) showed 
that a small fragment ofleg disc, which normally duplicates, can regenerate an entire 
leg! Similar results were reported in a different system by Slack and Savage (1978). 

These critical results, because they are entirely sufficient to prove that processes 
beyond mere smoothing of positional discontinuities are involved in pattern regen
eration, inevitably drive us to ask what kinds of processes might be capable of setting 
up positional gradients in the first place. For any such process would presumably be 
capable of re-creating during pattern regeneration, missing gradient peaks or valleys 
which were not in the convex set accessible by mere diffusive smoothing. This ques
tions leads us to the beautiful ideas of Alan Turing (1952) and the topic of dissipative 
structures (Nicolis and Prigogine 1977). 

A Brief Critique of the Concept of Positional Information 

Before taking up ways of thinking about the spontaneous generation of spatial pat
terns, a pause to reconsider the basic ideas of positional information is warranted. At 
root, the idea rests on a severe distinction between positional information itself, 
which a cell assesses, and the subsequent interpretation the cell places on that infor
mation, which reflects the type of cell it may be. Further, the abstract idea of posi
tional information requires no necessary relationship between the spatial profiles of 
the molecular variables which carry the information and the subsequent patterns 
which emerge. Thus a positional-information system might be used by a tissue to set 
up three stripes of cells-red, white, and blue-to form a French flag, but the same 
information might be reinterpreted to form a Wolpertian flag of Jackson Pollack 
complexity. No constraints are imposed. This severely idealized model can be 
relaxed in two quite distinct directions. The first would suppose that the hills and 
valleys-the actual profiles in space-ofthe'putative morphogens bear some natural 
relation to the geometry of the tissue in which pattern is being formed and perhaps 
even guide the growth of that geometry. That is, we might well seek theories in which 
the expected distribution of morphogens in space and time foretold the subsequent 
morphological patterns which arise. Indeed, this approach is, in a sense, a retreat to 
the earlier prepattern concept of Stern (1968). We take up this strand of possibilities 
in the next sections. 

The second direction raises the fundamental concern that both the prepattern 
concept and the latter-day theory of positional information rely on a conceptual sep
aration between positional-information assessment and the subsequent interpreta
tion of that information by the cell, with no provision whatsoever for the obvious 
possibility that the very interpretation made by the cell might feed back and modify \ 
the information. Yet our familiarity with cascading induction events and with recip
rocal inductions, which playa role in generating spatial order, suggests that such phe
nomena are common, not rare. Already we have seen that, in Boolean models of 
genomic regulatory systems splayed out in a two-dimensional tissue and with 
exchange of a subset of gene products between cells, induction-dependent cell types 
in a spatial ordering emerge almost inevitably. It is not clear at all that, in describing 
such situations, it would be natural to draw a sharp distinction between positional 
maps and the independent interpretation of those maps. Rather, the entire "tissue" 
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settles to a spatially heterogeneous and more or less ordered attractor pattern in 

) which the cell types which arise modify the local microhormones which are 
exchanged and hence the local positional map. We return to this theme in a later 
section. Meanwhile, suppose we consider a tissue all of whose cells are entirely iden-

J tical. How might they ever become different from one another and set up a spatial 
l pattern? 

THE SPONTANEOUS GENERATION 
OF SPATIAL PATTERNS: TURING MODELS 

Alan Turing, the same man who helped discover the German high command's ultra
secret for encrypting codes during W orId War II and the same man who laid the basis 
for modern computers with his analysis of the logical requirements for algorithms in 
his Turing machine, also formulated a fundamental idea concerning the onset of pat
terns in organisms (Turing 1952). Here I develop not his exact model in detail but 
only its central ideas, which have recurred, as we shall see, in many minds and been 
directed to many problems. 

Turing's question is simple. If an organism starts from a single cell and grows to 
some mass of cells, all of which are identical, how do those cells ever become different 
and set up spatially ordered patterns? Two answers which Turing ignored are biolog-

\ 
ically reasonable and, indeed, occur. Fipt, specialized molecules may be prepack
aged in specific areas of the egg and hence partitioned to specific daughter cells during 
cleavage, such that different daughter cells contain different subsets of critical mol
ecules. Molluscs are but one example of this phenomenon, where the polar lobe in 
the egg contains material which will later direct cells which come to contain it in 
particular developmental directions (Dohmen and Verdonk 1979). Related to this 
first answer to Turing's question, it might be supposed that, at cell division, either a 
nonrandom or a random but unequal partitioning of cellular materials to daughter 
cells caused them to enter different developmental pathways. Presumably, such 
unequal partitioning occurs in organisms such as Caenorhabditis elegans . 

. /
' Turing wished to imagine the worse case and show that spatial patterning can 

arise. Thus consider a ring of cells, all utterly identical, each connected to its left and 
I right neighbors around the circle. Could one imagine a mechanism whereby the com-

plete identify-that is, the complete spatial homogeneity of chemical state around 
the ring of cells-would spontaneously break and patterns of maximal and minimal 
chemical concentrations would arise around the ring? 

Turing could. His model builds up spatially heterogeneous patterns of chemicals 
from an initial uniform distribution. He supposes a chemical system containing two 
important chemicals. In outline, one chemical, say X, autocatalyzes the formation 
of itself from some precursor molecule. In addition, X catalyzes the formation of a 
second chemical, Y. In turn, Y inhibits the formation of X and also inhibits the for
mation ofY. Gierer and Meinhardt (1972) and Meinhardt and Gierer (1974) call X 
and Y "activator" and "inhibitor" for obvious reasons. 

The next idea is that both X and Y can diffuse in the tissue but that the inhibitory 
> Y can diffuse more rapidly than the activating X. Suppose, speaking qualitatively, 
that the chemical system of reactions and diffusion linking X, Y, and their precursor 
and product molecules has the property that the entire system has a steady state in 
time which is spatially homogeneous. If such a chemical system were placed in a petri 
qish (Figure 14.12), the concentration of X and that of Y would each be constant 
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Figure 14.12 Onset of Turing instability. (a) A local increase in activator X above the spatially 
homogeneous steady-state level leads to autocatalytic increase in X concentration and to increase in 
inhibitor Y concentration. (b) Because the inhibitor diffuses more easily than the activator does, the 
ratio of Y to X is low in the center of the peak and high in the lateral flanks, where Y inhibits an 
autocatalytic accumulation of X. (c) Far enough away from the first peak and out of range of the 
diffusing inhibitor, other peaks may form. Thus there is a natural "wavelength" between peaks in 
the system. -

throughout the dish, unchanging in time. One such state, of course, is thermody
namic equilibrium. In the absence of precipitation patterns, such as the famous Lies
gang rings, no pattern can emerge at such an equilibrium (Nicolis and Prigogine 
1977). Therefore, we must imagine that the chemical system is displaced away from 
thermodynamic equilibrium-for example, because the precursors to X and Yare 
present in high concentrations relative to the products and relative to the expected 
equilibrium ratio of precursors to products. Persistent displacement of such a system 
from thermodynamic equilibrium implies both that the system is open to matter, 
energy, or both and, as we shall see, that ordered chemical patterns can arise. Because 
such systems are open to the flow of matter and energy, and because they use energy 
continuously, they are called dissipative systems (Nicolis and Prigogine 1977). Such 
systems can exhibit the "spontaneous" onset of spatially ordered patterns. 

The next issue to understand is that such a system will break symmetry and build 
up a macroscopic pattern ifthe homogeneous spatial distribution is perturbed a little 
bit. Suppose that a few extra molecules of X were added to the petri dish at a specific 
point (Figure 14.12a). Since X autocatalyzes the formation of itself, this addition will 
lead to the buildup of a local peak of X, above the steady-state level. In turn, X cat
alyzes the synthesis of Y and hence a local peak of Y centered on the same spot in 
the dish will build up. Now the first critical idea: X diffuses less well than Y. There
fore, after a little time, the X concentration will remain a narrow peak about the ini
tiallocation of extra X, while the Y concentration will be a flatter, broader peak cen
tered at the same point (Figure 14.12b). Consequently, in the center the level of X is 
high relative to Y, while in the lateral flanking regions the concentration of X is low 
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relative to Y. Since X catalyzes its own and Y's formation, while Y inhibits its own 
and X's formation, it follows that, in the central region of the peak, X may continue 
to dominate and increase the concentration of X and Y, while on the two lateral 
flanks, Y may dominate and inhibit the synthesis of X and ofY, causing the concen
trations to fall. Thus a local peak of X and Y concentration can build up and suppress 
the formation of similar peaks in the vicinity of the lateral flanks. Obviously, at a 
location far enough away from this local peak, the inhibitory influence due to excess 
Y relative to X wanes and a second peak can arise. This formation of a second peak 
leads to the next critical idea: There is some natural minimum spacing, or "wave
length," between peaks which such a system can form. Therefore, intuitively, we 
come to the conclusion that such a system might form spaced peaks and troughs of 
X and Y concentration around a ring of cells (Figure 14.12c). This is the heart of 
Turing's idea. 

Mathematical Analysis 

Before we go on, we need to understand the central ideas behind this class of models 
in more detail. As a particular model, we shall postulate a biochemical system com
prising two chemical components, X and Y, with concentrations X(r,t) and Y(r,t) at 
position r at time t; the two components are being synthesized and destroyed at rates 
I(X, Y) and g(X, Y) at each point in the spatial domain and are diffusing throughout 
a tissue. The partial differential equations for this system are 

oX = I(X, Y) + Dx \72X 
Ot 

oY = G(X,y) + Dy \72 y 
Ot 

(14.1a) 

(l4.1b) 

where Dx and Dy are diffusion constants. These equations are chosen to have a spa
tially homogeneous temporal steady state Xo, Yo. Since the state is steady, the rate of 
change is zero for both X and Y; hencel(X, Y) and g(X, Y) = 0 for Xo, Yo. Furthermore, 
in that spatially homogeneous state, no inhomogeneity exists, and so the \72 term, or 
Laplacian operator, is zero. 

The Laplacian operator is critical to our discussion. Picture a line of cells, with 
different concentrations of a chemical in the different cells. The rate at which the 
chemical enters a cell in the middle of the line (Figure 14.13) is proportional to the 
difference between the concentration in that cell and the concentration in each of its 
neighbors. Figure 14.13 shows a concave monotonic gradient which becomes flatter 
toward cells at the right end of the line. Therefore, for a middle cell, say cell 4, the 
rate at which a diffusing substance S enters from cell 3 is greater than the rate of efflux 
of S to cell 5. Therefore, S accumulates in cell 4. However, the difference in concen
tration between cells 3 and 4 and between cells 4 and 5 is just the derivative, or slope, 
of the concentration ofS (denoted by [S]) along the line of cells at those three points. 
The fact that S accumulates in cell 4 is shown by the slope into 4 being greater than 
the slope out of 4. The difference between these two slopes is the second derivative 
ofthe concentration profile [S], which in a single spatial dimension isjust the Lapla
cian operator. The Laplacian therefore gives the rate of change of concentration, 
[S], at each point in the line of cells. Since, by hypothesis Xo, Yo is a spatially homo-
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Figure 14.13 Monotonic concave morphogen gradient along a line of cells. The difference in con· 
centration between cells 3 and 4 causes morphogen to diffuse into 4 from 3. The difference in con
centration between cells 4 and 5 causes morphogen to diffuse from 4 to 5. The fact that the concen
tration gradient into 4 from 3 is steeper than the gradient out of 4 into 5 implies that morphogen 
concentration builds up in 4. This simple example shows intuitively why, over time, the change in 
morphogen concentration at a point in space due to diffusion depends upon the second derivative 
of the spatial concentration, as given by the Laplacian operator. 

geneous steady state, there is no gradient profile in either X or Y and hence the Lapla
cian term in each equation is zero. 

Analysis of the system described by Equation 14.1 begins by linearizing the equa
tions about this spatially homogeneous steady state. This is carried out by using new 
imaginary chemical variables x and y, which measure the deviation of X and Y from 
the steady-state levels Xo and Yo. Thus while X and Y cannot have less than zero 
concentration, x and y can be less than zero, meaning less than the steady-state con
centrations. Linearization means merely that the local way the synthesis or destruc
tion of X or Y changes as concentrations deviate a bit above or below the steady-state 
levels is approximated by simple constants, numbers which show the tangent approx
imation to the curves f(X, Y) and g(X, Y) at the point Xo, Yo. That is, the linear term 
in the Taylor expansion of f(X, Y) and g(X, Y) is kept. 

We need next the idea of an eigen fu~ of the Laplacian operator. This oper
ator ..simply expresses the idea of local averaging of concentration differences due to 
diffusion .. In fact, the evidence for averaging of positional discontinuities in epi
morphic pattern regulation strongly argues that a process analogous to diffusion is 
occuring-the diffusive-like positional averaging positional values. An eigen func.
tion is a spatial distribution of a diffusing chemical having the property that, over 
tIme, the only effect of diffusion is to alter the amplitude of the pattern but not its 
basic shape. One eigen function for diffusion is a flat, homogeneous distribution, 
since a flat pattern remains constant in time. More interesting, in a one-dimensional 
domain, such as ink in a glass capillary tube, a perfect sinusoidal distribution is an 
eigen function. Under the action of diffusion, the sine pattern will flatten but not 
change shape. The proof is simple. The first derivative of a sine pattern is a cosine 
pattern. The first derivative of a cosine pattern is the negative of a sine pattern. Thus 
the second derivative of a sine pattern is the negative of a sine pattern, while the sec-



570 ORDER AND ONTOGENY 

ond derivative of a cosine pattern is the negative of a cosine pattern. This means that 
the shape stays the same, but the amplitude falls. 

The next straightforward idea we need is that the spatial wavelength of the sine 
pattern of an ink or of any other chemical can be short or long. The reciprocal of the 
wavelength is the wavenumber k, which denotes the number of wavelengths which 
can be fit into some fixed interval. 

Linear Stability Analysis 

Armed with these ideas, we can approach the classical task oflinear stability analysis. 
The question of interest is this: If the homogeneous steady-state pattern Xo,Yo is per
turbed by sinusoidal deviations of X and Y above and below the steady-state levels, 

\
" with the deviations having any specified wavenumber k, will that sinusoidal pertu

bation die away and dampen back to the flat, spatially homogeneous steady state or 
will it amplify and create a high-amplitude pattern of wavenumber k and the corre
sponding wavelength? If, for all wavenumbers k, the system damps back to the spa-
tially homogeneous pattern, the system is unable to create a pattern. If for some val
ues of k or for some ranges of values of k, the system can amplify a small 
perturbation, then it can form a pattern of high amplitude. The way in which the I' system will form the new pattern requires a next critical idea: At the spatially homo
geneous steady state, the real system is subjected to fluctuations in the concentrations 
of X and Y at all points in the spatial system. Any fluctuation which has small peaks 
and valleys can be decomposed by Fourier techniques into the weighted sum of very 
many short- and long-wavelength sine patterns of X and Y or, more precisely, of x 
and y deviations above and below Xo, Yo. Thus, in the noisy spectrum, almost all 
wavelengths occur at low amplitude simultaneously, each distributed across the 

( entire tissue domain. Thus if the chemical system can amplify a specific wavelength, 
a bit of that wavelength is bound to be present in the noisy fluctuations. The system 
will pluck that bit out and amplify it, thereby creating a macroscopic pattern of X 
and Y peaks and valleys throughout the tissue. 

The linearized equations for our two-chemical system are 

dx 2 
dt = KlIx + K 12y + Dx V' x (14.2a) 

dy 2 
dt = K21 X + K22y + Dy V' Y (14.2b) 

where the constants K11 , are the slopes of f(X, y) with respect to X and Yand g(X, y) 
with respect to X and Yat Xo and Yo. The linear stability of the system described by 
Equation 14.2, after sinusoidal pertubations of wavenumber k, is analyzed by eval
uating the determinant of the matrix 

I Kll - ~ Dx - A Kl2 I = 0 
K21 K22 - ~ Dy - A 

(14.3) 

where A is one of two eigen values in the system comprising the two chemical species 
X and Y. If an eigen value is positive, the associated pattern will grow in amplitude; 
if negative, the associated pattern will decay. The wavenumber k enters squared 
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because the second derivative of sin kx is - J(l sinkx. This determinant leads to a 
relation between the two eigen values, Al and A2, and the remaining parameters of 
the linearized system: 

A = f(k) 

1. 1,2 = If[Kll + K22 - ~(Dx + Dy)] 

± lfV[(Kll + K22 - ~(Dx + Dy)f - 4[k4DXDy - ~(DyKll + DxK22 + KllK22 - K2I K12)] 

(14.4 ) 

With appropriate constraints on the linearized reactions and diffusion constants, 
this dispersion relation represented by Equation 14.4 between one of the two eigen 
values and wavenumber is positive for a restricted range of wave numbers and hence 
for a restricted range of wavelengths, LI to L2 (Figure 14,14). In this case, as noted, 
the chemical system acts as an amplifier and plucks from thermal noise the spatial 
wavelength which arises. 

It is also true that a specific ratio of the two underlying chemical concentrations 
x and y, measured as deviations from the steady state Xo and Yo ([X] = Xo + x, [V] 
= Yo + y), occurs in the pattern, This fixed ratio is called an~gen vector and can be 
determined mathematically by substituting the eigen value for A in the determinantal 
equation and then solving the pair of algebraic equations for x and y, which are thus 
determined to be a fixed ratio. Thus the pattern might amplify 1.5x: 1.0y everywhere 
in the spatially sinusoidal distribution. 

The next concept needed is a boundary condition. Imagine a one-dimensional (in 
other words, narrow) capillary iube in which this reaction occurs, closed in a ring. 
Now, only sinusoidal patterns can grow in the ring, and therefore an integral number 
of patterns must fit in around the ring. That is, the pattern might be flat or it might 
have a single sinusoid (one peak and one trough) or a double sinusoid or a triple (Fig
ure 14.15a). A ring has periodic boundary conditions, meaning simply that the peak
valley patterns must mesh smoothly to maintain a sinusoidal pattern around the 
ring. The importance of such boundary conditions is that intermediate wavelengths 
do not fit into the ring. Therefore, if the length around the ring is fixed at L, only a 
sequence of distinct wavelengths can fit, having wavelengths L, L/2, L/3, L/4 ... 
L/n. Therefore, in a ring structure, the amplification of a sinusoidal pattern by the 
chemical system requires that two conditions be met simultaneously: the system 
must amplify some range of wavelengths, and at least one of those wavelengths must 
fit into the ring domain. Ifboth conditions are met, a pattern will form. 

The same ideas carry over to a straight capillary tube on which the ends are sealed. 
No diffusion can occur across the ends. This no-flux boundary condition implies 
that, at the boundary, the gradient is entirely flat. In turn, this flatness implies that 
the pattern in the tube must be a cosine (Figure 14.15b). Again, for any tube length 
L, the patterns which can fit in are cosines oflengths L, L/2, L/3 . ... 

Linear stability analysis is useful but limited. I shall describe more fully the non
linear analyses made of this important class of models. Before doing so, however, I 
turn to initial applications of Turing's ideas to biological pattern formation in a cel
lular slime mold and in the development of the fruit fly. I note that the mathematical 
material described above has received detailed attention by a number of workers, 
who may be consulted for further information. Gmitro and Scriven (1966), Babloy
antz and Hiernaux (1975), Nicolis and Prigogine (1977), and Kernevex (1980) are 
useful sources. 
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Figure 14.14 Linear analysis of nonlinear coupled reaction-diffusion system in the two-chemical 
Turing class leads to a dispersion relation between the two eigen values of the system, Al and A2, and 
the wavelengths L or, alternatively, wavenumbers k = I/L, which are unstable and grow in ampli
tude. For proper choices of parameters, one eigen value is greater than zero between a restricted range 
of wavelengths L1 and L 2; hence the system amplifies any eigen function pattern within that wave
length range. 
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Figure 14.15 (a) Eigen function sine patterns in a ring domain with periodic boundary conditions 
which demand an integral number of peaks and troughs. (b) Eigen function cosine patterns, flat at 
boundaries where no flux of reactants across the boundary occurs. 

Application to Radial Branching Patterns 
in Polyspondilium discoidum 

Reaction-diffusion models, the familiar name for this class of systems, have been 
applied to a large variety of systems. The first application, by Turing himself, was to 
the formation of the tentacles which emerge from the circular mouth region of hydra. 
The first example I want to discuss, however, is based on very current work. Poly
spondilium discoidum is a cellular slime mold which is a first cousin of the more 
famous Dicteostyleum discoidum. Polyspondilium lives as free individual amoeba \ . 
which feed on bacteria. Under appropriate conditions of starvation, large numbers 
of cells orient toward an initial signaling cell or small cluster of cells, which emit 
cAMP. This chemical signal causes the amoebae to migrate toward the signaling 
source and form a mass of cells which creates a sorogium. This mass erects itself ver
tically and forms two major types of cells: stalk cells, which support the mounting 
column and its later branching structures, and spore cells, which are the germ cells 
for the next generation. The morphology of interest to this discussion concerns the 
branching pattern which arises (Figure 14.16a). As the column of the sorogium 
mounts, it leaves behind globular masses of cells, called whorls, at spaced intervals 
along the column. Each whorl in due course gives rise to radial branches oriented 
perpendicular to the main stalk column. The number of branches from anyone 
whorl ranges from one to ten and is uncorrelated from one whorl to the next. The 
angular spacing between radial branches is quite regular in each whorl. Inspection of 
Turing-like patterns on a ring (Figure 14.15a) and of the patterns of radial branches 
around a whorl suggested to Cox and his colleagues (Byrne and Cox 1986, 1987; Cox 
and McNally 1989) that this class of models might well account for the observed pat
tern. 

In order to test this general hypothesis, Cox and co-workers have raised monoclo
nal antibodies, seeking those which might react, in the developing organism, with 
spatially specific antigens which reflect this branching pattern. Their hope was that 
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Figure 14.16 (a) Distribution of young and old whorls in Polyspondilium discoidum. (b) Distri
bution of antigen around sorogium over developmental time. Pattern begins diffuse. then gathers 
into peaks located over loci where whorl tips form. (c) Predictions of time course of antigen pattern 
by Turing class reaction-diffusion model. (From Byrne and Cox 1987) 

by being able to visualize the nascent pattern at the molecular level via antigen mark
ers which can be taken to reflect the prepattern before subsequent morphology is 
obvious, they might have a better clue to the way that pattern originates. 

Figure 14.16b shows characteristic patterns of antigen distribution on young and 
old whorls. The authors analyzed the distribution of antigens based on Fourier 
decomposition of the observed patterns into a spectrum which had weightings on the 
0,1,2,3 ... peak sinusoidal distributions around the equator of each whorl. The 
observed distributions show, roughly, the following phenomena. First, each antigen 
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is first visible diffusely throughout the early whorl. Slightly later, the antigens appear 
to be concentrated in small clumps scattered at random throughout the whorl. 
Slightly later, the antigens are preferentially located at the whorl equator, forming a 
rough ring around the main stalk. Thereafter, the antigen ring breaks up into a num-1 
ber of almost evenly spaced clumps, or peaks, around this ring. The location of these 
peaks essentially foretells the location of the subsequent tip of each radial branch. 
The Fourier analysis confirms this impression. The initial pattern. has contributions J 
from many "modes," or sinusoidal wavelengths, around the whorl. As the whorls 
mature, the power spectrum concentrates almost all the weight on a single mode 
(sometimes two modes) with a general shift in weights toward lower wave numbers
that is, toward longer wavelengths. Thus, as the pattern matures, high spatial fre
quences damp away and the lower wavelengths dominate, to set up the branching 
pattern. 

Cox and co-workers point to the similarities between these data and reaction-dif
fusion models (Figure 14.16c). In a Turing-like system, our expectation is that ini
tially the pattern will be seen as random fluctuations away from a diffuse middle state 
(Xo, Yo), with short and long wavelengths present. If the ring circumference is large 
enough so that several different wavelengths can each fit an integral number oftimes 
around the ring, then each wavelength can be amplified. Higher- and lower-wave
number patterns (shorter and longer wavelengths) will damp out. Thus in the mid
term of the pattern's formation, many different sinusoidal modes should be present. 
In the longer term, one or a few wavelength patterns should dominate. Thus the 
power spectrum should simplify. Indeed, in the purely linear analysis, the wavelength 
having the largest eigen value must eventually dominate entirely, since each wave
length mode grows exponentially as t:!'t. Thus, eventually, the largest value on wins. 
For a fully nonlinear analysis, discussed below, the amplitudes of sine patterns can
not grow indefinitely; hence this simplification of pattern to a single dominant wave
length may be limited. Finally, the radial spacing ought to be, and is, quite regular, 
as expected from the natural spacing of a sinusoid wave around a ring. 

The similarities between theory and observation are obviously gratifying. Before 
criticism, what further points can be made? Cox and his colleagues argue, quite con- \ 
vincingly I believe, that this pattern would be very hard to account for on the basis 
of a clonal "computation" or a cell-lineage mechanism. Further, this is a clear case 
in which the mere hypothesis of positional information is far less predictive, hence 
far less interesting, than a more detailed theory in which the putative spatial distri
bution of morphogens accounts for the pattern seen. Despite these successes, the 
results do not establish that a reaction-diffusion mechanism in fact accounts for the 
observations, for several reasons. First, the theory is incomplete. The authors argue 
about the formation of peaks and valleys of morphogens around a one-dimensional 
ring, whereas the actual whorl is a three-dimensional globular mass of cells. This dis
crepancy does not rule out a Turing-like model; it is, however, a request that the the
ory be carried through. A second reason for caution, is even more important and 
even more interesting, as we see next. 

Mechanochemical Models Give Much the Same Patterns 

Spatial patterning can be based not only on instabilities in reaction-diffuse systems 
but also on mechanochemical systems. Equation 14.4, the dispersion relation 
between eigen values and wavenumber, A = f(k), is the critical underlying mathe
matical form which governs the kinds of macroscopic patterns that emerge. Many 
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dynamical systems having a dispersion relation with a single hump where an eigen 
value is positive for a restricted range of wavelengths 0 < Ll < L z give rise to very 
much the same patterns. Therefore, it is exciting that recent work investigating mech
anochemical models reveals very similar potential patterning. In the Turing class of 
models, the key idea is short-range activation and long-range inhibition (due to low 
diffusion of X and high diffusion ofY). Similar mechanochemical models are based 
on calcium-release-mediating alteration of stress and strain in fibrillar proteins form
ing the cytoskeletal matrix. Mechanical strain acts as the long-range inhibitory force, 
while local calcium release, which stimulates further local calcium release at a point 
in the cytoskeletal matrix, acts as the short-range activator. The resulting equations 
are different from Turing models in detail; the dispersion relation is the same (Oster 
and Odell 1984; Goodwin and Trainor 1985). The consequence is that we can now 
begin to envision an unknown range of mechanochemical models, in addition to the 
Turing class, all of which generate similar eigen function patterns. A clearly interest
ing aspect of the mechanochemical models, however, is that, by generating mechan
ical forces, these models suggest cellular mechanisms by which actual morphologies 
are built. Below we return to these developments and consider a model for the 
sequential formation of bone elements in the vertebrate limb. Cox and co-workers 
comment favorably on this class of models as well, as potentials to account for the 
phenomena they observe. Figure 14.17 shows an example these authors analyzed. 

Similar eigen function patterns are not limited to even these mechanochemical 
models. For example, consider either the modes of bending of a uniform beam or the 
vibrations of a stretched string or a plate. Vibrating strings have natural harmonics 
with 1,2,3 ... n wavelengths fitting onto the string. Vibrating plates exhibit a variety 
of resonant modes, analagous to those we shall discuss shortly in trying to account 

Figure 14.]7 Mechanochemical model of whorl formation in Polyspondilium discoidum. (From 
Cox and McNally 1989) 
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for phenomena in Drosophila. Indeed, the patterns found on vibrating strings and 
plates would be expected to arise in growing two-dimensional epithelia. Such an epi- t" 
thelium-forming a spherical closed surface, say-will buckle inward or outward if 
excess cell proliferation occurs in subregions of the spherical surface and creates I 
stress. The spatial patterns of that buckling will strongly tend to follow the natural 
buckling eigen function modes for the overall geometry of the tissue. All these exam
ples have similar eigen functions and hence generate a similar family of possible "nat
ural" patterns. 

From our present point of view, a very important message is that quite different ) 
underlying chemical, mechanochemical, and mechanical systems are governed by 
similar mathematical principles. Just as positional smoothing accounts for many 
phenomena in pattern regeneration in a coordinate-free way, many similar themes 
of tissue organization may all derive from modified forms of Turing's essential, and 
central, idea. 

