The Cost of Bad Parents: Evidence from Incarceration on Children's Education

Carolina Arteaga*

September 11, 2018

Job Market Paper

[Most recent version]

Abstract

This paper provides evidence that parental incarceration increases children's educational attainment. I collect criminal records for 100,000 poor parents who have been convicted of a crime in Colombia, and combine it with administrative data on the educational attainment of their children. I develop a new econometric model that identifies the causal effect of incarceration on children's outcomes exploiting the random assignment of defendants to judges who differ in their stringency to both convict and incarcerate defendants. I show that the causal effects of incarceration are identified even when the outcomes of the children are only observed for convicted parents. I find that conditional on conviction, parental incarceration increases education by 0.8 years for children whose parents are on the margin of incarcerated parent is larger for boys, violent crimes and when the incarcerated parent is the mother.

JEL No. I24, J24, K42.

^{*}Preliminary draft. I am very grateful for the support, guidance, and helpful comments of Adriana Lleras-Muney, Maurizio Mazzocco, Rodrigo Pinto, Sarah Reber, and Till von Wachter. I thank Stephen Billings, Leah Boustan, Moshe Buchinsky, Denis Chetverikov, Christian Dippel, Paola Giuliano, Martin Hackman, Sam Norris, Rosa Matzkin, Matt Pecenco, Ricardo Perez-Truglia, Manisha Sha and Jeff Weaver for their feedback. I also thank my colleagues Richard Domurat, Sepehr Ekbatani, Stefano Fiorin, Alex Fon, Keyoung Lee, Rustin Partow, Vitaly Titov, and seminar participants at ALCAPONE, UCLA, CCPR, and the Central Bank of Colombia for insightful discussions. Natalia Cardenas, Mauricio Duran, and Juan D. Restrepo provided invaluable help in answering my questions about the institutional context. I gratefully acknowledge support from the Treiman Fellowship, CCPR, Colciencias, and the Central Bank of Colombia. Comments are greatly appreciated. Department of Economics, UCLA (caroartc@ucla.edu).

1 Introduction

Over one million children in EU countries, and 2.7 million children in the U.S. have a parent in prison (Sykes and Pettit, 2014).¹ As a result a very large number of children are growing up without a parent. Family environments during the early years, and especially parenting, are major determinants of human development (Heckman, 2013), yet there is only a small literature investigating the effects of parental incarceration on children's outcomes. A large body of correlation-based evidence finds negative associations between parental incarceration and a host of important variables such as mental health, education, and crime (Wakefield, 2015). However, households with incarcerated parents are disadvantaged along many different dimensions.² Therefore, naive comparisons of outcomes would lead to negatively biased estimates.

In this paper, I estimate the causal effects of parental incarceration on children's educational attainment in Colombia. I exploit exogenous variation in parental incarceration resulting from the random assignment of defendants to judges with different propensities to convict and incarcerate defendants. I construct a new dataset, linking several data sources: I link sociodemographic data on households with children from SISBEN, Colombia's census of the low-income population, to publicly available criminal records for parents scraped from the internet. I find criminal records for approximately 100,000 parents for the years 2005 to 2016. Then, I link the educational outcomes of criminals' children using administrative data on public school enrollment, and, also web-scrape the children's criminal records.

Previous papers in this literature use the random assignment of defendants to judges and their systematic differences in leniency to estimate the causal effects of incarceration on various outcomes.³ In Colombia individuals are also randomly assigned to judges but the standard strategy cannot be employed, because I only observe defendants who are convicted. Conviction is determined after random assignment, so the observed sample of convicted defendants is not balanced across judges, and the usual IV does not deliver interpretable estimates of the effects of incarcer-

¹Sykes and Pettit (2014) also estimate that for the U.S. 62% of black children born to high school dropouts will experience the imprisonment of a parent by age 17.

²Even prior to the incarceration event, these households are more likely to be poor and to experience domestic violence (Arditti, 2005; Arditti et al., 2012). In the US, Mumola (2000) estimates that 60% of parents in prison reported that they used drugs in the month before their offense, 25% reported a history of alcohol dependence, and about 14% reported a mental illness. Western (2018) also documents that around 60% of parents in prison had experienced childhood trauma, such as domestic violence and sexual abuse.

³For previous paper in the incarceration literature see Kling (2006), Aizer and Doyle 2013; Di Tella and Schargrodsky (2013), Mueller-Smith (2015); and Bhuller et al. (2016); Dobbie et al. (2018a) among others.

ation. Intuitively, to identify the causal effects I take advantage of the fact that, I can compare children of parents who faced similar exogenous conviction probabilities but had different incarceration probabilities. That is, to identify causal effects I exploit variation in judges' incarceration rates, holding constant the judges' probability of conviction. This identifies local average treatment effects (LATE)—those at the margin of incarceration—along different levels of conviction probabilities.

I estimate that on average, conditional on conviction, parental incarceration increases education by 0.8 years for the children whose parents were on the margin of going to prison. With an average schooling of 6.8 years, this corresponds to an increase of 11.8%. The benefit of parental incarceration is larger for children of parents who were incarcerated by more lenient judges. Intuitively, those who are incarcerated even by lenient judges, likely have worse unobserved characteristics on average. I find that there is a gradient in the effect of parental incarceration as a function of unobserved defendant's quality. The point estimates suggest the benefit of parental incarceration is larger when the child is a boy, the incarcerated parent was incarcerated for a violent crime, or the incarcerated parent is the mother (as opposed to the father), though only the differences by gender of the child are statistically different. I also find a U-shaped pattern in the age of the child at the time of the parent's incarceration. Larger positive effects are estimated between ages 0 to 5, and 10 to 15, relative to 5 to 10.

My findings suggest that on average, parents who are on the margin of incarceration in Colombia are likely to reduce their child's educational attainment if they instead remain in the household. Research shows that removing a violent parent or negative role model from the household can create a safer environment for a child (Johnson, 2008; Jaffee et al., 2003). Criminal parents may also deplete economic resources, and the economic contribution of defendants is likely to be small; Mueller-Smith (2015) finds that in the US, only one third to two-fifths of incarcerated parents were employed before being charged. Parental incarceration may also limit the intergenerational transmission of violence, substance abuse, and crime.⁴ Lastly, parental incarceration may result in the child being placed with an alternative caregiver who has better resources to care for the child. Indeed, I find that after the episode of parental incarceration, children often move in with their grandparents. They are also more likely to move to a household not in SISBEN, suggesting an improvement

⁴For example, using data from Sweden, Hjalmarsson and Lindquist (2007) report significant father-son correlations in criminal activity that begin to appear between the ages 7 and 12, and are fully established by the son's teen years. This result also relates to findings in other fields that conclude that the positive effects of being raised by one's parents depend on the quality of care that the parents can provide (Jaffee et al., 2003).

in economics circumstances.

I provide a new identification result for a setting in which treatment can take three values and is decided upon crossing two thresholds along distinct margins of selection. Which in my case are i) not convicted, ii) convicted and not incarcerated, and iii) convicted and incarcerated; and the two margins are the conviction and incarceration decisions. Specifically, given an instrument for each decision margin, treatment effects related to the crossing of the second threshold can be identify by first conditioning on the crossing of the first threshold given a fixed level of the first instrument, and then exploiting instrumental variation on the second margin. Unconditional treatment effects cannot be identified without further assumptions. This weaker result is, however, economically relevant. It allows me to estimate the causal effect of incarceration conditional on conviction under a specific conviction stringency. This approach could also apply in other contexts, for example, the decisions to participate in the labor force and work part-time or full time or the decision to attend college and enroll into STEM or not stem majors, among many others.

Contemporaneous to the writing of this article, three papers exploiting judge leniency as an instrument have provided different results using data from Norway, Sweden and the US. Dobbie et al. (2018) and Bhuller et al. (2018) find imprecise null effects on academic achievement for Sweden and Norway, respectively.⁵ For Cuyahoga County in Ohio, Norris et al. (2018) find large decreases in the probability of graduating from High School as a result of parental incarceration. These results are in contrast to the large positive effects I find for Colombia. Such heterogenity points to the importance of understanding the settings and identifying the population at the margin. In my analysis, I find that the magnitude and sign of the effects is a function of the type of parent being removed from the home. Given the higher incarceration rate in the US, combined with the lower crime rates, in both the Scandinavian countries and the US compared to Colombia, it is plausible that the marginal incarcerated parent in Colombia is more negatively selected than in the US, Norway and Sweden.

An additional important difference is that unlike the other papers, my sam-

⁵There are many differences between Colombia and Scandinavian countries, some of which may be driving these different results. First, the size of the treatment is larger in Colombia where on average prison sentences are 4.4 years, compared with three and eight months in Sweden and Norway, respectively. A second key difference is the potential size of the effects on schooling before college: In Colombia 47% of the population between 25 and 34 years old have less than a high school degree, whereas this number is 17% for both Norway and Sweden (OECD, 2016). Finally, Norway and Sweden have very generous welfare programs and better education systems compared to those available in Colombia; these programs help insure disadvantaged children and would also point towards smaller treatment effects in the Scandinavian countries.

ple consists only of children who lived with their parent prior to the incarceration episode. In the US, half of the parents were not living with their children at the time of incarceration (Parke and Clarke-Stewart, 2002). In those cases, by definition the scope for positive effects from removing a parent are very limited. Consistent with this view, other papers for the US that focus on parents living with their children find similar results to the ones in my study. Cho (2009) finds that children in Chicago's public schools whose mothers went to prison instead of jail for less than a week, are less likely to experience grade retention. Using an event study design, Billings (2018) finds that incarceration improves end-of-grade exams and behavioral outcomes. He also finds, as I do, larger benefits when the mother is the incarcerated parent.

My paper also contributes to the literature on how parents affect their children's outcomes. This includes a large body of papers on the intergenerational effects of human capital (Oreopoulos et al., 2006; Black et al., 2005), wealth (Black et al., 2015), and welfare receipt (Dahl et al., 2014), among other variables. Specifically, my paper contributes to the literature on household structure and children's outcomes and shows that living with one's parent is not always better for children. Finaly and Neumark (2010) study whether marriage is good for children and find that unobserved factors drive the negative relationship between never-married motherhood and child education.⁶ On the other hand, Doyle (2007, 2008) finds negative effects of removing children from their parents and placing them in foster care. My paper contributes to this body of literature with evidence that suggests that children may benefit from the absence of a convicted parent who is at the margin of incarceration.

Finally, my results highlight the importance of parenting and specifically the costs of bad parents. This calls for a greater governmental role in assisting children from fragile households. Interventions that offer after school activities, or teach parenting guidelines, can mitigate these costs. Early childhood interventions have been remarkably successful in complementing parental care in very disadvantaged populations (Heckman et al, 2010). These programs can be a starting point to both complement and improve the parenting skills of this population.

The rest of the paper is structured as follows. Section 2 provides background on the judicial system in Colombia. Section 3 describes the data sources and provides summary statistics. Section 4 describes a model to identify causal effects in my setup, Section 5 presents my estimation and results. Section 6 discusses the results,

⁶There is also a literature in sociology on the effects of marital conflict and divorce on children's well-being. Using longitudinal data, Amato et al. (1995) find that in high-conflict families, children have higher levels of well-being as young adults if their parents divorced rather than stay together.

the mechanism and external validity, and Section 7 concludes.

2 Background: The Colombian Court System

In this section, I describe the criminal justice system in Colombia: how defendants are processed, how cases are assigned to judges, the types of crimes that are involved, and the stages of a standard trial.

Figure 1 illustrates how defendants are processed in Colombia's criminal justice system.⁷ A criminal record is created when an arrest is made. Once this happens, the police and a randomly assigned prosecutor must present the evidence that motivated the arrest in front of a judge within 36 hours. This judge, who is randomly assigned from the lowest tier of the judiciary hierarchy, determines if the arrest was legal and whether the defendant should await trial in prison.⁸ Next, the case is randomly assigned to another judge who will preside over the trial —this is the judge who provides the exogenous variation in conviction and incarceration I use in this paper. In practice, once the first judge decides to continue with the prosecution of a defendant, the case is entered immediately into a software program that assigns a judge at random among the judges in the judicial district and at the court level that the case is designated to; I refer to the district/court-level as the "randomization unit".

Colombia is divided into 33 judicial districts. In the largest cities, a district usually encompasses the city's metropolitan area, and for the rest of the country, it usually corresponds to a state. Depending on the severity of the charge(s), a case will be randomized within one out of three possible court levels within the judicial district in which the crime was committed. The first level, municipal courts, receive simple cases, such as misdemeanors, property crimes involving small amounts, and simple assault cases. These cases account for 38% of the data. More severe crimes, such as violent crimes, drug-or gun-related crimes, and large property crimes are sent to circuit courts (56%). Lastly, the most severe types of crime, such as aggravated homicide or terrorism are assigned to a specialized judge (6%).⁹ On average, there are 20 judges per randomization unit, and in the largest district —Bogota—the number of judges is 55.

⁷Acuerdo CSJ, 3329.

⁸A defendant will go to prison before trial when at least one of the following conditions holds: i) the defendant is a danger to society, ii) the defendant can interfere with the judicial investigation, or iii) there is reason to believe that the defendant will not appear in court for trial. Art 308. Criminal Proceedings Code.

⁹Art 35-37, Criminal Proceedings Code.

Once the judge is assigned, the prosecutor and defense present their arguments to the judge over the course of multiple hearings. The purpose of the first hearing is to formally press charges. In the second hearing, the prosecutor and defense present all relevant evidence. In the third hearing, the judge decides whether to convict; if the defendant is found guilty, the judge holds a final hearing to determine sentence length and incarceration. The Colombian Penal Code establishes minimum and maximum sentences for each crime, but there is significant discretion on the part of the judge. The general sentencing guidelines range is often quite broad. For example, prison time for possession of 100 grams of cocaine is between five to nine years (Penal Code, Art 376). The judge also determines the crime and the severity of the charge the defendant will be ultimately be sentenced for —for example murder versus involuntary manslaughter.

The decision to send a defendant to prison is determined by the length of the sentence. To deal with prison overcrowding, those convicted only serve time in prison when the sentences are longer than a certain threshold. Currently, a sentence equal to four years or less is not served in prison.¹⁰ As a result, the population that faces a trial is divided into three groups: i) not convicted; ii) convicted and not incarcerated; and iii) convicted and incarcerated. The fact that a portion of the convicted population does not serve time in prison is not a special feature of the Colombian penal system; for example, it is comparable to a sentence of probation in the US context.

In Colombia, judges are selected based on their performance on an exam from an open call of attorneys, with specific legal experience requirements for each category of judge. Appointments do not have term limits, and it is common that, over time, judges rise within the judicial hierarchy. The average tenure of a judge is six years, and on average, a judge presides over 344 cases.

While in prison, inmates can receive visits from adults once a week and from their children once a month. The government does not provide special social assistance to inmates' families. Unlike in the US, being convicted of a crime does not change one's eligibility for welfare benefits, and in the labor market, it is not common practice to ask about previous convictions, although, this information is available online.

¹⁰In these cases, the only consequence of being convicted is that for the duration of the sentence, the judge must be notified of any change of address or if the convict plans to travel outside the country. Art 63 Penal Code, and Ley 1709 de 2014.