Analysis of Turing and related models reveals a further issue of central importance I 
to our thinking about the relation between self-organization and selection: Evolution 
may often be constrained to form those patterns which are "easily" generated by any 
developmental mechanism. Our analysis already shows that, within any such devel
opmental mechanism, some patterns are easy while others are hard. The latter 
require that parameters be held in tiny volumes in the corresponding parameter 
space. For example, in a reaction-diffusion model, obtaining a system with short
wavelength sinusoidal patterns is very difficult because diffusive smoothing of con
centration differences over short distances is very rapid. Short-wavelength macro
scopic sinusoidal patterns generate just such steep concentration gradients, however. 
Therefore, diffusive smoothing which drives incipient short-wavelength sinusoidal 
patterns back to the homogeneous state is very powerful. Thus selection would have I 
a hard time building a reaction-diffusion system which generated short-wave length 
patterns, in the precise sense that the parameters of the system which amplify a short 
wavelength must be confined to very small volumes of paremeter space. In short, the} 
sizes of the volumes in parameter space corresponding to specific members of a fam
ily of patterns provide a way to think about the relation between natural selection 
and the pattern found. Evolution ought typically to exhibit the "typical" patterns 
easily generated by any developmental mechanism. 

COMPARTMENTAL AND SEGMENTAL PATTERNS 
I N DROSOPHILA MELANOGASTER 

I return now to D. melanogaster. This organism offers stunning evidence of wavelike 
phenomena in its pattern formation. We shall discuss this topic first with respect to 
the beautiful phenomenon of sequential compartmentalization in the wing disc and 
other imaginal discs of the larval stage. We shall find that the symmetries, time 
course, and spatial patterning of the sequential formation of compartmental bound
aries all appear open to explanation in Turing's terms. Thereafter, I shall discuss the 
onset of pattern formation in the early embryo. We shall find complex spatial-tem
poral patterns of gene transcription which are hauntingly similar to those which Tur
ing might have foretold. Those patterns hint at a mechanism of positional specifi
cation which I shall call the four color wheels model. It, too, follows with pleasing 
directness from Turing's fundamental insights. 

To set the stage for our consideration of Drosophila, I now sketch its development. 
Drosophila's egg (Figure 14.18a) is about 600 micrometers long and 100 microme
ters from dorsal to ventral, forming a slightly distorted ellipsoid whose dorsal surface 
is straighter than its ventral surface. Early cleaveage division in Drosophila, as in 
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Figure 14.18 (a) Fate map of Drosophila egg. (b) Correspondence of imaginal discs to parts of the 
adult ectoderm. 
other insects, is unlike that in amphibians and other vertebrates. In the former, the 
egg does not divide, while the zygotic nucleus undergoes 14 rounds of division to 
create a syncytium in which many nuclei coexist in a common cytoplasm. The first 
few nuclei to be formed are roughly on a spherelike surface inside the egg but migrate 
to the egg cortex at the eighth and ninth divisions. After four more divisions, most 
nuclei lie adjacent to the cortex while some remain in the interior. Following the last 
cleavage division, which creates a stage called the synctial blastoderm, cell mem
branes extend first downward and then beneath each subcortical nucleus, creating 
the first cells after the egg itself. This stage is cellular blastoderm, which comprises 
about 6000 cells. The nuclei which remained in the yolky interior of the egg cellu
larize as well (Foe and Alberts 1983). 

Subsequent to cellular blastoderm formation, at about three hours at 25°C, the 
movements of gastrulation ensue. Invagination along the ventral midline of meso
dermal and neurectodermal progenitor cells starts. Simultaneously, two furrows, the 
cephalic and hindgut furrows, running obliquely dorsal to ventral in the anterior and 
posterior halves of the blastoderm, arise. As gastrulation proceeds, the germ band 
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extends: The region along the ventral half ofthe embryo lengthens, pushing the ante
rior and posterior terminal masses first dorsally and then backward along the dorsal 
part of the embryo toward its midregion. At about this stage, clear evidence of seg
mentation is visible. Thereafter, the germ band retracts, and by about 12 hours, the 
fully segmented embryo is evident (Counce and Waddington 1972; Turner and 
Mahowald 1976, 1977, 1979; Underwood, Turner, and Mahowald 1980). Drosoph
ila has-by one counting criterion, at any rate-17 segments. The anterior-most five 
of these form the head segments of the larve and adult, the next three form the three 
thoracic segements-prothorax, mesothroax, and metathorax-the next eight form 
abdominal segments, and the final one forms part of the internal and external geni
talia. At about 24 hours, the first-instar larve hatches, undergoes two further molting 
cycles to create second- and third-instar larvae, pupates at about 96 hours at 25°C, 
metamorphoses over a few days, and emerges as an adult. 

As noted in Chapter 12 and above, the entire ectoderm ofthe adult derives, during 
metamorphosis, from special nests of cells in the larva, called either abdominal his
toblasts or imaginal discs (Gehring 1973, 1976; Nothiger and Gehring 1973). The 
imaginal discs initiate as nests of cells present in the first-instar larva, each disc com
mitted to form a unique part of the adult ectoderm. Each disc grows during the larval
instar stages to about 10 000 to 60 000 cells. 

A variety of techniques, including ablation by hot needles or lasers, ligation exper
iments, and genetic techniques marking cells and their progeny, have made it pos
sible to constrct afate map of the adult or of the larva, cast back onto the blastoderm 
stage of the embryo (see, for instance, Poulson 1950a, 1950b; Garcia-Bellido and 
Merriam 1969; Bownes and Sang 1974a, 1974b; Janning 1974, 1978; Bownes 1975; 
Lohs-Schardin, Cremer, and Niisslein-Volhard 1979). Such a map is shown in Figure 
14.18a. A number of points must be stressed. First, a fate map shows that cells in a \ 
specific area will ultimately give rise to specific parts of the adult; it does not dem
onstrate that the cells of the blastoderm have become committed in any sense to that 
prospective fate. The cells might in fact be fully labile, such that if transplanted else
where in the embryo they would adopt another fate, depending on location, and yet i 

the fate map would still hold. We return to this point below. Second, if we compare 
the fate map on the blastoderm with the geography of the adult (Figure 14.18b), it is 
startling how similar the two are. Cells which will form head regions lie in the anterior 
of the blastoderm; those which will form the three thoracic segments lie in linear 
order along the fate map, anterior to posterior; those destined to form the three tho
racic legs lie ventral to those destined to form the dorsal parts of each thoracic seg
ment; cells which will form successive abdominal segments lie in serial order along 
the blastoderm. This topological near-identify restates Wolpert's issue: Somehow 
cells at the proper places in the blastoderm come to "know" what segmental fate to 
assume. 

A next fascinating feature of the fate map on the blastoderm is brought out by 
recalling the marvelous phenomena of transdetermination and homeotic mutants 
discussed in Chapter 12 (Hadorn 1966, 1967, 1978; Gehring 1973; Gehring and 
Nothiger 1973; Kauffman 1973, 1975). Transdetermination events and homeotic r 
mutants jump long distances across the fate map! Eye tissue can change and form 
genital tissue. Even a ca1'l'Sal biologist will recognize that the eye and gentialia are ----ry '" 0 

located at opposite ends of the fly and ofthe fate map. Recall that the evidence show- f 
ing a committed, or determined, state in each imaginal disc rests on culturing a frag-
ment of that disc in an adult abdomen for a week, removing the tissue and trans
planting it to a successive adult abdomen, and so on, over a series of transfers. The 
determined state of the cultured disc tissue can be assayed by implantation into a host 
third-instar larva. When the host goes through metamorphosis, so does the implant. 
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!he resulti~g cuticular patterns identify the adult tissue, if any, formed by the 
Implanted dISC. Recall that the first important result is that wing disc may be cultured 
for up to ten years by serial transfer and still form adult wing. Hence the determined 
state must be cell-heritable. Occasionally, however, the cultured tissue jump-change 
to a new heritable state, a process called !ransdetermination. Thus wing disc can 
jump to an eye-heritable state, therefore propagatable, and form parts of the adult 
eye on differentiation. Figure 12.18 shows the pattern of transdetermination seen 
among the major imaginal discs. Recall also that most of these transdetermination 
steps also are known homeotic mutations. For example, eye transdetermines to form 
wing. Similary, the eyeless opthalmopteria homeotic mutant transforms eye to wing 
(Ouweneel 1976). Antenna can transdetermine to genitalia. The tumorous head 
mutant replaces parts of the head and antenna with genitalia (Postlethwait, Bryant, 
and Schubiger 1972; Ouweneel 1976). Antenna can transdetermine to form leg. 
Members of the Antennapedia complex transform antenna to leg (Gehring 1966a, 
1966b; Ouweneel1976; Kauffman and Ling 1980). All these tissues are distant from 
one another in the adult and on the fate map. 

What is the implication of the fact that transdetermination steps and homeotic 
mutants can jump long distances across the fate map? The importance of these meta
plastic transformations is that, in some sense, they show us that those tissues which 
can transform one to another have neighboring developmental programs. The ques
tion is: In what sense of "neighboring"? Since transdetermination steps and home
otic mutants leap over large regions of the underlying fate map, whatever the sense 
of "neighboring developmental programs" may be, that sense is not trivially related 
to the fate map. Clearly, we would like to find a deeper sense of neighboring programs 
and, if we are lucky, a way to relate that sense to the geometry of the fate map. Pos
sible important clues to this relation arise in the seemingly unrelated phenomenon 
of sequential compartmental boundary formation in the developing wing disc, dis
cussed next. We shall find a clear sense, based on the combinatorial epigenetic code 
broached in Chapter 12, in which nonneighboring tissues can have neighboring 
developmental programs. 

Sequential Compartmentalization in the Wing Disc 

Compartmental boundaries in Drosophila are lines separating regions of tissue whose 
cells have progeny which do not cross the boundary. Thus compartmental bounda
ries are lines of clonal restriction. Discovery of such boundaries rested on a genetic 
technique called mitotic recombination, which is useful for our discussion. 

In Drosophila, maternal and paternal homologous chromosomes are synapsed, a 
state of affairs which allows breakage and recombination between homologues. In 
particular, this mitotic recombination occurs, after replication of each chromosome, 
between sister chromatids (Garcia-Bellido 1975; Becker 1978). Suppose the fly is het
erozygous for a recessive mutant y which, when both copies of the mutant gene are 
present, causes bristles to be yellow rather than the normal brown. That is, y/y gives 
yellow bristles, while either y / + or + / + gives brown bristles. Recombination can 
yield two daughter cells having the property that one is +/+ and the other is y/y. 
The progeny cell which is homozygous for y, as well as its progeny, remains y/y. 
Hence any cells which form bristles from this y/y clone of progeny form yellow bris
tles. Using such mitotic recombination techniques, it is possible to mark a cell and 
all its progeny. Therefore, it is possible to determine the spatial location of the yellow 
clone on the adult cuticle and hence determine what part of the adult is formed by 
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progeny of the initial y /y cell. (Since not all y /y cells create bristles, of course, not all 
progeny are visualized.) It is not possible to decide which cell will be genetically 
"marked," but by utilizing X rays to induce mitotic recombination, the develop
mental stage at which a cell is marked can be defined. 

Using this mitotic recombination technique, Garcia-Bellido, Ripoll, and Morata 
(1973), 1976) and Garcia-Bellido (1975) found lines of clonal restriction. These 
workers marked cells early in development,.during midembryonic life. They exam
ined the wings of the resulting adults and were surprised to find that large clones of 
marked cells appeared in either the posterior half or the anterior half of the wing. 
Such clones occupied overlapping areas in wings of different flies. What was striking, 
however, was that no clone crossed a particular boundary separating the anterior and 
posterior wing surfaces into two distinct compartments. Instead, a large posterior 
clone might abut this boundary and run along it for hundreds of cells; alternatively, 
an anterior clone might do the same. Otherwise stated, the marked clones appear to \ 
be respecting this boundary and not crossing it. This behavior is the operational def
inition of a compartmental boundary (Crick and Lawrence 1975; Garcia-Bellido, 
1975). 

By irradiating at different times, Garcia-Bellido and colleagues found that, at suc-1 
cessively later times, a succession of compartmental boundaries arise and sequen
tially subdivide the maturing wing disc into finer and finer spatial subdomains. Fig
ure 14.19a shows the compartmental boundaries on the adult wing. Figure 14.19b 
projects the same boundaries onto the third-instar wing disc. The first anterior-pos
terior boundary is formed in early larval life. A second boundary, the dorsal-ventral 
one, arises in the first instar stage and divides the dorsal and ventral wing surfaces 
from each other. This boundary comprises what will become the wing margin, since 
the adult wing has two epithelial surfaces. Prior to the formation ofthe dorsal-ventral 
boundary, clones can extend from the dorsal to the ventral surface but do not stray 
across the anterior-posterior boundary. After the dorsal-ventral boundary arises, 
clones are constrained to respect both the anterior-posterior and the dorsal-ventral 
boundary. Thus cells are now confined to finer subregions. Shortly after the forma
tion of the dorsal-ventral boundary, a third boundary arises, dividing the thoracic 
regions of the disc from the wing blade area. This wing-thoracic boundary is partic
ularly interesting. The fate map of the wing disc (Figures 14.5a and 14.19b) shows 
that the wing blade derives from the midregion of the disc, while the ventral and dor
sal thoracic areas derive from the two separate ends of the wing disc. Note that distant 
regions, here the two ends of the disc, adopt fates which appear to be more similar to 
each other than to the midregion between them. By the second-instar stage, a further 
compartmental boundary divides the dorsal-thoracic region into subregions. In the 
third-instar stage, a final boundary divided the distal wing blade from the proximal 
wing hinge area. 

Projection ofthe boundaries onto the third-instar wing disc (Figure 14.19 b) makes 
it clear that the wing is successively divided into subregions in a particular order. We 
discuss next the possible significance of compartmental boundaries, then take up 
possible mechanisms which control the sequence and geometry ofthese boundaries. 

The Compartmental Hypothesis 
and a Binary Combinatorial Epigenetic Code-Again 

A central hypothesis advanced by Garcia-Bellido (1975) and by his co-workers (Mor
ata and Lawrence 1975, 1977; Lawrence and Morata 1977) is that a compartmental 
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Figure 14.19 (a) The five compartmental boundary lines on the thorax and wing. A, anterior; D, 
dorsal; Ds, distal wing; P, posterior; Pr, proximal wing; Sc, scutum; Sc', scutellum; T, thorax; V, 
ventral; W, wing. (From Garcia-Bellido 1975) (b) The five compartmental boundaries which arise 
successively on the growing wing-thorax disc: I, anterior-posterior; 2, dorsal-ventral; 3, wing 
(midregion of disc)-thorax (two end regions); 4, scutum-scutellar; 5, proximal-distal wing. Abbre
viations as in Figure 14.5. (Fate map from Bryant 1975) 

, bOUndary separates domains of cells which have take alternative developmental 
commitments. Thus the anterior-posterior boundary is taken to reflect the fact that 
anterior and posterior cells have adopted alternative decisions. The first point to be 
made about this hypothesis is that the existence of a compartmental boundary can-
not, in itself, prove that the isolated domains of cells have adopted different devel
opmental commitments. The line might represent a zone of cell death, for example, 
separating cells which were identically committed when the boundary formed. 
Despite the logical insufficiency, however, the hypothesis is obviously plausible. We 
know that commitment of cells to form a particular adult appendage is a cell-heri-
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table property in the third-instar imaginal disc. Thus if cells in the anterior and in the 
posterior compartment adopted alternative commitments but each remained able to 
form arbitrary parts of the anterior or posterior compartments respectively, then we 
would expect that the progeny of such cells would be constrained to form structures 
in the respective compartment and never those in the other compartment. Thus cell 
heritability plus a restricted equipotentiality implies compartmental boundaries. 

Grant the hypothesis that compartmental boundaries separate domains having 
different heriatable commitments. Then the implication is that cells in anyone final 
compartment have adopted a sequence of alternative commitments. Thus an indi
vidual cell has become anterior, not posterior; dorsal, not ventral; wing, not thorax; 
proximal, not distal. Then we can think of each of these decisions as one between )\ 
binary alternatives and hence think of cells in each final compartment as defined by I 
a combination of binary decisions. That is, we come again, as in Chapter 12, to a • 
picture in which cells can be described by a binary combinatorial epigenetic code! 

Other workers have examined the other major imaginal discs-leg, eye, proboscis, 
and genital (Steiner 1976; Dubendorfer 1977; Baker 1978; Morata and Lawrence 
1978; Struhl 1981a). Not only do compartmental boundaries form sequentially on 
the wing disc, but analogous boundaries sequentially subdivide the other major discs. 
In fact, sequential compartmentalization appears to occur in the early embryo as 
well, as we shall discuss further below. 

Evidence that Compartments Are 
Alternatively Committed Domains of Cells 

Several lines of evidence have been adduced to attempt to show that compartments 
separate groups of cells which have taken alternative developmental commitments. 
The hypothesis suggests the possibility that all cells of a given compartment might 
share the expression of some gene or set of genes or, similarly, some set of antigens. 
Brower, Piovant, and Reger (1985) screened monoclonal antibodies raised against 
imaginal tissue and succeeded in finding one which specifically reacts with all dorsal 
tissue in the wing disc and another which reacts with all ventral tissue in the wing 
disc. The two compartments containing these two types of antibodies abut along a 
crescent line which is presumed to match well with the future wing margin and with 
the dorsal-ventral compartmental boundary. If accepted as evidence, it is interesting 
that these two antibodies each react with dorsal or ventral regions comprising more 
than one final compartment-all the dorsal or ventral ones. This is just the kind of 
common expression across a set of compartments which a combinatorial code 
hypothesis leads to. 

A second line of evidence that compartments are alternatively committed 
domains of cells is the claim that certain mutants act on compartment domains
that is, that the transformed region may be smaller than, but is delimited by, a com
partmental boundary. For example, Morata and Lawrence (1975) and Lawrence and 
Morata (1976a) claim that the mutant engrailed-l converts part of the posterior com
partment in the wing disc to a mirror-image anterior compartment. Indeed, as 
described below, engrailed appears to convert posterior compartments in each seg
ment of the entire body plan to anterior compartments. The mutant bithorax (Lewis 
1978, 1981) appears to convert variable parts of the anterior compartment of the 
metathoracic haltere to anterior wing, while the mutant postbithorax converts the 
posterior compartment of the haltere to posterior wing (Lawrence and Morata 
1976a). 
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These data are important but cannot be fully persuasive. As Karlsson (1984) 
points out, the transformation by engrailed-l is less than complete. Nevertheless, the 
evidence is very suggestive. Insofar as we may accept the hypothesis, it also strongly 
suggests two important consequences: 

1. The wing disc, and perhaps other aspects of Drosophila, are sequentially divided 
into finer and finer overlapping subdomains of alternative developmental com
mitments. 

2. Those commitments can be represented in a combinatorial epigenetic code. 

We saw in Chapter 12 that transdetermination phenomena also led us to both these 
conclusions. 

Application of Reaction-Diffusion Models to the 
Sequential Formation of Compartmental Boundaries 

The geometry of compartmental boundaries is fascinating. Notice first a twofold 
symmetry. The four quadrants defined by the anterior-posterior and dorsal-ventral 
boundaries are regions which are essentially mirror-symmetric (Figure 14.19b). 
Ignoring for the moment the imprecision of the lines on the wing disc, let us idealize 
them on an ellipse, as shown in Figure 14.20. The twofold symmetry is here evident. 
Why-should the compartmental boundaries exhibit such symmetry? Why should 
they arise in the observed sequence? Why are they located, even roughly, where they 
are? 

It is a striking fact that Turing's model or, in general, the natural "eigen function" 
patterns of the Laplacian operator on a two-dimensional surface come very close to 
explaining the sequence and symmetries of the compartmental boundaries on the 
wing disc and other discs of Drosophila. The chemical patterns which a reaction
diffusion system generates in two spatial dimensions are more complex than those 
generated in one spatial dimension. With respect to the expectations derived from 

\ 
linear stability analysis, however, the two-dimensional patterns which arise are again 
eigen functions of the Laplacian operator in the two-dimensional spatial domain, 

Figure 14.20 The five compartmental boundaries on a wing disc projected onto an ellipse. Lines 
are also predicted nodal lines of sequential eigen functions of reaction-diffusion model on a growing 
ellipse whose axis ratios change to elongate the major axis. 
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with appropriate boundary conditions. On a circular domain, the eigen functions are 
given by Bessel functions; on an ellipse, they are given by Mathieu functions 
(McLachlan 1947; Morse and Feshbach 1953; King and Wiltse 1958; Abramowitz 
and Stegun 1972). On a circular domain, the nodal lines of eigen functions form 
radial spokes and concentric circles, the natural coordinates of a circle. The homo
geneous state is one eigen function. The first spatial pattern (Figure 14.21 a) is a gra
dient which is low on one side of the circle and rises to a peak on the opposite side. 
This distribution has the property that, traveling around the circumference of the 
circle, a cosine pattern is experienced, with a single maximum and minimum. The 
same is true at any radial distance from the center, but the amplitude of the single 
sinusoid is smaller nearer the center and zero at the center. The steady-state chemical 
values Xo, Yo form a straight-diameter nodal line across the circle. The second pattern 
which arises is similar, but now two sinusoidal undulations occur around the circum
ference of the circle, given by the cosine of twice the angle around the circle and cre
ating a saddle-shaped surface which curves down from the origin along one axis and 
up from the origin along the orthogonal axis (Figure 14.21b); the steady-state nodal 
line chemical values Xo, Yo both occur along two perpendicular crossed lines. Higher 
modes, analogous to higher sinusoidal frequencies in one spatial dimension, are 
other eigen functions on a circle. In addition to these radial-spoke patterns, which 
vary angularly around the circle and have an integral number of peaks and valleys, 
there also exist a different set of patterns which do not vary angularly but instead form 
concentric nodal line circles at different radial distances from the center to the edge 
of the circular domain. The simplest, shown in Figure 14.21c, is a simple hill-shaped 
pattern having a peak at the center and falling to identical minimal value around the 
edge. The steady-state values Xo, Yo form a circular ring around the center of the cir
cle. More complex radial patterns have a hill in the center and a circular valley which 
rises to a circular rim at the margin of the circular domain. In general, the nodal lines 
of the eigen function patterns, corresponding to the loci where Xo and Yo occur, lie 
along the natural polar coordinates for a circle-along radii or along concentric cir
cles. 

The eigen functions on an ellipse similarly have nodal lines which lie on the nat
ural coordinates for an ellipse (McLachlan 1947) (Figure 14.20). These are confocal 
ellipses, the analogue of concentric circles, and pairs of parabolas, the analogue of 
radii. For example, simple patterns include a monotonic gradient along the long or 
short axis of the ellipse, a gradient which is high in the midregion of the ellipse and 
low at both longitudinal ends, and hill patterns having no angular components. 
Notice, in prospect, that the twofold symmetries of the nodal lines on an ellipse are 
just those seen in the compartmental boundaries on the wing disc. In any of the com
plex patterns, the four quadrants of the ellipse are mirror-symmetric patterns about 
the major and/or minor axes. Thus patterns derived from the Laplacian operator will 
naturally have these symmetries. 

Sequential Generation of Compartmental Boundaries: 
A Bifurcation Sequence 

The nodal lines of eigen functions on an ellipse have much the same symmetries as 
the compartmental boundaries on the wing disc. But those boundaries arise in suc
cession. To see how naturally a reaction-diffusion model accounts for such a succes
sion, we return to the idea of~urcations, raised in Chapter 5. Recall that, as a 
parameter of a dynamical system is slowly varied, the dynamical behavior, such as 
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basins of attraction, will be little changed over some range. At critical values of the 
parameter, however, the behavior may change dramatically. Earlier examples 
included the onset of eddies as stream velocity past an obstruction increases and the 
onset of Benard cells as the temperature differential from bottom to top of a heated 
layer of liquid increases. Thus the set of parameters affecting a dynamical system I 

themselves constitute a parameter space, which can be divided into subvolumes.! 
Inside any subvolume the behavior of the dynamical system is much the same, but, 
crossing the bifurcation boundary between subvolumes causes sharp changes in I 
behavior. In Turing-like models, one of the two critical parameters is the ratio ofthe 
diffusion constant DxlDy and the other is the overall length or size of the physical 
domain in which the reaction system is placed. We now see that, as these parameters 
are changed slowly, jump changes in the pattern formed by the system occur. 

Consider again the dispersion relation A. = f(k) (Equation 14.4). For the curves of 
interest, in which there is a single interval of wave numbers, and hence of wave
lengths, having positive eigen values 0 < L t < L2 < 00, the chemical system will 
amplify patterns in that range of wavelengths. But the boundary conditions must also 
be satisfied. Therefore, consider a ring whose overall length is less than Lt. The long
est wavelength which can fit into that ring is less than L l , and such wavelengths are 
damped out by the dynamical system. Therefore, for sufficiently small rings, theJ 
homogeneous state is fully stable. No pattern can emerge. Let the ring lengthen 
slowly. When it reaches length L l , the periodic boundary condition can be met by a 
wavelength pattern which can be amplified, and a first mode arises. The critical 
implication is simple: As a small system grows gradually larger, no pattern is present 
at first; then a first pattern, corresponding to the longest wavelength which can fit into 
the domain, spontaneously arises. 

As the length of the ring system increases, a succession of patterns of increasingly 
complex waveform will amplify and decay in succession. By appropriate tuning of 
the parameters of the Turing system, the dispersion relation A. = f(k) can be tuned 
so that only a very narrow range of wavelengths 0 < Ll < Lz < 00 are amplified. 
Consider this limiting case and, to be precise, consider only small-amplitude patterns 
for which the linear stability analysis applies strictly. Then when the ring length t 
increases beyond L z, the single sinusoidal around the ring is too long and so is 
damped out by the dynamical system. However, the two-peaked pattern, sin2x/L, is \ 
too short a wavelength for two tandem patterns to fit into the domain and so is also 
not amplified. Thus the initial pattern, sinx/L. decays back to the spatially homo- 1 

geneous steady state. When the ring length is 2Lb this second pattern, which contains I 

two peaks and troughs, can fit in and hence is amplified. As the ring grows further, • 
this pattern becomes too long to be amplified and hence again decays. Thus as thel 
ring lengthens, a succession o. f eigen function patterns arise and decay. That is, the.· , 
same chemical variables, X and Y, form a succession of different gradient patterns 
with different geometries, each an eigen function of the Laplacian operator on the 

Figure 14.21 (a) Wave pattern generated on a circle with a scaled radius of 1.82. The pattern is the 
product of a radial part, J I (kr) (the first-order Bessel function), and an angular part, cos </>. The dashed 
nodal line of zero (steady-state) concentration runs along a diameter of the circle. The dotted circle 
outlines the circular radius. (b) Wave pattern from J2(kr) cos 2</>, generated at a scaled radius of 3.1. 
The dashed lines are crossed nodal lines on two perpendicular diameters. (c) Pattern generated at a 
scaled radius of3.8, where the zero in the derivative of Jo(kr) matches the radial boundary condition. 
The pattern is Jo(kr) cos 0"" which has no angular variation. The nodal line is concentric with the 
outer radi us. 
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ring domain. Therefore, a natural property of this class of systems is that parameter 
space is divided into distinct regions. As a parameter is tuned slowly, the system 
passes through distinct regions such that a succession of patterns arise and decay. In 
this simplest case, because of the stricture that the range of allowed wavelengths, L, 
to L 2, be very narrow, only a single pattern can grow at a time. Even here, though, 
the ring will eventually be long enough that N of the longer-wavelength patterns, 
length L 2, can fit into the ring, while N + 1 of the shorter-wavelength patterns, length 
L" can fit in. At that point, linear stability analysis predicts that both patterns will 
grow at once, with the pattern having the larger eigen value dominating the ultimate 
pattern. More generally, when the window L,-L2 is wider, several modes may grow 
simultaneously as the domain becomes larger. 

The sequential formation of a succession of patterns by reaction-diffusion models 
as a parameter such as size is increased gradually is robust. Such a sequence which 

\ 
arises as a parameter is tuned is called a bifurcation sequence. In addition to size, the 
absolute values of the diffusion constants can be changed while their ratio is held 

. constant. A decrease in diffusion constants is equivalent to an increase in length. 
Indeed, size scales as VD in a line, as D in two spatial dimensions, and so on (Arcuri 
and Murray 1986). Similar properties arise in mechanochemical models (Odell, 
Oster, et al. 1981; Goodwin and Trainor 1985). 

Compartmental boundaries on the wing disc arise sequentially as the disk grows. 
Therefore, it is of interest to try and use a bifurcation sequence to account both for 
the geometries and for the sequence in which compartmental boundaries form on 
the wing disc (Kauffman, Shymko, and Trabert 1978; Kauffman 1979; Kernevez 
1980). The first, the anterior-posterior boundary, is present in the blastoderm prior 
to formation of the wing disc. Thus we must account for it on the early embryo. The 
remaining compartmental boundaries arise on the wing disc proper and are thus to 
be accounted for by the model. Figure 14.20 shows the succession of nodal lines for 
eigen function patterns on a simple ellipse as the ellipse grows and the ratio of major 
to minor axes changes slowly. Figure 14.22 shows the first five eigen function patterns 
on the wing disc as it grows. Figure 14.22a shows that the first pattern forms along 
the long axis, with a peak at one end and a valley at the other. The nodal line Xo, Yo 
lies along the minor axis. We take this line to model the dorsal-ventral boundary 
transversing middle of the disc. The second pattern (Figure 14.22b) arises with a sin
gle maximum and minimum oriented the short way across the ellipsoid; the nodal 
line would repeat the anterior-posterior axis were it to arise. The third pattern (Fig
ure 14.22c) is again longitudinal, low at both ends and high in the midregion. The 
nodal lines are a pair of parabolas roughly parallel to the first nodal line of the pre
vious pattern. We take this pair to correspond to the pair of wing-thorax boundary 
lines, separating the two thoracic ends of the disc from the wing region in the middle. 
The fourth pattern (Figure 14.22d) creates two arc nodal lines oblique to the major 
and minor axes; one line we take to create the scutum-scutellar (fourth) compart
mental boundary. The fifth eigen function (Figure 14.22e) creates a concentric hill 
pattern whose nodal line is the analogue of the proximal-distal wing boundary. 

It is natural to seek a connection between the chemical patterns which are imag
ined to arise and developmental commitments. The compartmental hypothesis sug
gests that each boundary separates domains where cells have adopted different com-

Figure 14.22 First five eigen functions on wing disc shape as the disc grows larger but maintains its 
relative shape. 
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mitments. Thus it is attractive to suppose that the nodal line Xo, Yo is a threshold 
chemical concentration. Cells above this concentration adopt one commitment, 
those below it adopt the other. On this view, a succession of differently shaped gra
dients of the same morphogens drives a succession of different developmental com
mitments by which space is sequentially subdivided, and each terminal domain is 
characterized by a combinatorial epigenetic code word. 

Critique 

In a moment we shall consider defects with this model, but first, its successes are not 
trivial. It predicts that compartmental boundaries should arise in a sequence. In addi
tion, those boundaries should and do exhibit the inherent twofold symmetry of the 
ellipse. The model comes close to explaining the locations of compartmental bound-

~ aries on the wing disc. Errors may reflect the fact that predictions relate to the growing 
disc while observations are made on the adult wing and projected back onto the late-

\ 

third-instar disc. Note, too, that, in predicting a sequence, symmetries, and location, 
the model also predicts which specific members of the sequence are earlier than oth-
ers. Thus it predicts that the dorsal-ventral boundary should precede the wing-tho
rax and proximal wing-distal wing boundaries and that the wing-thorax boundary 
should precede the proximal wing-distal wing boundary. Indeed, the model also fits 
well the boundaries which arise on the haltere, eye-antenna, and genital discs. Data 
on the leg discs suggest that formation of the initial anterior and posterior compart
ments is followed by subdivision of only one of those two compartments by a further 

I boundary (Steiner 1976). If true, this second subdivision would be difficult to explain 
'I by this mechanism. I stress again that a variety of mechanisms, some mechanical or 

chemomechanical, have the same eigen functions. Hence perhaps the most impor
tant idea to hold onto is that a variety of mechanisms imply that space should be 
sequentially subdivided as size or other parameters change and that a family of 
related but discretely different eigen function patterns should arise. Those patterns 
are at least closely similar to this set of observed phenomena. 

Despite its successes, this linearized Turing model is not perfect.. First, the trans
verse mode repeating the anterior-posterior boundary is not needed. In our initial 
formulation of this model (Kauffman, Shymko, and Trabert 1978), we suggested 
that, because of nonlinearities in the full model, this mode might be skipped. (I return 
to this point in a moment.) ~econQ" within the limits oflinear analysis, the polarity 
of each pattern is determine by initial conditions. Thus whether it is the top or the 

~ 
bottom of the ellipse which shall have a peak when the first longitudinal mode arises 

. 
is due to initial conditions. Similarly, the second logitudinal pattern might have a 
peak in the midregion of the disc or at both ends. If one wishes to imagine that the 

. nodal line chemical values are a threshold, then the polarity of the chemical patterns 
matters critically to proper development. ~the first several eigen function pat
terns which arise are robust with respect to slight distortions in the shape ofthe spatial 
domain, but the higher modes become very sensitive (Nicolis and Prigogine 1977; 
Bunow, Kernevez, et al. 1980; Kernevez 1980; Arcuri and Murray 1986). This sen
sitivity is to be expected since higher modes arise on larger domains, where a distor
tion that is small with respect to the overall domain is long enough to accommodate 

\

mUCh of an entire wavelength. A fourth problem is that the final compartmental pat
tern is not very sensitive to wing?tsc Size. I hi's is a general problem in models of 
pattern formation. In many cases, the same pattern is formed over a considerable 
range of organism or organ size. The straightforward Turing class of models, in the 
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linear stability region, have difficulties coping with this insensitivity to size. Some 
solutions, such as sc~ling t.he diffusioy ~on;tants to cope w.iAh changes in domain size, 
seem too ad hoc to hve wIth. w~;,. ") be d ,If. ( ... -ui ~ekr "" ,.,6' >lze.. 

Nonlinear Analysis of Reaction-Diffusion Models: 
Skipping of Modes, Sequentially Determined Polarities, 
and Spatial Frequency-Doubling Bifurcations 

A number of the defects which arise when reaction-diffusion models are applied to 
Drosophila and other systems may well reflect limitations oflinear analysis. We see 
next that a more adequate analysis of the full nonlinear equations redresses some, 
and perhaps all, of the difficulties I have raised. Several lines of evidence suggest that 
the patterns which arise can be far more robust than expected. These studies indicate 
that the polarity of the patterns is insensitive to initial conditions, that certain 
"unneeded" modes are skipped as domain size or other parameters increase, and that 
there is a strong tendency to spatial frequency-doubling bifurcations. 

A particularly careful analysis of the general class of Turing models in a single 
spatial dimension has been carried out by Arcuri and Murray (1986). They consider 
both the linear case, common to all members of the class, and a specific fully nonlin
ear model. They analyze a variety of boundary conditions qn an open line: (1) no 
flux; (2) flux across the ends with an environmental bath set at the steady-state levels 
Xo, Yo; (3) flux with the bath set above or below that steady state; and (4) spatially 
inhomogeneous initial conditions. In particular, they analyze the behavior of a grow
ing system in which the bath is set at the homogeneous steady state but the first mode 
is already present in the domain as it grows large enough to accommodate higher 
modes. 

The authors chose parameters for their model such that a modest window of wave
lengths L 1-L2, can be amplified and analyzed in terms of the two fundamental under
lying parameters: {3 = D x/D Y' the ratio of the diffusion constant for the two chemicals, 
and 'Y which scales with the size of the domain as y:y in one dimension, 'Y in two 
dimensions, and so forth. This latter parameter is also interpretable as being inversely 
proportional to the absolute size of the diffusivities. As noted, decreasing diffusivity 
is the same as increasing domain size. Alternatively, 'Y represents the strength ofthe 
overall reaction terms. An increase in enzymatic activity can therefore increase 'Y. 

As parameters are tuned, the sizes of parameter domains associated with some 
patterns change as a result of nonlinearities in the model. Figure 14.23 shows the 
straightforward predictions of linear stability theory for regions in parameter space, 
or "Turing space," where either single modes or combinations of modes arise. Figure 
14.23b shows the regions in which each mode or combination of modes will arise 
and Figure 14.23c shows regions of parameter space where a single nonlinear pattern 
dominates. Notice that as 'Y increases, the domain associated with the longer wave
lengths-that is, lower numbered modes-becomes larger. This relationship implies 
that there is a tendency, at large {3, for longer wavelengths around a ring to dominate. 
This tendency correlates well with the data on Polyspondylium (Byrne and Cox 1986, 
1987), where the power spectrum preferentially simplifies to sinusoids having few 
peaks. 

In the nonlinear model, modes can be skipped. In Figure 14.23d, simulations for 
one fully nonlinear dynamical system are shown for no-flux boundary conditions 
and for a single initial state which is a random fluctuation away from the homoge
neous steady state. The interesting features are (1) that a single mode dominates in 
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Figure 14.23 Two-dimensional "Turing space" given by the two parameters 'Y and {3, where 'Y reflects the absolute size of the domain or diffusion constants 
and (3 reflects the ratio of diffusion constants. (a) Region of instability of the second mode in a one-dimensional spatial domain, determined by linear stability 
analysis. When unstable, the mode will amplify in time and establish a macroscopic pattern. (b) Linear predictions of domains in which single modes or 
linear combinations of modes are unstable and therefore amplify. (c) Regions where linear theory suggests that single modes will have the largest eigen value 
and hence dominate the long-term pattern. Note that as {3 increases, the longer-wavelength patterns dominate. (d) Nonlinear simulation results for no-flux 
boundary conditions show that the domains in parameter space associated with some modes are bounded. This figure shows regions where even or odd 
nonlinear patterns arise. Note that for large (3 only the odd modes arise. (e) Nonlinear simulation results on a growing one-dimensional domain having no
flux boundary conditions. Because of these boundary conditions, early modes remain as later modes become established. The two sets of graphs show that 
different initial patterns evolve to the same pattern. Thus final attern can be inde ndent of initial conditions. T = time. (j) Spatial frequency-doubling 
bifurcations on a growing domain. Similar patterns arise In the rosop I a em ryo. urray 1986) 
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each parameter domain and (2) that a number of domains are large, while others 
have become small. Here the odd modes have large parameter domains, the even 
modes small ones. Note that the even modes occupy parameter domains which are 
bounded as (3 increases. Thus, for (3 at a fixed large value-that is, a high ratio of 
Dx/Dy-only the odd modes arise, as size increases; all the even modes are skipped. 

In nonlinear models, pattern polarity can be determined uniquely by the existence 
of prior patterns. As size changes slowly from an initial small domain, a first mono
tonic pattern arises. If the window L,-L2 is of reasonable size or if the decay rate of 
the first mode is not too fast relative to domain growth, then the first monotonic 
mode will still be present as the domain becomes larger and the second mode 
becomes admissible and begins to grow. Therefore, the initial condition for the sec
ond mode will be not the homogeneous steady state but the preexisting pattern. This 
~ase leads to the expectation that the first mode can dictate the polarity of the second 
1 mode. 

The expectation that a first pattern can dictate the polarity of a second pattern is 
correct. Figure 14.23e shows the parameter domains where either the first or the sec
ond mode persist once established. Sizes of domains are enlarged relative to the linear 
theory and relative to one another. Figure 14.23eis of basic importance to our further 
discussion. It shows the time succession of patterns on a line for two sets of initial 
conditions, with the full cosine mode having either a peak or a trough in the middle. 
As the one-dimensional spatial domain enlarges, both patterns merge to the same 
polarity! That is, the final pattern is independent of initial conditions! 

A third dramatic feature is spatialfrequency-doubling bifurcations. Figure 14.23f 
shows this behavior for a large value of (3, well above a critical ratio (3c = 27. Note 
that the odd modes, those having maxima at one end of the line and minima at the 
other, do not occur. The pattern goes from the monotonic-gradient one mode, to the 
single-peaked two mode, skips the third mode, and jumps to the two-peaked four 
mode. These peaks then split to form the four-peaked eight mode. Thus, for large (3, 
this model naturally give spatial frequency-doubling. We shall see strikingly similar 
phenomena in the early Drosophila embryo. 

The nonlinear analysis offered by Arcuri and Murray (1986) goes some distance 
toward meeting objections to the Turing class of models for pattern formation. In 
particular, the fact that pattern polarity can be independent of initial conditions is a 
critical feature if concentrations above and below threshold levels are to set devel
opmental decisions. Further, the capacity to skip unneeded patterns is obviously 
important. 

Summarizing, nonlinear models of the Turing type have the properties that pat
tern polarity can be made relatively insensitive to initial conditions, that modes can 
be skipped, and that spatial frequency-doubling bifurcations can occur. The power 
of this class of models is undoubtedly great and carries over to a variety of mecha
nochemical models. Once out of the linear range, the simplest, hence most general, 
predictions fall away a bit. Different nonlinear models have as yet poorly understood 
differences in their behaviors. 

PATTERN FORMATION 
IN THE EARLY DROSOPHILA EMBRYO 

We now turn from imaginal discs to the wondrous phenomena known to occur in 
the early Drosophila embryo. These phenomena and a body of theory are discussed 
in four stages. First I shall consider the simplest application of Turing's general idea 
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of reaction-diffusion instabilities to the problem of pattern formation in the early 
embryo. This analysis leads to a model for the hypothetical sequential subdivision of 
the early embryo by the successive formation and decay oflongitudinal and dorsal
ventral eigen function patterns on the embryo. Each successive pattern of the samet 
hypothetical morphogens is assumed to trigger alternative heritable commitments, 
depending on whether that morphogen pattern is above or below a threshold con
centration. The succession of patterns triggers a succession of different developmen
tal commitments leading to the binary combinatorial code model examined in Chap
ter 12. This model has major strengths but is inadequate to account for additional] 
fundamental features of pattern deletion and pattern duplication which occur on a 
variety oflength scales, from half egg to an approximate %2 egg length along the ante
rior-posterior axis of the embryo. 

In the ~con(:i.part, I consider a number genes falling into four classes: maternal, 
gap, pair-rule, and segment-polarity. Weak mutants of these genes delete parts of a 
longitudinal pattern, while stronger alleles delete more pattern elements and yield 
mirror-symmetric duplications of the remainder. 

The third part considers dramatic data demonstrating that genes belonging to 
these fOiifCfasses exhibit increasingly complex, multipeaked patterns of transcrip
tion and translation during the earliest stages of development. Many members of 
these systems of genes pass through what appears to be a bifurcation sequence very 
similar to that already envisioned for the wing disc and through the hypothetical 
sequence of eigen functions subdividing the egg into successively finer subdomains. 

In the fuurth-part, I propose that longitudinal position is specific by the ratios of 
these phase-offset gene-transcription patterns in a "four color wheels" model of posi
tional information. This model, a generalization of the binary code combinatorial 
model we discuss first, accounts naturally for the deletions and mirror-symmetric 
duplications considered in the second part. 

The four color wheels model, developed with B. Goodwin (Goodwin and Kauff
man 1989a, 1989b; Kauffman and Goodwin 1989), appears quite powerful. How
ever, I should stress that, at present, no single adequate theory of pattern formation 
in Drosophila is in hand (Sander 1975, 1977, 1980, 1984; Meinhardt 1977, 1986; 
Kauffman 1983; Anderson and Nusslein-Volhard 1984; Gergen, Coulter, and Wies
chaus 1986; Akam 1987; Nusslein-Volhard, Frohnhofer, and Lehmann 1987). 

Before beginning, an overview. Pattern formation in the early embryo is con
cerned with assigning defined segmental and other committed fates to nuclei or cells 
at specific positions on the blastoderm (Gehring and Nothiger 1973; Gehring 1976) 
(Figure 14.18a). That is, there is good evidence to believe that early syncytial blas
toderm nuclei are developmentally unrestricted but by the late syncytial blastoderm 
stage, and certainly by the celhllar blastoderm stage, a number of nuclear- or eel/
heritable commitments have occured. Transplantation of nuclei from one region to 
another in early-cleavage-stage embryos showed that the genetically marked nuclei 
formed larval and adult tissue proper to the location at which they were placed (Ill
mensee 1972,1976; Okada, Kleinman, and Schneiderman 1974). Thus such nuclei 
remain uncommitted to specific fates. Conversely, transplantation of anterior cells 
at the blastoderm stage to the posterior results in formation of anterior-specific struc
tures by the transplanted cells (Chan and Gehring 1971). Further, transplantation at 
blastoderm of cells from the prothorax to the metathoracic area results in formation 
of prothoracic-Ieg-specific bristles in the patch oftransplanted cells later found resid
ing in the host's metathoracic leg. Thus such blastoderm cells clearly have a cell-her
itable commitment. 



\ 

596 ORDER AND ONTOGENY 

It is also now clear that late syncytial blastoderm nuclei plus cytoplasm can carry 
heritable commitments. Thus when late syncytial anterior nuclei and surrounding 
cytoplasm were transplanted to the posterior flanks oflate syncytial hosts, the trans
planted material formed anterior-specific adult cuticle. Similarly, posterior nuclei 
and cytoplasm injected anteriorly formed posterior-specific structures (Kauffman 
1980). These results strongly suggest that, by the late syncytial blastoderm stage, 
regional biochemical differences controlling heritable commitments exist in the syn
cytium and are regionalized despite the fact that the syncytium remains an open 
domain with respect to diffusion. 

Early embryogenesis is concerned with setting up regionalized commitments of 
nuclei and cells. Some of these heritable commitments clearly form sequentially and 
are related to sequential subdivision of the embryo into successively finer regions. 

The first evidence for sequential cell-heritable developmental commitments at 
about the cellular blastoderm stage came from mitotic recombination experiments. 
Clones marked at the blastoderm stage are confined to form adult cuticle derived 
from a single segment. However, blastoderm clones can cross from the mesothorax 
to the mesothoracic leg in the adult (Lawrence and Morata 1977). Thus, at the blas
toderm stage, cells may be committed with respect to the mesothorax segment but 
are uncommitted with respect for formation of its dorsal or ventral adult cuticular 
structures. Shortly after blastoderm, clones become restricted to wing or to leg. Sim
ilarly, shortly after blastoderm, clones are restricted to anterior or posterior com
partments in each segment (Morata and Lawrence 1977, 1978). These data suggest 
that at least some ectodermal compartmental cell-heritable developmental decisions 
are taken sequentially in the embryo and subdivide it into successively finer subdo
mains. Dramatic further evidence for sequential subdivision of the early embryo is 
discussed further below. 

Theoretical Sequential Subdivision of the Embryo Based on 
Reaction-Diffusion Instabilities and the Triggering of a 
Binary Combinatorial Epigenetic Code 

Reaction-diffusion models of the Turing type account for many features in the 
sequential compartmentalization of Drosophila imaginal discs. Therefore, it 
becomes of interest to study the predictions this class of models might make con
cerning early pattern formation in the Drosophila embryo. The predictions of 
sequential eigen function patterns I now describe were made prior to data demon
strating the actuality of spatially sinusoidal gene transcription in the syncytial 
embryo. The simplest expectations of a Turing type model applied to the syncytial 
cleavage states, as we shall see, come close to predicting what has come to be 
observed. In addition, I here use these patterns to build up the combinatorial epige
netic code described in Chapter 12. 

The egg is an ellipsoid. It does not increase in size during cleavage, but three 
events-the increased mass of cytoplasm relative to yolk, the migration of this cyto
plasm to the cortex, and the subsequent increased amount of membrane material 
and formation of cell boundaries as membranes migrate inward beneath cortical 

l nuclei-are all likely to decrease diffusion constants, at least in the cortical area. As 
described above, a decrease in diffusion constants is equivalent to an increase in 

.1 length. The eigen function patterns which arise on the surface of an ellipsoid are given 
by generalized Lame functions and again follow the natural coordinates for an ellip-
soid. These functions consist of concentric ellipsoidal surfaces, on each of which a 
straight major and minor axis along and across the herni-ellipse are present. Flanking 
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the minor axis are pairs of roughly paraboloid lines, analogous to those on a planar 
ellipse. The analogues to confocal ellipses in a planar ellipse occur as well, oriented 
along the long axis of the hem i-ellipsoid, at its equator, and along its "saggital" mid
line. 

Figure 14.24 shows the first four expected eigen function patterns for an ellipsoid 
having about the same axes ratio as the Drosophila egg. The first mode is longitudi
nal, high at one end, low at the other, and increasing sigmoidal in the midregion. Its 
threshold nodal line Xo, Yo divides the egg, at half egg length measured from the pos
terior pole, into anterior and posterior halves. Following the hypothesis with respect 
to compartments, let us assume that this division triggers an anterior versus posterior 
commitment in each half egg, coded for by either the 1 state or the 0 state of a geno
mic circuit like the C l-cro loop in bacteriophage lambda, which has two steady 
states, im + and im - (Neubauer and Calef 1970; Ptashne 1986). These alternative 
states represent the heritable, memorized, determined commitments throughout 
each half embryo. 

The second pattern which arises (Figure 14.24b) is low at both ends and high in 
the middle, creating two nodal lines separating the ends from the midregion. Let a 
second decision circuit record commitments to end versus middle states in these 
regions. Note that this hypothesis assigns a similar state, "end," to both ends of the 
embryo even though they are separated by the midregion. This double assignment is 
reminscent of the fact that the two ends of the wing disc form thorax while the midre
gion forms wing blade. This assignment begins to create a combinatorial code. We 
might think of the combinations 

A 

B 

Anterior + end = head 
Anterior + middle = thorax 
Posterior + middle = proximal abdomen 
Posterior + end = distal abdomen and genitalia 
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Figure 14.24 Hypothetical sequence of four eigen-function patterns on preblastoderm Drosophila 
egg. Nodal lines were used to trigger alternative commitments to create combinatorial epigenetic 
code. The I and 0 for each decision stand for alternate states of a genetic circuit which records each 
developmental commitment. The final subdomains shown in (d) are specified by combination of the 
four binary alternative commitments taken. 
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Because the second pattern is nonmonotonic, with a peak in the middle, this proce
dure makes distant regions similar to one another. Foreshadowing: A single switch 
from posterior to anterior will convert gentalia to head, jumping over the midregion 
of the embryo. 

The third pattern (Figure 14.24c) runs dorsal to ventral, drawing a compartmental 
boundary separating dorsal and ventral ectodermal structures along the lateral equa
tor, recorded in a third commitment: dorsal versus ventral. 

The fourth predicted pattern (Figure 14.24d) is based on the expectation of a spa
tial frequency-doubling bifurcation. The argument, confinned by Arcuri and Mur
ray (1986), that the second longitudinal mode, once established, makes transition to 
the third mode difficult and causes skipping to the fourth mode yields the fourth pat
tern. This pattern has two peaks, recorded by yet another decision-taking circuit into 
even versus odd. 

Later, as a result of frequency-doubling, longitudinal modes yield an eight-peak 
pattern containing 16 monotonic domains, and then double to a 16-peak pattern. 
We ignore these more complex patterns for the moment but return below to examine 
data showing that just such spatial frequency-doubling in gene-transcription patterns 
occurs in the preblastoderm embryo while it is still a single syncytium open to dif
fusion. The now-known transcription patterns are stunningly close to those expected 
on a Turing model. 

The hypothetical sequence of modes envisioned in Figure 14.24 successively sub
divides the embryo into a set of domains, each of which carries a specific binary com
binatorial epigenetic code word, shown in (d). This is the model alluded to in Figure 
12.21 d, where we tried to account for the latticelike patterns seen in transdetermi
nation. Recall that this model predicted rather well most major features seen in the 
transdetermination and homeotic mutant data. 

According to this combinatorial code model, transdetermination is due to a 
switch of one circuit from a 1 to a 0 or vice versa. Then, as noted in Chapter 12, the 
following predictIOns can be made. First, consider two transdetermination steps, 
such as haltere to wing and haltere to antenna. Both require changing the first circuit 
from 0 to 1, but haltere to antenna requires changing an additional circuit, the sec
ond, from 1 to O. Thus the model predicts that transdetermination from haltere to 
wing is more probable than transdetermination from haltere to antenna. Table 12.1 
shows 36 independent predictions made by this code assignment. All but two are 
true. The a priori probability of this success is less than one in a billion. Thus the 
combinatorial code is genuinely capturing major features of the transdetermination 
flow. Restated, the combinatorial code gives an interpretation to the sense in which 
any two tissues have "neighboring developmental programs." Each imaginal disc is 
characterized by the combination of binary choices made during its ontogeny. Two 
discs are neighbors if they differ by a single choice. 

Next, the code accounts for the fact that any disc transdetermines to only a few 
other discs and that transdetermination sequences occur. Each sequence follows 
from the fact that only a single circuit is likely to change state at one time; hence each 
disc can jump only to neighbors whose code differs in a single decision. Further, if 
the 1 state is more stable than the 0 state, the oriented flow toward mesothorax 
ensues. The fact that such a binary combinatorial code comes very close to capturing 
the transdetermination lattice suggests quite strongly that the combinatorial theory 
has something right about it. 

Because the code arises from monotonic and non monotonic chemical patterns, 
distant tissues can transdetermine into one another, jumping across the fate map-
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genitalia to antenna, for instance. Indeed, this model commends itself, despite diffi
culties which we shall ennumerate below, in part because it is the only one available 
which accounts for such jumps in a rational way. 

Each disc is coded by a number of decision circuits. Since transdetermination 
might allow anyone of them to switch, but any homeotic mutant might be assumed 
to alter the stability of only one state of one circuit, the model correctly predicts that 
the set of tissues to which any disc can transdetermine should be broader than but 
include the effects of any single homeotic mutant (Hadorn 1966; Kauffman 1973; 
OuweneeI1976). 

The simple assumption that some but not all homeotic mutants may act to desta
bilize a single memory circuit leads to further predictions: 

1. Known homeotic mutants should preferentially cause transformation between 
tissues whose code words differ in a single decision. Table 12.2 shows that this is 
largely true. This success, too, is unlikely by chance. That is, if random four-bit 
code words were assigned to Drosophila domains, the mean number of bits 
changed per mutant would be 2. Again the model exhibits a strong success. 

2. If a homeotic mutant alters the stability of a memory circuit in one disc tissue, it 
might act in another in the same way. Thus parallel transformations should arise. 
For example, were the second end versus middle decision weakened in the 
antenna, the antenna would jump over intervening tissue to the mesothoracic leg. 
The same effect in the eye would convert eye to wing. In fact, Nasobemia, a mem
ber of the Antennapedia complex, mediates just this pair of transformations 
(Gehring 1966a, 1966b; Stepshin and Ginter 1972). A mutant which converted 
the initial posterior decision to an anterior would transform haltere to wing and 
genital to antenna or head. A mutant found by Shearn, Rice, et al. (1971) medi
ates this pair of parallel transformations. Best known, but not in this combina
torial scheme, the engrailed gene appears to be needed in the posterior compart
ment of each segment of the organism. Its deletion appears to convert each 
posterior compartment, wholly or in part, to an anterior compartment proper to 
that segment (Morata and Lawrence 1975). 

Thus a combinatorial model predicts parallel homeotic transformations, and a 
number of such transformations are known. This model comes close to accounting 
for most known homeotic transformations as one-step changes in the underlying 
code. Both the combinatorial concept and the idea that the spatial arrangement of 
the code may be set up by a sequence of monotonic and non monotonic positional 
signals are encouraged. 

Critique 

This sequential-morphogen-mode, combinatorial-code model clearly has a number 
of attractive features. First is the idea that space is successively subdivided by the fit
ting in of higher "harmonics" on the egg domain; as we shall see, there is direct evi
dence in mutant data and gene-transcription patterns to support this idea. Second is 
an attempt to link those harmonics to a binary combinatorial coded state in each 
domain. Such coding allows distant regions to be developmental neighbors in an 
attractive way that fits homeotic and transdetermination data. This model was for
mulated before evidence for multipeaked gene-transcription patterns in the syncytial 
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blastoderm egg and early embryo became available. The model is worth recalling 
precisely because it still offers one of the best accounts of why distant regions are 
developmental neighbors and because the concept that monotonic and non mono
tonic gradients of gene products and other morphogens divide space into regions hav
ing unique positional identities seems very likely to be correct. 