3 Data and Summary Statistics

3.1 Data sources

I collect data from several sources. First, I use two waves of Colombia's census of potential beneficiaries of welfare (SISBEN). These data are collected by the government to characterize the country's poor population and to target social programs to them. SISBEN has information on national identification numbers (NINs), house-hold structure, age, gender, education, labor force participation of each household member, and a large set of variables on characteristics and assets of each house (e.g., fridge, stove, and floor material, among others). With this information, the government creates a score for each household that summarizes its level of wealth. The score is used to determine eligibility for most public programs, subsidized housing, and college loans, among many others (Bottia et al., 2012). The first wave, conducted from 2003 to 2005, has data on 31.9 million citizens; the second wave, conducted from 2008 to 2010, has data on 25.6 million citizens.

From this database, I obtain two key elements for my analysis. First, I observe parent and child links when they live in the same household. Second, I use parents' NINs to scrape criminal records that are public and available online. Anecdotal evidence for Colombia suggests that a large share of children with an incarcerated parent was not living with the parent at the time of the parent's incarceration. My target population is, however, likely to be the most affected by parental incarceration.¹¹

In Colombia, criminal records from defendants who are convicted are public and available online for 17 out of 33 judicial districts. These 17 districts represent 67% of the population, 69% of homicides, and 83% of property crimes, they include the largest cities in the country, and they are richer and more urban than the 16 districts without data online.¹² Each criminal record includes the name and NIN of the defendant, crime, date of crime, sentence information and the court type and number that handled the case.¹³

I complement these data with individual-level, anonymized records from the

¹¹Given how my parent-to-child links are constructed, I focus on parents who are living with the children rather than the biological parents. This definition includes stepchildren when the parent identifies the child as his or her child instead of describing them as not being related to that child.

¹²The universe of judicial sentences is public, however they are only available in the nation's National Archives. Criminal records for Bogotá can be found at the following link: http://procesos.ramajudicial.gov.co/jepms/bogotajepms/conectar.asp

 $^{^{13}}$ I use information from court directories and court identifiers to link each record to a specific judge.

Attorney General's Office. This database has information on the universe of criminal cases (including cases that did not result in a conviction), along with courtroom identifiers, date of trial, final verdict, and gender and age of the defendant. I use this information to construct a measure of conviction stringency at the judge level. Finally, I use administrative records of public school enrollment for 2005-2016 with names and NIN's to construct a measure of educational attainment. Children's years of school are capped at 11, the last year of high school in Colombia.

3.2 Sample selection

To construct my sample, I proceed as follows: from SISBEN, I take the NINs of all parents living with their children in the 17 districts that have information online and web-scrape their criminal records. This adds up to 17 million adults. For computational reasons, I only search for records in the district where the person was living at the time of the SISBEN survey. To assess the number of records I miss due to this restriction, I take a 5% random sample and look for their criminal records in all 17 districts. From this, I estimate that I miss 8.6% of the sample due to crimes committed in districts different from the one found in SISBEN. My sample therefore includes only poor parents who, at the time of the SISBEN survey, lived with their children, lived in the largest districts of the country, and committed crimes in the district in which they were living.

I find 328,579 criminal records for 256,108 individuals, of which 63,654 have missing fields in at least one of the key variables, such as court identifier, crime, year, or sentence. Half of these records with missing data correspond to Medellin, which is the second largest district after Bogota, and has missing court identifiers in all of their records. I keep only crimes committed after 2005, which results in 193,520 records.¹⁴ Next, I drop all records from court levels where there was only one judge (5,963 cases dropped), and also in cases where the number of records per judge in a year is fewer than 15 (44,806). I also only keep courtrooms for which I have judge/year conviction rates from the Attorney General's Office database. This leaves me with 128,792 criminal records from 105,133 adults. I retain only the first conviction in my sample, and collect data on the crime, courtroom identifier, and decisions regarding sentence and incarceration. I merge the criminal records back into the SISBEN data and I keep only the first parental conviction in the household. My final data set consists of 91,032 convicted parents. These parents are linked to

 $^{^{14}}$ In 2005, there was a reform in the judicial system, which renders the two periods incomparable. In the previous system, a judge served as both prosecutor and judge at the same time, and he or she was anonymous to the defendant. Additionally, at the time of this reform, there were other changes put in place regarding sentencing guidelines.

67,770 children who were and born between 1990 and 2007 and who experienced parental incarceration between ages 0 and 14.

I link these data to two outcome variables for these children: educational attainment and criminal records. I find school records for 77% of them, similar to the share of children between ages 12 and 17 who attend school (76%, 2005 Census). Table B2 in the Appendix shows evidence that having a missing education record is mostly due to actually not being in school as reported in SISBEN, and not a problem in the match, it is also not related to parental incarceration. Missing values are also more prevalent for boys, as well as for households with lower income and lower education levels for the head of household, both of which are predictors for a child not attending school. I also search for criminal records for all children of convicted parents who were 18 years of age by 2017. My final data set consists of 52,419 children born between 1990 and 2007 who have a convicted parent. In the following section, I characterize the population of convicted and incarcerated individuals, as well as their households and children.

3.3 Summary statistics

The population in my sample is negatively selected along two margins: income and criminal activity. In Table 1, I show socioeconomic characteristics for adults in the overall population, for parents in the SISBEN with and without a conviction, and for parents with a conviction, by incarceration status. By comparing column 1 and columns 2 and 3, we see that parents in the SISBEN have fewer years of education, are less likely to have a high school degree, live in larger households, and are more likely to be single than all adults. Among parents in the SISBEN, individuals with a conviction are also negatively selected across a host of variables (column 3 relative to column 2). Convicted adults have fewer years of schooling, are less likely to have a high school degree or more (23% vs. 31%), and have lower income scores. They also live in larger households and are more likely to be single (41% vs. 35%, respectively). Adults with criminal records are disproportionally male (84%), they are more likely to work and to be the head of the household than those without a criminal record.¹⁵

Among convicted parents, incarcerated parents have lower education and lower income levels (columns 4 and 5). Gender differences in the probability of incarceration conditional on conviction, are far smaller than the ones in conviction. Incarceration is associated with lower probabilities of working, as well as being the

¹⁵In the US context, for example, 29% of parents in state prisons have a high school degree or more, 48% are single, 92% are male, and the median age is 32 (Mumola, 2000).

head of the household. Table 2 splits the sample by gender. On average, convicted women have lower levels of education relative to convicted men, and they tend to come from poorer households. Compared to men, women are less likely to be the head of the household; yet, they are still much more likely to be the heads of their respective households than in the country's overall female population (36% vs. 29%, respectively). Convicted women are also more likely to be single.

Property crimes are the most common type of offense (25%), followed closely by drug-trafficking crimes (24%). Violent crimes account for 20% of the records, followed by gun-trafficking and misdemeanor offenses, at 18% and 12%, respectively. Incarceration rates vary substantially by crime. Figure 2 ranks crimes by their incarceration rates for selected crimes. Serious crimes, such as kidnapping or rape, have the highest incarceration rates, whereas failure to pay child support, simple assault, and property damage have the lowest. In the middle of the distribution, we find crimes such as drug trafficking, domestic violence, counterfeit currency trafficking, theft, and smuggling, among others.

4 Identification

Children from households with incarcerated parents are disadvantaged along many different dimensions. As a result, simple comparisons of outcomes of children with and without incarcerated parents, would lead to negatively biased estimates of the effects of parental incarceration. A common way to address this endogeneity concerns is to exploit the random assignment of defendants to judges who differ in their leniency to incarcerate.¹⁶ In those papers, authors have data on the pool of cases randomly assigned across judges and use this to construct their instrument. They compare incarcerated defendants with non-incarcerated defendants, which include those who were not convicted, as well as those who were convicted but who did not receive a prison sentence.

I cannot follow this strategy because in my data I only observe defendants who are convicted. Conviction is determined after random assignment to a judge, so the observed sample of convicted defendants is not balanced across judges, and the usual IV does not deliver interpretable estimates of the effects of incarceration. To address this challenge I develop a model to identify treatment effects in this setting and provide a new identification result. In the model treatment can take three values (not convicted, convicted but not incarcerated and convicted and incarcerated), and

¹⁶See Kling (2006), Aizer and Doyle 2013; Di Tella and Schargrodsky (2013), Mueller-Smith 2015; and Bhuller et al. 2016, among others.

is decided upon crossing two thresholds along distinct margins of selection. The first threshold determines whether the defendant is guilty and the second determines the severity of punishment. I show that given an instrument for each decision margin, conditional treatment effects related to the crossing of the second threshold are identified. In the following section I provide intuition for the identification, after which I formalize this result.

4.1 A simplified framework

To fix ideas, let us first consider the following framework: Judges are randomly assigned to defendants to make conviction and incarceration decisions by evaluating two distinct attributes of the defendant. When deciding on conviction c, a judge assesses the strength of the evidence of the case at hand. Without loss of generality, the distribution of the strength of the evidence across defendants U^c is uniform [0,1], where zero is the smoking gun, and one is no evidence against the defendant. The judge can be one of two types: harsh (h^c) or lenient (l^c) . Harsh judges do not require much evidence to convict a defendant. They have a threshold of 0.8, and thus, they convict 80% of defendants; this corresponds to all defendants with a level of evidence below 0.8. Lenient judges require more evidence to convict a defendant, choosing a threshold such that they convict only 20% of them.

Next, if a defendant is convicted, the judge decides on incarceration I. The judge makes this decision based on an assessment of how harmful the convicted defendant may be to society, and how much punishment the defendant deserves. This trait which I denote U^{I} , is also distributed uniformly [0,1]. Very harmful defendants have low values of U^{I} , and non-harmful defendants have values close to 1. A harsh judge (h^{I}) would send 80% of the convicted defendants to prison, whereas a lenient one (l^{I}) would only incarcerate 20%. It is the same judge making both decisions, but a judge can be of different types on each decision. Figure 3 illustrates this situation, where the x-axis traces the strength of the evidence on which the conviction decision is based. That is, we can order defendants along one relevant dimension, namely, the strength of the evidence in the [0,1] interval. A judge splits the space into two when she or he sets her or his conviction rate: defendants to the right are free, and defendants to the left are convicted. Similarly, the y-axis traces the defendant's punishment level, which is related to the assessment of predicted future criminal activity; unobserved —to the econometrician, not the judge—crime severity; and any mitigating/aggravating factors or family ties.¹⁷ I refer to this dimension as a

 $^{^{17}}$ As mentioned above, there are sentencing laws that guide the judge's incarceration decisions; however, there is a large scope for discretion, even within a specific crime. What this dimension

measure of the defendants' overall quality. For a fixed level of evidence required for conviction, a judge's incarceration level splits the space of convicted individuals into two: a defendant below the threshold will go to prison, and a defendant above will not.

Due to randomization, all judges start with a statistically identical pool of defendants. However, after the conviction decision is made, the pool of convicted defendants is no longer comparable across judges with different conviction thresholds. Defendants convicted under a lenient judge will have, on average, a stronger case against them than those convicted under a harsh judge. Defendants convicted under a harsh judge can face two types of judges (h^c, l^I) or (h^c, h^I) , where the first term refers to judge's conviction stringency, and the second refers to the incarceration stringency. Similarly, those convicted under lenient judges can also have judges of types (l^c, h^I) and (l^c, l^I) . Within these partitions, defendants are balanced across judges: first, because they were randomly assigned to their judge, and second, because they were selected into conviction under the same threshold. As a result, within partitions, there is exogenous variation in the probability of going to prison. For example, convicted defendants who were assigned to a (h^c, l^I) judge face a 20% chance of incarceration, whereas those assigned to a (h^c, h^I) judge face a 80% probability. Figure 4 illustrates this argument. This means that for 60% of defendants whose harmfulness assessment is located above the worst 20% of the population, but still in the bottom 80%, incarceration is only a function of judge assignment. Thus, I will be able to estimate LATE-type parameters for the defendants who fall into this range.

Specifically, for this example I estimate the following two LATE parameters:

$$LATE_{h} = E[Y_{I} - Y_{c}|U^{c} < 0.8, h^{c}, l^{I}, h^{I}]$$

and,

$$LATE_{l} = E[Y_{I} - Y_{c}|U^{c} < 0.2, l^{c}, l^{I}, h^{I}]$$

Where $LATE_h$ is the causal effect of incarceration relative to conviction for those convicted under a harsh judge ($U^c < 0.8$), and $LATE_l$ is the one for conviction under a lenient judge. Y_I and Y_c represent counterfactual outcomes (years of education of the child) for incarceration (I) and conviction (c), and U^c traces the selection on the conviction stage.

tries to capture are the factors that cause a judge to make different incarceration decisions for criminals who have the same charges.

$$LATE_{h} = \frac{E[Y|(h^{c}, h^{I}), U^{c} < 0.8] - E[Y|(h^{c}, l^{I}), U^{c} < 0.8]}{E[T = I|(h^{c}, h^{L}), U^{c} < 0.8] - E[T = I|(h^{c}, l^{I}), U^{c} < 0.8]}$$

Where T = I in the denominator represents treatment assignment equal to incarceration. Similarly, we can have the analogous expression for $LATE_l$.¹⁸

4.2 Model

In this section, I formalize the previous intuition, and extend it to the case of continuous judge leniency, to deliver a new identification result.

The model is described by the standard IV model that consists of five main random variables: $T, Z, Y, \mathbf{V}, \mathbf{X}$. Those variables lie in the probability space (Ω, F, P) , where individuals are represented by elements $i \in \Omega$ of the sample space Ω . The variables are defined below:

- T_i denotes the assigned treatment of individual *i*, and takes values in $supp(T) = \{t_f, t_c, t_I\}$. t_f stands for not convicted, t_c for convicted but not incarcerated, and t_I for convicted and incarcerated.
- Z_i is the instrumental variable in this analysis and takes values in supp(Z), and represents judge assignment.
- Y_i denotes the outcome of interest for individual *i*, e.g. years of education of the child.
- \mathbf{X}_i represents the exogenous characteristics of individual i.
- **V**_i stands for the random vector of unobserved characteristics of individual *i*, and takes values in $supp(\mathbf{V})$.

The random vector \mathbf{V} is the source of selection bias in this model. It causes both the treatment T and outcome Y. The standard IV model is defined by two functions and an independence condition as follows:

Outcome Equation:
$$Y = f_Y(T, X, V, \epsilon_Y)$$
 (1)

Treatment Equation: $T = f_T(Z, X, V)$ (2)

Independence:
$$Z \perp V, \epsilon_Y | X$$
 (3)

 $^{^{18}\}mathrm{See}$ Appendix D for an illustration of the failure of the simple IV estimator in this context.

where ϵ_Y is an unobserved zero-mean error term associated with the outcome equation.

In this notation, a counterfactual outcome is defined by fixing T to a value $t \in supp(T)$ in the outcome equation. That is, $Y(t) = f_Y(t, \mathbf{V}, \mathbf{X}, \epsilon_Y)$. The observed outcome for individual i is given by:

$$Y = Y(T) = \sum_{t \in \{t_f, t_c, t_I\}} Y(t) \cdot \mathbf{1}[T = t].$$
 (4)

The independence condition (3) implies the following exclusion restriction:

Exclusion Restriction :
$$Z \perp Y(t) | \mathbf{X}$$
 for all $t \in supp(T)$. (5)

For the sake of notational simplicity, I suppress exogenous variables \mathbf{X} henceforth. All of the analysis can be understood as conditional on pre-treatment variables.

I assume that the treatment equation is governed by a combination of two threshold crossing inequalities. First, there is a conviction stage:

$$\begin{cases} \text{Free} & \text{if } \mathbf{1}[\phi_c(\mathbf{V}) > \xi_c(Z)] \\ \text{Convicted} & \text{if } \mathbf{1}[\phi_c(\mathbf{V}) \le \xi_c(Z)] \end{cases} \end{cases}$$

where $\mathbf{1}[\cdot]$ denotes a binary indicator and $\phi_c(\cdot), \xi_c(\cdot)$ are real-valued functions. Function $\phi_c(\cdot)$ measures the degree of culpability assessed by the judicial system. This function looks at variables and information that are not observed by the econometrician but that are observed by the judge, such as the evidence, crime intensity, the effort of the defense and prosecutor lawyers, as well as unobserved characteristics of the defendant such as aggression, anti-social behavior, etc. The function $\xi_c(\cdot)$ assesses the judge leniency on conviction. This function can be understood as a threshold of reasonable doubt beyond which the defendant is convicted by the judge. Judges differ in their leniency and may set different threshold of evidence. The judge convicts defendant *i* whenever: $\phi_c(\mathbf{V}) \leq \xi_c(Z)$. If that is the case, a second stage is held and the judge makes a decision regarding incarceration:

$$\begin{cases} \text{Not incarcerated} & \text{if } \mathbf{1}[\phi_I(\mathbf{V}) > \xi_I(Z)] \\ \text{Incarcerated} & \text{if } \mathbf{1}[\phi_I(\mathbf{V}) \le \xi_I(Z)] \end{cases}$$

Similarly, $\phi_I(\mathbf{V})$ is a function whose arguments are case and defendant's char-

acteristics that are relevant for the assessment of the punishment level. Same as before, the judge compares $\phi_I(\mathbf{V})$ to her/his threshold to incarcerate $\xi_I(Z)$.

Treatment assignment can be summarized as follows:¹⁹

$$T = f_T(Z, \mathbf{V}) = \begin{cases} t_f & \text{if } \mathbf{1}[\phi_c(\mathbf{V}) > \xi_c(Z)] \\ t_c & \text{if } \mathbf{1}[\phi_c(\mathbf{V}) \le \xi_c(Z)] \cdot \mathbf{1}[\phi_I(\mathbf{V}) > \xi_I(Z)] \\ t_I & \text{if } \mathbf{1}[\phi_c(\mathbf{V}) \le \xi_c(Z)] \cdot \mathbf{1}[\phi_I(\mathbf{V}) \le \xi_I(Z)] \end{cases}$$

This model relies on two separable threshold functions that play the role of the monotonicity condition.²⁰

Without loss of generality, it is useful to express treatment assignment using the following variable transformation:

$$U^{c} = F_{\phi^{c}(\mathbf{V})}(\phi^{c}(\mathbf{V})) \sim Unif[0,1], \tag{6}$$

$$U^{I} = F_{\phi^{I}(\mathbf{V})}(\phi^{I}(\mathbf{V})) \sim Unif[0,1],$$
(7)

$$P_c = F_{\phi^c(\mathbf{V})}(\xi^c(Z)); z \in supp(Z), \tag{8}$$

$$P_I = F_{\phi^I(\mathbf{V})}(\xi^I(Z)); z \in supp(Z), \tag{9}$$

where $F_K(\cdot)$ denotes the cumulative distribution function of a random variable K. U^c, U^I, P_c, P_I are uniformly distributed random variables in [0, 1] due to assumption (iii). Let $P_c(z)$ denote the conditional random variable $P_c(Z = z)$ which is simply. Moreover, independence condition (3) implies $P_c, P_I \perp (U^c, U^I)$. In this notation,

$$D_i(j) > D_{i'}(j)$$

Then, it cannot be the case that judge j' convicts defendant i, but not i'. Which means:

$$D_i(j) > D_{i'}(j) \to D_i(j') > D'_i(j')$$

which is equivalent to state that:

$$D_i(j) > D_i(j') \to D_{i'}(j) > D_{i'}(j')$$

We can generalize this to all individuals to arrive at the standard monotonicity assumption of Imbens and Angrist (1994).

¹⁹See example 4 in Lee and Salanie (2017).

²⁰Consider two judges j and j', that see defendants i and i' who differ in their level of culpability. Say i' has more evidence against him than i, namely $\phi_c(i') < \phi_c(i)$. Supposed that judge j convicts defendant i' but not i. Then the threshold function implies that it cannot be the case that judge j' convicts defendant i, but not i'. More generally, let $D_i(j) = \mathbf{1}[T_i(j) = t_c]$ denote the binary indicator that judge j convicts defendant i. Thus if judge j convicts i' but not i, it implies:

the model can be expressed as:

$$T \equiv f_t(Z, V) = g_T(U^c, U^I, P_c, P_I) = \begin{cases} t_f & \text{if } \mathbf{1}[U^c > P_c(z)] \\ t_c & \text{if } \mathbf{1}[U^c \le P_c(z)] \cdot \mathbf{1}[U^I > P_I(z)] \\ t_I & \text{if } \mathbf{1}[U^c \le P_c(z)] \cdot \mathbf{1}[U^I \le P_I(z)] \end{cases}$$
(10)

In the model, U^c and U^I have the same interpretation as in the previous section, and P_c is interpreted as the share convicted for judge z. Without the assumption of independence of U_c and U_I , variation in incarceration leniency is only identified once I fix the conviction threshold. Thus, the counterfactual of interest is: $Y(t_I)$ and $Y(t_c)$ for those who were convicted under $P_c = p_c$. This means the objective is to identify causal effects of the form: $E(Y(t_I) - Y(t_c)|U^c < p_c)$, which is the the same exercise explained in Section 4.1. Let:

$$P_I^* = Pr[U_I < P_I | U_c < P_c] \tag{11}$$

 P_I^* is the the judges incarceration probability conditional on conviction.

Proposition: The difference in counterfactual outcomes $E(Y(t_I) - Y(t_c)|U^c < p_c)$ is identified from the data as follows:

$$E(Y(t_I) - Y(t_c)|U^c < p_c) = \int_0^1 \frac{\partial E(Y \cdot \mathbf{1}[T \in \{t_c, t_I\}]|P_c(Z) = p_c, P_I^*(Z) = p_I^*, U^c < p_c)}{\partial p_I^*} dp_I^*$$
(12)

See the appendix for the proof.

What this result says is that we can trace the treatment effect of incarceration relative to conviction once we fix a threshold for conviction. We do this by evaluating the changes on the outcome variable when we change P_I^* . This delivers the MTE along the unobservable dimension $U^I|U^c < P_c$. The integral over the support of the instrument gives the LATE, or the ATE when the instrument has full support. In the next section I use this identification approach to estimate the effects of parental incarceration in my data.

5 Estimation

To apply the identification result of the previous section I start by estimating the sample analogs of $P_c(Z)$ and $P_I^*(Z)$ in the model. The interpretation of these

variables is the probability of being convicted/incarcerated given the assignment to a specific judge. Following the literature, these are estimated as judge fixed effects from regressions after parsing out variation at the unit at which the randomization of judges occurred and specific case characteristics That is, the conviction/incarceration decision can be decomposed into a portion that is related to the individual, the judge, the crime, and the randomization unit/year. I do this as follows:

$$D_{iztcr} = \gamma_{rt} + \gamma_c + p_z + \epsilon_{iztcr}$$

Where D_{iztcr} corresponds to a conviction or incarceration dummy, *i* indexes individuals, *z* judges, *t* year, *c* crime, and *r* court-level/judicial district. γ_{rt} corresponds to randomization-level fixed effects, which is a court-level/judicial-district and year-level fixed effect. γ_c is a crime level fixed-effect (161 different crimes); p_z is the judge fixed effect and is what we are after; and ϵ_{iztcr} is a zero mean term. I estimate p_z as follows:

$$\widehat{p_{iz}} = D_{iztcr} - \widehat{\gamma_{rt}} - \widehat{\gamma_c} = \widehat{res_{zi}}$$

Following the literature, I estimate the judge instrument $\widehat{p_{z-i}}$ for defendant *i* to be the following leave-out estimator:

$$\widehat{p_{z-i}} = \frac{1}{n_z - 1} \sum_{k \neq i} \widehat{res_{z,k}}$$

where n_z is the number of cases of judge z, and res_{zk} is the residual from a regression of the conviction/incarceration dummy on γ_{rt} and γ_c .

Figure 5 shows the distribution of D_{iztcr} at the judge level, and \hat{p}_z for both conviction and incarceration. From the graph, we can see that although court-level/year and crime-level fixed effects explain most of the variation, judge's fixed effects still represent a sizable share of the variance in conviction and incarceration.

5.1 Instrument validity

Next, I examine how much do judge fixed effects predict individual-level decisions by estimating a first-stage regression for defendants as follows:

$$D_{iztcr} = \beta_0 + \widehat{p_{z-i}} + \beta_1 X_i + \epsilon_i$$

As before, D_{iztcr} corresponds to the conviction or incarceration dummy, and p_{z-i} is the leave-out mean of judge z assigned to person i. I run this regression with

and without controls X_i . In the conviction regression, where I use anonymized data from the Attorney Generals Office, I can only control for age, gender and number of crimes charged. In the incarceration regression, I control for schooling, income, occupation, gender, year of birth, and year in the survey. According to the results in Table 3, judges have a strong influence on conviction and incarceration decisions. The estimates are highly significant and suggest that being assigned to a judge with a 10 percentage point higher conviction/incarceration rate increases defendant's probability of conviction and incarceration by seven and eight percentage points, respectively. This relationship is robust to the inclusion of controls, as expected by random assignment. Figure 6 depicts this first-stage relationship for conviction (left panel) and incarceration (right panel). These graphs show strong positive relationship between the instrument and the individual trial decisions. The F-stats on the first stage correspond to regressions on judge dummys to account for the true dimension of the instruments. These F-stats are above the critical value for the leave-out mean instrument for weak instruments (see Figure 4 in Stock et al, 2002).

Recall from the previous section that, key for the identification of treatment effects is the variation in incarceration stringency conditional on a level of conviction stringency. Figure 7 shows a scatter plot of both conviction and incarceration fixed effects. From the graph we can see there is substantial variation along the incarceration axis for each conviction rate.

For the instrument to be valid, the judges fixed effects must be orthogonal to the defendant's characteristics. I test this in the anonymized data from the Attorney General's Office, where the universe of cases that the judge hears is available. Table 4 checks the balance across defendants for my judge-stringency measures for conviction and incarceration. Across gender, age, and type of crime, which are the only variables available in these data, I find no individual or joint statistical significance. In addition, the identification result is supported by the observation that once P_c is fixed, the pool of convicted defendants is balanced across judges. I test whether covariates are associated with incarceration stringency for the convicted sample, once I split the sample by conviction group (low, medium or high), or control for the conviction level with a polynomial of P_c . In Table 5, I test individual and joint significance of variables associated with education, income and occupation status, and I find no evidence of a relationship with judge stringency.

To interpret the results of the IV as the causal effect of incarceration, judge stringency must only affect child's outcomes through incarceration. This may not be the case if the judge fixed effects capture other dimensions of trial decisions, such as fines or guilt (Mueller-Smith, 2017). In my setting, this is less of a concern, first, because in the case of Colombia, fines are rare and only associated with large property crimes; and second, because I model the conviction decision directly.

Finally, the instrument has to satisfy the monotonicity assumption: conviction or incarceration decisions made by a lenient judge would also have been made by a stricter judge; this is called the monotonicity assumption. One testable implication is that first-stage estimates should be non negative for all sub samples. That is, if a judge is lenient, he or she is going to be lenient for both women and for men, and for both violent crimes and non-violent crimes. To test this assumption, I construct the judge fixed effects for just one group in the population, for example, for men, and use this fixed effect in a first-stage regression to predict individual conviction and incarceration for women. I do this for gender, type of crime, and age group. Table C1 in the Appendix shows these first stage tests, where I find positive first stage estimates across all slices of the data, which supports the monotonicity assumption.

The other side of monotonicity is separability (Vytlacil, 2002). In terms of the former, the model assumes that judges weigh the same characteristics of the defendants and value them in a similar fashion. Specifically, in my model, one testable implication of such an assumption is that I can write the conviction and incarceration decisions as functions of $\xi^c(\cdot)$, and that $\xi^I(\cdot)$ is not judge specific. This is reasonable given that all judges go through the same training and have ultimately the same objective function. To evaluate whether the data support this assumption, for a handful of covariates I estimate a random coefficient model, with different coefficients for each judge, and test whether this model provides a better fit, than a model with fixed judge coefficients. Table **??** in the appendix shows that overall the data fails to reject the model with fixed coefficients per judge.

5.2 Results

I now turn to the estimation of the effect of parental incarceration on children's educational attainment. I restrict attention to children who were ages 0 to 14 at the time of parental incarceration, and born between 1990 and 2007, this ensures that children both young and old enough to appear in the educational attainment data, which I observe from 2005 to 2016. I consider only incarceration cases in households in which the person incarcerated was the parent of the child and any other household member.²¹

Following the identification result, I need to account for the different levels of conviction stringency at which defendants were found guilty. I do this in two ways: First, I sort my data by stringency in the conviction stage (P_c) , and split the sample

²¹The number of cases where this is the case is not large enough to study this population.

in terciles: low $(0.7 < P_c < 0.88)$, medium $(0.88 < P_c < 0.9)$ and high $(0.9 < P_c < 1)$ conviction levels. Second, I pool the data and add a second degree polynomial on P_c with interaction terms. This last estimate can be interpreted as an average effect across the different conviction thresholds. The first three columns of tables 6 and 7 have the regressions for the split sample, and the forth one has the pooled regression.

I begin by showing the OLS estimate of this design. Table 6 shows a regression of parental incarceration on years of education. Following Abadie et al. (2017), I cluster standard errors at the judge level. Without controls, a child whose parent went to prison has 0.4 to 0.3 fewer years of schooling than a child whose parents did not. Once I add controls, this difference reduces drastically to less than 0.1 years. Still, we expect that incarcerated parents are negatively selected on unobservables that cannot be accounted for, so -0.1 years is a lower bound on the causal effect.

Next, Figure 8 shows a graphical representation of the reduced-form regression. This graph plots the distribution of judges' incarceration fixed effects against the predicted years of education from a local polynomial regression. From the graph, we can see that there is a strong positive relationship between judge stringency in incarceration and years of education. That is, as we move to the right, where the probability of having a parent in prison increases exogenously, I estimate that the years of education also increase. The top panel of Table 7 shows the regression results for this reduced form: I estimate large increases in years of education for all specifications, and for all but the second column, the increase in years of education is statistically significant. Finally, the bottom panel of Table 7 shows results from the IV; I estimate that having an incarcerated parent increases years of schooling by 0.7 to 0.9 years. These estimates are statistically different from zero for the first and third tercile, as well as for the pooled regression.