On the other hand, this early theory appears to be wrong in important ways and 
to harbor difficulties. In particular, the model assumes, for simplicity, that successive 
gradient patterns of the same morphogen system wax and wane in the eigen function 
bifurcation series. This simplest hypothesis then requires that space be divided by a 
series of different developmental "switches," each triggered to alternative states by 
the proper member of the eigen function series. It now seems clear that at least four 
gene systems-maternal, gap, pair-rule, and segment-polarity-pass through a bifur
cation series, setting up complex, multipeaked longitudinal transcription patterns. 
The different systems have different wavelength patterns, and within each wave
length transcript patterns are phase-shifted. Therefore, it now seems likely that cells 
might specify position by the simultaneous values of the patterns of at least four gene 
systems on four different wavelengths. 

Any reaction-diffusion theory confronts the fact that Turing models are sensitive 
to the shape of the egg. A fairly wide range of changes in axial ratios causes no appar
ent alteration in the adult (see, for instance, Bunow, Kernevez, et al. 1980). However, 
recent data, discussed below, suggest that the spatially localized products of maternal, 
gap, pair-rule, and segment-polarity genes along the longitudinal axis may act as an 
internal framework governing which patterns form. Such a framework would reduce 
sensitivity to changes in egg shape. 

Further difficulties arise with respect to the gap phenomenon (Schubiger 1976; 
Schubiger and Wood 1977; Newman and Schubiger 1980). Ifthe egg is ligated during 
cleavage divisions, a gap of missing longitudinal segments appears flanking the loca
tion of the ligation. The gap grows narrower if the ligation is made closer in time to 
the blastoderm stage and is not due to a loss of total number of cells. Further, the 
ligation shifts the prospective fate map of the early embryo; if the trans-egg bicellular 
layer which forms after ligation is pierced after the cellular blastoderm stage, then the 
gap of missing elements is eliminated. Thus after the blastoderm stage, the total req
uisite information can be restored even if it was deformed earlier. This gap phenom
enon is hard to account for on the basis ofa sequence of transient wave-shaped pat
terns which arise and decay on the embryo, as posited in the present model. This 
difficulty, however, appears to be met by the four color wheels model, described 
below, which has grown out of and incorporates much of this Turing model. 

The most important difficulties of this particular form of a combinatorial-code 
model, however, arise with respect to experimental data on mutants which cause 
deletions and mirror-symmetric duplications of anterior-posterior segmental pat
tern elements. These phenomena strongly support a Turing-like model fitting suc
cessively shorter-wavelength, multipeaked morphogen patterns on the egg but 
require extending the binary epigenetic code model and lead us to the four color 
wheels model. In that model, cells measure longitudinal position along the embryo 
by assessing "phase" with respect to each of four spatially periodic morphogen pat
terns of successively shorter wavelength. As in the combinatorial-code model, the 
monotonic and non monotonic character of the wave patterns again allows the four 
color wheels model to account naturally for transformations between distant regions 
of the embryo. 
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Perhaps the most interesting mutants discovered in Drosophila are a number of 
maternal-effect mutants, which affect the embryo only if present in the mother, and 
maternal-pIus-zygotic mutants, and zygotic mutants, which affect the primary orga
nization of longitudinal segmental patterning or dorsal-ventral patterning in the 
embryo (Anderson and Niisslein-Volhard 1984). In the following body of ideas, 
developed with B. C. Goodwin (Goodwin and Kauffman 1989, 1990; Kauffman and 
Goodwin 1990), I focus on longitudinal organization. As noted above, these mutants 
fall into four major classes:"!paten~and ~gotic genes, which are concerned with 
the entire longitudinal axis; gap genes, whose mutation deletes a contiguous longi
tudinal region of the primary aXiS; parr-rule genes, whose mutation deletes alterna
tive regions on a double-segment periodIcIty; and segment-polarity genes, whose 
mutation deletes parts of the longitudinal pattern on a single-segment periodicity. 
Analysis of these four classes of mutants which affect embryo organization in the 
anterior-posterior axis has revealed four fundamental properties: 

1. Mutants can delete part ofthe anterior-posterior longitudinal pattern. 

2. Mutants can delete part of the longitudinal pattern and form mirror-symmetric 
duplications of the remaining pattern elements. 

3. Among those mutants which can produce duplications, weak effects produce only 
deletions but stronger effects produce deletions plus duplications. 

4. Such phenomena occur on a variety of length scales along the embryo, ranging 
from half the longitudinal axis to deletions and duplications within each segment. 

Bicephalic and Bicaudal Create Mirror Symmetries 
on a Half Egg Length Scale 

Among the mutants which cause mirror-symmetric duplications extending over half 
the embryonic body are the maternal-effect mutants bicephalic and bicaudal (Bull 
1966; Niisslein-Volhard 1977; Niisslein-Volhard, Frohnhofer, and Lehmann 1987). 
During oogenesis, the oocyte derives from a nest of nurse cells which remain con
nected to the nest by cytoplasmic bridges and transfer cytoplasmic material into the 
oocyte. Outside the egg proper is the complex chorion. In bicephalic mothers, the 
oocyte has nurse cells at both poles ofthe egg and the chorion has anterior stigmata 
disposed at both poles. The embryo, as the name implies, forms a mirror-symmetric 
double anterior set of structures, with the plane of symmetry in the thorax. The 
bicaudal mutants, much better studied (Bull 1966; Niisslein-Volhard 1977; Mohler 
and Wieschaus 1986), show a beautiful range of phenotypes (Figure 14.25). The cho
rion is normal, and the egg appears normal. As the name implies, the dominant phe
notype is a double-abdomen embryo. In favorable cases, the plane of mirror sym
metry is as far anterior as the second abdominal segment and the embryo is entirely 
symmetric. That is, the duplicate anterior half has as many segments as does the pos
terior half. The symmetric class can vary in the position of mirror symmetry as far 
posterior as the seventh abdominal segment. In that case, the entire embryo has four 
abdominal segments, ordered 8-7 -7 -8. It is important to stress that the plane of sym-



602 ORDER AND ONTOGENY 

a 

Figure 14.25 (a) Wild-type larva. (b) Mirror-symmetric double abdomen. Asymmetric double 
abdomens have more posterior segments than anterior segments. (From Niisslein-Volhard 1977) 

metry can pass through any position within a segment. Therefore, there is no position 
within a segment which is uniquely the location about which anterior-posterior mir
ror symmetry occurs in all cases. Furthermore, double-abdomen embryos typically 
have more segments along the ventral side than along the dorsal side; therefore, the 
line of mirror symmetry from dorsal to ventral runs at an oblique angle with respect 
to segments. As pointed out by Gergen, Coulter, and Wieschaus (1986), this phe
nomenon poses serious difficulties for the compartmental-domain, binary-code pic
ture described above. According to the compartmental hypothesis, a compartment 
is an equivalence class of cells having identical fates, specified by some heritable com
mitted state. Yet the positions of mirror symmetry in bicaudal and bicephalic 
embryos do not respect compartmental boundaries at all. Any position within a seg
ment can be the symmetry line, and that line is oblique across two or more segments 
along a dorsal-ventral transect. The same features occur with mutants causing mir
ror symmetry on shorter length scales. 

In addition to the symmetric class, a large asymmetric class exists, with fewer seg
ments in the mirror-symmetric anterior region than in the posterior region. Finally, 
the headless class of mutants has all segments in normal serial order but the head 
segments are either missing or poorly involuted. Note that the range of phenotypes
from headless to symmetric bicaudal embryo-suggests that weak effects delete part 
ofthe longitudinal pattern, while stronger effects beyond some critical extent of dele
tion yield mirror-symmetric duplications. 

Bicephalic and bicaudal and their phenocopies in other systems (Kalthoff and 
Sander 1968; Kandler-Singer and Kalthoff 1976; Kalthoff 1983) show that several 
insects can exhibit mirror-symmetric duplication on a rough half egg length scale. 

Bicaudal embryos also exhibit an additional striking phenomenon. It is not 
uncommon to find embryos in which the dorsal aspect is a symmetric bicaudal on 
the left and right halves ofthe embryo, with posterior spiracles on left and right halves 
at the anterior pole. Ventrally, however, one side is a headless phenotype, while the 
other side is a mirror-symmetric double abdomen. This astonishing form means that, 
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if one considers a transect from dorsal to ventral along the headless side near the '} 
anterior pole of such an embryo, the segment phenotype will jump discontinuously r 
from posterior abdomen dorsally to thorax ventrally. This phenotype is found in 
other insects. For example, van der Meer (1984) induced bicaudal phenotypes in 
Callosorbruchas and recovered embryos having a longitudinal stripe of bicaudal seg
mental pattern elements embedded within a normal left or right half embryo. Obvi
ously, we need to ask what kind of system can readily account for such a strikingly 
discontinuous pattern in the embryo. As we shall see, a significant virtue of the four 
color wheels model is that it naturally accounts for such discontinuities. 

The Gap Genes and Mirror Symmetry 
on Quarter Egg Length Scales 

Among the zygotic mutants affecting pattern, a number are gap mutants which delete 
a set ofadjacent segments (Niisslein-Volhard and Wieschaus 1980; Akam 1987; Leh
man and Niisslein-Volhard 1987; Niisslein-Volhard, Frohnhofer, and Lehmann 
1987): hunchback, knirps, Kruppel, and giant. The hunchback mutant deletes meso
and metathorax. Knirps deletes several adjacent abdominal segments, yielding a con
tinuous ventral setal belt. Kruppel, the best studied (Weischaus, Niisslein-Volhard, 
and Kluding 1984; Knipple, Seifert, et al. 1985; JackIe, Tautz, et al. 1986), deletes 
the entire thorax and proximal abdomen and produces an embryo which has an 
abnormally involuted head at the anterior end, adjacent to a mirror-symmetric 
duplicate of up to the last three abdominal segments, 8-7-6-6-7-8. Often, only the 
sixth abdominal segment is present in mirror-duplicated fashion. Again, the sym
metry line can pass through arbitrary points in the sixth segment. As in the case of 
bicaudal, weak alleles of Kruppel cause loss of meso- and metathoracic pattern ele
ments but no mirror symmetry (Wei schaus, Niisslein-V olhard, and Kluding 1984). 
Thus, again, weak alleles or phenotypes cause deletion, whereas stronger ones cause 
successively more deletion and then the onset of mirror-symmetric duplications. 
Notice that the mirror symmetry occurs on roughly a quarter egg length scale. 

A similar progression occurs in hunchback. Weak alleles or phenotypes cause 
deletions, and stronger ones cause more extensive deletions and then the onset of 
mirror-symmetric duplications. The familiar phenotype deletes the second through 
sixth "parasegments," corresponding to the maxillary through third thoracic seg
ment, as well as the thirteenth parasegment, corresponding to parts of the seventh 
and eighth abdominal segments. Stronger mutants of hunchback, however, deleting 
both maternal and zygotic contributions, also cause mirror-symmetric duplications 
of several posterior abdominal segments (JackIe, Tautz, et al. 1986). As with Kruppel, 
hunchback duplication is on roughly a quarter egg length scale. 

Pair-Rule and Segment-Polarity Mutants Cause Deletions 
and Mirror-Symmetric Patterns on Double-Segment 
and Single-Segment Spacings 

Saturation mutagenesis on all three major chromosomes of Drosophila (Niisslein
Volhard and Wieschaus 1980; Akam 1987: Niisslein-Volhard, Frohnhofer, and Leh
mann 1987) has yielded a number of other mutants which fall into two further 
classes: pair-rule and segment-polarity mutants. The pair-rule mutants, roughly said, 
delete every other segment along the embryo. Thus even-skipped deletes the even
numbered segments, and odd-skipped deletes the odd-numbered ones. The domains 
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deleted are often not exact segments but rather overlap segmental boundaries in 
characteristic ways for each mutant. Among the pair-rule mutants, strong alleles of 
runt form an embryo having half the normal number of segments, but each segment 
is present with longitudinal mirror symmetry (Niisslein-Volhard and Wieschaus 
1980). Here the mirror symmetry is on roughly a sixteenth egg length scale. Like runt, 
weak alleles of even-skipped delete parts of alternative segments in a two-segment 
spacing, but strong alleles cause deletion of more than an entire segmental domain 
and mirror-symmetric duplication of the remaining segmental domain in the dou
ble-segment interval. It is not the case that all pair-rule genes cause mirror-symmetric 
duplications in their strongest alleles, but striking new evidence suggests that some 
double mutants may cause such duplications: Moderate alleles of even-skipped delete 
the denticle bands of even-numbered segments, while odd-skipped deletes the den
ticle bands of odd-numbered segments; thus one might expect the double mutant to 
delete all denticle bands. Instead, the double mutant forms eight mirror-symmetric 
denticle bands on a double-segment spacing (Gergen, Coulter, and Wieschaus 1986)! 
Here deletion of the second gene replaces part of the pattern normally deleted by loss 
of the first gene. As we shall see, the four color wheels model naturally accounts for 
these striking phenomena. 

The pair-rule mutants were the first persuasive evidence that, during embryogen
esis, a double-segment interval occurs prior to and is perhaps causally necessary to 
the ultimate formation of segmental patterning. 

A number of segmental mutants delete part of each segment along the embryo 
and form mirror-symmetric duplicates of the remaining region in each segment. The 
deleted region can include the segmental border; equivalently, the duplicated region 
can include the segmental border. Thus the segmental border is not a preferred loca
tion. Further, while each mutant deletes and duplicates a characteristic zone, it typ
ically overlaps two segments. Thus the length scale is segmental, and therefore the 
mirror symmetry here occurs on roughly a ~2 egg length scale. 

These astonishing data show that mirror-symmetric mutants occur in Drosophila 
on a variety of length scales. Furthermore, the general character of all these length 
scales is that weak alleles delete parts of a longitudinal pattern, while stronger alleles 
cause more extensive deletion and the onset of mirror-symmetric duplication. Thus 
it appears that, on all length scales, a critical amount of the longitudinal pattern must 
be deleted before mirror-symmetric duplications arise in the remaining pattern ele
ments. The mutants which have mirror-symmetric patterns on successively shorter 
length scales suggest the possibility that the embryo is successively subdivided on 
those length scales into subdomains. Further, the longitudinal mirror-symmetric 
patterns hint at wavelike properties on the egg: If positional information is specified 
along the egg, or within a tissue, by a morphogen gradient which has multiple peaks 
and valleys-that is, if the gradient is nonmonotonic-then it is necessarily multi
valued. Further, domains with mirror-symmetric gradients necessarily abut one 
another. In order to "cope with" the existence of such repeating spatial positional 
maps and generate a unique pattern, the cell needs some further mechanism to indi
viduate each monotonic subdomain in the morphogen pattern. If that mechanism 
fails, the underlying mirror symmetry may be revealed. Again, as we shall see, the 
four color wheels model offers a simple interpretation of these phenomena. Passage 
from mirror-symmetric mutant patterns to wavelike properties on the egg with suc
cessively shorter wavelengths is a theoretical step. We turn now to direct and stun
ning evidence for sinusoidal, sequentially shorter spatial patterns of gene and protein 
expression exhibited by some of these genes. 
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The Drosophila syncytium is open to diffusion until formation of the cellular blas
toderm at about three hours. Therefore, it is terribly striking that a number of the 
maternal, gap, pair-rule, and segment-polarity genes do actually come to exhibit 
complex, multipeaked longitudinal patterns of RNA transcripts and protein abun
dance in the syncytial egg. Whatever the mechanism governing the patterns, the phe
nomena are truly beautiful. 

Three features of these data are critical in supporting a Turing reaction-diffusion 
model. First, many of the gene systems to be described exhibit spatial expression pat
terns which are close to eigen functions ofthe Laplacian. Second, the spatial patterns 
of each gene system become increasingly multipeaked during early development in 
a way which either is extremely close to a spatial frequency-doubling bifurcation 
sequence or otherwise is close to a natural bifurcation sequence in which higher har
monics arise as diffusion or some other parameter is tuned. Third, different gene sys
tems which appear to have different natural wavelengths appear to pass through sim
ilar bifurcation sequences, although at different rates. 

The Long-Wavelength System: Bicoid, Oskar, and Caudal 

The longest-wavelength system includes the maternal genes, such as bicoid and 
oskar, and another gene, the maternal-plus-zygotic gene caudal (MacDonald and 
Struhl 1986; Akam 1987; Nusslein-Volhard, Frohnhofer, and Lehmann 1987). In 
the oocyte, egg, and early embryo, RNA for caudal and other gene products is local
ized by in situ hybridization with radioactively labeled DNA or RNA which is com
plementary to the RNA (Hafen, Levine, et aI. 1983). Protein products ofthe gene are 
localized with tagged monoclonal antibodies specifically binding the products. 

The maternal genes bicoid and oskar, as well as others, are established in the syn
cytium in stable monotonic gradients: Bicoid is high in the anterior; oskar, high in 
the posterior. Neither passes to a more complex waveform during the later stages of 
cleavage. In contrast, caudal exhibits an increasingly complex waveform. Its tran
script is first found in the nurse cells adjacent to the oocyte and appears to migrate 
into the oocyte. In early cleavage divisions, this maternal RNA is uniformly spread 
throughout the egg, with less in the yolky interior and more in the cytoplasmic 
islands. During cleavage, as these islands and their nuclei migrate toward the cortex, 
the transcript migrates as well. A dramatic change occurs between the ninth and the 
thirteenth divisions, a change which leads to the formation of an anterior-posterior 
gradient which is low in the anterior, high in the posterior. Note that this monotonic 
gradient is flat at both poles and steep in the middle, forming a half-cosine-like pat
tern. Such a distribution is as expected for the first longitudinal Turing-like mode and 
the Laplacian operator (Figure 14.24a). The mechanism underlying the shift from a ') 
uniform to a monotonic gradient is unclear (MacDonald and Struhl 1986). I 

Analysis of the caudal protein abundance has also been carried out by staining 
whole-mount embryos with monoclonal antibodies against a {i-galactosidase-caudal 
fusion protein. This analysis reveals that the protein is initially uniform and at the 
tenth division shifts to a monotonic pattern parallel to the RNA abundance, low in 
the anterior, high in the posterior, and rising sigmoidally mid-egg. Thus both RNA 
and protein pass from a uniform distribution to a pattern remarkably close to the 
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first longitudinal eigen function mode on the ellipsoidal egg, as predicted by the Tur
ing model and other field equations. 

Thereafter, the RNA and protein pattern becomes still more multipeaked. Shortly 
before cellularization, the level drops at both the anterior and posterior poles but 
increases in the posterior part of the egg, yielding a rough ring of high RNA abun
dance in the posterior third of the embryo. During germ-band extension, the tran
script is present throughout the longitudinal extent of the germ band but waxes and 
wanes in abundance in a double-segment spacing. 

The caudal RNA and protein therefore progress through the following stages: 
(1) a uniform distribution; (2) a monotonic pattern like the first longitudinal eigen 
function of the Laplacian; (3) a third pattern which is remarkably like the superpo
sition of the first longitudinal mode plus the second mode, low at both poles and high 
in the midregion; and (4) a highly multipeaked pattern, abundant in alternative seg
mental spacing along the axis. 

Further evidence of transient multipeaked patterns comes from a detailed study 
of caudal mutant phenotypes. Eggs from cad- females presumed to be fertilized by 
a cad+ sperm from cad+ jcad- males often develop into larvae that lack the eighth 
abdominal segment and sometimes show partial deletions of the fourth abdominal 
segment, hinting at a four-segment spacing. In addition, a few larvae show partial 
deletion of even-numbered abdominal segments, in correlation with the double-seg
ment spacing seen in the protein pattern at germ-band elongation. Thus the entire 
caudal sequence of increasingly complex, multipeaked waveforms may well begin 
with a homogeneous pattern, then pass to a monotonic gradient, then to a single peak 
in the posterior third of the egg, then to a four-segment spacing, and finally to a dou
ble-segment spacing. 

The Middle-Wavelength System: The Gap Genes 

Kruppel, hunchback, and probably knirps, giant, and tailless appear to be members 
of a gene system which exhibits an increasingly multipeaked pattern during early 
embryogenesis but which has a shorter natural wavelength than does caudal. 

As remarked above, gap genes denote a class of genes which cause at least one 
deletion of a number of adjacent segments (Niisslein-Volhard and Wieschaus 1980; 
Preiss, Rosenberg, et al. 1985). As we saw on page 603, Kruppel mutants have a single 
extensive domain of deletion extending from T 1 to AS. However, the sequences of 
RNA transcript patterns is much more complex and goes through an apparent bifur
cation series closely analogous to that expected on a reaction-diffusion model (Figure 
14.24). At the tenth cleavage division, Kruppel transcript is first observed as a single 
broad band in the middle of the egg. By the fourteenth division, just prior to cellu
larization, two new zones of transcription arise in both the anterior and the posterior 
poles a/the egg (Harding and Levine 1988). Thus at this stage, Kruppel has passed 
from an initial pattern very close to the second longitudinal eigen function mode (low 
in the poles and high mid-egg) to the more multipeaked four mode, with two full 
cycles along the longitudinal axis: peak trough peak trough peak. By germ-band 
extenstion, Kruppel, like caudal, is expressed along the entire anterior-posterior axis 
but waxes and wanes in a double-segment periodically which gives the appearance 
of a pair-rule pattern (Harding and Levine 1988). Thus Kruppel, like caudal, appears 
to pass through a bifurcation sequence in which increasingly multipeaked patterns 
arise along the anterior-posterior axis. 

Note that the Kruppel pattern becomes multipeaked faster than the caudal pattern 
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does. Thus the caudal protein passes from uniform to monotonic at the ninth divi
sion, attains a pattern with a single zone in the posterior third of the egg only at the 
cellular blastoderm, and achieves a double-segment pattern by germ-band extension. 
In contrast, Kruppel starts later, appearing first in the tenth division passing to a full 
four-segment mode with peaks at both poles and mid-egg by the time of cellular blas
toderm, and then going on to a double-segment pattern by germ-band extension. 

A second gap gene, hunchback, also follows a harmonic sequence of increasingly 
complex waveforms (Reinerts, personal communication). This sequence starts with 
a uniform distribution of transcript which develops into a monotonic gradient hav
ing an anterior maximum by the eighth division. By the twelfth, a second peak 
appears posteriorly, giving a full period of gene product. During the fourteenth divi
sion, this pattern progresses through first two and then three full spatial periods. 
There is not yet evidence of higher harmonics during gastrulation and germ-band 
extension. 

The mutants knirps, tailless, and giant are also members ofthe gap gene system. 
Based on defect patterns, these genes appear likely to exhibit multipeaked transcript 
and protein waveforms. 

Bifurcation Sequences in the Pair-Rule Genes 

The pair-rule genes are those whose mutation affects the primary axis either by dele
tion alone or by deletion plus mirror-symmetric duplications on double-segment 
spacings. Two of the pair-rule genes,lushi tarazu and even-skipped, give exquisite 
evidence for a spatial frequency-doubling bifurcation sequence. 

Fushi tarazu is located in the Antennapedia complex. The gene has been cloned 
(Hafen, Levine, et al. 1983; Hafen, Kurowa, and Gehring 1984) and its pattern of 
transcription in the early embryo probed by in situ hybridization (see, for example, 
MacDonald, Ingham, and Struhl 1986). In addition, the protein coded by the gene 
has been cloned, and monoclonal antibodies to it have been raised. All this work has 
allowed the pattern of protein expression in the early embryo to be assessed using the 
monoclonal antibodies against that protein to stain sections or whole embryos (Car
roll and Scott 1986). The results are striking. 

Figure 14.26 shows the protein patterns at cellular blastoderm. Note the following 
features. First, there are seven stripes around the embryo, rather evenly spaced with 
nonstaining stripes. Second, notice that these stripes clearly splay toward the anterior 
and posterior poles. The anterior several stripes curve anteriorly as each passes from 
dorsal to ventral. In contrast, the posterior several stripes curve posteriorly as each 
passes from dorsal to ventral. The mid-egg stripes are nearly vertical. This spatial )' 
pattern is extremely reminiscent of an eigen function of the Laplacian diffusion oper
ator on the deformed ellipsoidal geometry of the Drosophila egg. The egg is bent such 
that its ventral midline is longer than its dorsal midline arc. It is characteristic of eigen 
functions of the Laplacian that, where the spatial domain is slightly larger, spacings 
among stripes spread out slightly. On a deformed ellipsoid like the egg, longitudinal 
eigen function modes will therefore splay toward the poles ventrally. This similarity 
may be accidental and explained on other grounds, but it is rather hard to suppose 
so. 

The only difference between the expected eigen function patterns on a full egg 
shape and the pattern seen in lushi tarazu is that bands should occur throughout the 
domain, but the embryonic pattern has a large empty domain anteriorly and a 
smaller one posteriorly. However, Edgar, Weir, et al. (1986) showed that two extra 
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Figure 14.26 Seven-stripe pattern offushi tarazu protein at cellular blastoderm in double-segment 
intervals. Note splay of stripes toward poles along ventral arc of embryo. (From Carroll and Scott 
1986) 

bands of gene transcript are observed in the anterior domain if protein synthesis is 
inhibited by cycloheximide one hour prior to the normal period of Jus hi tarazu band
ing at the fourteenth division. This suggests that there is a global periodic pattern in 
the normal embryo, butJushi tarazu transcription is repressed in the anterior (and 
presumably posterior) domain by a local signal. I discuss this point more fully below, 
for it suggests that some gene products act as components of an internal positional 
framework which confines the activity regions of other genes and couples "pattern
generating engines" such that periodic spatial patterns are generated within defined 
domains along the egg. If so, this confining framework may be part of the mechanism 
which allows a certain invariance to the resulting transcript patterns with respect to 
modest variations in overall size and shape of the egg. 

Like the longer-wavelength systems described above,fushi tarazu and some other 
pair-rule genes pass through the now familiar bifurcation sequence. Here, however, 
the evidence for spatial frequency-doubling bifurcations is the clearest. The Jushi tar
azu transcript can first be found in mid-cleavage embryos, diffusely present in a wide 
zone ranging from 15 to 85 percent of egg length measured from the posterior pole. 
By the late syncytial blastoderm stage, when the embryo is still a syncytium and so 
has a connected common cytoplasm, this pattern sharpens by passing through a tran
sient stage in which two alternative bands of high and low intensity occur on an eight
segment spacing interval. Then the number of bands doubles to four alternative 
stripes of high and low intensity on a four-segment spacing interval. Thereafter, the 
anterior three bands split into two bands of high intensity with a dark band between 
(Hafen, Kurowa, and Gehring 1984; MacDonald, Ingham, and Struhl 1986). There
fore, before cellularization,fushi tarazu forms seven alternative stripes of high inten
sity separated by stripes oflow intensity. The spacing corresponds to a two-segment 
interval (Figure 14.27). Thus, in a syncytium, an initial broad pattern, which is nev
ertheless confined away from the ends of the egg, sharpens via a two-band and then 
a four-band pattern to alternative peaks and troughs in a sinusoidal pattern on a two
segment periodicity. As noted above, viewed from the side, these stripes of high inten
sity are not vertical bars running dorsal to ventral on the embryo; instead, they defin-
itively splay toward the poles as they course ventrally. /. A .-1 
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Figure 14.27 Sequential establishment of lushi tarazu and even-skipped transcription patterns in 
late syncytial blastoderm. Each transcript establishes a broad pattern which splits first to two bands 
and then to four. The anterior three bands then split again to yield the ultimate seven stripes. Careful 
analysis ofjushi tarazu (right panels) and even-skipped (left panels) shows that they are phase-shifted 
with respect to one another along the anterior-posterior axis. (From MacDonald, Ingham, and 
Struhl1986) 

Even-skipped exhibits precisely the same spatial frequency-doubling bifurcation 
sequence (MacDonald, Ingham, and Struhl 1986) but is slightly phase-shifted with 
respect to the Jushi tarazu bands (Figure 14.27). Again, bands splay toward the poles 
along the ventral margin in patterns extremely reminiscent of eigen functions on the 
deformed ellipsoidal shape of the egg. 

The mutant hairy is another pair-rule gene, and its deletion yields an embryo hav
ing half the normal number of segments. Transcripts of hairy are first detectable at 
the eleventh or twelfth cleavage division. Its transcripts are uniformly distributed 
throughout the egg (Ingham, Howard, and Ish-Horowicz 1985). Then two domains 
of high transcript abundance can be seen, one dorsally in the anterior region from 85 
to 95 percent of egg length, the other a broad band around the entire circumference 
of the embryo and extending from 75 to 20 percent of egg length. By the fourteenth 
cleavage division, the wide band becomes discontinuous and forms eight distinct 
bands along the length of that region. The hairy bands, like those ofJushi tarazu, are 
broader ventrally (six to seven nuclei) than dorsally (three to four nuclei). A careful 
examination of the onset of Jus hi tarazu and even-skipped transcripts revealed a tran
sient eight-segment, then four-segment periodicity. It is not clear that the same peri
odicity occurs in hairy because the proper analysis has not yet been done. 