The effect on educational attainment I estimate combines two mechanisms. For children who finished their educational attainment, the effect captures the decision to drop out of school before high school completion, and for children who are still in school, the effect captures grade retention and continuous enrollment. My analysis suggests that suggests that both of these margins contribute to the positive effects; however, splitting the sample reduces the power, and the estimates are not statistically significant in either subsample. Tables C4 and C3 in Appendix E show the results. I also study how parental incarceration affects the chances that the child is later convicted of a crime. For this exercise, I restrict the data to children who were 18 years old by 2017, so that their criminal records would be public. Figure C2 graphically depicts reduced-form estimates of judge stringency on conviction probability; the effect is close to zero. However, the analysis is under-powered to detect to estimate reasonably sized treatment effects. This is not surprising, since conviction is a low incidence event; only 1.6% of children had a criminal record, and the difference in the OLS is only 0.1 pp.

5.3 Heterogeneity

I this section I look at heterogeneity of the results along a observables and unobservables. In my context, marginal treatment effects (MTE) are particularly interesting because they trace the causal effect of incarceration along parents' unobserved characteristics (U^{I}), that matter for incarceration and that are correlated with defendants' quality, broadly defined. What this exercise does is to evaluate the possibility of different effects of parental incarceration given the type of defendant that is going to prison, which is characterized by his or her location along the y-axis of Figure 3. The intuition is the following: Parents who are incarcerated under the most lenient judges have worse characteristics than those incarcerated under strict judges. In other words, a strict judge incarcerates almost everyone, but a lenient judge incarcerates only the worst defendants, so that those incarcerated under relatively lenient judges are more negatively selected.²² I follow Heckman and Vitlacyl (2005) to estimate this MTE. I find that at the 5% level, there are heterogeneous treatment effects along parental quality (Figure 9). Specifically, I find that the positive effects of incarceration on schooling accrue when the worst defendants go to prison.

The magnitude of the effect of parental incarceration on children's education is a function of the relationship between the parent and the child prior to the incarceration episode, the type or quality of this parent, and the role of the child in the household. To document this heterogeneity, I estimate the IV regression for different subgroups in the data. Following previous literature in economics, as well as that in psychology and sociology, I estimate different regressions by gender of the child, gender of the parent, child's age at the time of the incarceration episode, birth order, and the nature of the offense—violent, property, drug or gun-related, and misdemeanor. In Table 8 I show IV results for the pooled model for these different groups in the data.

According to the estimates, the benefits of parental incarceration are larger for boys than for girls, and this difference is statistically significant. Specifically, I find that boys' schooling increases by one year, whereas girls' schooling increases by 0.4 years, but the latter is not statistically significant. This result is consistent with

 $^{^{22}}$ I look at this empirically and find that among incarcerated defendants, those incarcerated under more strict judges tend to have fewer and less severe charges. This follows almost directly from the definition of leniency, but helps to illustrate the way in which this defendants are "better".

previous research in psychology and economics, documenting that boys are more vulnerable than girls to negative experiences in the household (Bertrand & Pan (2013), Autor et al. 2016; Parke & Clarke-Stewart, 2002; Hetherington et al., 1998). Specifically, Autor et al. find that boys, relative to their sisters, have higher rates of disciplinary problems, lower achievement scores, and fewer high school completions when growing up in disadvantaged environments.

I split the sample by gender of the parent and find that incarceration is more beneficial in the cases where the mother is the one going to prison. This result might be surprising at first glance. However, it is important to bear in mind that children's well-being is more closely affected by their mothers' behavior because of their main role as primary caregivers, and that criminal women are more negatively selected than criminal men (Table 2). This result is consistent with the findings of previous research in the US, where Billings (2018) and Turanovic et al. (2012) estimate larger positive effects from maternal incarceration. It is also the case that in the US incarcerated women have worse socioeconomic backgrounds than incarcerated men (Harrison & Beck, 2006). In addition, Glaze and Maruschak (2008) survey incarcerated parents and find that 60% of imprisoned mothers compared to 16% of fathers have histories of being physically or sexually abused.

A source of heterogeneity that is associated with the quality of the parent going to prison is the type of crime they committed. Thus, in the lower panel of Table 8 I split the sample by crime categories: violent, property, drug-related, gun-related, and misdemeanors. The largest benefits are observed for defendants convicted for violent crimes, whereas the smaller ones are for misdemeanors. These differences, however, are not statistically significant. Nonetheless, it is in line with the previous result on unobserved heterogeneity, in which the positive effects are a function of how good the defendant is as a parent.

Lastly, I look at heterogeneous effects depending on the age of the child at the time of parental conviction. I split the sample in three groups: children who were 0 to 5 years, 6 to 10 years, and 11 to 15 years at the time of parental conviction. I find a U pattern in the effects on schooling. Studies in developmental psychology conclude that children in the first age group are the most vulnerable, as they do not yet have the abilities and skills to process trauma on their own —Johnston (1995). These skills and abilities develop over time, which help children cope with distress. On the other hand, the increase in the positive effect in the later years can be the result of how salient the decision is to continue in school or to drop out at older ages.

5.4 Robustness

In this section I go over various exercises that evaluate the robustness of the results in the paper along different dimensions.

In Table 3 I report the first stage regression on incarceration and in the bottom of the table I report the F-test on the excluded instruments. This F-test corrects for the fact that the dimensionality of the instrument is the number of judges and not one (my measure of judge leniency). With this correction, the F-stats are low, but above the critical values for weak instruments. The consequence of weak instruments is that the 2SLS-IV estimate will be biased toward the OLS (Stock et al., 2002). In my context, given that the OLS estimates are negative, the bias of the OLS is also negative, and the 2SLS IV estimates are positive, what this translates into is that we can expect even larger positive effects. To assess the size of this residual bias I estimate the IV using the LIML estimator which is less sensitive to weak instruments —the bias does not increase with the number of instruments (Rothenberg, 1993; Stock et al., 2002). Table C5 in the Appendix shows the estimates for the LIML estimator, I find that the 2SLS and LIML estimator are very close, both around a point estimate of 0.8 years.

In the results section, I show my preferred specifications for the estimates of the effect of parental incarceration on educational attainment. This choice of splitting the sample into three groups of P_c was an arbitrary decision. To assess the robustness of the results, in Figure C3, I instead order observations along P_c , and run multiple regressions on a rolling window of 20,000 observations over P_c , moving the window 500 observations each time. Figure C3 in the Appendix shows that for each sample, I find a positive effect of incarceration on education.

Lastly, as a placebo check, I evaluate whether there are differences in schooling from children of incarcerated versus non-incarcerated parents before the date of sentence. Table C6 in the Appendix shows that there is no supporting evidence that the positive effects I estimate are the results of preexisting differences in educational attainment .

6 Mechanisms

6.1 What explains the positive effect?

The results presented here suggest that living with a convicted parent has negative consequences. There are many reasons to believe that this is plausible. First, criminals are more likely to exert psychological and physical violence at home, and this can often be detrimental to a child's well-being. In the US context, Western et al. (2004) find that incarcerated men engage in domestic violence at a rate about four times higher than the rest of the population. Further, psychology research documents that spending time with parents who engage in high levels of antisocial behavior is associated with more conduct problems for their children (Jaffee et al., 2003). This literature concludes that the salutary effects of being raised by married biological parents depend on the quality of care that the parents provide.

Second, Chimeli and Soares (2017) document the causal effect of trading illegal commodities on violence. In light of their work, we can expect that households that take part in illegal businesses face constant violence or threats of violence related to guaranteeing property rights or resolving disputes within the business, all of which affect the quality of life in a household. There is also literature on the intergenerational transmission of violence, substance abuse, and crime. Specifically, in the role-model theory, in which children directly observe and model their parents' behavior, incarcerating parents could be beneficial, as it removes bad role models from the house and forces children to update their beliefs about the consequences of criminal behavior (Hjalmarsson and Lindquist, 2012). Beyond intergenerational transmission, childhood exposure to negative behaviors is documented to have direct adverse effects on outcomes in both childhood and adulthood (Balsa, 2008; Chatterji and Markowitz, 2000).

6.2 How does the environment of the child changes?

To characterize the changes that households and children experience after an episode of incarceration, I analyze households for which I have two observations in the SIS-BEN (44% of cases), where the parent was convicted of a crime between observations. Appearing in both waves of the SISBEN is not random; rather, on the contrary, leaving the sample is associated with an improvement in living standards. This is particularly relevant for children who might be moving to a household outside of SISBEN after the episode of parental incarceration. With this caveat, Table ?? shows that incarceration is associated with an increase in labor force participation (LFP) of the spouse, a worsening of the income score of the household, and a decrease in the probability of a male as the head of the household. I also find that the probability of living with grandparents increases and the probability of being in the second wave of SISBEN decreases, suggesting that incarceration induces children to move in with relatives who are better off financially.

6.3 The size of the parents at the margin

To derive policy implications, it is important to acknowledge the local feature of my estimates. This paper estimates effects of parental incarceration for a particular sub-population: children of convicted poor parents at the margin of incarceration. A large share of the convicted —for example those guilty of murder or rape—would be incarcerated regardless of judge assignment, and this paper cannot provide any insights into the effects on educational attainment of the children of those individuals. On the other end of the distribution, defendants convicted of minor crimes will also avoid prison regardless of judge assignment. Defendants convicted of drug- or gun-trafficking, domestic violence, and medium sized property crimes compose the complier group in my estimation, and they are the group my estimates apply to. This marginal population, however, is particularly relevant because it is the population that is more likely to be affected by policy interventions to the criminal justice system. Following Dahl et al. (2014), I find that compliers make up approximately 29.8% of the sample. ²³

6.4 External validity and policy implications

To assess the external validity of my results, in Table ?? I look at sentencing guidelines for a selected group of relevant crimes, and for reference, I compare them to the guidelines for the state of New York.²⁴ First, the most salient feature of this table is the amount of discretion judges have. In most cases, the guidelines for sentences span many years. Second, Table C5 also shows an important difference across settings: sentences in Colombia tend to be longer than those in the US.²⁵ This might imply that the relevant margin of comparison to the US is not the probation/short-

$$\pi_c = Prob(Incarceration = 1 | z_j = \bar{z}) - Prob(Incarceration = 1 | z_j = \bar{z})$$

²³Parental compliers are defendants who would have received a different incarceration decision had their case been assigned to the most lenient judge instead of the strictest judge. We can define the size of this group (π_c) as follows:

where \bar{z} and \underline{z} correspond to the incarceration rates of a judge at the 99th and 1st percentiles, respectively. Because of monotonicity, the share of parents who would go to prison regardless of the judge assigned to their case -always takers- is given by the incarceration rate for the most lenient judge and is equal to 22.5%. On the other hand, 47.7% of the sample are children of never takers who would not go to prison no matter which judge was assigned to their case. I estimate that children of compliers make up approximately 29.8% of the sample.

²⁴These sentences can be decreased or increased whenever any mitigating or aggravating factors apply.

²⁵This can be a consequence of the policy to deal with overcrowding in prisons. As a result, judges in Colombia have fewer instruments for punishment compared to the US. In the US, judges can decide among probation and incarceration length, whereas in Colombia, judges in practice only decide between no incarceration and medium-term incarceration.

term incarceration margin—because it is likely that most of these cases are never takers (of incarceration) in my setting—but rather, prisoners with medium-term sentences. Regarding the size of the treatment effects, my results apply to contexts in which dropping out of school during the years of secondary school is relevant, the government offers little—if any—safety net to households, and the parental quality of those at the margin of incarceration is low.

In terms of policy implications these results call for greater support from the government in assisting children from fragile households. There is a strong body of experimental evidence on the powerful role of parenting and parenting supplements in shaping skills, but also on the lack of parenting knowledge among disadvantaged parents (see Cunha et al., 2013). Early childhood intervention have been remarkably successful in complementing parental care with positive economic, psychological, behavioral, and health benefits (Heckman et al, 2010). The Perry program, which targeted very disadvantaged kids from backgrounds where incarceration was a common feature, is an example of this. These programs have been successful in providing early supplements to parenting and can be a starting point to complement and improve the parenting among this population.

7 Conclusions

The rise in incarceration in the US has led to an equivalent increase in the number of children growing up with a parent in prison. Children of incarcerated parents fare worse than those without one on a wide range of outcomes. Yet, separating the causal effects of parental incarceration from preexisting risk factors has been a significant challenge. In this paper, I estimate the causal effects of parental incarceration on educational attainment in Colombia. My results suggest that children benefit when their convicted parents are incarcerated. Specifically, I estimate that parental incarceration increases schooling by 0.8 years on average.

I conclude with a discussion of a couple important limitations of this paper. First, I look only at the short-term effects of parental incarceration. This is important, as these parents eventually leave prison and perhaps return to live with their children. Further, if incarceration decreases one's human capital and social and emotional skills, the type of parent that returns after incarceration can be much worse than the one that left. In this case, the long-term effects may be very different from what I estimate here. Another significant limitation of this paper is that, effectively, I can only study one outcome variable. As shown by Dobbie et al. (2018) parental incarceration can have sizable effects on other variables such as earnings and teen pregnancy. These are important results that help characterize the complex shock that is having a parent incarcerated, but that due to data limitations I cannot explore here. Finally, given my sample selection, my analysis is restricted to cases in which the convicted parents are living with their children—which is not the majority of the cases—and to poor households. There are significant reasons to believe that my results do not extend to different groups of children living in other situations.

References

Abadie, A., Athey, S., Imbens, G.W. & Wooldridge, J., (2017). When Should You Adjust Standard Errors for Clustering? (No. w24003). National Bureau of Economic Research.

Abadie, A. (2003). Semiparametric Instrumental Variable Estimation of Treatment Response Models," Journal of Econometrics, 113(2), 231263.

Aizer, A. & J. J. Doyle (2015). Juvenile Incarceration, Human Capital and Future Crime: Evidence from Randomly-Assigned Judges. The Quarterly Journal of Economics 130 (2), 759–803.

Amato, P. R., Loomis, L. S., & Booth, A. (1995). Parental divorce, marital conflict, and offspring well-being during early adulthood. Social Forces, 73(3), 895-915.

Arditti, J.A., 2015. Family process perspective on the heterogeneous effects of maternal incarceration on child wellbeing. Criminology and Public Policy, 14(1), pp.169-182.

Arditti, Joyce (2012). Parental incarceration and the family: Psychological and social effects of imprisonment on children, parents, and caregivers. New York, NY: New York University Press.

Arditti, Joyce, Sara A. Smock, & Tiffaney S. Parkman (2005). It's been hard to be a father: A qualitative exploration of incarcerated fatherhood. Fathering 3:267–83.

Autor, D., Figlio, D., Karbownik, K., Roth, J., & Wasserman, M. (2016). Family disadvantage and the gender gap in behavioral and educational outcomes (No. w22267). National Bureau of Economic Research.

Balsa, A. I. (2008). Parental problem-drinking and adult children's labor market outcomes. Journal of Human Resources, 43(2), 454-486.

Bertrand, M. & Pan, J., 2013. The trouble with boys: Social influences and the gender gap in disruptive behavior. American Economic Journal: Applied Economics, 5(1), pp.32-64.

Bhuller, Manudeep, Gordon B. Dahl, Katrine V. Løken, & Magne Mogstad. 2017. "Incarceration, Recidivism and Employment." Quarterly Journal of Economics. 22648.

Billings, Stephen (2017) Parental Arrest and Incarceration: How Does it Impact the Children? (Preliminary draft)

Black, S.E., Devereux, P.J. & Salvanes, K.G., 2005. Why the apple doesn't fall far: Understanding intergenerational transmission of human capital. American Economic Review, 95(1), pp.437-449.

Black, S. E., Devereux, P. J., & Salvanes, K. G. (2005). The more the merrier? The effect of family size and birth order on children's education. The Quarterly Journal of Economics, 120(2), 669-700.

Chimeli, A. B., and Soares, R. R. (2017). The use of violence in illegal markets: Evidence from mahogany trade in the Brazilian Amazon. American Economic Journal: Applied Economics, 9(4), 30-57.

Cho, Rosa M. 2009a. "The Impact of Maternal Imprisonment on Children's Probability of Grade Retention: Results from Chicago Public Schools." Journal of Urban Economics, 65(1): 11-23.

Cho, Rosa M. 2009b. "The Impact of Maternal Incarceration on Children's Educational Achievement: Results from Chicago Public Schools." Journal of Human Resources, 44(3): 772-797.

Criminal Proceeding Code (2004). Codigo de Procedimiento Penal. Ley 906 de 2004; Bogota, Colombia.

Cunha, F., I. T. Elo, and J. Culhane (2013). Eliciting maternal expectations about the technology of cognitive skill formation. Working Paper 19144, NBER.

Currie, J. and Moretti, E., 2003. Mother's education and the intergenerational transmission of human capital: Evidence from college openings. The Quarterly Journal of Economics, 118(4), pp.1495-1532.

Dahl, G. B., A. R. Kostøl, and M. Mogstad (2014). Family Welfare Cultures. The Quarterly Journal of Economics 129 (4), 1711–1752.

Di Tella, R. and E. Schargrodsky (2013). Criminal Recidivism after Prison and Electronic Monitoring. Journal of Political Economy 121 (1), 28–73.

Dobbie, W., Goldin, J., & Yang, C. S. (2018). The Effects of Pretrial Detention on Conviction, Future Crime, and Employment: Evidence from Randomly Assigned Judges. American Economic Review, 108(2), 201-40.

Dobbie, W., H. Grönqvistz, S. Niknami, M. Palme and M. Priksk (2018). The Intergenerational Effects of Parental Incarceration. NBER Working Paper, January.

Doyle Jr, J. J. (2007). Child protection and child outcomes: Measuring the effects of foster care. American Economic Review, 97(5), 1583-1610.

Doyle Jr, J. J. (2008). "Child Protection and Adult Crime: Using Investigator Assignment to Estimate Causal Effects of Foster Care." Journal of Political Economy, 116(4): 746-770.

Ehrensaft, M.K., Cohen, P., Brown, J., Smailes, E., Chen, H. and Johnson, J.G., 2003. Intergenerational transmission of partner violence: a 20-year prospective study. Journal of consulting and clinical psychology, 71(4), p.741.

Furstenberg, F. F., Jr. (1995). Fathering in the inner city: Paternal participation

and public policy. In W. Marsiglio (Ed.), Research on men and masculinities series, 7. Fatherhood: Contemporary theory, research, and social policy (pp. 119-147). Thousand Oaks, CA, US: Sage Publications, Inc.

Fomin, S. V. (1999). Elements of the theory of functions and functional analysis (Vol. 1). Courier Corporation.

Imbens, G.W., and D. B. Rubin (1997). Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, 64(4).

Harrison, P. M. and A. J. Beck (2006). Prison and jail inmates at midyear 2005. Hart, B. and T. R. Risley (1995). Meaningful differences in the everyday experience of young American children. Baltimore, MD: P.H. Brookes.

Heckman, J. J., Urzua, S., and Vytlacil, E. (2006). Understanding instrumental variables in models with essential heterogeneity. The Review of Economics and Statistics, 88(3), 389-432.

Heckman, James J., and Edward Vytlacil. 2005. "Structural Equations, Treatment Effects, and Econometric Policy Evaluation." Econometrica, 73(3): 669-738.

Heckman, J. J., S. H. Moon, R. Pinto, P. A. Savelyev, and A. Q. Yavitz (2010a). Analyzing social experiments as implemented: A reexamination of the evidence from the HighScope Perry Preschool Program. Quantitative Economics 1 (1), 1–46.

Heckman, J. J., S. H. Moon, R. Pinto, P. A. Savelyev, and A. Q. Yavitz (2010b). The rate of return to the HighScope Perry Preschool Program. Journal of Public Economics 94 (1–2), 114–128.

Heckman, J. J. (2013). Giving kids a fair chance. Mit Press.

Hetherington, E. M., Bridges, M., and Insabella, G. M. (1998). What matters? What does not? Five perspectives on the association between marital transitions and children's adjustment. American Psychologist, 53(2), 167.

Hjalmarsson, Randi, and Matthew J. Lindquist. 2011. "The Origins of Intergenerational Associations in Crime: Lessons from Swedish Adoption Data." Labour Economics, 20: 68-81.

Hjalmarsson, Randi, and Matthew J. Lindquist. 2012. "Like Godfather, Like Son: Exploring the Intergenerational Nature of Crime." Journal of Human Resources, 47(2): 550-582.

Hjalmarsson, Randi, Helena Holmlund, and Matthew J. Lindquist. 2015. "The Effect of Education on Criminal Convictions and Incarceration: Causal Evidence from Micro-data." Economic Journal, 125(587): 1290-1326.

Jaffee, S. R., Moffitt, T. E., Caspi, A., and Taylor, A. (2003). Life with (or without) father: The benefits of living with two biological parents depend on the

father's antisocial behavior. Child development, 74(1), 109-126.

Kalil, A., 2015. Inequality begins at home: The role of parenting in the diverging destinies of rich and poor children. In Families in an era of increasing inequality (pp. 63-82). Springer, Cham.

Kim-Cohen, J., Moffitt, T.E., Taylor, A., Pawlby, S.J. and Caspi, A., 2005. Maternal depression and children's antisocial behavior: nature and nurture effects. JAMA Archives of general psychiatry, 62(2), pp.173-181.

Kling, J. R. (2006). Incarceration Length, Employment, and Earnings. The American Economic Review 96 (3), 863–876.

Lee, Sokbae, and Bernard Salanié. "Identifying effects of multivalued treatments." (2018).

Lefgren, L., Sims, D. and Lindquist, M.J., 2012. Rich dad, smart dad: Decomposing the intergenerational transmission of income. Journal of Political Economy, 120(2), pp.268-303.

Lyle, D. S. (2006). Using military deployments and job assignments to estimate the effect of parental absences and household relocations on children's academic achievement. Journal of Labor Economics, 24(2), 319-350.

McLanahan, S., Tach, L., and Schneider, D. (2013). The causal effects of father absence. Annual review of sociology, 39, 399-427.

Mueller-Smith, M. (2017). The Criminal and Labor Market Impacts of Incarceration. University of Michigan Working Paper.

Murray, Joseph, and David P. Farrington. 2005. "Parental Imprisonment: Effects on Boys' Antisocial Behaviour and Delinquency Through the Life-Course." Journal of Child Psychology and Psychiatry, 46(12): 1269-1278.

Murray, Joseph, David P. Farrington, and Ivana Sekol. 2012. "Children's Antisocial Behavior, Mental Health, Drug Use, and Educational Performance After Parental Incarceration: A Systematic Review and Meta-analysis." Psychological Bulletin, 138(2): 175-210.

Murray, Joseph, Rolf Loeber, and Dustin Pardini. 2012. "Parental Involvement in the Criminal Justice System and the Development of Youth Theft Marijuana Use, Depression and Poor Academic Performance." Criminology, 50(1): 255-302.

Murray, Joseph, Carl-Gunnar Janson, and David P. Farrington. 2007. "Crime in Adult Offspring of Prisoners: A Cross-National Comparison of Two Longitudinal Samples." Criminal Justice and Behavior, 34(1): 133-149.

Parke, R. D. and Clarke-Stewart, K. A. (2003). The effects of parental incarceration on children, Prisoners once removed: The impact of incarceration and reentry on children, families, and communities pp. 189–232. Norris, S., Pecenco, M. and Weaver, J. (2018). "The Effects of Parental and Sibling Incarceration: Evidence from Ohio". Working paper

Pew Center. 2011. "State of Recidivism: The Revolving Door of America's Prisons." Washington, DC: Pew Charitable Trusts.

Stith, S.M., Rosen, K.H., Middleton, K.A., Busch, A.L., Lundeberg, K. and Carlton, R.P., 2000. The intergenerational transmission of spouse abuse: A metaanalysis. Journal of Marriage and Family, 62(3), pp.640-654.

Stock, J. H., Wright, J. H., & Yogo, M. (2002). A survey of weak instruments and weak identification in generalized method of moments. Journal of Business & Economic Statistics, 20(4), 518-529.

Turanovic, J. J., Rodriguez, N., and Pratt, T. C. (2012). The collateral consequences of incarceration revisited: A qualitative analysis of the effects on caregivers of children of incarcerated parents. Criminology, 50(4), 913-959.

Vytlacil, E. (2002). Independence, monotonicity, and latent index models: An equivalence result. Econometrica, 70(1), 331-341.

Western, Bruce. 2006. Punishment and Inequality in America. New York: Russell Sage Foundation.

Western, Bruce and Christopher Muller. 2013. "Mass Incarceration, Macrosociology, and the Poor." The Annals of the American Academy of Political and Social Science 647: 166–89.

Western, Bruce, Leonard M. Lopoo, and Sara S. McLanahan. 2004. "Incarceration and the Bonds between Parents in Fragile Families." Pp. 21–45 in Imprisoning America: The Social Effects of Mass Incarceration, edited by M. Patillo, D. Weiman, and B. Western. New York: Russell Sage Foundation

Western, B. and Pettit, B.: 2010, Collateral costs: Incarceration's effect on economic mobility, Washington, DC: The Pew Charitable Trusts .

Western, B., 2018. Homeward: Life in the Year After Prison.

Wildeman, Christopher. 2010. "Paternal Incarceration and Children's Physically Aggressive Behaviors: Evidence from the Fragile Families and Child Wellbeing Study." Social Forces, 89(1): 285-309.

Wildeman, Christopher, and Bruce Western. 2010. "Incarceration in Fragile Families." The Future of Children, 20(2): 157-177.

Wildeman, Christopher, Signe Hald Anderson, Hedwig Lee and Kristian Bernt Karlson. 2014. "Parental Incarceration and Child Mortality in Denmark." American Journal of Public Health, 104(3): 428-433.

Tables

Sample:	Census: Adult population	SISBEN Criminal record		SISBEN w/ conviction By incarceration	
		No	Yes	No	Yes
	(1)	(2)	(3)	(4)	(5)
Years of education	7.36	6.82	6.68	6.86	6.42
Finished High School D=1	44.0%	31.2%	22.8%	24.2%	20.8%
Income score		34.01	30.90	31.72	29.41
Gender (Male=1)	49.0%	47.6%	83.3%	84.5%	83.3%
# HH members	3.90	4.28	4.47	4.37	4.43
Occupation: Working D=1	48.0%	47.3%	65.4%	67.0%	63.9%
Head of the household D=1 $$		41.2%	47.1%	46.9%	48.6%
Year of birth	1965	1966.9	1974.8	1975.0	1974.3
Marital status: Single D.	45.0%	34.7%	40.7%	45.0%	43.6%
Obs	26,757,687	16,195,178	89,257	55,790	33,467
Years of education for children	8.41	7.20	6.71	6.93	6.57

Table 1: Population by conviction and incarceration

Notes: Columns 1-5 are group means. HHH: Head of the household, HS: High School. D: Dummy. Income Score: Score from 0 to 100, calculated using variables on income and education of the members of the household, size and characteristics of the house. Source: 2005 Census, SISBEN and criminal records.

Convicted sample: by gender and incarceration status	Women		Men	
	No	Yes	No	Yes
	(1)	(2)	(3)	(4)
Years of education	6.50	6.06	6.68	6.23
Dummy Has HS degree $=1$	20%	16%	22%	19%
Income Score	17.2	16.1	19.48	18.46
Occupation: Dummy Working=1	45%	40%	69%	68%
Dummy head of the household=1	36.2%	37.1%	47%	50%
Age at sentence	35.5	36.2	34.46	36.31
Marital status: Dummy Single=1		45.1%	46%	44%
Obs	9,375	6,028	46,415	27,439

Table 2: Convicted parents by incarceration and gender

Notes: Columns 1-4 are group means. HHH: Head of the household, HS: High School. D: Dummy. Income Score: Score from 0 to 100, calculated using variables on income and education of the members of the household, size and characteristics of the house. Source: SISBEN and criminal records.

Dep var: Decision Dummy	(1)	(2)	(3)	(4)
Judge Stringency	Conviction 0.697*** [0.0368]	Conviction 0.697*** [0.0368]	Incarceration 0.792*** [0.0416]	Incarceration 0.786*** [0.0430]
Controls		Х		Х
F stat*	4.4	4.0	3.9	4.2
Obs Judges	233,050 392	$116,062 \\ 392$	91,854 262	90,774 262
R-sq adj. R-sq	$0.124 \\ 0.118$	$0.124 \\ 0.118$	$0.243 \\ 0.238$	$0.242 \\ 0.237$
				<u> </u>

Table 3: First stage - Parents

Controls column 2: Gender, age, number of crimes, and crime category . Controls column 3: Years of education, gender, income score, year of birth, occupation, year of survey. Standard errors clustered at the judge level. Sources: Attorney General's Office, criminal records and poverty census. Fstat is calculated from a regression on judge dummys.
		T 1 T
Dep. Var: Conviction / Incarceration strin-	Judge: Conviction	Judge: Incarceration
gency	stringency	stringency
Age	0.0000024	0.00000914
-	[0.0000208]	[0.0000354]
Gender	0.000324	-0.000291
	[0.000509]	[0.000753]
Number of charges	0.000867	0.000718
0	[0.000835]	[0.00157]
Violent crime	-0.000293	0.0014
	[0.000805]	[0.00129]
Property crime	0.00203	0.00117
	[0.00224]	[0.00360]
Drugs related crime	-0.000927	-0.00189
-	[0.00157]	[0.00271]
Guns related crime	-0.000666	-0.00101
	[0.00142]	[0.00213]
Misdeminour	-0.000867	0.00139
	[0.00112]	[0.00183]
Obs	187 021	162.060
Judges	101,201	683
F test	1,272	0.80
r test	0.32	0.00

 Table 4: Balance test-Trial sample

Standard errors clustered at the randomization unit/year level. Each rows corresponds to a different regression of judge leniency and defendant characterisitcs. When testing balance across crime categories I construct an alternative measure of conviction stringency that doesnt parse-out crime level conviction rates. The F-test corresponds to a regression where I inlcude all the variables at the same time. Source Attorney General's office and criminal records.