The spatial phase relationships between hairy, Jushi tarazu, and even-skipped 
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have been analyzed, however (reviewed in Akam 1987). At blastoderm all three have 
double-segment periodicities but are slightly out of phase with respect to one another. 
(That is, one reaches its peaks and troughs of activity slightly anterior to the other.) 
The three genes, however, are not 180 degrees out of phase in the two-segment spatial 
period. Thus different regions of the double-segment interval have different combi
nations, or, more precisely, different ratios, of the three transcripts and might use 
these differences to code for position with the double-segment intervals. I return to 
this point below and use it as the basis for measuring position by measuring phase 
defined by these ratios. 

Finally, paired is another member of the pair-rule class. It, too, has been cloned 
and its pattern of transcription assessed. Localized paired transcripts are first 
observed at the twelfth division as a band six nuclei wide, stronger ventrally than 
dorsally, about 63 to 77 percent of egg length. The band widens at the next cleavage 
division to contain between 12 and 16 nuclei. During the fourteenth division, five 
additional bands arise spaced evenly to 20 percent of egg length, with a double-seg
ment spacing. Just prior to completion of cellularization, two major events occur. 
An additional band appears posterior to band 7, at 13 percent of egg length, and 
bands 2 through 7 begin to split into an anterior and posterior band yielding a band
ing pattern on a single-segment spacing. This latter process progresses from the ante
rior to the posterior pole. In addition, a ventral-to-dorsal progression is seen (Kil
cherr, Baumgartner, et al. 1986; Akam 1987). 

The Segment-Polarity Genes 

Among the segment-polarity mutants; whose deletion deletes parts of segments and 
yields mirror-symmetric duplicates of the remainder, the engrailed pattern has been 
investigated. The overarching phenomena are that engrailed is expressed first in a 
four-segment and then in a two-segment periodicity, which finally transforms to a 
single-segment spacing, by accumulation of first transcript and then protein in the 
zone between double-segment stripes (Weir and Kornberg 1985). In more detail, the 
following is seen. Transcription begins at the fourteenth cleavage division. The initial 
pattern is diffuse. Next, stripes begin to form but do so in a complex series which has 
an overall anterior-posterior gradient as well as superimposed complexity. The first 
two prominent bands are 2 and 8. Bands 4 and 8 become prominent before band 6 
does, and band 12 becomes prominant before band 10 does. Thus, the onset wit
nesses a transient four-segment spacing. Thereafter, bands are present in double-seg
ment invervals corresponding to the even-numbered bands, which remain tran
siently stronger than the newly arising odd-numbered segments. The final pattern has 
stripes a single cell wide in each segment. 

These data offer direct evidence on a number of critical issues: 
1. Within the syncytium, regionalized gene transcription or accumulation of tran

scripts occurs. So does protein synthesis. The regionalization can be on a very fine 
spatial scale, waxing and waning from maxima to minima to maxima over the 
distances separating perhaps eight to ten nuclei, counting three to four nuclei (and 
later cells) per segment. 

2. The evidence strongly supports the idea that a spatial frequency-doubling bifur
cation sequence or, more generally, a bifurcation sequence occurs. The best evi
dence for near frequency-doubling derives from even-skipped and fushi tarazu, 
where a single broad band alters to two bands, which in turn transform to four 
bands in a four-segment pattern, which bifurcates to a seven-stripe double-seg
ment pattern and then, in the case of even-skipped, ultimately carries on to a 14-
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stripe single-segment pattern. Data on paired, engrailed, Kruppel, hunchback, and 
bicaudal also give grounds to think that some form of bifurcation sequence to 
successively more multipeaked patterns is occurring in these gene systems as well. 
All these genes pass through a sequence from a single broad zone of abundance 
to at least a double-segment periodicity. 

3. The natural wavelengths of the four systems are progressively shorter, and the 
pace in passing through the bifurcation sequence progressively more rapid. Cau
dal achieves its monotonic pattern at the tenth division, when Kruppel is already 
banded in the mid-egg and the pair-rule and segment-polarity genes have not yet 
started their bifurcation sequence. Caudal achieves the posterior ring pattern, per
haps reflecting the first plus second modes at the fourteenth division, when Krup
pel has passed to the four mode, with peaks at both ends and at mid-egg. Similarly, 
the hunchback gap gene has achieved either two or three full longitudinal cycles 
by the cellular blastoderm stage. In the same interval, the fushi tarazu and even
skipped pair-rule genes have begun and passed through their entire bifurcation 
sequence from single bands to seven stripes in alternative segments. Caudal and 
Kruppel, which begin prior to the pair-rule genes, do not achieve double-segment 
spacing until germ-band extension. 

4. The precise spatial patterns shown by maternal, gap, and pair-rule genes are 
extremely close to the patterns predicted by the eigen function of the Laplacian 
operator on the deformed ellipsoidal shape of the egg. Thus caudal transcripts 
form a monotonic gradient flat at both poles and steep in between-just the form 
predicted by a Turing-like mechanism based on the first longitudinal mode gov
erned by the Laplacian. Even more striking, the precise patternfushi tarazu and 
even-skipped transcripts, splaying ventrally, is exactly the form which eigen func
tions of the Laplacian operator will take on a deformed ellipsoid such as the Dro
sophila egg. 

S. The patterns start diffusely and then sharpen. This is clearest with caudal, hairy, 
even-skipped, andfushi tarazu and probably true with engrailed; it is not true for 
paired. As in the case of Polyspondilium, initiation of a pattern diffusely with sub
sequent emergence of a few dominant wavelengths is the hallmark of growth of 
unstable spatial modes from noise. 
Taken together, these data are very strong evidence supporting the view that the 

Drosophila embryo has wavelike properties underlying transcription patterns which 
occur on it early in development, arise in succession with more wavelengths per egg, 
and are associated with genes playing critical roles in determining segmental prop
erties. 

Parametric Couplings Between Gene Systems: 
An Internal Positional Framework? 

In describing these rich phenomena, I have omitted consideration of the known and 
possible regulatory couplings among these genes, couplings which may in part con
stitute the molecular machinery which drives pattern generation. This is currently an 
area of intense research effort (Carroll and Scott 1986; Harding, Rushlow, et al. 1986; 
Ingham, Ish-Horowicz, and Howard 1986; JackIe, Tautz, et al. 1986; Akam 1987; 
Frasch and Levine 1987; Scott and Carroll 1987; Harding 1988). For example, it is 
now clear that deletion of each gap gene alters the banding patterns of pair-rule genes, 
typically increasing the width of some bands and deleting others. Similarly, products 
of the pair-rule genes are directly implicated in the generation of the normal segmen-
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tal engrailed pattern (Howard and Ingham 1986; Akam 1987; Martinez-Arias and 
White 1987). 

Several aspects of the problem should be stressed. First, the genes of the maternal
plus-zygotic, gap, pair-rule, and segment-polarity systems generate spatial patterns 
of very complex, overlapping waveforms. If, in general, these systems are jointly uti
lized to specify cell position and further development, then the proper registration 
among the diverse waveforms is important. In other words, the proper phase rela
tions must occur. Second, any theory which is to account for the complex patterns 
must account for the entire complex of spatiotemporal patterns. Third, reaction-dif
fusion or other field models are the natural means to think about the apparent bifur
cation sequences in transcript patterns. 

If we take seriously the idea that the spatial pattern engine is, in part, some form 
of reaction-diffusion or other field system governed by partial differential equations 
and the Laplacian operator, then such a pattern engine must solve the problem of 
proper registration among different transcript patterns and must ensure that only 
some of the possible eigen function modes occur. In particular, consider the seven
stripe fushi tarazu and even-skipped patterns at cycle 14. The spacing between these 
stripes is only a few nuclei wide. However, a Turing-like reaction-diffusion system 
with such a short wavelength could also generate a striped pattern at right angles to 
the observed pattern, such that stripes appear along the dorsal-ventral axis. In addi-

)

. tion, it might generate a checkerboard pattern. Neither is observed. Thus if a reac
tion-diffusion or other field model is to account for the onset oflongitudinal spatial 
patterning as eigen functions of the Laplacian operator, it must also account for the 
failure of such patterns to be established in the dorsal-ventral or left-right axes of the 
egg. 

\ 

A quite simple general hypothesis may suffice. The maternal, gap, pair-rule, and 
segment-polarity gene systems may be coupled such that the longer-wavelength sys
tems act as bifurcation parameters to the shorter-wavelength systems. Recall that 
there are two major parameters in the Turing class of models: {3, the ratio of diffusion 
constants of activator and inhibitor substances, and ,,(, the size of the domain or, 
alternatively, the absolute values of the diffusion constants of the substances or, alter
natively, the overall rate of the chemical reactions in the system. Thus if components 
of the longest-wavelength system-bicoid, oskar, and caudal-act as bifurcation 
parameters to gap genes such as Kruppel or hunchback, the former might do so by 
altering the diffusion ratio of components of the gap gene system, perhaps by binding 
products of that system or by altering the reaction rate, perhaps by acting as tran-
scriptional or translational regulators. Similarly, the long-wavelength and gap gene 
systems may act as bifurcation parameters of the pair-rule system. Grounds to think 
that the longer-wavelength systems may act as bifurcation parameters to the shorter
wavelength systems are based on the fact that deletion of single genes in the longer
wavelength systems typically do not delete or eliminate the basic periodic pattern of 
transcription in the shorter-wavelength systems but may distort the shorter systems' 
pattern. 

In order to investigate this hypothesis, Axel Hunding in Denmark, in collabora
tion with B. Goodwin and me, has carried out numerical studies of a nonlinear reac
tion-diffusion system on the deformed ellipsoidal geometry of the Drosophila egg 
(Hunding, Kauffman, and Goodwin 1990). Hunding finds that, if the Kruppelprod
uct is assumed to be a bifurcation parameter of the pair-rule system, then the four-

1 mode pattern of Kruppel-high at both poles and mid-egg, with troughs between
\ stabilizes the longitudinal seven-stripe pattern of the fushi tarazu and even-skipped 
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system. Horizontal and checkerboard patterns are suppressed. Furthermore, on the 
deformed ellipsoid, the vertical stripes splay poleward along the ventral midline, as 
observed experimentally. Further, additional faint stripes are present in the anterior 
and posterior poles, reminiscent of the anterior-pole bands revealed by Edgar, Weir, 
et al. (1986). 

Hunding's results are encouraging. They suggest that the longer-wavelength sys
tems, by serving as bifurcation parameters to the shorter-wavelength systems, can act 
as successive components, constructing a kind of internal reference framework to 
build up the spatially fine-grained longitudinal patterns of transcription. The long
wavelength and gap gene systems may control the positions of maxima, the wave
lengths, and hence the phase relations of the pair-rule genes by controlling the ante
rior-posterior boundaries within which pair-rule genes act or by controlling the dif
fusion constants of the pair-rule system or by acting as inducers or inhibitors of the 
pair-rule genes and hence controlling the reaction rates of the pair-rule system. 

The Turing Mechanism Naturally Generates 
Phase-Offset Multipeaked Patterns 

The observed spatial patterns of the pair-rule genes are phase-offset. It is therefore 
worth noting that the straightforward Turing model inevitably generates patterns of 
several variables whose peaks and troughs are phase-offset. In turn, this property 
offers a way to control spatial phase relations among a number of coupled genes. 

Here is the issue. In any such field model, the linearized equations predict that, 
when a single mode is being amplified on the spatial domain, all the waveforms rep
resenting the various underlying chemical variables must be either in phase with one 
another or exactly 180 degrees out of phase; no other phase offset is possible. The 
reason is straightforward. In the linearized analysis, a fixed ratio of the underlying 
variables, measured as deviations from the spatially homogeneous steady state, is 
amplified at each point in the tissue. Such a fixed ratio is called an eigen vector. Thus ") 
maxima and minima of all the variables occur at the same position in the domain. 
However, suppose the domain allows two different modes, with two different wave
lengths to be amplified simultaneously. Then typically each mode amplifies a differ
ent fixed ratio of the variables. Hence the full pattern, given by the sum of the two 
modes, typically has maxima and minima of the variables occurring in different spa
tial positions. Phase offset arises naturally. Furthermore, Turing models generate 
patterns because only a restricted range of wavelengths, L\ to L2, is amplified by the 
reaction-diffusion system. When the domain is small enough, only a single wave
length from within this range can fit onto the domain and fulfill the boundary con
ditions. When the domain is large enough, however, it must be the case that N of the 
shorter wavelengths, Lb will fit onto the domain while N - 1 of the longer wave
lengths, L 2, will fit. Therefore, as domain size increases, at first single modes can arise, 
but ultimately the superposition of more than one mode must occur. Thus, eventu
ally, phase-offset patterns can be expected (Kauffman 1984a, 1984c). 

The main point to stress is that the Turing model can generate sequentially com
plex, multipeaked patterns which give rise ultimately to phase-offset patterns. From 
Arcuri and Murray (1986), we recognize that, in general, the fully nonlinear system 
of field equations can pass to a spatially inhomogeneous steady state. In that steady 
state, nonlinear mixing of many modes often occurs; hence stable phase relations 
among the variables arise on any such stationary spatially inhomogeneous dynami
cal attractor. In short, nonlinear versions of reaction-diffusion or other field models 

I 
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are very likely to give rise to multiple-wavelength patterns which coexist stably in a 
tissue domain. Since many of these patterns are nonmonotonic, the question arises 
as to how cells can utilize such spatially complex patterns to assign positional iden
tities. In a moment, we shall use the observed phase-offset patterns in the four color 
wheels model to define position in terms of phase angles on each of the different 
wavelength transcription systems. 

THE FOUR COLOR WHEELS MODEL 
OF POSITIONAL SPECIFICATION 

The Spatial Distribution of Maternal, Gap, Pair-Rule, and 
Segment-Polarity Genes Products Does Not Yet Dictate 
How the Embryo Uses Them to Determine Position 

We wish to understand how the embryo uses the spatial distribution ofthe gene prod
ucts we have discussed, and perhaps others, to specify anterior-posterior pattern ele
ments. Perhaps the first point to stress is that any given spatial distribution of "mor
phogens" might be used in a variety of ways to specify position. These alternative 
possible uses, in turn, will predict quite different phenotypes as a consequence of 
mutations or other perturbations. The simple example shown in Figure 14.11 makes 
this point. Consider three hypothetical morphogens, X, Y, and Z, arranged in three 
monotonic gradients in a roughly circular tissue, such as a wing imaginal disc. Let 
the X gradient be high on one side of the disc and low on the opposite side-on the 
dorsal and ventral ends of the wing disc, say-while Y is at right angles and high at 
the anterior margin and low at the posterior margin. Let Z be high in the middle of 
the wing disc and low at its boundaries, forming a cone-shaped gradient. The wing 
disc might use the concentrations ofthe three morphogens to specify position of each 
cell in the tissue in a Cartesian coordinate system. Instead, however, the ratios of X 
and Y above and below some midlevels of their concentration range might be used to 
measure an azimuthal phase, or angle, around a circle of phases, while the concen
tration ofZ is used to measure a radial positional value from the position of maxi
mum Z. This case corresponds to the simplest molecular interpretation of a polar 
coordinate system, such as that suggested by French, Bryant, and Bryant (1976) for 
epimorphic pattern regulation. Finally, the ratio of X and Y might be used to mea
sure a longitudinal angle and the ratio of Z and Y used to measure a latitudinal angle 
in a spherical coordinate model, such as that proposed by Russell (1978) for epi
morphic pattern regulation. 

\ 

Two points warrant stress: (1) the spatial distribution of the morphogens does not 
yet tell us how they may be used to specify position and (2) mutant and other effects 
will differ depending on that use. Hence analysis of the effects of mutants may yield 

. insight into how an organism uses the morphogens to specify pattern. 

It Is Unlikely that Longitudinal Position Is Specified by 
Simple On-Off Combinations of Gene Activity 

The pair-rule and segment-polarity genes are expressed in overlapping domains in 
two-segment or single-segment periodicities. It is extremely attractive to suppose that 
distinct positional values of each cell within a two-segment period, or within a single-
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segment interval, are specified by precise combinations of gene-expression patterns. 
Nevertheless, this effort poses considerable problems even in its simplest form. That 
simplest form supposes that each position within the double- or single-segment inter
val is specified by a precise combination of gene-expression patterns, where each gene 
can be considered to be "on" or "off" in each cell. More exactly, the concentration 
of each gene's product can be considered to be above or below a precise threshold in 
each cell. The problem we are concerned with arises when we attempt to apply this 
idea in the context in which more than two gene products are involved in one peri
odic domain. For concreteness, we focus on segment-polarity mutants and thus peri
odic patterns in one-segment spacing domains. 

Figure 14.28a shows a concrete case in which four genes arise in a periodic pattern 
in one domain and in which the phases of the four genes are evenly phase-offset by 
45 degrees. It is convenient to recast the phase-offset sine patterns onto a circle whose 
circumference represents position in a tissue from the beginning to the end of a one
segment interval along the anterior-posterior axis, as shown in Figure 14.28b. 

a 

b 

c 

Segment Interval 

-C+ 

+ + 
A t-----lIE----lA 

-C+ 

-C+ 

A t------?l~-___l A 

-C+ 

Figure 14.28 (a). Four hypothetical gene products, A, B, C, D, wax and wane sinusoidally along 
the anterior-posterior axis in single-segment periodicity. Each product is assumed to be phase-offset 
from the others by 45 degrees. (b). Periodic spatial pattern of variation in a one-segment interval 
recast onto a circle representing the one-segment interval. Each gene product from (a) divides the 
circle into two regions separated by a diameter. In one region, the gene is above threshold and hence 
on ( + ); in the other, it is off ( -). This on-off feature creates a binary combinatorial code word in 
each sector. (c) The consequence of deleting gene A is that its concentration is below threshold 
throughout the one-segment interval. This deletion converts all code words with A = on (+) to 
A = off ( -). Rather than yielding mirror-symmetric mutations of the segmental pattern, however, \ 
this conversion creates two "illegal" code words, which are circled. 
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Around this circle, each gene's activity waxes and wanes sinusoidally, passing above 
and below its threshold level at two defined positions on the circle. Thus each gene's 
pattern of on and off values is divided by a diameter of the circle. This division yields 
a pattern of on-off combinations of gene expression transected by four diameters, 
each demarking the threshold between on and off concentrations of one gene. 
Mutants of the segment-polarity genes uniformly result in deletion of pattern ele
ments and duplication of the remaining pattern elements. Consider, therefore, the 

\ consequence of deleting gene A. Once A is deleted, the concentration of its product 
I falls below threshold in all cells. Rather than yielding a mirror-symmetric pattern, 

however, this mutation results in a number of "illegal" combinations not present in 
any sector of the normal pattern (Figure 14.28c). Thus there are no natural reasons 
to expect these illegal code words to yield pattern elements which are part of a pattern 
duplication. 

The same observation holds for deletion of any of the other genes. In Figure 14.29, 
we show that the same result arises even for three phase-offset sinusoidal gene prod
ucts. 

A.second difficulty with strict on-off binary coding of position is that, ifthe binary 
cotitbinations each specify the fate of single cells in a segment and always do so in 
the same way, then any positions of mirror symmetry due to gene deletion which do 
arise should be very precise in one mutant among flies, but variability is typically 
found. We return to this problem below. 
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Segment Interval 
)1 

+ + 
A 1----*-----1 A 

A 1----*-----1 A 

Figure 14.29 Same as Figure 14.28, except that here only three gene products, A, B, C, are used. 
The result of using three products rather than four is that only one illegal code word is created. 
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Measuring Position as "Phase "; The Color Wheel 

We can lead into the concept of measuring position as a "phase" by considering more 
carefully the on-off model with three genes because its inadequacies point toward a 
better theory. The linear and circular representations of Figure 14.29 can be made 
more complete by considering three morphogen axes at right angles, each showing 
the range of values of one gene from low to high concentrations (Figure 14.30). The 
idea of a threshold level for each gene product at the midlevel of its concentration 
range now carries over to three orthogonal lines, each representing the level of one 
gene product in this tissue specificity space (Winfree 1984). The intersection of the 
three lines occurs at the concentrations which correspond to the threshold level of 
each morphogen. The concentrations of the three variables along the physical tissue 
in the segmental domain of the fly (Figure 14.29a) are mapped to a closed cycle of 
concentrations in tissue specificity space (Figure 14.30). That is, each point on the 
closed cycle represents the A, B, and C morphogen concentrations at a single point 
in the segmental tissue domain. Traveling around the cycle in tissue specificity space 
corresponds to mapping the simultaneous concentrations of A, B, and C along with 
segmental domain from start to end of one period. The same pattern of phase-offset 
morphogen concentrations then recurs on each segmental repeat. 

The hypothesis that each position along the segment is encoded by a specific on
off combination of gene-expression patterns, where "on" and "oft" refer to above
threshold and below-threshold concentrations, now amounts to noting that the three 
orthogonal axes shown in Figure 14.30 intersect at the threshold levels of the three 

Figure 14.30 Recasting the three genes of Figure 14.29 into a three-dimensional tissue specificity 
space (TSS), where the concentration of each gene is an independent orthogonal axis, and all three 
axes intersect at the threshold level of each gene product. Intersection is the origin of the chemical 
TSS. Each combination of above-threshold and below-threshold levels of the three variables corre
sponds to one of the 23 = 8 orthants of this TSS. Six of the eight orthants correspond to legal code 
words from Figure l4.29b and can be thought of as colors of the color wheel arranged in order in a 
cycle. The two remaining orthants (shaded) correspond to the two illegal code words specifying no 
meaningful positional information. B, blue; G, green; Y, yellow; 0, orange; R, red; V, violet. 
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morphogens and divide the tissue specificity space into 23 = 8 orthants. All points in 
tissue specificity space within each orthant have the same combination of gene prod
ucts above and below threshold and hence constitute a combinatorial code word 
standing for one positional domain. 

The first distinction between specifying position in tissue specificity space (Figure 
14.30) and the simpler cycle shown in Figure 14.29a is that in the former we formally 
and explicitly extend the definition of the phrase "same code word" to include all 
parts of the same orthant in tissue specificity space. Thus, we have a concept of the 
same positional information if the amplitudes of the phase-offset wave patterns of A, 
B, and C decrease or increase slightly or, viewed another way, ifthe cycle in Figure 
14.30 contracts or expands slightly. A visually attractive way ofrepresenting the fact 
that each orthant is meant to be the "same" positional code is to assign each orthant 
a different color form the color wheel, in which the entire color spectrum is arranged 
as a ring, with violet next to red. Note that the on-off hypothesis yields a cycle in 
tissue specificity space which passes through six of the eight possible orthants. Thus 
these six orthants-colored perhaps red, orange, yellow, green, blue, and violet
have well-defined positional code word values. The two remaining orthants, how
ever, are not traversed by the cycle in tissue specificity space and hence are not 
assigned any color. This lack of color restates the concept that those quadrants rep
resent illegal combinations of on-off states which have not assigned positional value 
in the tissue. 

Consider the effect of deleting one gene. If A is deleted and Band C exhibit their 
old waveform, then the cycle of morphogen values remains in the four orthants in 
tissue specificity space in which A is below threshold. Therefore, the cycle necessarily 
crosses into at least one of the uncolored orthants representing an illegal code word. 
This feature restates the difficulty noted above with the on-off combinatorial posi
tional code when three or more gene products are involved: Mirror-symmetric pat
terns are not produced because illegal code words are generated. 

Continuous Color Wheels 
and an N - 2 Dimensional Singularity 

I believe the familiar on-off combinatorial model is basically on the right track but 
needs to be generalized to a more realistic theory. Note first that the idea ofrepre
senting position by combinations of several gene products above and below threshold 
values amounts to representing position of the ratios of those gene products, each 
measured with respect to its threshold. In this context, the use of a single threshold 
for each gene is equivalent to supposing that the tissue can recognize and respond to 
only gross differences in gene product concentration-"above threshold" and 
"below threshold." The combination of all gene values above and below respective 
thresholds then measures a quantized ratio, or phase angle, around the cycle in tissue 
specificity space. The quantized angle measured is just the arc in one colored orthant. 

Two features of the on-off combinatorial theory are unnecessarily limiting. First, 
it is reasonable to suppose that cells can respond to only modest differences in con
centrations; hence there must be a minimaLdetectable difference.In terms of distin
guishing different "phase," or angle, positions arouruf'ibe cycle in tissue specificity 
space, there must be a minimum distinguishable angle. However, since cells might 
be able to discriminate several sufficiently different concentrations of each gene prod
uct, the minimum phase angles might be smaller than an orthant. 

The second limitation ofthe theory is more fundamental. Note in Figure 14.30 
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that the six colored quadrants all meet at a single point-the point in tissue specificity 
space where the three threshold axes intersect. This arrangement is extremely untyp
ical and arises only for quite improbable assignments of colors to tissue specificity 
space. This leads us to the concept of a singularity (Winfree 1980, 1987). For con
creteness, let us quantize the color wheel into a fixed number of distinct colors, each 
representing a distinct phase-angle sector around the cycle in tissue specificity space. 
Then each small sector on that cycle is colored appropriately. In order to extend the 
definition of phase angle to points in tissue specificity space which are not on the 
normal cycle of morphogen values, we must try to assign a color to each point in 
tissue specificity space. For example, the most natural way to try to do so is to think 
of each quantized color as being a colored card of some thickness and then spindle 
each card in turn by the cycle in TSS. Then the colored cards are spindled in order 
around the cycle (Figure 14.31) such that, when we pass around the cycle in TSS, we 
encounter the cards, or phase sectors, in proper order. These cards, each representing 
one quantized phase angle and called, colorfully, "isochromes," are said to fill, or 
foliate, in TSS. The critical feature of this image is that each color card extends inside 
the cycle in TSS. Thus it is intuitively clear that all cards might meet somewhere in 
the middle. In the immediate vicinity of such a locus, all or at least many colors, and 
hence all or at least many isochrome phase angles, are infinitely close to one another. 
Indeed, a fundamental topological theorem demonstrates that there must exist at 
least a one-dimensional, or line, locus threading through the cycle in TSS on which 
all or many such phases abut. Such a line locus is a phase singularity. When all iso
chrome phases terminate on such a singularity, its immediate vicinity contains all 
possible phase values; hence the singularity is considered a phaseless locus. In the 

~SingUloritY 

Figure 14.31 Natural generalization of on/off sector model to a color wheel in three-dimensional 
TSS. Each color, or isochrome, specifies one ratio of the three morphogenetic variables measured 
from the origin and hence one positional value. All isochromes are two-dimensional surfaces in 
three-dimensional TSS. Each color is a sector, rather than a surface, and corresponds to a range of 
ratios. A singularity must exist where many or all of the isochrome surfaces meet one another; this 
is a "phaseless" locus in TSS. The phaseless locus must be one- or two-dimensional in a three-dimen
sional TSS. The singularity is shown as an axis passing through the sphere from "north" to "south" 
pole. B, blue; G, green; Y, yellow; 0, orange; R, red; Y, violet. (From Winfree 1980) 
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color wheel image, mixing all colors leads to white, which contains all colors but no 
specific hue. The general theorem states thay, in an N-dimensional TSS in which 
phase angle is assigned around a cyclic ring in that space, an N - 1 or N - 2 dimen
sional phaseless singularity, or "zone," must exist and thread through the cycle (Win
free 1980, 1987). Although the general theorem allows the singularity to be a jump 
discontinuity where many but not all phases meet, we shall restrict our attention to 
the simple general case where all phases abut on a phaseless singularity. 

Figure 14.31 shows the natural generalization of the on-off model. As before, 
phase angle is measured by the ratio of concentrations of morphogen variables, 
where the ratios are taken with respect to an "origin" in TSS rather like the intersec
tion of the three thresholds in Figure 14.30. Unlike the quadrant model, however, 
we here extend each color to the phaseless singularity which threads the cycle in TSS. 
Not surprisingly, this phaseless line locus passes through the two quadrants which 
were left colorless before. Now, however, each color extends from the formerly col
ored quadrants, or smaller sectors, well into the formerly uncolored quadrants. 
Indeed, each color extends to the one-dimensional phaseless line. 