	(1)	(2)	(3)	(4)
Dep var: Incarceration FE	0.74 <pc<0.88< td=""><td>0.88<pc<0.9< td=""><td>0.9<pc<1< td=""><td>Pooled Pc</td></pc<1<></td></pc<0.9<></td></pc<0.88<>	0.88 <pc<0.9< td=""><td>0.9<pc<1< td=""><td>Pooled Pc</td></pc<1<></td></pc<0.9<>	0.9 <pc<1< td=""><td>Pooled Pc</td></pc<1<>	Pooled Pc
Years of education	-0.0000292 [0.000119]	-0.0000215 [0.000136]	$\begin{array}{c} 0.000274 \\ [0.000169] \end{array}$	0.00011 [0.0000873]
Income score	-0.0000174	0.00000267	0.000013	0.0000106
	[0.0000283]	[0.0000292]	[0.0000364]	[0.0000175]
Age at sentence	0.0000218	-2.08E-08	0.0000107	0.0000197
	[0.0000338]	[0.0000320]	[0.0000435]	[0.0000266]
Gender	-0.00142	0.001	-0.00212**	-0.00104
	[0.00127]	[0.000793]	[0.00100]	[0.000633]
Years of education HH	-0.0000463 $[0.000157]$	0.000106 [0.000136]	-0.000153 $[0.000162]$	-0.0000165 [0.0000996]
D: Working	-0.0000919	-0.000981	0.000137	-0.000126
	[0.000672]	[0.000763]	[0.00108]	[0.000493]
D: Studying	-0.0022	-0.000602	0.00103	0.00108
	[0.00316]	[0.00278]	[0.00364]	[0.00199]
D: Both census surveys	-0.000844 $[0.000897]$	-0.000942 [0.000634]	0.000587 [0.000857]	-0.000305 $[0.000488]$
D: First survey	0.000355	0.000691	0.000648	0.000511
	[0.00124]	[0.00123]	[0.00162]	[0.000800]
Constant	0.178^{*}	-3.04E-01	6.64E-02	0.360^{***}
	[0.107]	[0.226]	[0.124]	[0.00594]
F Test	0.8494	0.5001	0.564	0.5763
Obs R-sq	$ \begin{array}{r} 16,684 \\ 0.128 \end{array} $	$17,416 \\ 0.149$	$15,845 \\ 0.137$	49,945 0.03

Table 5: 1	Balance test	II-Incarcerated	sample
------------	--------------	------------------------	--------

Additional controls: Pc, Municipality FE, sentence year FE. Standard errors clustered at the randomization unit year level.

	Children with a convicted parent by age 14				
OLS: no controls	(1) (2)		(3)	(4)	
Dep var: Years of education	0.7 <pc<0.88< td=""><td>0.88<pc<0.9< td=""><td>0.9<pc<1< td=""><td>Pooled Po</td></pc<1<></td></pc<0.9<></td></pc<0.88<>	0.88 <pc<0.9< td=""><td>0.9<pc<1< td=""><td>Pooled Po</td></pc<1<></td></pc<0.9<>	0.9 <pc<1< td=""><td>Pooled Po</td></pc<1<>	Pooled Po	
Parental Incarceration Dummy	-0.400*** [0.0776]	- 0.270*** [0.0716]	-0.408*** [0.0727]	-0.388*** [0.0423]	
Constant	6.652^{***} [0.0695]	6.980^{***} [0.0695]	6.786^{***} [0.0718]	6.838^{***} [0.0421]	
Obs	17,347	18,672	17,045	53,718	
Clusters	264	197	303	780	
R-sq	0.004	0.002	0.005	0.004	
OLS: Adding controls					
Parental Incarceration Dummy	-0.0675	-0.0938**	0.0134	-0.0572**	
	[0.0456]	[0.0398]	[0.0394]	[0.0242]	
Constant	6.128***	8.911***	6.033***	8.668***	
	[1.263]	[3.244]	[0.748]	[2.635]	
Obs	17,347	18,672	17,045	53,064	
Clusters	264	197	303	764	
R-sq	0.408	0.386	0.391	0.387	
Controls: Municipality FE, gen	der, YOB FE,	SISBEN score,	years of educ	cation of	
HH head, years of education inc	carcerated parer	nt, gender of ind	carcerated pa	rent, pc,	
year of sentence, birth order and	year of survey.	Column 4 contr	ols add a seco	nd order	
polynomial on Pc. Sample: Ch	ildren between	1990 and 2007	who had a c	onvicted	
parent between ages 0 and 14. S	SE in brackets c	lustered at the	judge level.		

Table 6: OLS Regression

Reduced form	(1)	(2)	(3)	(4)
Dep var: Years of education	$0.7{<}\mathrm{Pc}{<}0.88$	0.88 < Pc < 0.9	0.9 < Pc < 1	Pooled Pc
Judge stringency	0.918**	0.593	0.558^{**}	0.664***
	[0.421]	[0.510]	[0.258]	[0.205]
Obs	17347	18672	17045	53064
Clusters	415	386	404	610
R-sq	0.409	0.386	0.392	0.387
IV Dep var: Years of education	(1)	(2)	(3)	(4)
IV Dep var: Years of education	(1) 0.7 < Pc < 0.88	(2) 0.88; Pc < 0.9	(3) 0.9 < Pc < 1	(4) Pooled Pc
IV Dep var: Years of education Parental Incarceration Dummy	(1) 0.7 <pc<0.88 0.770**</pc<0.88 	(2) 0.88;Pc<0.9 0.904	(3) 0.9 <pc<1 0.753*</pc<1 	(4) Pooled Pc 0.842***
IV Dep var: Years of education Parental Incarceration Dummy	(1) 0.7 <pc<0.88 0.770** [0.356]</pc<0.88 	(2) 0.88¡Pc<0.9 0.904 [0.761]	(3) 0.9 <pc<1 0.753* [0.399]</pc<1 	(4) Pooled Pc 0.842*** [0.282]
IV Dep var: Years of education Parental Incarceration Dummy	(1) 0.7 <pc<0.88 0.770** [0.356]</pc<0.88 	(2) 0.88;Pc<0.9 0.904 [0.761]	(3) 0.9 <pc<1 0.753* [0.399]</pc<1 	(4) Pooled Pc 0.842*** [0.282]
IV Dep var: Years of education Parental Incarceration Dummy Obs	(1) 0.7 <pc<0.88 0.770** [0.356] 17,347</pc<0.88 	(2) 0.88;Pc<0.9 0.904 [0.761] 18,672	(3) 0.9 <pc<1 0.753* [0.399] 17,045</pc<1 	(4) Pooled Pc 0.842*** [0.282] 53,064
IV Dep var: Years of education Parental Incarceration Dummy Obs Clusters	(1) 0.7 <pc<0.88 0.770** [0.356] 17,347 264</pc<0.88 	$(2) \\ 0.88; Pc < 0.9 \\ 0.904 \\ [0.761] \\ 18,672 \\ 197$	(3) 0.9 <pc<1 0.753* [0.399] 17,045 303</pc<1 	(4) Pooled Pc 0.842*** [0.282] 53,064 764

Table 7: Results: Reduced form and IV

Controls: Municipality FE, gender, YOB FE, Sisben score, years of education HH head, years of education of incarecerated parent, gender of incarcerated parent, pc, year of sentence, birth order and year of survey. Column 4 controls add a second order polynomial on Pc. Sample: Children between 1990 and 2007 who had a convicted parent between ages 0 and 14. SE in brackets clustered at the judge level. AR confidence interval result in the same significance levels.

IV	Girls	Boys		Mother	Father
Dep var: Years of education	(1)	(2)	_	(3)	(4)
Parental Inc.	0.484*	1.278***	_	1.223**	0.745**
	[0.258]	[0.452]		[0.592]	[0.307]
Obs	26148	26916		12019	41045
		1	Age of the chi	ld	
		0-5 years	5-10 years	10-15 years	
Parental Inc.		0.798**	0.57	1.384**	
		[0.297]	[0.337]	[0.615]	
Obs		18,630	$23,\!505$	13,019	
			Type of crin	ne	
	Violent	Property	Drug-related	Gun-related	Misdemeanour
Parental Inc.	1.341	0.855^{*}	0.883	0.803	0.62
	[1.178]	[0.505]	[0.663]	[0.506]	[1.693]
Obs	10259	13385	12846	9937	6637
Pooled Pc	X	х	х	х	х

Table 8: Heterogenous effects

Controls: Municipality FE, gender, YOB FE, Sisben score, years of education head, years of education incarcerated parent, gender of incarcerated parent, pc, year of sentence, birth order and year of survey. Column 4 controls add a second order polynomial on Pc. Sample: Children between 1990 and 2007 who had a convicted parent between ages 0 and 14. SE in brackets clustered at the randomization unit and year level.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Dep var:	LFP spouse	Income score	Years of educ. HHH	D: Male HHH	# of people in HH	D: Lives w/ Grandpar- ents	D: In 2nd SISBEN
Parental Inc.	0.0680^{***} [0.0187]	-2.365*** [0.193]	0.103^{***} [0.0300]	-0.0786*** [0.00604]	-0.0996*** [0.0303]	0.0196^{*} [0.0110]	-0.0303*** [0.00492]
Obs R-sq	$9,673 \\ 0.22$	$82,779 \\ 0.75$	82,779 0.20	$82,779 \\ 0.19$	$81,615 \\ 0.33$	$16,372 \\ 0.10$	$32,881 \\ 0.08$
Mean dep var: St dev dep var:	$0.399 \\ 0.49$	26.41 20.13	5.1 2.911	$0.595 \\ 0.491$	4.659 2.42	$0.215 \\ 0.411$	0.242 0.428

Table 9: Changes after incarceration

Panel regressions. Controls: Poverty score, years of education of HHH, Municiaplity FE and year of survey FE. Dummy for living with grandparents also includes uncles and cousins. Households with data on both cross-sections of the poverty census and who had an conviction episode in between surveys. Source: SISBEN and criminal records.

Figures

Figure 1: Prosecution and trial stages

Source: Colombian Penal proceedings code, Informe de la Comision Asesora de Politica Criminal (2012), SPOA and Criminal records.

Figure 2: Incarceration rates

Source: Criminal records. Selected crimes. I restrict to crimes with at least 100 cases.

Figure 3: Identification: Defendant's space, judges thresholds and treatment assignment

A defendant is characterized by a point in the unitary square. A judge is defined by a pair of threshold along each axis which determine treatment assignments. Defendats to the left of the conviction threshold are convicted, and those to the right are freed. Among the convicted, defendants below the incarceration threshold go to prison, and those above do not.

Figure 4: Identification under 4 types of judges

The left panel features harsh judges on the conviction margin (h^c) . This judges can be harsh (h^I) or lenient (l^I) on the incarceration margin. We can identify the causal effect of incarceration for defendants in the shaded area. Those whose incarceration decision is only a function of judge assignment. The right panel is analogous and it features lenient judges on the conviction margin (h^c) .

Figure 5: Judges' fixed effects

Source: Attorney General's office and criminal records. Raw rates are conviction/incarceration averages by judge. To construct the judge's fixed effect I take the residual at the judge level after regressing conviction/incarceration on (demeaned) randomization unit/year dummys, (demeaned) crime-level conviction/incarceration rates, without a constant.

Figure 6: First stage

Source: Attorney General's office and criminal records. Raw rates are conviction/incarceration averages by judge. To construct the judge's fixed effect I take the residual at the judge level after regressing conviction/incarceration on (demeaned) randomization unit/year dummys, (demeaned) crime-level conviction/incarceration rates, without a constant.

Figure 7: Scatter plot: Judges' fixed effects

Source: Attorney General's office and criminal records. To construct the judge's fixed effect I take the residual at the judge level after regressing conviction/incarceration on (demeaned) randomization unit/year dummys, (demeaned) crime-level conviction/incarceration rates, without a constant.

Figure 8: Reduced form

Notes: Histograms of parental incarceration judge stringency and the fitted value of local polynomial regressions of children's educational attainment on judge stringency. Pooled regression I control for p_c .

Notes: Following the LIV approach in Heckman and Vytlacil (2005) I regress $Yeduc = \alpha + \beta_1 P_i + \beta_2 P_i^2 + \beta_3 X$. This graphs plots: $\beta_1 P_i + 2\beta_2 P_i$ for the pooled regression.

A Appendix: Model and proofs

The model is described by the standard IV model that consists of five main random variables: $T, Z, Y, \mathbf{V}, \mathbf{X}$. Those variables lie in the probability space (Ω, F, P) , where individuals are represented by elements $i \in \Omega$ of the sample space Ω . The variables are defined below:

- T_i denotes the assigned treatment of individual *i*, and takes values in $supp(T) = \{t_f, t_c, t_I\}$. t_f stands for not convicted, t_c for convicted but not incarcerated, and t_I for convicted and incarcerated.
- Z_i is the instrumental variable in this analysis and takes values in supp(Z), and represents judge assignment.
- Y_i denotes the outcome of interest for individual *i*, e.g. years of education of the child.
- \mathbf{X}_i represents the exogenous characteristics of individual i.
- \mathbf{V}_i stands for the random vector of unobserved characteristics of individual *i*, and takes values in $supp(\mathbf{V})$.

The random vector \mathbf{V} is the source of selection bias in this model. It causes both the treatment T and outcome Y. The standard IV model is defined by two functions and an independence condition as follows:

Outcome Equation:
$$Y = f_Y(T, X, V, \epsilon_Y)$$
 (13)

Treatment Equation:
$$T = f_T(Z, X, V)$$
 (14)

Independence:
$$Z \perp V, \epsilon_Y | X$$
 (15)

where ϵ_Y is an unobserved zero-mean error term associated with the outcome equation.

In this notation, a counterfactual outcome is defined by fixing T to a value $t \in supp(T)$ in the outcome equation. That is, $Y(t) = f_Y(t, \mathbf{V}, \mathbf{X}, \epsilon_Y)$. The observed outcome for individual i is given by:

$$Y = Y(T) = \sum_{t \in \{t_f, t_c, t_I\}} Y(t) \cdot \mathbf{1}[T = t].$$
 (16)

The independence condition (3) implies the following exclusion restriction:

Exclusion Restriction :
$$Z \perp Y(t) | \mathbf{X}$$
 for all $t \in supp(T)$. (17)

For the sake of notational simplicity, I suppress exogenous variables \mathbf{X} henceforth. All of the analysis can be understood as conditional on pre-treatment variables.

I assume that the treatment equation is governed by a combination of two threshold crossing inequalities. First, there is a conviction stage:

$$\begin{cases} \text{Free} & \text{if } \mathbf{1}[\phi_c(\mathbf{V}) > \xi_c(Z)] \\ \text{Convicted} & \text{if } \mathbf{1}[\phi_c(\mathbf{V}) \le \xi_c(Z)] \end{cases} \end{cases}$$

where $\mathbf{1}[\cdot]$ denotes a binary indicator and $\phi_c(\cdot), \xi_c(\cdot)$ are real-valued functions. Function $\phi_c(\cdot)$ measures the degree of culpability assessed by the judicial system. This function looks at variables and information that are not observed by the econometrician but that are observed by the judge, such as the evidence, crime intensity, the effort of the defense and prosecutor lawyers, as well as unobserved characteristics of the defendant such as aggression, anti-social behavior, etc. The function $\xi_c(\cdot)$ assesses the judge leniency on conviction. This function can be understood as a threshold of reasonable doubt beyond which the defendant is convicted by the judge. Judges differ in their leniency and may set different threshold of evidence. The judge convicts defendant *i* whenever: $\phi_c(\mathbf{V}) \leq \xi_c(Z)$. If that is the case, a second stage is held and the judge makes a decision regarding incarceration:

$$\begin{cases} \text{Not incarcerated} & \text{if } \mathbf{1}[\phi_I(\mathbf{V}) > \xi_I(Z)] \\ \text{Incarcerated} & \text{if } \mathbf{1}[\phi_I(\mathbf{V}) \le \xi_I(Z)] \end{cases}$$

Similarly, $\phi_I(\mathbf{V})$ is a function whose arguments are case and defendant's characteristics that are relevant for the assessment of the punishment level. Same as before, the judge compares $\phi_I(\mathbf{V})$ to her/his threshold to incarcerate $\xi_I(Z)$.

Treatment assignment can be summarized as follows:²⁶

 $^{^{26}\}mathrm{See}$ example 4 in Lee and Salanie (2017).

$$T = f_T(Z, \mathbf{V}) = \begin{cases} t_f & \text{if } \mathbf{1}[\phi_c(\mathbf{V}) > \xi_c(Z)] \\ t_c & \text{if } \mathbf{1}[\phi_c(\mathbf{V}) \le \xi_c(Z)] \cdot \mathbf{1}[\phi_I(\mathbf{V}) > \xi_I(Z)] \\ t_I & \text{if } \mathbf{1}[\phi_c(\mathbf{V}) \le \xi_c(Z)] \cdot \mathbf{1}[\phi_I(\mathbf{V}) \le \xi_I(Z)] \end{cases}$$

This model relies on two separable threshold functions that play the role of the monotonicity condition.²⁷

I assume the following standard regularity conditions: i) $E(|Y(t)|) < \infty$ for all $t \in supp(T)$, ii) P(T = t|Z = z) > 0 for all $t \in supp(T)$ and all $z \in supp(Z)$ and, iii) $(\phi_c(\mathbf{V}), \phi_I(\mathbf{V}))$ are absolutely continuous with respect to Lebesgue measure in \mathbb{R}^2 . The first assumption guarantees the existence of the expectation, the second one assures that there is a share of the population assigned to each treatment group for every judge, and the third one allows me to apply the Lebesgue differentiation theorem.

Without loss of generality, it is useful to express treatment assignment using the following variable transformation:

$$U^{c} = F_{\phi^{c}(\mathbf{V})}(\phi^{c}(\mathbf{V})) \sim Unif[0,1], \qquad (18)$$

$$U^{I} = F_{\phi^{I}(\mathbf{V})}(\phi^{I}(\mathbf{V})) \sim Unif[0,1],$$
(19)

$$P_c = F_{\phi^c(\mathbf{V})}(\xi^c(Z)); z \in supp(Z),$$
(20)

$$P_I = F_{\phi^I(\mathbf{V})}(\xi^I(Z)); z \in supp(Z),$$
(21)

where $F_K(\cdot)$ denotes the cumulative distribution function of a random variable K.

$$D_i(j) > D_{i'}(j)$$

Then, it cannot be the case that judge j' convicts defendant i, but not i'. Which means:

$$D_i(j) > D_{i'}(j) \to D_i(j') > D'_i(j')$$

which is equivalent to state that:

$$D_i(j) > D_i(j') \to D_{i'}(j) > D_{i'}(j')$$

We can generalize this to all individuals to arrive at the standard monotonicity assumption of Imbens and Angrist (1994).

²⁷Consider two judges j and j', that see defendants i and i' who differ in their level of culpability. Say i' has more evidence against him than i, namely $\phi_c(i') < \phi_c(i)$. Supposed that judge j convicts defendant i' but not i. Then the threshold function implies that it cannot be the case that judge j' convicts defendant i, but not i'. More generally, let $D_i(j) = \mathbf{1}[T_i(j) = t_c]$ denote the binary indicator that judge j convicts defendant i. Thus if judge j convicts i' but not i, it implies:

 U^c, U^I, P_c, P_I are uniformly distributed random variables in [0, 1] due to assumption (iii). Let $P_c(z)$ denote the conditional random variable $P_c(Z = z)$ which is simply. Moreover, independence condition (3) implies $P_c, P_I \perp (U^c, U^I)$. In this notation, the model can be expressed as:

$$T \equiv f_t(Z, V) = g_T(U^c, U^I, P_c, P_I) = \begin{cases} t_f & \text{if } \mathbf{1}[U^c > P_c(z)] \\ t_c & \text{if } \mathbf{1}[U^c \le P_c(z)] \cdot \mathbf{1}[U^I > P_I(z)] \\ t_I & \text{if } \mathbf{1}[U^c \le P_c(z)] \cdot \mathbf{1}[U^I \le P_I(z)] \end{cases}$$
(22)

In the model, U^c and U^I have the same interpretation as in the previous section, and P_c is interpreted as the share convicted for judge z. Moreover, under the assumption that $U_c \perp U_I$, we can identify $P_I(z)$ from the data, that is:

$$P(U^{I} < P_{I}(z)|U^{c} \le P_{c}(z)) = P(U^{I} < P_{I}(z)) = P_{I}(Z)$$

The left hand side is observed from the data, the first equality follows directly from the independence assumption and the last one the uniform distribution of U^{I} . P_{I} is interpreted as the share incarcerated. For ease of exposition, I will first explore identification under this assumption (see also Lee & Salanie, 2017) and then I will go over the results without it.

The goal is to identify and evaluate the treatment effect: $E(Y(t_I) - Y(t_c))$ which is a function of counterfactual variables $Y(t_I)$ and $Y(t_c)$. To achieve this goal, it is useful to express the observed expectations in terms of the variables that define the model:

$$E(Y \cdot \mathbf{1}[T = t_c]|P_c(Z) = p_c, P_I(Z) = p_I) =$$
(23)

$$= E(Y(t_c) \cdot \mathbf{1}[T = t_c] | P_c(Z) = p_c, P_I(Z) = p_I)$$
(24)

$$= E(Y(t_c) \cdot \mathbf{1}[U^c \le p_c] \cdot \mathbf{1}[U^I > p_I] | P_c(Z) = p_c, P_I(Z) = p_I)$$
(25)

$$= E(Y(t_c) \cdot \mathbf{1}[U^c \le p_c] \cdot \mathbf{1}[U^I > p_I])$$
(26)

$$= \int_{0}^{p_{c}} \int_{p_{I}}^{1} E(Y(t_{c})|U^{c} = u^{c}, U^{I} = u^{I}) f_{u^{c}u^{I}}(u^{c}, u^{I}) du^{c} du^{I}$$
(27)

(28)

$$= -\int_{0}^{p_{c}} \int_{0}^{p_{I}} E(Y(t_{c})|U^{c} = u^{c}, U^{I} = u^{I}) f_{u^{c}, u^{I}}(u^{c}, u^{I}) du^{c} du^{I} + \int_{0}^{p_{c}} E(Y(t_{c})|U^{c} = u^{c}) f_{u^{c}}(u^{c}) du^{c}$$

Equation (23) is an expectation observed in the data. Equality (24) comes from the definition of observed outcomes in Equation (16). Equality (25) expresses the indicator $\mathbf{1}[T = t_c]$ in terms of the inequalities of the choice model. Equality (26) uses the independence relation $Z \perp (U^c, U^I)$. Equality (27) expresses the expectation as the integral over the distribution of U^c, U^I where $f_{U^c, U^I}(u^c, u^I)$ stands for the probability density function of U^c, U^I at the point (u^c, u^I) , and is equal to one. Equality (28) modifies the integration region. This change is useful to apply the Lebesgue differentiation theorem next;

$$\frac{\partial^2 E(Y \cdot \mathbf{1}[T=t_c]|P_c(Z)=p_c, P_I(Z)=p_I)}{\partial p_c \partial p_I} = -E(Y(t_c)|U^c=p_c, U^I=p_I)$$
(29)

Equality (29) arises as a direct application of the Lebesgue differentiation theorem. What this result gives me is a connection between the observed outcomes (Eq. 23) and the targeted counterfactual outcome (RHS Eq. 29). We can use the same steps applied to counterfactual $Y(t_c)$ to obtain the counterfactual for $Y(t_I)$. Combining these two I obtain:

$$\frac{\partial^2 E(Y \cdot \mathbf{1}[T \in \{t_c, t_I\}] | P_c(Z) = p_c, P_I(Z) = p_I)}{\partial p_c \partial p_I} = E(Y(t_I) - Y(t_c) | U^c = p_c, U^I = p_I)$$
(30)

In the language of Heckman and Vytlacil (2005), Eq.30 defines the marginal treatment effect (MTE) of outcome Y with respect to treatment assignment t_c and t_I . It is interpreted as the causal effect of incarceration versus conviction only, for the share of defendants whose culpability and punishment assessments, U_c and U_I respectively, is set at quantiles p_c and p_I . The derivative in Equation (30) traces the MTE of incarceration relative to conviction throughout the unitary square of U^c, U^I . This result is an application of Lee and Salanie (2017) and extends the result of Heckman and Vytlacil (1999). In Appendix B I explain graphically the intuition of this result. The main idea is that changes in P_c and P_I affect exogenously treatment assignment. Then, by looking at the derivative of the outcome variables with respect to P_c and P_I , we capture how the outcome variable changes when treatment changes at each point in the space of the unobservable confounding variables.

The average treatment effect (ATE) is the causal effect of t_c and t_I on Y in the population, and it corresponds to the integral of the MTE over the support of U_c and U_I .

$$E(Y(t_{I}) - Y(t_{c})) = \int_{0}^{1} \int_{0}^{1} \frac{\partial^{2} E(Y \cdot \mathbf{1}[T \in \{t_{c}, t_{I}\}] | P_{c}(Z) = p_{c}, P_{I}(Z) = p_{I})}{\partial p_{c} \partial p_{I}} dp_{c} dp_{I}$$
(31)

Without the assumption of independence of U_c and U_I , variation in P_I is only identified once I fix the conviction threshold. Thus, the counterfactual of interset is now: $Y(t_I)$ and $Y(t_c)$ for those who were convicted under $P_c = p_c$. This means the objective is to identify causal effects of the form: $E(Y(t_I) - Y(t_c)|U^c < p_c)$, which is the the same exercise explained in Section 4.1. Let:

$$E(Y \cdot \mathbf{1}[T = t_c]|P_c(Z) = p_c, P_I(Z) = p_I, U^c < p_c) =$$
(32)

$$= E(Y(t_c) \cdot \mathbf{1}[T = t_c]|P_c(Z) = p_c, P_I(Z) = p_I, U^c < p_c)$$
(33)

$$= E(Y(t_c) \cdot \mathbf{1}[U^I > p_I] | P_c(Z) = p_c, P_I(Z) = p_I, U^c < p_c)$$
(34)

$$= E(Y(t_c) \cdot \mathbf{1}[U^I > p_I] | U^c < p_c)$$

$$\tag{35}$$

Where I followed the same steps as before. Let:

$$P_I^* = Pr[U_I < P_I | U_c < P_c] = G(P_I)$$
(36)

 P_I^\ast is the object I observe so I will define the observed expectations in terms of this variable:^{28}

$$E(Y(t_c) \cdot \mathbf{1}[U^I > G^{-1}(p_I^* | U_c < p_c] | U^c < p_c)$$
(37)

$$\int_{P_I^*}^1 E(Y(t_c)|U^I = u^I, U_c < p_c) f_{u^{I^*}|U^c < p_c}(p_I^*) du^I$$
(38)

And applying the Lebesgue differentiation theorem this results in:

$$\frac{\partial E(Y \cdot \mathbf{1}[T \in \{t_c\}] | p_c, p_I, U^c < p_c)}{\partial p_{I^*}} = -E(Y(t_c) | U^I = p_I, U^c < p_c) f_{u^I | U^c < p_c}(p_I^*)$$
(39)

And ultimately;

$$E(Y(t_I) - Y(t_c)|U^c < p_c) = \int_0^1 \frac{\partial E(Y \cdot \mathbf{1}[T \in \{t_c, t_I\}]|P_c(Z) = p_c, P_I^*(Z) = p_I^*, U^c < p_c)}{\partial p_I^*} dp_I^*$$
(40)

²⁸Where $f_{u^{I^*}|U^c < p_c}(p_I^*)$ in eq. (39) corresponds to: $f_{u^I|U^c < p_c}(p_I) \frac{\partial P_I((p_I^*))}{(p_I^*)}$

What this result says is that we can trace the treatment effect of incarceration relative to conviction once we fix a threshold for conviction. We do this by evaluating the changes on the outcome variable when we change P_I^* . This delivers the MTE along the unobservable dimension $U^I|U^c < P_c$. The integral over the support of the instrument gives the LATE, or the ATE when the instrument has full support. In the next section I use this identification approach to estimate the effects of parental incarceration in my data.

B Appendix: Intuition for the 2 dimension LATE

In this section I go over the intuition of the results in eq. 18 and eq.19. This result extends the intuition behind LATE to a two-dimensional space. To make this point clear, let us think in discrete terms and use an example with 4 judges with threshold levels $\{P_c^1, P_I^1\}$, $\{P_c^1, P_I^2\}$, $\{P_c^2, P_I^1\}$, and $\{P_c^2, P_I^2\}$.²⁹

For notation purposes, let:

$$f(p_c, p_I) = E(Y\mathbf{1}[T \in \{t_c\}] | P_c(Z) = p_c, P_I(Z) = p_I)$$
(41)

and

$$g(p_c, p_I) = E(Y\mathbf{1}[T \in \{t_I\}] | P_c(Z) = p_c, P_I(Z) = p_I)$$
(42)

Next, I can rewrite, in discrete terms, the identification result in equation 5 as:

$$\frac{\Delta f(p_c, p_I)}{\Delta p_c \Delta p_I} + \frac{\Delta g(p_c, p_I)}{\Delta p_c \Delta p_I} = [f(p_c^2, p_I^2) - f(p_c^1, p_I^2)] - [f(p_c^2, p_I^1) - f(p_c^1, p_I^1)] + [g(p_c^2, p_I^2) - g(p_c^1, p_I^2)] - [g(p_c^2, p_I^1) - g(p_c^1, p_I^1)] = E(Y(t_I) - Y(t_c)|u^c = p_c, u^I = p_I)$$

$$(43)$$

Now, let us go over each term in (31). First, $f(p_c^2, p_I^2)$ represents the outcomes of convicted but not incarcerated individuals who had a judge with thresholds $\{P_c^2, P_I^2\}$. Panel a in Figure C.3 shades the area in the u^c , u^I square that identifies these individuals. The next panels in Figure C.4 highlight the following terms in equation

²⁹Equivalent to $\{HL\}$, $\{HH\}$, $\{LH\}$, and $\{LL\}$ in Section 4.

8 and their differences. Ultimately, what equation (31) is doing is identifying the complier range in a two-dimensional space, which instead of an interval is a rectangle.