We need one further idea. The supposition that cells cannot distinguish arbitrarily 
similar concentrations of morphogens implies that cells cannot distinguish positions 
in TSS which lie very near one another but on opposite sides of the phaseless singu
larity locus. Therefore, we make the rather natural assumption that a cell which 
straddles the singularity in TSS and has all or very many phase-angle values literally 
has no phase-angle information and hence makes no pattern element. Perhaps the cell 
dies. Whether it does or not, we shall refer to a "tube" around the singularity as a 
dead zone. Cells in which the concentrations of gene products A, B, and C lie within 
the dead zone make no pattern elements (Figure 14.32). In effect, we are restricting 

;vSingUIOrilY 

Figure 14.32 A color wheel in three-dimensional TSS having a "dead zone" tube surrounding the 
one-dimensional singularity where isochromes meet. Cells with positional values in the dead zone 
are assumed to be phaseless and hence to have no interpretable positional information and make no 
pattern element. B, blue; G, green; Y, yellow; 0, orange; R, red; V, violet. 
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the illegal quadrants of the on-off model to dead zones which pass through such 
quadrants but do not occupy them entirely. 

Pattern-Element Deletion 
and Mirror Duplication Are Generic 

This color wheel model yields four critical results. First, it naturally predicts pattern- ~ 
element deletions when the spatial wave patterns of gene products A, B, and Care 
modified such that part of the cycle in TSS passes through the dead zone. Second, it 
naturally predicts mirror-symmetric duplications when the wave patterns of A, B,} ? 
and C in the tissue are modified such that the entire cycle no longer enters or sur-I ' 
rounds the dead zone. Third, it predicts that a continuous deformation of the normal )" 
cycle in TSS from that which surrounds the dead zone to that which does not enter 
or surround the dead zone will lead first to pattern-element deletion, then to asym
metric pattern duplication, and finally to mirror-symmetric pattern duplication. 
Finally, the color wheel model predicts that there will be variability in the position \ 
of the mirror symmetry because there is no constraint on the exact manner in which 
the deformed cycle crosses the singularity. 

These generic predictions of a color wheel model containing a singularity and a 
dead zone are shown in Figure 14.33. Note that, as the waveform of A, B, and C 
across the tissue is progressively distorted, the cycle in TSS first approaches the dead 
zone and then enters it but still surrounds the singularity in the center of the dead 
zone (Figure 14.33a), then no longer surrounds the singularity (Figure 14.33b), then 
falls entirely on one side of the dead zone and no longer surrounds it (Figure 14.33c). 
When the cycle passes through the dead zone, the cells having the corresponding 
phase angles make no corresponding pattern elements; hence those elements are 
deleted. When the cycle no longer enters or surrounds the dead zone, then, in passing ) 
around the cycle (hence from one end of the periodic repeat domains in the physical 
tissue to the other), each phase angle is encountered twice, and in reverse order; hence 
a mirror-symmetric duplicate is formed. Note further that such duplications require 
no cell death and intercalary regeneration. As noted by Russell (1985) and Kauffman 
(1984c), these duplications are a topological consequence of measuring phase by 
ratios from an origin in a TSS. Finally, note that if the cycle of values does not sur-) 
round the singularity but does pass through the dead zone, then an asymmetric mir
ror duplicate is formed, with fewer pattern elements in the mirror-duplicated region 
than in the region in normal orientation. 

The first issue to stress is that these properties are precisely those observed in the 
pattern-element deletions and duplications on all length scales. Weak alleles lead to ) 
deletions. Stronger alleles, or more extreme phenotypes, lead to deletion plus dupli
cation-first asymmetric and then symmetric-of remaining pattern elements. The 
fact that the same phenomena arise on all length scales in the Drosophila embryo 
markedly encourages the belief that similar color wheel principles must underlie the 
phenomena at all length scales. We return to this idea shortly. 

The next feature to emphasize with respect to the generic properties of such color 
wheel models is that minor differences in how the cycle in TSS is distorted to intersect 
the dead zone and cross it lead to minor differences in the way in which pattern ele
ments are deleted and in the way in which further pattern elements are duplicated. 
This, too, matches what is observed on all length scales. In bicaudal, the precise posi
tion of mirror symmetry can lie at any position in any of several abdominal seg
ments. In Kruppel, the position of mirror symmetry varies from embryo to embryo. 
Even in runt and the segment-polarity mutants, precise locations of deletion and mir-
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Figure 14.33 Generic predictions of deletion followed by first asymmetric and then mirror-sym
metric duplication as the cycle of morphogen values in tissue is displaced first through and then past 
the dead zone and singularity. (a) Cycle distorted so that it enters dead zone but still surround sin
gularity, leading to deletion but no duplication. (b) Cycle distorted to enter dead zone but no longer 
surround singUlarity. This distortion yields deletion of some pattern elements and asymmetric dupli
cation of others, with fewer duplicated than original pattern elements. (c) Cycle no longer surrounds 
either dead zone or singularity. This conformation yields deletion of some pattern elements and mir
ror-symmetric duplication of the remainder. B, blue; G, green; Y, yellow; 0, orange; R, red; V, violet. 
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ror symmetry vary. The color wheel model has the capacity to account for such vari
ability naturally. 

Recall from page 604 the puzzling phenomena in double mutants of particular 
alleles of even-skipped and odd-skipped. Each mutant alone deletes even or odd den
ticle bands, but the double mutant results not in the deletion of all denticle bands but 
in the formation of narrow mirror-symmetric denticle band duplicates. The color 
wheel model on a two-segment spacing can naturally account for this. Each single 
mutant deforms the cycle of morphogen values such that it encounters the dead zone. 
One mutant removes even denticles; the other, odd denticles. The joint mutant, we 
readily suppose, is shifted such that it no longer either enters or surrounds the dead 
zone and hence yields a duplication. 

Gergen, Coulter, and Wieschaus (1986) report a further interesting experiment 
with runt. Flies having different dosages of the normal runt+ gene were constructed. 
Hypomorphs gave familiar weak runt phenotypes, but flies with extra doses of runt+ 
yielded antirunt phenotypes in which the segments normally deleted were unaffected, 
and the alternate segments were partially deleted. Thus antirunt is similar to even
skipped. This phenotype would correspond, on a two-segment color wheel, to assum
ing that the runt and antirunt phenotypes correspond to shifting the cycle in TSS in 
opposite directions with respect to the dead zone, such that pattern elements in the 
odd or even set are affected. l .. k· 'j'-' ...r3.L.t t'J(ped:. ~g.,rfJ- r ... YI1,"'e 

fu~ d I..re in 611. 

The Four Color Wheels Model 

Evidence presented in the section beginning on page 605 demonstrates that maternal 
gene products and those of caudal are present in long-wavelength patterns-either 
as monotonic gradients or as a single peak in the posterior third ofthe egg-at cellular 
blastoderm. At the same stage, Kruppel is a full two-cycle pattern, with three peaks 
at the anterior and posterior pole and mid-egg and two troughs between the three 
peaks (Harding and Levine 1988). Hunchback also appears to be in a full two-cycle 
pattern with peaks in the anterior and posterior halves of the egg and three troughs 
at the two poles and between the two peaks (Akam 1987; Reinerts and Levine 1988). 
Hence Kruppel, hunchback, and other gap genes are arrayed in shorter-wavelength 
patterns along the egg during the cellular blastoderm stage. At the same time, the 
pair-rule genes have progressed through their bifurcation sequence and are arrayed 
with phase differences on a two-segment periodic spacing. Shortly thereafter, the seg
ment-polarity genes are arrayed in presumptive phase-spaced intervals in single-seg
ment repeat units. 

Since the basic phenomena of deletion and duplication of pattern elements occur 
at all length scales along the egg and exhibit fundamentally similar features, Goodwin 
and I propose that position along the entire anterior-posterior axis of the embryo is 
specified simultaneously by measuring phase angle, or "color," on at least four sep
arate color wheels. The first color wheel, representing the longest wavelengths, gives 
crude overall information about position along the anterior-posterior axis. The 
crudeness is a necessary consequence of supposing that cells can measure differences 
in concentration only beyond some minimal range; hence any color wheel must be 
quantized into minimum discriminable sectors. Maternal genes such as bicaudal 
(Niisslein-Volhard 1977) and zygotic-plus-maternal genes such as caudal (MacDon
ald and Struhl 1986) presumably are the constituents of the first color wheel. The 
second wheel represents information from the gap genes, such as Kruppel, hunch
back, knirps, giant, and perhaps tailless. This wheel passes through about two cycles 
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along the full egg length and hence refines the positional precision yielded by the first 
wheel. The third wheel is based on the phase-offset patterns of the pair-rule genes, 
and the fourth is derived from the segment-polarity genes. Jointly, the information 
tells any cell along the anterior-posterior axis what pattern element to make in the 
larval cuticle. We note that this formal (1986), model is, in effect, a more precise 
statement of a concept proposed by Gergen, Coulter, and Wieschaus (1986), in which 
each cell specifies position by measuring ratios of segment-polarity, pair-rule, and 
perhaps gap gene products. 

This four color wheels model therefore specifies the positional identity of each cell 
combinatorially, not merely in the sense that each phase angle on each color wheel 
is itself a ratio combination of many genes but in the further sense that position is 

. specified simultaneously and combinatorially on at least four color wheels. 
Git "~''lVC. The four color wheels model is a natural generalization of the binary combina-
V /.? M ~ \ torial co~e prese.nted abo~e and preser,ves its major strengths. Each w~e~l must have 
f\ I"l"~ /:>"" i. a phase smgulanty threadmg through It and hence a dead zone. Thus It IS natural to 
(tY".. postulate that, if the morphogen cycle on any of the four color wheels lies in the dead 

zone, then that cell will make no pattern element. Thus the model asserts that, in 
order to make a pattern element, a cell must have a color from each of the four 
wheels. The combination of four colors constitutes the epigenetic code for that cell. 
Naturally, the model predicts that a deformation of the cycle ofmorphogen values 
on one wheel such that a cell has the "wrong" color from that wheel but correct colors 
from the remaining wheels will lead to a homeotic-like transformation which alters 
the pattern made to one appropriate for a different longitudinal region of the embryo. 
Such transformations are precisely what are observed, although not usually thought 
of as homeotic, in the duplication phenotypes at all length scales we have described. 
Further, because the four color wheels each reflect nonmonotonic patterns of gene 
transcripts on different wavelengths, transformations to a different color across the 
singularity on a wheel can jump long distances on the fate map. Transformations on 
the longest-wavelength wheel can convert genitalia to head structures, transforma
tions on the middle-wavelength system can transform eye to wing, and so on. The 
combinatorial color code in each cell, engendered by the four color wheels, thus 
maintains the combinatorial features of the binary code model allowing the latter to 
fit the transdetermination and homeotic data of Tables 12.1 and 12.2. 

Bicaudal Phenotypes 

Bicaudal embryos, as noted earlier, range from mirror-symmetric forms in which 
typically more ventral segments are present than dorsal, to asymmetric, to headless 
embryos (Niisslein-Volhard 1977; Mohler and Wieschaus 1986). The mirror sym
metry can be at any position within one of these segments (Gergen, Coulter, and 
Wieschaus 1986). But bicaudal phenotypes can be even more striking. For example, 
the left side of an embryo may be a mirror-symmetric double abdomen, while the 
right side is a headless phenotype. Worse, the entire dorsal left and right sides can be 
mirror-symmetric double abdomen together with the ventral right side, while the 
ventral left side is a headless phenotype. These embryos juxtapose posterior spiricles 
with thoracic pattern elements along a dorsal-ventral line around the embryo near 
the anterior end. 

The first color wheel presumably comprises genes such as bicaudal and caudal. 
The presumption that oskar, bicoid. and other genes are arrayed in monotonic gra
dients from pole to pole (Niisslein-Volhard, Frohnhofer, and Lehmann 1987), while 
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caudal is a superposition of first and second longitudinal modes with a peak in the 
posterior third of the egg in the late syncytial blastoderm leads to a color wheel which 
does not close in a full cycle (Figure 14.34). While there may be other long-wave
length variables which complete the first color wheel cycle, we shall for the present 
base analysis on the incomplete wheel. The implication is that the range of angular 
values where the first wheel is incomplete has no meaning and hence forms no pat
tern elements. 

Figure 14.34 models the headless, asymmetric, and mirror-symmetric bicaudal 
phenotypes as continuous deformations of the incomplete cycle in the long wave
length TSS corresponding to the first color wheel. As expected, a continuous defor
mation of the cycle leads first to loss of pattern elements, than to asymmetric dupli- - r; 
cation, and then to mirror duplication. Slight differences in the deformation of the ' f b 

cycle lead to different positions of mirror symmetry. 
A color wheel model readily accounts for the presence of thoracic and posterior 

Y 

x 

Figure 14.34 Predictions of the bicaudal phenotypes based on the four color wheels model via dis
tortions in the long-wavelength color wheel. X, pattern of transcription of caudal at cellular blasto
derm stage, Y; pattern of oskaror other gene in long-wavelength system; H I - 3, head segments; T I - 3, 

first, second, and third thoracic segments; AI - 8, abdominal segments 1 through 8. The open curve 
surrounding the dead zone but not entering it yields normal segment pattern. The curve entering the 
dead zone but still surrounding the singularity yields headless phenotype. The curve not entering the 
dead zone and not surrounding the singularity gives mirror-symmetric double abdomen. A curve 
which entered the dead zone but did not surround the singularity (not shown) would yield asym
metric double abdomen. 
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abdominal tissues near one another in a transect around one side of the anterior pole 
of an embryo. The existence of a phase singularity is a kind of universal mirroring 
switch. Crossing that locus leads to a jump to a distant phase angle without a large 
discontinuity in morphogen concentration. Thus, dorsally, the anterior pole can 
exhibit a symmetric phenotype with posterior abdomen pattern elements, while ven
trally nearby morphogen concentrations can yield thoracic pattern elements. By con
trast, the supposition that anterior-posterior position along the embryo is specified 
by a monotonic gradient has a hard time accounting for this phenomenon (Mein
hardt 1986). 

Bicaudal embryos have more ventral than dorsal segments (previewed in Gergen, 
Coulter, and Wieschaus 1986). The eigen functions of the Laplacian on a deformed 
ellipsoid having the ventral arc longer than the dorsal arc exhibit a poleward splay of 
stripes ventrally, as do the observed pair-rule stripes. Thus formation of a mirror 

/"") duplicate along a fixed anterior-posterior position of symmetry will delete more dor-
\' sal pattern elements than ventral pattern elements. 
/' It is interesting here that strong mutants ofthe caudal gene, mutants which delete 

maternal and zygotic contributions, lead not only to loss of abdominal segments but 
to transformation of the posterior telson into mouth-hooks (MacDonald and Struhl 
1986). The supposition that caudal is a component in the first color wheel and the 
proximity of posterior abdomen to anterior pattern elements allow the model to 
explain the transformation rather naturally. 

Similar considerations apply to mutants in the second, third, and fourth color 
wheels. All lead to progressive loss of pattern elements and, in strong alleles, or per
haps double mutants, to mirror-symmetric duplications. The natural expectation for 
the gap-gene color wheel, since most presumptive genetic components appear to 
have two or more transcript peaks along the anterior-posterior axis so that the wheel 
cycles roughly twice from pole to pole, is that mutants in any gene affect more than 
one area along the axis. This is true for hunchback, giant, and tailless (reviewed in 
Akam 1987) and probably for Kruppel, whose deletion deletes thorax and proximal 
abdomen but also affects malphigian tubes and hindgut. A second color wheel which 
cycles twice in one egg length might be expected to allow two regions of mirror sym
metry, but this has not yet been observed. As noted on page 604, double mutants of 
two offset pair-rule genes can lead to mirror duplication when neither alone causes 
such phenotypes. It may be that double or triple mutants of the gap-gene color wheel 
will reveal mirror-symmetric duplications in more than one domain. 

The four color wheels model readily accounts for the deletions in different frames 
in the pair-rule genes and for the onset of mirror duplication in strong alleles or dou
ble mutants. The fourth color wheel, representing the segment-polarity genes, as 
introduced by Russell (1985) and Kauffman (1984d) yields the phenotypes of the 
segment -polarity genes, deleting part of a segment interval and duplicating the rest. 

Finally, note that all four wavelength systems are present simultaneously at the 
cellular blastoderm stage and are assumed to specify longitudinal positional identi
ties. Thus distortion of the gradient patterns by constriction of the early-cleavage egg 
and subsequent recovery (Schubiger 1976; Schubiger and Wood 1977) should be 
interpretable as the restoration of the normal simultaneous patterns of all compo
nents after restoration of diffusive continuity. 

Cell Autonomy and Its Implications 

It is now well established that a number ofthe segment-polarity genes, some pair-rule 
genes, and some gap genes are largely cell-autonomous (Gergen and Wieschaus 
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1986). Thus in runt, formation of a homozygous runt clone in a heterozygous 
embryo leads to runt deformations in the homozygous clone and perhaps in a few 
heterozygous neighboring cells at the clone boundary (Gergen and Wieschaus 1985). 
Cell autonomy suggests that such mutations can occur in single cells or in small 
groups-or cells- without distorting the global waveform of morphogens. Thus, pre
sumably, in runt/runt clones, the global transcript pattern of runt is unaffected but 
the runt product is absent from the mutant cells. 

With respect to the four color wheels model, cell autonomy poses this issue: If the 
concentrations of runt and other pair-rule genes or of Kruppel, giant, and other gap 
genes are the cycle of wave patterns in TSS constituting the morphogens measured 
on the gap gene color wheel, then cell-autonomous loss of one such gene product is 
directly interpretable on the model. In that deficient cell, the cycle of morphogens is 
deformed in TSS; hence a pattern element is deleted or one is duplicated. However, I 
the evidence that such homozygous deletion clones-Kruppel/Kruppel, for exam- r""') 

pIe-do not alter the global pattern of Kruppel expression in the embryo in wild-type r 
tissue amounts to evidence that Kruppel product itself is not necessary in generating 
the wild-type pattern. Then either other gene products perform redundant functions 
or else nongenetic metabolic variables (such as ions) which can communicate .-....., 
between cells are the generators of the spatially distributed patterns via a Turing-like r 
mechanism, and Kruppel and other genes are controlled by that underlying pattern-
generating system. 

Experiments 

The four color wheels model suggests directions for further experiments. Most nota
bly, anyone phase on each color wheel is specified by more than one combination 
of morphogen values. More precisely, each phase angle, or isochrome, is a volume 
of TSS specifying the same "quantized" color, or angle. Thus perhaps the most ) 
important experiments suggested by the model require careful mapping out of the 
concentrations of presumptive morphogens which constitute the "same" positional 
value. This task would require assessing the distributions of gene products of at least 
two genes at a time in normal and mutant embryos, and correlating such alterations 
with the phenotype of the subsequent larva. Since assessing patterns of transcripts of 
protein distribution currently requires sacrificing the embryo, such experiments 
would obviously require correlation between sectioned embryos and larvae of the 
same genotype and hence quite tight phenotypes. Transformations of embryos with 
cloned gap, pair-rule, or segment-polarity genes under the control of inducible pro- ? 
moters may allow a fuller investigation of these issues. 

The four color wheels model predicts the existence of isochromes, dead zones, and 
hence of morphogen values at which duplication and deletion occur. Note that, if 
deletions are correlated with cell death, then finding cells whose morphogen concen
tratons correspond to a dead zone will not be open to direct demonstration. The 
boundaries of such dead zones may be definable, however, by analyzing the full set 
of isochrome values which allow patterns and pattern duplications. The missing 
morphogen values would correspond to the dead zones. 

The model also predicts that the presence of morphogen values corresponding to 
the dead zone of anyone color wheel cause deletion of pattern elements. This should 
be testable. 

In short, it must be stressed that in situ hybridization of normal and mutant 
embryos with batteries of different gene probes in the set belonging to the four color 
wheels, together with annotation of which embryonic regions will be deleted and 
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which duplicated, constitutes mapping the cuticular pattern elements of the larva into 
a real TSS. Thus if the mapping is into a 15-dimensional space comprising the con
centrations of 15 gene products and if there are four independent dead zones, those 
zones should appear as four independent tubes in the TSS. Similarly, ifisochromes 
end on the dead zone, that, too, should be visible. 

Any attempt to account for cell autonomy by supposing that the level of a given 
gene produce is low or zero in mutant clones, while the global transcript pattern and 
protein pattern across the whole embryo are normal in wild-type tissue is directly 
testable in gynandromorphs or mitotic recombinant clones, given cell-autonomous 
markers for specific cells which can be made visible at the blastoderm stage. This 
clearly is an important issue beyond the four color wheels model. If genes whose tran
scripts occur in complex spatial waveforms can be deleted from specific parts of the 
pattern, and if the products of these genes are absent from those parts of the pattern 
while the remaining spatial pattern is normal, then the deleted genes and their prod
ucts are not necessary to the mechanism which generates the spatial pattern. 

The hypothesis that the patterns generated by the different genetic systems are due 
to Turing-like mechanisms might be tested in a variety of ways. In particular, trans
plantation of nuclei and cytoplasm from the middle or late syncytial blastoderm to 
a free spherical droplet under fluorcarbon oil might allow gene-transcription patterns 
to emerge in this altered geometry. Theory predicts that eigen functions of the sphere 
would arise as transcript patterns. For example, concentric onion shells of transcript 
patterns could form. Similar experiments might place such a droplet of nuclei and 
cytoplasm in the protected environment of an egg whose own contents have been 
removed. 

Drosophilia's Summary 

We have now witnessed, in part, Drosophila and its puzzling, beautiful, and exciting 
phenomena. I have pursued several major conceptual avenues which Drosophila's 
data seem to warrant: 

1. With respect to ectodermal tissues such as imaginal discs, it seems very reason
able that the cell-heritable determined state is "remembered" by components, a 
condition which represents a developmental decision. In the simplest case each 
decision is between two alternatives, but real life may be more complex. I have 
supposed that the underlying decision-taking entities are similar to a genetic cir
cuit in lambda, where C 1 and cro repress each other and thus carry the im + and 
im - alternative steady states (Neubauer and Calef 1970; Ptashne 1986). I stress 
again, however, that the real circuitry is likely to be far more complex; indeed, 
the real circuitry may well be found in the functionally isolated live genetic cir
cuits which are not part of the forcing structure which freezes the activity of 
many genes into fixed active and inactive states, as described in Chapter 12. Thus 
a point to stress is that a developmental "choice" may best be thought of as one 
of a number of alternative attractors of such a functionally isolated circuit. We 
should not assume such a circuit to be as simple as a single gene which regulates 
its own activity. 

2. I have recapitulated data on metaplasias derived from late-acting homeotic 
mutants and transdetermination which strongly suggest that distant regions, 
such as genitalia and antenna, are developmental neighbors and have inter
preted the concept of developmental neighbors in terms of a binary combina-
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torial epigenetic code. Two tissues differing in a single decision are developmen
tal neighbors. 

3. I have focused on the evidence which shows that Drosophila imaginal discs and 
probably the early embryo are sequentially subdivided into compartmental 
domains which appear to reflect alternative developmental commitments. 

4. I have suggested that the monotonic and nonmonotonic eigen function patterns 
of reaction-diffusion or other field equations might account for the positions, 
sequences, and symmetries of observed compartmental boundaries. Further, the 
nonmonotonicity of most eigen function patterns, in which zones above or 
below a threshold concentration may repeat in nonadjacent regions of the 
embryo and trigger identical decisions, may account for the fact that distant 
regions on the fate map can have neighboring developmental programs. 

5. I have described maternal, gap, pair-rule, and segment-polarity mutants that 
produce longitudinal deletions and mirror-symmetric defects on roughly half, 
quarter, sixteenth, and 732 egg length scales. 

6. I have reviewed the data showing that maternal, gap, pair-rule, and segment
polarity gene transcripts all pass through similar sequences in which increasingly 
complex multiple bands and stripes of expression evolve in the syncytial egg and 
early embryo. 

7. I have suggested that successive bifurcations of a reaction-diffusion Turing 
mechanism or of other field equations account for the transcription phenomena 
observed. 

8. I have suggested that the longer-wavelength gene systems may control the 
regions of activity, locations of maxima and minima, and phase offset of the 
shorter-wavelength systems by acting as bifurcation parameters controlling dif
fusion constants and reaction rates of the shorter-wavelength systems and hence 
providing a kind of internal framework. 

9. With the four color wheels model, I have suggested that the deletion and dupli
cation seen in maternal, gap, pair-rule, and segment-polarity mutants are most 
naturally accounted for by supposing that cells specify longitudinal position 
combinatorially in terms of the ratios of the phase-offset variables splayed out 
along the embryo in each of at least four different spatial wavelengths. 

10. I have suggested that the four color wheels model yields a combinatorial epige
netic color code for each cell. Because of the monotonic and nonmonotonic 
properties of the morphogen patterns creating the different color wheels, this 
code yields transdetermination and homeotic jumps to distant regions on the 
embryo. The color code model generalizes as the binary code model. 

I have therefore attempted to show that Drosophila's sequential patterning in 
space is the result of a coupling of reaction-diffusion instabilities to generate phase
offset transcription patterns on a variety of wavelengths; the various wavelengths are 
then used to specify positional identities in the four color wheels and color code mod
els. I have sketched a picture in which the sequence of patterns drives a sequence of 
commitments to alternative heritable fates and generates a combinatorial code, 
binary but generalizable to a color code, which fits much of the data on metaplasias 
in the imaginal tissues of Drosophila. 

The theory is almost certainly not correct in detail. At most, it is sensible to hope 
that the framework of ideas will provide components useful to an ultimate under-
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standing of pattern generation and developmental commitments in this organism. 
Other simpler theories, specifically a monotonic gradient model, have had different 
successes (Sander 1984; Meinhardt 1986) but have difficulty with many of the phe
nomena covered above. Therefore we should bear in mind that our purposes in 
exploring the Turing model and Drosophila have been not merely to examine a plau
sible way of picturing Drosophila commitment but, more deeply, to find yet another 
area where Turing's basic idea has a reasonable chance of applying. The general 
notion of instabilities (and eigen functions) via either reaction-diffusion instabilities 
or chemomechanical models affords a useful class of developmental mechanisms 
which generate defined classes of well-formed patterns, each having well-formed 
neighbors. Well beyhond Drosophila. the importance of such mechanisms is their 
clear hint of natural forms with which selection may tinker but to which it may often 
be constrained. 

TURING AND BEYOND 

The arc of this chapter began with a discussion of induction and its relation to the 
poised states of cell types. We found that simple Boolean models gave rise to simple 
spatial ordering. Thereafter we turned to control oflong..range order as exhibited by 
epimorphic pattern regulation. We examined the concept of positional information 
and alternative models of coordinate systems. Inadequacies in a formulation in 
which pattern regeneration is due merely to smoothing of discontinuities in preex
isting positional cues led us to consider reaction-diffusion models of the Turing type, 
which might set up such spatially graded cues. In this final section, I close the arc by 
examining first the implications of reaction-diffusion models for the creation of two
dimensional positional iriformation and then a final application of reaction-diffusion 
models to shell patterns. I then emphasize again the homology between predictions 
of reaction-diffusion models and a class of mechanochemical models, here applied 
to a small set of other developmental problems. There are, of course, a host of other 
developmental mechanisms based largely on chemomechanical or simply mechan
ical features of cells. I describe two briefly. Each yields a family of related forms. Thus 
I return to our interest in thinking about the relation between the forms such mech
anisms generate and the effects of selection. The concept of positional information, 
advanced by Wolpert (1971), is important but also limiting in an important way. 
Cells manifestly talk to themselves and to one another in complex ways. What that 
might imply for the evolutionary onset of maps and spatial organization looms as a 
large issue. Finally, I ask what a theory of morphology might be. 

Two-Dimensional Positional Information 

Recall from the section which begins on page 552 the evidence which shows that posi
tional axes in vertebrate limb fields arise sequentially. First the anterior-posterior 
axis is formed, then the dorsal-ventral axis. It is therefore of interest to realize that 
this phenomenon arises almost inevitably in the Turing class of models. Recall again 
that, if a single harmonic mode is present in a spatial domain, then the maxima and 
minima of the underlying chemical variables are exactly in phase. If two or more 
modes are present, however, each with a different wavelength, and if each mode 
amplifies a different eigen vector, or ratio, of the variables, then the full pattern is 
some sort oflinear or nonlinear superposition of these modes. The result is that the 
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Figure 14.35 Onset of two-dimensional positional information is generic in the Turing class of 
models. Patterns of X and Y chemical concentrations on an enlarging wing disc. Solid lines are iso
concentration lines of X; dotted lines are isoconcentration lines ofY. (a) The first pattern to emerge 
is monotonic in the long axis of the disc, amplifying a single eigen function. The two chemicals have 
parallel concentration profiles and hence supply one axis of positional information. (b) As the disc 
enlarges, monotonic gradients in both long and short axes can amplify. The superimposed nonlinear 
mixed patterns yield stable nonparallel lines of X and Y concentration and hence have formed a 
second positional axis and two dimensions of positional information. (From Kauffman 1981) 

maxima and mimima of one variable need not occur in the same locations as the 
maxima and minima of the other variable(s). Consequently, in a two-dimensional 
spatial domain, or tissue, lines of constant concentration of one variable will in gen
eral be oblique to lines of constant concentration of another variable. Two dimen
sions' worth of positional information is present in such transverse gradients. These 
ideas imply that, as a small tissue which is longer than it is wide grows larger, initially 
a first mode will form in the longer direction and yield one-dimensional positional 
information. If a second mode arises in the shorter direction, the superposition of the 
two modes will cause the underlying morphogens to form transverse gradients. A 
second axis will form, as shown in Figure 14.35 (Kauffman 1984b). Sequential for
mation of positional axes in vertebrate limb fields, eye fields, otic fields" and so forth 
is at least weak evidence in favor of some form of field model which, like the Turing 
class of models, predicts sequential axis formation. 

Shell Patterns: A Last Turing Model 

The Turing class of models has been used to consider many aspects of pattern for
mation, from hydra and Dicteostelium discoidum to the striking stripe and check 
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patterns on the gastropod Bankivia/asciata from the Great Barrier Reefin Australia 
(Figure 14.36). These patterns are laid down in the growing shell by the mantel organ, 
which extends across the margin of the growing shell. Pigment cells in defined areas 
along the mantle organ color the shell as it is deposited. Thus the pattern is a temporal 
record of the positions along the mantle organ where pigment cells are secreting. A 
constant position on the mantle becomes a stripe paralleling the spiral winding of the 
shell. If a traveling "wave" of pigment-secreting activity propagates across the mantle 
in one or the other direction, stripes which are at diagonal angles to the spiral winding 
axis are developed. Figure 14.37 shows results ofa model developed by Meinhardt 
and Klingler (1987) based on reaction-diffusion instabilities on the mantle. Stripes 
and checks closely reminiscent of those on the shells are produced by the model. The 
stripes, checks, and deformations between patterns observed in the model are close 
to what is seen on the shells. 

Figure 14.36 The range of shell patterns in Bamkivia. 
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It is important to stress that the Meinhardt-Klingler model based on local reac
tion-diffusion processes in the mantle organ generates much the same patterns as log
ically similar models based on neural activities. Thus, as usual, the capacity to fit a 
macroscopic pattern or set of patterns with a class of models does not come close to 
identifying the underlying mechanisms, even if it be accepted that such a fit helps 
identify the logical structure of the mechanism. 

I leave for the final section ofthe chapter an effort to place reaction-diffusion mod
els in a broader context. I emphasize, however, that this class of models has been 
applied in more areas than I have discussed. Notable examples can be found in Mein
hard's (1982) and in Murray's (1981a, 1981 b, 1989) examination of the markings on 
animals from zebras to giraffes, and patterns in Lepidopteran wings. 

Mechanochemical Models 

I stressed above and do so here again that, as a result ofthe similarity of the dispersion 
relation between the eigen value of a mode and its wavelength, properties which show 
up in the Turing class of models recur in a range of mechanochemical models (Oster 
and Odell 1984; Oster 1988; Oster, Alberch, et al. 1988; Oster and Murray 1989). 
Since C,hladni figures obtained by allowing powder to gather at the nodal lines 01"'( 
vibrating plates show these kinds of patterns, this recurrence is not a total surprise. .. 
The eigen functions for buckling modes or patterns in materials are like those for 
reaction-diffusion instabilities. For example, Oster and colleagues (1988) have pro
posed a model to account for the sequential formation of the "canonical" vertebrate 
limb, where one sees a succession of a single bone (humerus in the arm), splitting to 
two bones (radius and ulna), splitting to still smaller bones (carpals and metacarpals), 
and finally formation ofthe digits. In this view, the sequential formation of increasing 
numbers of bone elements is again a bifurcation sequence in the growing limb bud. 
A similar viscoelastic model for the branching pattern of cap elements in Acetabu
laria has been proposed by Goodwin and Trainor (1985). In accounts of neurulation 
and elsewhere, similar patterns show up in models linking cell motion over substrates 
which yields folding in epithelial sheets (Odell, Oster, et al. 1981). More recently, 
Jacobson and colleagues (Jacobson, Odell, and Oster 1985; Jacobson, Oster, et al. 
1986) have proposed a novel "cortical tractor" model for the cell motion which 
induces neurulation. Like other classes of morphogenetic mechanisms, these can be 
expected to give rise to a defined family offorms as a function of the parameters of 
the system. 

In a somewhat similar spirit, Goodwin and Trainor (1980) attempted to under
stand the radial and spiral cleavage patterns found in almost all kinds of embryos as 
the natural harmonic modes which arise on a sphere. The natural modes are given 
by the Legendre polynomials, or spherical harmonics. These yield successive orthog
onal patterns for the first three planes of division, followed by sets of pairs of planes 
parallel to each axis, yielding radial cleavage. The sequence is close to that observed 
in radial cleavage. Spiral cleavage patterns, however, do not arise as the natural har
monics of the sphere from the Legendre polynomials but rather, the authors suggest, 
reflect some other basic form on a sphere. In fact, years ago T. H. Morgan proposed 
that spiral cleavage reflects high affinity of blastomeres for one another, such that 
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Figure 14.37 Predictions of shell patterns based on Turing class of models. Correspondence 
between theory-derived patterns and those observed. (From Meinhardt and Klingler 1987) 
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each maximized surface contact with the others (Gilbert, personal communication). 
Thus in contrast to radial cleavage, slight rotation of each tier of cells allows each cell 
to nestle into the groove between cells in the tier below. Morgan's idea seems quite 
reasonable. The ideas to focus on the effort of Goodwin and Trainor are ( I) that the 
natural harmonics of the Laplacian or of related operators on a spherical object gen
erate a limited range of successive modes and (2) that those modes come quite close 
to matching observed cleavage patterns. Morgan's ideas lead to similar results, a nat
ural and limited set of forms governed by an energy minimization criterion. H unding 
(1987) has advanced a use of Turing systems to explain cleavage plane orientation. 

In Chapter I, I briefly mentioned phyllotaxis (Erikson 1982) and a model by Mit-

( 
chison (1977) to account for the phenomena. Recall that scale patterns in pine cones, 

? in terms of the number of left-hand and right-hand spirals, are typically adjacent 
terms in the Fibonnaci series. Mitchison accounted for these patterns on the basis of 
close packing of scale primordia in the growth region of the apical meristem. More 
recently, Green (1987) has proposed an elegant model for the different phyllotactic 
patterns in plants: alternate, whorled, radial, and spiral. His chemomechanical 
model is based on the dynamics of scale primordia formation on the apical meristem. 
His aim is to explain the origins of these patterns and the major and minor shifts 
between them. The idea that the spatial regularity results from some kind of spatial 
oscillatory acti vity at the apical meristem dates back at least to Church (1904). Green 
locates this activity in the processes on the dome of the meristem's apex, and it leads 
to the formation of an incipient region of hoop reinforcement, by cellulose, over 
many cells, forming a concentric pattern. This growth pattern leads to a bulge of cells 
enlarging to form a hoop-reinforced organ which grows outward from the dome. In 
turn, the organ then acts back on the central area of the dome and stretches it locally, 
parallel to the organ base. This system generates, via cell responses involving micro
tubules, a new area of reinforcement on the dome, with lines running tangential to 
the base ofthe organ. The combination of parts of several such new areas, from exist
ing organs on the dome, forms the structural potential localizing the next organ. Thus 
the cycle is complete only if several organs act in concert. Green shows that these 
processes give rise to only a limited number of patterns which are self-regenerating. 
Thse are the common phyllotactic patterns. 

We have now spent considerable time discussing one class developmental mech
anisms, based on Turing models or analogous viscoelastic field equations. Each 
mechanism generates a family of forms. Yet the mechanisms on which we have 

(
focused could readily be enlarged. For example, Steinberg (1962, 1970) has for years 
analyzed the capacity of mixtures of different cell types to sort out from one another 
when agitated together and form concentric or partially concentric onion layers of 

:, different cell types. These beautifully ordered phemomena appear to be simple con
'\ sequences of differential cohesive forces (affinities of each cell type to bind to itself) 

and adhesive forces (affinities of each cell type to bind to other cell types or to the 
medium). If cell type A is more cohesive than cell type B, while B adheres to A better 
than to the medium, A cells will tend to form a central spherical mass, completely or 
partially surrounded by B cells. Similarly, ifB is more cohesive than C and the other 
conditions are met, C will surround B. But this surface-energy model then predicts 
that C will also surround A. That is, Steinberg'S model predicts a transitivity relation 
in the cell types which will surround one another. And just such a transitivity is 
found. Three points about this mechanism are important to us. First, it is based only 
on a generalized "stickiness" which differs in different cells and would be expected 
to arise almost inevitably in cells having diverse molecules embedded in their lipid 
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membranes. Second, the morphologies which are generated reflect the simple phys
ical principle of falling to a most favorable (lower) energy state; thus the ordering is 
analogous to that seen in protein folding and self-assembly of viruses. Third, a 
restricted range of morphologies is again generated by this mechanism. And chang
ing affinities alters which cell type is enclosed by which cell type, or how completely 
one cell type surrounds another. That is, alteration of parameters predicts deforma
tion to a set of neighboring forms. 

The general subject of specific cell adhesion and the molecules which mediate it 
has received increasing attention in the past decades. A particularly useful discussion 
is due to Edelman (1988). It seems clear that homopolymer and heteropolymer rec
ognition due to cell surface molecules plays a fundamental role in cell recognition, 
in the formation of cell clusters, and in the subsequent regulation of cell growth, cell 
death, and morphogenesis. 

Morphogenesis May Be Robust and Adapt 
on Smooth Fitness Landscapes 

We now turn to the relation between morphogenesis and selection. I shall suggest a 
heterodox possibility: Morphogenesis may be inherently robuts. For each develop
mental mechanism and, more surprising, for integrated combinations of develop
mental mechanisms. a small number of the morphologies that can be generated by 
those mechanisms may emerge as natural forms. These natural forms are those most 
readily generated by the developmental mechanisms in the precise sense that the 
forms are generated whenever the initial states and the parameters of the mechanisms 
are located anywhere within very large volumes of state space and of parameter 
space. The natural forms are thus the simplest forms for the mechanisms to generate 
and are robust to minor variations in initial state or parameter values. In turn, within 1 
those large volumes of state and parameter space, morphology changes slowly as ini
tial state or parameters shift; hence fitness landscapes are smooth. 

Our discussion in this chapter suggests that any developmental mechanism gen
erates a set of forms as the parameters of the mechanism are altered. The striking 
feature about all the attempts we have discussed-from fruit flies and slime molds to 
limb bones, shell patterns, and plant morphology-is that a concerted effort is being 
made to link the natural geometry of biological systems with the expected "natural" 
behavior of nonlinear dynamical systems operating on them. In all cases, any such 
developmental mechanism has a limited number of alternative modes of behavior. 
The effort is to find that view under which the alternative behavior modes span the 
biological forms observed. Among other critical possibilities, this effort should even
tually allow us to understand which morphologies are evolutionary neighbors, in the 
sense that small parameter alternations shift the moq;hogeneiic system from one 
mode to another. To state the issue in slightly different terms, the developmental I 
mechanisms we have noted each give rise to a family of neighboring forms. This is 
the structuralist theme sounded by Webster and Goodwin (1982) and Goodwin 
(1990). Its aim is to understand the set of possible forms generated by any specific 
mechanism, and the rules of transformation between those forms. 

In the present context, transformations among possible forms are due to shifts in 
the parameters underlying the developmental mechanism. After all, when we truly 
understand the coordinate mechanisms generating the sequence of bone elements in 
the vertebrate limb, we shall understand the neighboring forms which were available 
to selection in the branching tree of vertebrate phylogeny. 
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If developmental mechanisms give rise to families of forms, and if transitions 
among these forms are due to shifts in the parameters of the underlying mechanisms, 
then we confront the central question: How can we begin to think about selection 
acting on organisms which deploy specific developmental mechanisms in their 
ontogeny? As is now clear, for any of these proposed developmental mechanisms, 
each specific pattern in the family will arise only if the initial state of the system lies 
in the appropriate basin-of-attraction volume in state space, and only if the param
eters of the developmental system are held within some defined bounded "bifurca
tion" volume in parameter space. It is now obvious that, for any mechanism, some 
basin and bifurcation volumes are large, while others are very small. Some volumes 
are smooth, like inflated balloons squeezed into a room; others may be tortuous, lab
yrinthine volumes which interleave with yet other volumes. How will selection bear 
on the morphology seen? Suppose that many genes influence each variable in the 
mechanism as well as each parameter and that there are many variables andparam
eters for a given mechanism. If the volumes associated with a specific pattern in state 
and parameter space are very small, or very labyrinthine, then selection is unlikely 
to be able to bring or to maintain the initial state or parameters within that volume. 
Thus selection will be hard pressed to achieve and maintain the morphology corre
sponding to that particular volume in state and parameter space. That is, the second 
form of the complexity catastrophe (the error catastrophe) indicates that, as systems 
become more complex-with more genes, variables, and parameters-in the face of 
a constant mutation rate, selection cannot hold a population at rare optima. It fol
lows that we are likely to see the patterns which correspond to the large basins of 
attraction and bifurcation volumes. These are the "easy," or natural, patterns which 
any mechanism can generate. 

Morphological fitness landscapes might be smooth or rugged. Ifbasin volumes in 
state space and bifurcation volumes in parameter space are like balloons, then small 
changes in state or parameters leads to small changes in morphology. If basins of 
attraction and parameter volumes are tortuous and intertwine, then small genetic 
changes yielding small smooth changes in initial states, or in parameters, would cross 
boundaries separating sharply different morphologies. Almost certainly, the resulting 
fitness landscape will be rugged. Hence trapping of adaptive walks on local optima 
will occur readily. The first complexity catastrophe suggests that, as systems become 
more complex, the attainable optima via adaptive walks on rugged fitness landscapes 
tend to become trapped in local regions of state and parameter space, which tend to 
be the large basins of attraction in state space, and large bifurcation volumes in 
parameter space. Thus, again, selection may be limited to those natural patterns 
which are easy for the developmental mechanism in question. 

The same issues come up in rhythmic phenomena, which I shall only point to in 
this book since excellent books covering this material are available (Winfree 1980, 
1987; Glass and Mackey 1988). A single example will make the point. Heart cells in 
culture beat rhythmically, with different individual cells having different rhythms. 
When coupled, such oscillatory systems can mutually entrain one another, such that 
the collection beats as a whole with a common rhythm-in 1: 1 phase-locking, say or 
in 2: 1 phase-locking, where some cells beat twice while others beat once, or in 3: 1 
phase-locking, and so on. In addition to these specific, stable phase relations between 
the phase-locked cells, chaotic behavior can arise instead. Which pattern emerges is 
governed by a set of parameters. Among the largest volumes in parameter space are 
those corresponding to 1: 1 phase-locking. By contrast, achieving 23:27 phase-lock
ing requires occupancy of a tiny volume in parameter space. Our hearts, made up of 
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two atria and two ventricles, are linked in 1: 1 phase-locking. In part this linkage is 1 
mediated via sophisticated Purkinje signaling fibers from the atria to the ventricles. 
In part it undoubtedly reflects efficient pumping design. In some part, however, it 
probably reflects the fact that 1: 1 phase-locking is easy. It is conceivable that a cardiac 
system might work on the basis ofa 23:27 phase-locking. I know of none which does. 
All utilize 1: 1 phase locking. Design? Probably. But easier as well? It seems probable. 
In short, real developmental mechanisms do some things easily. Those things are, by 
and large, what we are likely to see. 

With my colleagues Goodwin and Murray (Goodwin, Kauffman, and Murray 
1992), I now suggest that there are clues that, contrary to intuition, morphogenesis 
may be deeply robust. Organisms, rather than being tinkered-together contraptions, 
may exhibit a nearly inevitable and stable order. Real morphogenesis is due not to 
the unfolding of any single developmental mechanism but to the beautifully ordered 
unfolding in time and space of some richly integrated combination of simpler mech
anisms such as cell-sorting, sheet-folding, positional discontinuities, and reaction
diffusion mechanisms. One's naive intuition might be that reliable occurrence of an 
ordered morphology from a richly integrated developmental mechanism would 
require exquisite control of all the variables and parameters of the subsystems mak
ing up the integrated system. Since each subsystem by itself can give rise to a family 
of forms, the set of mechanisms would seem to allow the product of all the patterns 
generated by the diverse subsystems. High genetic precision would appear to be 
required to choose reliably among these many forms. The suggestion is that intuition 
is quite wrong. 

There are good grounds to think that, when a variety of different developmental 
mechanisms are integrated into a compound mechanism, the integrated mechanism 
will constrain the morphologies which emerge to a small subset, each of which occu
pies a large volume of state space and parameter space. Rather than causing com
plexity, integration of developmental mechanisms may generically yield simplicity 
and order. The reason is simple: Each submechanism generates a family offorms by 
breaking symmetries. Each time a symmetry is broken by the mechanism, that sym
metry might be broken in two or more ways. For example, for the Turing class of 
reaction-diffusion mechanisms on an ellipsoidal egg, the first longitudinal mode 
might be high at the anterior pole and low at the posterior pole, or low at the anterior 
and high at the posterior. The simple new insight is that, when mechanisms are cou
pled, the currently established mode(s) of one mechanism choose or determine how 
the breaking symmetry of another mechanism will actually be broken. Thus each 
sub mechanism literally constrains the alternative choices open to other submechan
isms. The overall result is that a few of the conceivable morphologies in the family 
of forms come to occupy large basins of attraction in state space and large bifurcation 
volumes. In short, and rather wonderfully, complex mechanisms seem likely to gen
erate a few morphologies with extreme robustness. 

We have already seen a harbinger of this general suggestion. Recall the studies of 
Arcuri and Murray (1986) described in the discussion beginning on page 591. A fully 
nonlinear version of the Turing model was simulated on a bounded linear domain 
such that the first and second modes, and hence other multiple modes, could simul
taneously amplify. In this condition, generically each mode amplifies a different 
eigen vector of the underlying variables and the two modes span the state space. 
These properties imply that the two coupled, approximately linear modes of one 
mechanism, if simultaneously amplified, should mutually break one another's sym
metries. And, in fact, Arcuri and Murray found that the presence of the first mode 



I 

638 ORDER AND ONTOGENY 

and its nonlinear coupling to the second mode ensured that the final pattern was 
independent of the initial conditions and of the orientations of early modes. Each 
successive mode broke the symmetries of the other. e~t)itr 

A complex mechanism that integrates several submechanisms may generically 
have the property that the nearly linear modes of the compound system will couple 
nonlinearly such that, when multiple modes are present, each will tend to break the 
symmetries of the others in preferred ways. For example, Shaw and Murray (1990) 
have considered a model uniting a reaction-diffusion mechanism operating on one 
length scale with a chemomechanical model of epidermal behavior. To the authors' 
surprise, the combined mechanisms sharply restricted the choices each alone could 
make. Goodwin, Kauffman, and Murray (1992) report that an Acetabularia model, 
which coupled a mechanochemical model of cytoskeletal behavior with a model of 
elastic cell wall deformation, yielded a highly robust sequence of morphogenetic 
events, including formation of an elongating tip which generated radial whorl pat
terns. In short, we confront another bold hypothesis: Morphogenesis may inherently 
be robust and thus also may adapt on smooth fitness landscapes. If so, selection is 
likely to be constrained to those robust morphologies engendered by the integrated 
mechanism in question. In short, we shall tend to see the natural robust forms such 
mechanisms can create. 

Selection often achieves well-wrought morphologies, from sleek shapes for reduc
ing drag when swimming to well-crafted wings. In this regard, it is of interest to note 
that mutation selection procedures have been used successfully in engineering design 
by Rechenberg (1973). That Rechenberg often succeeds suggests that many engi
neering problems confront simple landscapes. In contrast, it is clear that fitness land
scapes in sequence spaces are likely to be rugged and multipeaked. Our bold hypoth
esis suggests that morphological evolution typically confronts smooth landscapes. 
Morphology may be both robust and within the limits of each natural form, 
smoothly tunable to fit versions. 

Thus the direction of inquiry, it would appear, requires us to identify distinct 
developmental mechanisms. For each mechanism and for the compound integrated 
mechanism each mechanism is part of, we must identify the forms which that mech
anism generates. Within that family offorms, we must identify those which are easy 
for the mechanism in the sense that a large volume of parameter space yields them. 
Then we must identify how many genes influence the cellular mechanisms which 
constitute the variables and parameters of that system. Then we can begin to under
stand how hard it may be for selection to "pull" the set of variables to any basin of 
attraction and the parameters to any specific volume of the corresponding parameter 
space, or to hold an adapting population with the initial state and parameters within 
those volumes. Further, we can see whether trapping on local optima does in fact 
occur, either because "good" volumes are tortuous or because mutations cannot 
"move" smoothly in parameter space but can occupy only distinct subregions. All 
this must be undertaken, in conjunction with the familiar analysis of design require
ments in organisms, to unpack the question D' Arcy Thompson failed to raise. 

Maps and Spatial Organization 
as Generic Self-Organized Properties of Coupled Cells 

It is astonishing that multicellular organisms exhibit spatial organization? The word 
"astonishing" is meant to convey, imprecisely, the contemporary sense that organ
isms are accidental contraptions-Rube Goldberg affairs-and the sense that selec-
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tion had an imponderably difficult task in finding means to generate spatial order. 
The question cannot, of course, be precise. What we are really asking includes the 
question of whether the occurrence of something like positional "maps" and ordered 
spatial heterogeneity can be understood as generic self-organized properties in bio
logical systems. Perhaps the answer is "yes." 

We have seen that genomic cybernetic systems generically have multiple attrac
tors, which we may take as alternative cell types. Almost any complex dynamical 
system will have multiple attractors. Thus achieving multiple cell types "lies to 
hand." 

Given diverse cell types, differential cohesive and adhesive properties are probably 
almost inevitable; thus mechanical processes of cell-sorting and layer formation also 
lie to hand. So, too, do certain aspects of mechanical deformation of tissue masses, 
yielding expected patterns offolding and pleating in two-dimensional tissues. 

Induction of novel cell types and of simple spatial ordering of those cell types also 
probably lies to hand. We have seen that, in the Boolean idealization, if an arbitrary 
subset of gene variables have products which diffuse between cells, then these prod
ucts generate inductive interactions, generate new cell types as a result of persistent 
inductive interactions, and suffice to generate such primitive spatial ordering as alter
native patterns of one gene's activity along a line of cells. Here gene products can 
diffuse to only neighboring cells, but the onset of some spatial order is already vir
tually inevitable. 

Given a genomic system which can generate a number of cell types, and given 
inductive interactions among neighboring cells to generate still further cell types, and 
given diffusion or its analogues allowing molecules to spread to numbers of adjacent 
cells, then the formation of gradients is almost inevitable, even without the elegant 
diffusive instabilities of the Turing class of models. The Boolean idealization allows 
a picture of genes as only active or inactive and products as present or absent. This 
is, as stressed repeatedly, an idealization allowing examination of complex systems 
but also an injustice. The transcriptional activities of genes, translational activities of 
RNA, and catalytic activities of enzymes all have graded responses to their molecular 
control inputs; equally important, two different genes controlled by the same molec
ular variable typically respond to different concentrations of that variable. The 
generic consequence is that, in a line of cells where there is a spatial gradient in the 
concentration of a molecular input, the cells near the top of the gradient will activate 
both downstream genes to a high level, while farther away only the more sensitive 
downstream gene will be activated. This trivial observation implies that, wherever 
spatial gradients over many cells exist, the patterns of gene expression induced are 
likely to vary with distance. Otherwise stated, a graded "morphogen" is likely to 
induce different "interpretations" at different levels down its concentration gradient. 
This is just the old idea of gradients and a series of threshold levels, so beloved to all 
developmental biologists. The further consequence, however, is that all the proper
ties of positional smoothing, duplication, and regeneration which flow from some
thing as simple as two-dimensional "cross gradients" are incipient in this simple, gen
eral picture. Given a spatially heterogeneous sheet of cells and locally monotonic 
gradients of regulatory molecules which are oblique to one another, the familiar pat
tern regulation properties lie to hand within each monotonic cross gradient domain. 
Local maps may be easy. 

Are the Turing class of models or other more general models capable of breaking 
a homogeneous state hard to find? Probably not. A Turing model requires rather sim
ple forms of self- and cross-excitation and -inhibition, and greater inhibitor diffusion. 
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Given these requirements, the volume of parameter space which allows diffusive 
instabiliti~s is modestly large. Indeed, Vastano, Pearson, et al. (I987) have shown 
t~at c?emical pa.tterns can form in bistable systems having equal rather than unequal 
diffuSlO~ coefficIents. And these two-variable models are the simplest members of 
w~at mIght be a very large class of systems which can break the homogeneous state. 
It IS perhaps a happy fact that even a system comprising dozens of chemical variables 
will, in the linear analysis, go through essentially the same sequence of eigen func
tions as will a two-variable system based on the same familiar dispersion relation ,\ 
= j(k). Thus eigen functions of the appropriate operators, Laplacian and otherwi~e, 
emerge as basic schemata of possible forms, each function defining a family of related 
patterns which can deform into one another continuously or discontinuously by tun
ing parameters smoothly. Selection is then constrained by the normal behaviors of 
the mechanisms it has achieved. 

What is a "map"? Perhaps maps are nearly inevitable. Consider Drosophila again. 
The number of distinct RNA sequences transcribed in each nucleus may be on the 
order of 15 000. Most of these and other molecular variables remain in the cell which 
synthesizes them, with only a small fraction passing to other cells. In addition, phys
ical forces, such as mechanical deformations, pass between cells. In the context of 
dynamical systems, a tissue is a system of coupled ordinary and partial differential 
equations. The variables which are confined to remain in cells constitute the "ordi
nary differential equations" part of the system, while the variables which can move 
from one cell to another constitute the "partial differential equations" component. 
The spatially inhomogeneous behavior of the partial differential equations portion 
then constitutes the positional information in the tissue. The attractors to which indi
vidual cells flow, given their location in the tissue and hence in the positional infor
mation field, then constitute the interpretation each cell makes of its position. In an 
inaccurate analogy to the wave-particle duality of quantum physics, the spatially 
inhomogeneous patterns-for example, the patterns of maternal, gap, pair-rule, and 
segment-polarity transcripts-are the waves, and the attractors attained in individual 

,r, \. cells are the particles. The duality points to the fact that the entire genomic system 
! is, in reality, a single coupled system whose attractors constitute both map and inter

pretation at once. 
To behave in a unique way then, a growing tissue needs to begin in a well-defined 

state-probably small-grow, and generate spatially inhomogeneous distributions 
of inductive agents which drive differentiation, mitosis, cell deformation, and matrix 
secretion-all of which form a linked, spatially distributed dynamical system which 
flows to a unique final spatially inhomogeneous state which is that tissue. In this case, 
the system generates a map which has a unique interpretation. Each cell does one 
thing and does it properly. 

If the linked system has a number of distinct final states that it can go to, each 
spatially inhomogeneous and each with a unique distribution of inductive agents, 
then each tissue has a unique map and interprets it in a unique way. 

There is yet another sense of "map," however. Suppose that, for the same spatial 
distribution of inducer substances, positional-information signals, or external net
work variables, the cells each have two different attractors available to them. Then 
the cells might interpret the same positional information to form wing or leg. Here 
is "map" in a different sense, and Wolpert's (1969, 1971) idea of the same positional 
system open to multiple interpretations arises. 

Is the attainment of such ordered behavior difficult in coupled nonlinear dynam
ical systems? The full answer, of course, is unknown, but my own intuition is that 
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such behavior is probably not extremely difficult. Nonlinear dynamical systems of 
ordinary and partial differential equations are graced by spatially inhomogeneous 
attractors. All our growing experience in physics and chemistry where spatial order
ing occurs indicates that, given modest control of parameters, the onset of specific 
spatial order is often attainable. Maps and their interpretation may be easy after all. 

A Theory of Morphology? 