I estimate (18) by fitting a polynomial on p_I and p_c and evaluating the crossderivative on the support of the instruments. Figure C5 shows the MTE in the relevant segment of the (u^c, u^I) square. There are some interesting features of these results; first, as before, as we increase u^I (defendants' quality), the effect on years of schooling decreases, confirming that this positive effect is accrued when incarceration removes a bad parent from the household. What is new in Figure C.5 is that now we can also move along the u^c margin, or the "strength of the evidence" margin. The data also show that as evidence becomes weaker, the positive effects also decrease. Ultimately, what this exercise shows is that the effect on children is very sensitive to the type of case a judge is deciding on. In the case of Colombia, marginal incarcerations are of defendants still very negatively selected and with sufficient evidence against them, so that their children are better off without that parent. How this result extends to other settings is a function of the location of the marginal cases in the u^c , u^I square.

C Appendix : Data construction

In this appendix, I explain in detail the construction of the sample and variables I use throughout the paper. The starting point for my data construction are the two SISBEN surveys. These data are collected by the government to target social programs for the poor. The survey is conducted at the household level, and consists of two modules. In the first, it asks about the characteristics of the house (flooring material, number of bedrooms, etc), access to utilities, and assets in the households (TV, refrigerator, car, etc.). In the second part, all members of the household are listed with names and national identification numbers, and their relationship to the head of the household is specified. The questionnaire then asks about gender, age, education level, marital status, disability status, and occupation. This survey is applied to everyone living in a municipality with a population of 30,000 or less, and in larger municipalities local authorities target households who could be potential beneficiaries of welfare programs. If a household is not targeted by local authorities and wishes to be surveyed, it can easily request to be included. The government uses this information to create a formula that measures the household's ability to provide resources for its members, and computes a score for each household that determines eligibility for different social programs. These data provide me with i) identification numbers with municipality location to web-scrape criminal records and, ii) parent-to-child links.

I select the population of adults who lived in the 17 out of 33 municipalities that have criminal records online. These districts represent 67% of the population, and 69% of homicide and 83% of property crimes.³⁰ I then web-scrape criminal records (from http://procesos.ramajudicial.gov.co/consultaprocesos/) by selecting the district and then searching individually for records with the ID numbers. From a 5% sample in which I look for criminal records in all 17 districts I estimate that I will miss 8.6% of the sample due to crimes committed in districts different from the one in the SISBEN.

I find 328,937 criminal records that belong to 256,366 individuals. I start by dropping observations that have missing values in year of sentence, crime or court-room identifier (81,049 observations deleted). Next, I drop all records before 2005 (59,872 observations deleted), and all cases in which there is only one judge per district (4,635 observations deleted). I keep only the courtrooms for which there is data on convictions (14,786 observations deleted). Finally, I drop all observations deleted). After this, I end up with 112,696 criminal records which correspond to 93,676 individuals. Table B.1 shows differences between the characteristics of individuals in the final data-set and those who were dropped. For the set of observations that have sentence data, I find that there is no evidence of differential incarceration rates across samples.

To assess how representative my sample is of the prison population, I compare counts of individuals sentenced by year from my data with counts of new inmates from official records of the Prison Authority (INPEC). I only have information available for 2015; according to INPEC, there were 27,287 new immates that year, from my data, I find that 5,932 defendants were sent to prison, which would suggest that I have data on 22% of the prison population. This number, however, should be taken with caution, because INPEC data include flows of inmates across prisons, and I don't have data on the size of these flows.

I then link these convicts to the 436,309 individuals living in their households, of whom 179,699 are in the relevant cohort years (1991-2007), and 106,465 are the child of a convict. Of this, 67,770 experienced the sentencing episode between ages 0 and 14. Finally, I have education data for 52,419 (77%) of these children. This rate is close to the share of children between ages 12 and 17 who attend school, according to the census (76%). Table B.2 in the appendix shows evidence that a

³⁰Judicial districts with online data: Armenia, Barranquilla, Bogota, Bucaramanga, Buga, Cali, Ibague, Florencia, Manizales, Medellin, Neiva, Palmira, Pasto, Pereira, Popayan, Tunja, and Villavicencio.

missing education record is not related to parental incarceration, but to the child's not being at school or being working. Missing values are also more prevalent for boy, and for household with lower income and lower education of the head of the household.

Dep var: Out of sample D.	(1)	(2)
Incarceration		$\begin{array}{c} 0.00141 \\ [0.00204] \end{array}$
Years edu.	0.0018 [0.00150]	0.00118 [0.00157]
Income score	0.00118*** [0.0000822]	0.000837*** [0.0000879]
Male D.	-0.0400*** [0.00279]	-0.0209*** [0.00290]
Head HH D.	0.00877^{**} [0.00370]	0.00771^{**} [0.00389]
Single	-0.0298*** [0.00222]	-0.0213*** [0.00239]
Years edu. HHH	0.0004 [0.00150]	0.000919 [0.00157]
D: Studying	$\begin{array}{c} 0.0264^{***} \\ [0.00490] \end{array}$	-0.00653 $[0.00486]$
D: Working	$\begin{array}{c} 0.0177^{***} \\ [0.00209] \end{array}$	$\begin{array}{c} 0.0154^{***} \\ [0.00226] \end{array}$
Yob	-0.00708*** [0.0000877]	-0.00312*** [0.0000956]
Constant	$14.55^{***} \\ [0.173]$	6.55E+00 [3279.3]
Obs R-sq	$260,968 \\ 0.14$	$196,\!314\\0.306$

Table B1: Sample selection-Defendants

Additional controls: Municipality FE and survey year FE. The first column includes all criminal records and the second restricts to the ones that have data on sentence length.

Dep var: Missing Educ.	(1)	(2)	(3)
Parental incarceration	-0.00245	-0.00314	-0.00335
	[0.00309]	[0.00309]	[0.00308]
Condor	0 00951***	0 00853***	0 00758***
Genuer	[0.00851]	[0.00853]	[0 00280]
	[0:00202]	[0:00202]	[0:00200]
Yob	0.0205^{***}	0.0200***	0.0125^{***}
	[0.000478]	[0.000479]	[0.000582]
Conder of the parent	0.00366	0 00251	0.00186
Gender of the parent	[0, 00344]	[0.00231]	[0,00130]
			[0:00010]
Income score		-0.000886***	-0.000582***
		[0.000136]	[0.000136]
Vears edu HHH		-0 00/03***	-0 00/69***
Tears equ. IIIII		[0.000493]	[0.00403]
		[0.000020]	[0.00002.1]
D: Studying			-0.0872***
			[0.00384]
D. Working			0.0633
D. Working			[0.0583]
Constant	-40.43***	-39.54***	-24.40***
	[0.958]	[0.959]	[1.167]
Obs	65,125	65,125	65,125
R-sq	0.279	0.281	0.286
Additional controls: Mur	icipality FF	CUMULAN MOON FE	land

 Table B2: Sample selection

Additional controls: Municipality FE, survey year FE and birth order.

D Appendix: Failure of the IV

Following the notation of Section 4.1, to illustrate the failure of the simple IV, I need to compute the share incarcerated for every judge as in the previous papers in this literature. Recall that those papers define only two treatment assignments: incarceration vs. everything else — which includes those convicted who receive probation, and those not convicted. For a judge type (h^c, l^I) , the probability of incarceration corresponds to: $0.8 \cdot 0.2 = 0.16$ which is the same as the one for (l^c, h^I) . For judges type: (h^c, h^I) is $0.8 \cdot 0.8 = 0.64$, and for (l^c, l^I) equals $0.2 \cdot 0.2 = 0.04$. At first glance, it looks like we have exogenous variation in incarceration, which can serve as an instrument. However, what this exercise ignores is that the pool of defendants is not being held constant across judges, and as a result, differences will reflect not only the effect of incarceration but also the differences in the samples. Figure B1 plots a situation in which I use the variation in incarceration rates from judges (h^c, h^I) and (l^{c}, l^{I}) . From the graph it is clear that there are not well defined groups for a valid comparison. This is because we are not observing the same group of people across judges. Specifically, defendants with $U^c > 0.2$ are only observed for judge (h^c, h^I) , and as a result the IV estimates cannot deliver valid causal effects.

Figure B1: IV estimator

E Appendix: Extra tables and figures

Monotonicity test: Out of sample First stage							
	Males	Females	Violent	Not violent	Young	Old	
Conviction-Judge FE Out of sample Obs	$\begin{array}{c} 0.789^{***} \\ [0.0520] \\ 20,665 \end{array}$	$\begin{array}{c} 0.194^{***} \\ [0.0102] \\ 147,066 \end{array}$	$\begin{array}{c} 0.164^{***} \\ [0.00870] \\ 143,567 \end{array}$	$\begin{array}{c} 0.376^{***} \\ [0.0208] \\ 75,345 \end{array}$	$\begin{array}{c} 0.334^{***}\\ [0.0278]\\ 50,267\end{array}$	$\begin{array}{c} 0.310^{***} \\ [0.0198] \\ 70,042 \end{array}$	
Incarceration-Judge FE Out of sample	$\begin{array}{c} 0.587^{***} \\ [0.0565] \end{array}$	0.163^{***} [0.0148]	$\begin{array}{c} 0.0517^{***} \\ [0.0163] \end{array}$	0.189^{***} [0.0275]	0.360*** [0.0237]	0.451*** [0.0336]	
Obs	23,345	104,672	78,652	48,582	75,710	50,387	
I compute out of sample	judge strin	igency mea	sures and es	timate first st	age regress	ions.	

Table C1: Monotonicity

Table C2: Random coefficients test

Random coefficients for:	LR test	p-value
Years of education	2.81	0.2452
Income score	1.82	0.4031
Head of the HH Dummy	0.00	0.9999
Single Dummy	5.49	0.0641
Working Dummy	-4.94	0.9999
Male is head of HH Dummy	5.81	0.0548
Sex Dummy	34.22	0.0000

Due to computational constraints I run this mixed effects logistic regression only for judges in Bogota which is the largest district.

Grade retention					
Dep var: Expected - Actual grade	(1)	(2)	(3)	(4)	(5)
OLS	Sentence year	+ 1 year	+ 2 years	+ 3 years	+4 years
Parental incarceration	0.0088	0.0240**	0.0367***	0.0471***	0.0636***
	[0.00572]	[0.00933]	[0.0116]	[0.0136]	[0.0168]
Reduced form					
Parental incarceration	-0.0157	-0.0614	-0.155	-0.0941	-0.146
	[0.0680]	[0.0984]	[0.136]	[0.132]	[0.158]
IV					
Parental incarceration	-0.0225	-0.0957	-0.245	-0.148	-0.243
	[0.0948]	[0.142]	[0.205]	[0.192]	[0.249]
	00.000	00 200	96 451	94.076	01 070
UDS	7.2.2.2.2	20.399	20.451	Z4.U(0	21.078

Table C3: Effects on grade retention

Positive number of the dependant variable means the child is below the grade he should be given the grade he started with before convicion. Controls: Municipality FE, gender, YOB FE, year of sentence, birth order and year of survey, difference in expected and actual grade one year before sentence, pc and squared pc. Sample: Children between 1990 and 2007 who had a convicted parent between ages 0 and 14. I cluster at the randomization unit and year level.

Table C4: High-School completion

HS completion

	OLS	RF	IV
Parental Incarceration	-0.0237*** [0.00581]	0.0211 [0.0591]	0.0206 [0.0572]
Obs	35,643	35,643	35,643
R squared	0.121	0.12	0.119

Controls: Municipality FE, gender, YOB FE, year of sentence, birth order and year of survey, pc and squared pc. Sample: Children between 1990 and 2000 who had a convicted parent between ages 0 and 17. I cluster at the randomization unit and year level.

Sentencing guidelines Crime	Prison Colombia	time US NY
Possesion of cocaine: 14 grams -100 grams	5 to 9 years	1 to 9 years
Assault Simple/third degree 2nd degree	1 to 3 years 2 to 7 years	Up to 1 year 3 to 7 years
Theft Simple Aggraveted theft	2 to 9 years 6 to 14 years	Up to 1 year 2-7 years
Domestic violence	4 to 8 years	Less than a year to 25 years

Table C5: Sentencing guidelines

Source: Colombia articles 376, 112 239, 240 of the penal code, respectively. For New York: 220.16, 120.00, 120.00, 155.25 or 165.40, 155.30 and 120.00 to 120.12 sections of New York penal law code, respectively.

Table C6: Placebo check

Placebo test

Dep var: Years of education	OLS	RF	IV
Parental inc.	-0.0182*** [0.00705]		0.0609 [0.187]
Judge leniency		0.0533 [0.143]	
Constant	4.075 [4.106]	3.908 [4.103]	4.152 [4.085]
Obs	46,257	46,257	46,257

Controls: Municipality FE, gender, YOB FE, Sisben score, years of education head, years of education incarecerated parent, gender of incarcerated parent, pc, year of sentence, birth order and year of survey. Sample: Children between 1990 and 2007 who had a convicted parent between ages 0 and 14. SE in brackets clustered at the randomization unit and year level.

Parental Incarceration 0.741^{**} 0.89 0.748^{**} 0.827^{***} $[0.371]$ $[0.371]$ $[0.334]$ $[0.356]$ $[0.280]$ Obs $17,347$ $18,672$ $17,045$ $53,064$ Controls: Municipality FE, gender, YOB FE, Sisben score, years of education headyears of education incarecerated parent, gender of incarcerated parent, pc, year of sen	IV LIML Dep var: Years of education	(1) 0.7¡Pcj0.88	(2) 0.88jPcj0.9	(3) 0.9¡Pc¡1	(4) Pooled Pc
Obs17,34718,67217,04553,064Controls: Municipality FE, gender, YOB FE, Sisben score, years of education head years of education incarecerated parent, gender of incarcerated parent, pc, year of sen	Parental Incarceration	0.741** [0.371]	0.89 [0.834]	0.748** [0.356]	0.827*** [0.280]
tence, birth order and year of survey. Column 4 controls add a second order polynomia on Pc. Sample: Children between 1990 and 2007 who had a convicted parent between					

Table C7: LIML estimates

Low Pc Medium Pc 5 Prob₅Incarcetations Props Incarceration sit 1 Density Der Inna L ԱԱԱԱԽԽԽ Thahall .3 .4 .3 4 2 2 5 5 PI PI .03. pwidth kernel = epanechnikov dearee = 0 hand ker 04 High Pc Prob_3 Incarce ration 45 5 10 Isity ٦ .3 .4 PI .05. pwidth = .07 ker nechnikov dearee 0, band

Figure C1: First stage by level of conviction

Notes: Histograms of parental incarceration judge stringency and the fitted value of local polynomial regressions of parental incarceration on judge stringency. I divide the sample by terciles of judge stringency in the conviction stage, and in the pooled regression I control for p_c .

Figure C2: Reduced form

Notes: Histograms of parental incarceration judge stringency and the fitted value of local polynomial regressions of children's criminal records on judge stringency.

Notes: Reduced form estimates of a sample size of 18.000, with a rolling window of 500 on P_c . Grey lines represent 90% confidence intervals.

Figure C4: Identification in 2 dimensions

Figure C5: Compliers rectangule

Figure C6: Unconditional MTE