Could we hope to have a theory of morphology which, were evolution to tap-dance 
again its erratic course, would give us a basis for predicting features of organisms? 
One is always aware of the intellectual error, whatever it was, which allowed James 
Mill, John Stuart's father, to deduce from first principles that a constitutional mon
archy remarkably like that in England was the highest form of government. We stand 
in considerable danger of falsely deducing the inevitable existence of what we 
observe. What might we want in our theory? Design principles, of course. Selection 
more or less works. An account of the probable developmental mechanisms which 
would readily have been first found and then presumably maintained by selection. 
An account ofthe easy and hard forms each mechanism alone generated. An ontog
eny is obtained by the coordinated linking of several or many different developmen
tal mechanisms. We must understand how integrated combinations of mechanisms 
robustly give rise to more complex but well-defined superfamilies of forms on which 
selection could carry out its further sifting. Perhaps we may come to think of such 
morphologies as kinds of morphogrammars and to think oflife cycles as stable, repet
itive, recursive forms within those grammars. 

Our ultimate aims are broad, for it seems proper that those aims are not merely 
to identify developmental mechanisms in ontogeny and their evolutionary history 
but also to expand evolutionary theory to embrace the mechanisms found, the ease 
of finding them, and the natural forms they generate. We want the constraints those 
normal forms place on selection to achieve forms which are difficult for the mecha
nisms available. Yet we also need to understand the capacity of selection to find novel 
mechanisms opening new families offorms. Still again, this effort must be integrated 
with random drift and with historical contingency. Biology is surely harder than 
physics. Yet our broad aims constitute a kind of physics of biology. 

SUMMARY 

This chapter has taken up the overwhelming topic of morphogenesis. No single chap
ter can hope to do justice to morphology. No book can yet comprehend its scale. A 
deep theory of morphology would justly reckon with the ancient sense of inherent 
order in organisms caught by the rational morphologists in their impulse to find laws 
for form. Darwinsim and evolutionism, branching morphologies flowering under the 
aegis of natural selection and genetic drift, have focused our attention on the tempo 
and mode of evolution. We rightly want to understand which organisms branched 
from which, why, and what features of each reflect adaptations wrought and main
tained by selection. In our proper reductionist mode, we properly seek developmen
tal mechanics, the unrolling machinery of genetic interactions and morphogenetic 
mechanisms which generate any specific ontogeny. Simultaneously, we suspect that 
the morphologies we see are expressions of a modest number of fundamental mech
anisms, each yielding a well-defined family offorms. To suspect this is inevitably to 
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confront two basic unanswered questions: What are those fundamental mecha
nisms? To what extent can and has selection modified the forms which we see from 
those naturally generated by the underlying mechanisms? 

I have sought to sketch some of the fundamental mechanisms which underlie 
morphogenesis. Each appears rather easy for evolution to have found. Each is pow
erful and engenders ordered features of ontogeny. Among the mechanisms we have 
considered are 

• Induction of differentiation by cell-cell interactions 

• Evidence for long-range order and positional information expressed in duplication 
and regeneration phenomena in many systems 

• The beautiful Turing-like patterns of standing waves which appear to underwrite 
pattern formation in many organisms 

• Similar mechanochemical models 

• Theories of phyllotaxis 

• Theories of cell-sorting based on simple surface-energy considerations 

It may be that none ofthese contemporary theories is correct. That issue, however, 
is far less important than the conceptual one. Each of these theories exemplifies a 
class of developmental mechanisms which carves out a family of related forms as the 

r parameters of the mechanism are altered. It is not foolish to suppose that any ade
quate account of any developmental mechanism will show that it, too, generates 

, some family of forms. In any such mechanism, some forms require precise tuning of 
many parameters into tiny regions of parameter space. Other forms arise when the 
parameters are located anywhere in large volumes of parameter space. Given that 
different forms in the same family may have different fitness values, selection will 
attempt to climb to forms and parameter values of high fitness. Yet where such opti
mal forms require all parameters to remain in tiny volumes of parameter space, the 
complexity catastrophe on rugged landscapes or the mutation/selection error catas
trophe on smooth landscapes can be expected to arise. Selection typically cannot 

1/:1) reach and hold an adapting population in arbitrarily located or overprecise volumes 
1, (of parameter space. Thus it is not foolish to suppose that the forms we see are largely 
, Uhose which are easily generated by the underlying developmental mechanisms. 

Ontogeny is the result of the unfolding of many developmental mechanisms 
which have become integrated with one another. If our bold hypothesis is right, such 
integrated complexity generically yields simplicity: Morphogenesis may be inher
ently robust, not exquisitely fragile. 

To characterize the natural forms individual and integrated mechanisms generate 
is the first, perhaps the outstanding, step to take in elucidating the immanent order 
expressed in ontogeny. Whether the current models of morphogenesis are correct or 
not, they surely suffice to persuade us that simple mechanisms yield large domains 
of order. Selection has not struggled alone these many eons. 



Epilogue 

Immanuel Kant, writing in the eighteenth century, saw organisms in a clear way. 
Organisms, he wrote, are self-organized systems in which the parts exist both as 
means and as ends. Organisms are the mechanisms by which the whole is main
tained, and the whole is the ordering such that the parts are maintained. In the nine
teenth century, William Paley argued in his "Natural Theology": When we find a 
watch, we cannot imagine a watch arising without a watchmaker. Because organisms 
are vastly more complicated than watches, it is even harder to imagine them arising 
without a divine organism-maker. Darwin, in Richard Dawkins's apt phrase, pro
posed a blind watchmaker. Darwin turned the argument for God's existence from 
design on its head: Nature produces contraptions. 

The creationists so animating one another, the lay public, and our contemporary 
court system today rest uneasy with Darwin's heritage. Natural selection, operating 
on variations which are random with respect to usefulness, appears a slim force for 
order in a chaotic world. Yet the creationists' impulse is not merely misplaced reli
gion. Science consists in discovering that point of view under which what did occur 
is what we have good grounds to expect might have occurred. Our legacy from Dar
win, powerful as it is, has fractures as its foundations. We do not understand the 
sources of order on which natural selection was privileged to work. As long as our 
c;leepest theory ofliving entities is the geneology of contraptions and as long as biol
ogy is the laying bare of the ad hoc, the intellectually honorable motivation to under
stand partially lying behind the creationist impulse will persist. 

D' Arcy Thompson's famous and elegant book On Growth and Form stands as one 
of the best efforts to find aspects of organismic order which can be understood as 
aspects which we might, on good grounds, expect. His enquiry, which led him to con
sider minimal energy surfaces, transformations of coordinate systems as a function 
of differential growth, and a whole beautiful panoply of phenomena, has stood as a 
persistent spring for a small trickling of intellectual tradition down through contem
porary biology. 

Thompson applied classical physics to biology. It has been said that a weakness of 
some biologists is persistent physics-envy: the seeking ofa deep structure to biology. 
Rest content, is the sensible refrain, with middle-level theories capturing parts of how 
organisms work. Understand how a genetic cascade works, how sodium transport 
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across a membrane is mediated. Surely we should, have, and will. Yet there is a new 
physics aborning, and it is time to again fall open victim to physics-envy. For want 
of a better name, the area which is emerging is something like a theory of complex 
systems. The trend grew out of statistical mechanics initially and now is clearest in 
solid-state physics. Study of strongly disordered systems, such as spin-glasses, where 
many elementary units interact with one another in randomly chosen but specified 
ways, has already revaled strikingly ordered properties in apparently chaotic systems. 
Indeed, even the passage of a fluid from laminar flow to turbulence is beginning to 
reveal hidden order. In short, physics is beginning to discover ways in which very 
complex systems nevertheless exhibit remarkable order. No reflective biologist can 
view these developments without wondering whether the origins of order in nonliv
ing systems augurs new insights for the origins of order in living ones as well. 

This book is an effort to continue in Thompson's tradition with the spirit now 
animating parts of physics. It seeks origins of order in the generic properties of com
plex systems. Those properties discussed have ranged from the origin oflife as a con
nected autocatalytic metabolism in sufficiently complex sets of polymer catalysts and 
organic molecules, to grammar models of functional integration, to models of the 
origins of ordered dynamics in genomic regulatory systems as a function of the spec
ificity of molecular interactions and hence as a function of the connectivity of the 
cybernetic systems, to the origins of spatial integration in multicellular systems when 
products of individual cells can reach their neighbors. 

Unlike physics, biology is the domain of natural selection. Ifwe begin to glimpse 
origins of order in the inherent properties of complex systems, then we must come 
to understand the mutual interactions of such self-ordered properties and the actions 
of selection. Even the outline of an adequate theory is not available but must be 
found, for the proper marriage of these conceptual realms constitutes the proper evo
lution of our theory oflife. 

In this book, therefore, I have tried to take steps toward characterizing the inter
action of selection and self-organization. To some great extent, evolution is a com
plex combinatorial optimization process in each of the coevolving species in a linked 
ecosystem, where the landscape of each actor deforms as the other actors move. 
Within each organism, conflicting constraints yield a rugged fitness landscape graced 
with many peaks, ridges, and valleys. Two major alternative limitations to selection 
exist. First, selection is limited by the structure of the fitness landscape it acts on; in 
many landscapes, as the organisms under selection grow more complex, the attain
able optima fall toward the average features of the class of systems on which selection 
is acting. Second, on any landscape, a mutation-selection balance is struck; beyond 
some level of complexity, selection cannot hold an adapting population at the high 
peaks of the landscape, and the population then falls toward the average properties 
of the underlying class of systems. Both limitations suggest that, in sufficiently com
plex systems, much of the order found is that spontaneously present in the class of 
systems under selection. Therefore, I have made bold to suggest that much of the 
order seen in organisms is precisely the spontaneous order in the systems of which 
we are composed. Such order has beauty and elegance, casting an image of perma
nence and underlying law over biology. Evolution is not just "chance caught on the 
wing." It is not just a tinkering of the ad hoc, ofbricolage, of contraption. It is emer
gent order honored and honed by selection. 

It is no rhetorical apology to recognize the inadequacy of the efforts undertaken 
here. The themes are large and new and remain incompletely articulated. Yet they 
are provoking. Wherever complex systems exhibited order spontaneously, there 
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selection had such order to work with. Wherever the consequent fitness landscape 
was rugged, there selection was limited and there the self-ordered properties persisted 
for want of adequate means of escaping them. Such properties may be true biological 
universals, worthy of our efforts of discovery. Moreover, we expect that selection can 
mold the entitites it acts on to improve the character of the landscapes these entities 
explore and to improve the character of the internal model each entity builds of its 
world, thereby permitting those systems to coadapt better. It follows that we must 
seek to understand the construction laws that allow complex systems to adapt on 
properly correlated landscapes and to understand how the couplings between land
scapes evolve. In short, the capacity to evolve is itself subject to evolution and may 
have its own lawful properties. The construction principles permitting adaptation, 
too, may emerge as universals. Adaptation to the edge of chaos is just such a candi
date construction principle. 

Thus for all the known organisms on this branching river we call life, biology 
should aim ultimately to account for those essential features which we would expect 
to find in any recurrence of such a river. To suppose, as I do, that such an intellectual 
task may one day be achieved is, among other things, to suspect with quiet passion 
that below the particular teeming molecular traffic in each cell lie fundamental prin
ciples of order any life would reexpress. 
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P parameter and high internal homogeneity 

in, 475 
K = 1 Boolean networks, 203, 480 

com binatorial attractors in, 481 
combinatorial epigenetic attractors code for, 

481 
feedback circuitry loops in, 480 
number of cycles in, 481 
state cycles in, 481 

K = 2 Boolean networks and canalyzing 
ensembles, 198-202,478-81 
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l 



similarity of local optima, 61 
waiting time to find fitter variants, 56-57 

NK fitness landscape model, 40-44, 45-60 
complexity catastrophe in, 524 
coupled, 246 
insensitive properties of, 44 
massif central in, 60-63 
sensitive properties of, 44 

Nash equilibria, 402 
waiting times to encounter, 246 

Nash equilibrium 
Boolean games, steady states, and, 239-41 
in coupled landscapes, 245 

Nasobemia, 508, 516, 599 
Natural selection 

circularity of, 16-17 
as sole source of order, 16 

Natural theology, 11 
Neighboring developmental programs, 580 
Neighboring forms, 13 
Neo-Darwinism synthesis, 9 
Networks. See also individual networks 

descendents in, 204 
play games, 221-24 

Neural network, models of, 227-30 
Neutralists, 9 
Neutral percolation domains and the 

selectionist-neutralist argument, 108-
10 

Neutral random-branching phylogenies, 87 
Neutral stability, 176 
Neutral theory, 10 
Nicolis, G., 567 
NK Boolean games, 239 

and NK Boolean networks, 239 
NKmodel 

application of, to maturation of immune 
response, 125-44 

NKCS model of coevolution, 244-70 
Noah experiment, 392 
Nodal lines, 585 
No-flux boundary conditions, 571 
Non-denumerably infinite, 378 
Novel catalytic functions, 142-45, 156-70 
NP completeness, 65 
Nuc1eosome,414 
Nullc1ine, 185 
Null hypotheses and ensemble theories, 426 
Niisslein-Volhard, J., 601,603 

Odd-skipped, 603-4 
Odell, G., 576 
Oncogenes, 492-93 
Ontogeny, main features of, 407-10 

INDEX 

Operators, 413 
OptimalK 

in coevolving systems, 260 
and phase transition between order and 

chaos in lattice ecosystems, 261-62 
Optimal planning horizon, 399-400 
Order 
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natural selection as sole source of, 16 
in neural nets, 228-29 

Ordered dynamics and landscape structure, 
209,215-16,224-26 

Ordered regime, 174 
in Boolean networks, 174, 194-202,478-81 
hierarchical command structures in, 500-

501 
number and size distribution of unfrozen 

gene islands in, 501-3 
P> Pc implies, 478 
propagation of damage in, 202, 209, 471, 

478-80 
Organic molecules 

predicted size and diversity of, 351-53 
reaction graph among, 348-50 

Orgel, L., 290-91 
Orthogenesis, 495 
Oskar, 605-6 
Osmotic drive, 338 
Oster, G., 146-47,576,633 

P> Pc 
implies frozen components, 477-78 
implies ordered regime, 478 

Packard, N., 220-21, 314 
Pair-rule genes, 595,603-4,607-10 

bifurcation sequence in, 507-10 
may not be underlying pattern generator, 

627 
Paley, W., 643 
Panselection, 17 
Parallel distributed regulatory networks, 10, 

442 
Parallel evolution, 83-95 
Parallel homeotic transformations, 511, 516-

18,599 
Parameter space, 179-81 

adaptive walks in, 210 
Parametric coupling between gene systems in 

Drosophila, 611-13 
Patristic distance, 89 
Pattern duplication and regeneration, 410 
Pattern formation, 409-10 

in early Drosophilq"embryo, 594-614 
Pattern recognition, 228 
Payoff landscape, 222 
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Payoff matrix, 222, 239 
Po 206 
Pea Soups, 374 
Peptide bonds, thermodynamics offormation 

of, 300 
Percolating frozen component, 203-6, 495-

500 
Percolating frozen core, 203-6, 495-500 
Percolating walls of constancy, 211 
Percolation, 174 

of forcing structures in K = 2 networks, 
498-500 

of homogeneity clusters, 206-9, 477-78 
problems of, in graph theory, 307 
thresholds of in random graphs, 205, 307-9 

Perelson, A., 146-47 
Periodic boundary conditions, 571 
Phage display of random peptide libraries, 168 
Phage lambda, 451-52 

forcing structures in, 506-7 
Phaseless locus, 619-20 
Phase-offset multipeaked patterns, generation 

of by reaction-diffusion mechanism, 
613-14 

Phase-resetting curves, 486 
Phase-shifted sinusoidal gene expression, 609-

10 
Phase singularity, 613-20 
Phase transition 

between subcritical and supracritical sets, 
288 

in Boolean networks, 174, 194-202,478-80 
in connectivity properties of random graphs, 

307-8 
evolution to subcritical-supracritical, 387-

93 
and grammar models, 376 
to order in Boolean networks at K = 2, 200-

202,478-80 
Phase-transition regime in Boolean networks, 

219. See also Complex regime; Edge of 
chaos 

Phenocopies, 507-9, 543 
Phenotypic stasis, 19 
Phyllotaxis, 634 
Phylogenetic trees and convergent evolution, 

83-95 
Physics envy, 643 
Pitts, W., 227 
PK, 195-96 
Plastein reaction, 300-30 I, 338 
Point attractors, 176 
Poised cell types, 408-9, 491 

and induction, 542-44 
Polar coordinate system, 549, 556-66 

Polytene puffing cascade in Drosophila, 457-
58 

Population flow 
analogy with statistical physics on rugged 

landscape, III 
on landscapes, 34 
on NKlandscapes, 103-8 
relation of idealized adaptive walks and, on 

landscapes, 40 
on rugged landscapes, 95-109 

Population genetic models of regulatory 
network architecture evolution, 429 

bifurcations in population genetic network 
models, 431-37 

error catastrophe, 429 
Fisher's fundamental theorem, 431-32 
network fitness function, 429 
reflecting barriers, 434 

Population genetics, 9 
epistemological inadequacy of, 18 

Population thinking, 6, 8 
Position, as phase, 617-18 
Positional coordinate systems, 556-65 
Positional information, 539, 549-66 

Cartesian coordinate system of, 549, 559-63 
clockface model of, 556 
interpretation of, 550 
spherical coordinate system of, 549-63 
two-dimensional,630-31 

Positional regulatory networks, 546-47 
Positional smoothing, 549 

inadequacy of, 564-66 
Positive cooperativity, 183-84, 449 
Post-translational protein modifications, 417 
Potential surfaces, 33 
Power-law distribution 

of avalanches in sandpile model, 255 
of damage, 277. See also Complex regime; 

Sandpile model; Self-organized 
criticality 

Power-law extinction distribution, 277. See 
also Self-organized criticality 

Power set of strings, 377-78 
Prebiotic chemical evolution, 353-54, 388-

93 
Prebiotic chemistry 

experiments of, 288-89 
self-extending, 389-90 

Prepatterns, 549 
Prigogine, I., 567 
Primary and secondary immune response, 

124 
Primary induction, 540-41 
Prisonner's dilemma, 242 
Promoters, 412-13 
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Proteins 
differentiation of, 143-45 
expression patterns of, in different cell types, 

459-60 
evolution of, 121-22, 142-45 
folding landscapes of, 142 
mimics as drugs and vaccines, 166-69 
phosphorylation of, 417 
selection of, catalyzing a reaction, 164 

Protein-first origin oflife theory, 295-97 
Proteinoid microspheres, 295-96, 299 
Protein space, 37 
Punctuated equilibrium, 19,270 
Pure strategy, 240 
Pure strategy Nash equilibrium, 240 

Quasi-species, 358 
Quenched Boolean networks, 198 
Quenched string model, 380 
Quine, W., 394 

R factors in ecological models, 270-71 
Radial branching patterns in Polyspondilium 

discordum, 573-77 
Radiation and stasis on rugged landscapes, 74-

75 
Radiolaria, 538 
Random DNA sequences, 122 
Random energy model, 64. See also K = N -

1 landscapes 
Random genomic sequences, function of, 158-

60 
Random grammars, 377, 382-84 
Random graphs, 205, 307-9, 488-89 

phase transition in connectivity properties of, 
307-8 

thresholds of percolation in, 205,307-9 
Random NKBoolean networks, 174, 182, 193-

203,472-81 
Random peptides and polypeptides, 70, 158 
Random protein sequences, 122 
Random RNA binding sequences, 299 
Random RNA sequences, 122 
Rank 1 antibodies, 148, 167 
Rank 2 antibodies, 148, 167 
Rasmussen, S., 361 
Rational expectations, 401-2 
Rational morphologists, 3, 5 
Ratio of reactions to polymers, 302-3 
Rat race, 242 
Raup, D., 268-69 
Ray, T., 276-77 
Reaction graphs, 303 

among organic molecules, 348-50 
virtual catalyzed, 313 

Reaction-diffusion models, 566-73. See also 
Turing models 

application of, to Drosophila embryo, 596-
600 

application of, to sequential formation of 
compartmental boundaries on 
Drosophila wing disc, 584-91 

linear-stability analysis of, 570-72 
nonlinear analysis of, 591-94 

Reaction space, clouds in, 327 
Recombination, 95 

in genetic regulatory networks, 530-31 
in NK landscapes, 114-17 
search on rugged fitness landscape, 112-17 
and sex, 113 

Recursively computable, 441 
Red Queen hypothesis, 242 
Regimes in grammar space, 378 
Regulatory cascades, 455-58 
Relaxing idealization of autocatalytic set 

model, 327-29 
Representations, 232-33 
Restricted selection, 17 
Ribozyme polymerase, 293 
Ribozymes, 291 

threshold for autocatalysis in systems of, 326 
RNA 

antisense, 458 
capping, 417 
expression patterns of, in different cell types, 

458-59 
half-life of, 417 
heterogeneous nuclear, 416 
messenger, 416 
mutual information among interacting 

sequences of, 386-87 
poly A tails of, 417 
random sequences of, 122 
splicing of, 416 

RNA-processing transport translation, 416-17 
Romer, P., 396 
Rosenzweig, M., 242 
Rossler, 0., 297 
Rube Goldbergs, 13 
Rugged fitness landscapes, 33-37 

analogy between statistical physics and 
population flow on, III 

population flow on, 95-109 
radiation and stasis on, 74-75 
recombination search on, 112-17 
time scales in adaptation on, 74 
von Baer's laws and, 75 

Rugged potential surfaces, 44 
Rummelhart, D., 230 
Runt, 604 
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S period, 484 
Saccharomyces cerevisae, 452-53 
Sanderson, M., 84-85 
Sandpile model, 263 

power-law distribution of avalanches in, 255 
Schubiger, G., 600 
Schuster, P., 101,357-60 
Screening 

for protein catalyzing anyone of many 
reactions, 164-65 

for useful RNA sequences, 170-71 
Secondary induction, 541-42 
Segmental patterns in Drosophila, 577-84 
Segment polarity genes, 604, 610-11 

may not be underlying pattern generator, 627 
Selection 

of catalysts catalyzing a connected sequence 
of reactions, 354-55 

and ensemble generic properties, 16, 24, 
426-27 

of proteins catalyzing a reaction, 164 
of shape mimics by closure of autocrine 

feedback loop, 169-70 
as sole source of order, II 
sustains the useful ensemble, 465 

Selective adaptation 
of Boolean network behavior, 211-18 
toward edge of chaos, 218-27 

Self-constructing nonequilibrium systems, 
388-89 

Self-organization and selection, 34 
Self-organized criticality, 255. See also 

Sandpile model 
Self-reproducing micelles, 390 
Separatrix, 176-77 
Sequence space, 36-37 
Sequential formation of positional axes in 

development, 552 
Sequential generations of compartmental 

boundaries as a bifurcation sequence, 
585-90 

Sequential Turing machine, 12 
Serial-processing algorithm, 441-42 
Shape complement, 148 
Shape space, 146-48 

dimensionality of, 147 
Shapiro, R., 21 
Shell patterns, 631-32 
Sigmoidal response function, 183-84, 449 
Simple genetic circuits, 444-54 
Simulated annealing, 111-12 
Sinuoidal transcription and protein patterns in 

Drosophila embryo, 605-11 
Slow and fast variables, 468 
Slow relaxation times, III 

Small autocatalytic oligonucleotide sets, 292 
Social planner, 397 
Sol-gel transformations, 338 
Somatic mutation 

in immune response, 123 
theories of, for immune response, 124 

Space of systems, 211 
Spatial frequency doubling bifurcations, 591- 94 
Speciation events, 277 
Spherical coordinate system of positional 

information, 549-63 
Spin glasses, 43, 64, 644 

frustration in, 43 
Gross-Mezard model of, 64 

Stable core in Boolean networks, 499 
Stanley, S., 19 
Stasis, 270 
State, 175 
State-cycle attractors as cell types, 482-83 
State cycles in Boolean networks, 46-47, 188-

90 
State space, 174, 175-81, 465-67 
State-space trajectories, 175,465-67 

convergence along, 199-200 
divergence along, 178-79, 199-200 

Statistical mechanics, 23, 182 
of ensembles of systems, 182 
and entropy, 23 

Statistical physics, analogy with population 
flow on rugged landscape, III 

Steady state, 176 
Boolean games, Nash equilibrium, and, 239-

41 
Steinberg, M., 634 
Stem cells, 408 

populations of, as attractors, 442-43 
Stop-codon problem, 161-64 
Strange attractors, 178-79 
Strategy oscillations in NK Boolean games, 240 
String machines, 375 
Strongly connected forcing loops, 498 
Strongly connected set of cell types, 491 
Structuralist theme in evolution, 15,410 
Structural stability, 181 
Structured ecosystems, 255 
Subcritical and supracritical metabolisms, 

separated by critical curve, 348 
Subcritical autocatalytic sets, 288 
Subcritical behavior, 312-18, 390-93 
Subcriticality of molecular diversity in cells, 

354,390-93 
Subthreshold oscillations, 486 
Supernumerary limbs, 553 
Supracritical behavior, 312-18, 390-93 
Supracritical catalytic sets, 288 



INDEX 709 

Supracritica1ity of biosphere, 390-93 
Supracriticallow-specificity connected 

metabolism, 350-51 
Supracritical-subcritical boundary, 390-93 
Supracritical systems, unimodal polymer size 

distribution in, 314-17 
Symbolic dynamics, 220-21 
Symmetries of compartmental boundaries on 

wing disc of Drosophila, 584 
Synaptic weight, 227 
Synchronous Boolean networks, 189 

Tailless, 606-7 
Technological evolution, 395-402 
Template-replicating oligonucleotides, 281-83 
Template shape complementarity, 324 
Theory of records, 70 
Thermodynamic RNA folding landscape, 102 
Thermodynamics 

considerations of, in autocatalytic set model, 
318-20 

of peptide bond formation, 300 
Thompson, D., 14,410,643,537-38 
Threshold Boolean functions, 227 
Tierra model, 276-77 
Tissue attractors, 546-47 
Tissue map, cellular interpretation of, 548 
Tissue or timing specific enhancers, 414 
Tissues 

duplication and regeneration of, 549-66 
long-range order in, 549-66 
modeled as iterated arrays of Boolean 

networks, 546-47 
as sheets of interacting cells, 545 

Tissue specificity space (TSS), 560 
Trainor, L., 576 
Trans-acting regulatory elements, 414-16 
Transdetermination, 444,507-16,579-80 

pathways for, 510-11 
Transitory attractors, 468 
Translation machinery, 293-94 
Transverse gradients, 559-63 
Traveling salesperson problem, 64 
Trophic species, 263 
Tumors, regression of, 493 
Tuning landscape structure, 231 
Turing A., 441, 549-66 
Turing gas, 372 
Turing models 

Drosophila embryo and, 596-600, 613-14 
Drosophila wing disc and, 584-91 
mathematical analysis of, 568-72 
mode skipping in, 591-93 
nonlinear analysis of 591-94 
Polyspondilium and, 573-74 

shell patterns and, 631-33 
two-dimensional information and, 630-31 

Turing pattern, wavelength, of, 570 

Ultrastability, 210 
Undirected graphs, 205 
Unimodal organic molecule size distribution in 

biosphere, 317 
Unimodal polymer size distribution in 

supracritical systems, 314-17 
Universal computation, 12 
Universal enzymatic toolboxes, 122, 146, 152 
Universal law ofiong-jump adaptation, 69-72, 

212 
Unused cell types, 491-95 
Utility, 396 

V regions of antibody molecules, 125 
Vaccines against unknown pathogens, 168 
Van Valen, L., 242 
Variability of tissue-enzyme patterns in sibling 

species, 533-34 
Variation, abundance of, 18 
Vector, 175 
Virtual catalyzed reaction graph, 313 
Von Baer's laws and rugged landscapes, 75 
Von Kiderowski, G., 292 
Von Neumann architecture, 441 

Waddington, C. H., 448, 543 
Waiting for Camot, 387-93 
Wald, G., 287 
Walker, c., 196 
Walls of constancy, 203-5 

percolating, 211 
Watson, J., 297 
Wave number, 570 
Weak Maxwell's demon error catastrophe, 95-

96 
Webster, G., 4 
Weinberger, E., 63 
Weiner, A., 363 
Weischaus, E., 602 
Weissman, A., 7, 407 
Whales' legs, 494 
Wickramasinge, A., 345 
Winfree, A., 619 
Wing disc fate map of Drosophila, 553 
Wittgenstein, L., 549 
Wolpert, L., 549, 579, 640 
Wolpertian flag, 565, 567 
Wright, S., 9, 10, 33 

Zygote, 407 
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