Size-At Maturity of Jonah Crab (*Cancer borealis*) in New England Waters

Derek Perry, Tracy Pugh, Elizabeth Morrissey, and Robert Glenn
Massachusetts Division of Marine Fisheries

September 6, 2018
Rank among MA fisheries in 2017

<table>
<thead>
<tr>
<th>Species</th>
<th>Pounds (Whole)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Scallop</td>
<td>269,186,626</td>
<td>$327,572,502</td>
</tr>
<tr>
<td>Lobster</td>
<td>16,509,226</td>
<td>$81,243,096</td>
</tr>
<tr>
<td>Oyster</td>
<td>9,239,891</td>
<td>$23,826,075</td>
</tr>
<tr>
<td>Goosefish</td>
<td>17,173,991</td>
<td>$11,350,401</td>
</tr>
<tr>
<td>Jonah Crab</td>
<td>11,680,714</td>
<td>$11,281,714</td>
</tr>
<tr>
<td>Haddock</td>
<td>11,706,654</td>
<td>$11,241,448</td>
</tr>
<tr>
<td>Soft Clam</td>
<td>3,831,415</td>
<td>$6,168,657</td>
</tr>
<tr>
<td>Redfish</td>
<td>11,111,369</td>
<td>$5,933,712</td>
</tr>
<tr>
<td>Winter Flounder</td>
<td>1,924,189</td>
<td>$5,662,768</td>
</tr>
<tr>
<td>Atlantic Herring</td>
<td>31,327,894</td>
<td>$5,644,980</td>
</tr>
</tbody>
</table>
Background

- 2015 Jonah crab FMP
 - 4.75” (121 mm) CW MLS

- MA DMF Port Sampling
 - >35,000 crabs sampled
 - 99.8% male
 - 98% of catch is >4.75”
 - Largest male 175 mm CW
 - Largest female 145 mm CW
• Determine if MLS allows at least half of population to reproduce

• Stock assessment
 – Need for maturity status for models
Previous Studies

• Carpenter 1978 (1)
 – Male maturity
 • Did not detect morphometric change at maturity
 • Gonadal 90-100 mm CW
 • Limited seasonal development
 – Female maturity
 • Morph 80-90 mm CW
 • Gonadal 90-100 CW
 • Ovarian development varied seasonally
Previous Studies

• Ordzie and Satchwill 1983 (2)
 – Male maturity
 • Morph not reported
 • Gonadal 50-60 mm CW
 • Gonads translucent for all crabs below 45 mm CW
 – Female maturity
 • Morph 40-50 mm CW
 • Gonadal 67 mm CW
 • Gonads translucent for all crabs below 55 mm CW
Previous Studies

• Moriyasu et al. 2002 (3)
 – Male maturity
 • Morph 128 mm CW
 • Gonadal 69 mm CW
 • No spermatophores in crabs below 53 mm CW
 – Female maturity
 • Not reported
Methods

- Five geographic regions
- Samples collected opportunistically year-round
- Grouped seasonally
 - Jan-Mar (winter), Apr-Jun (spring), Jul-Sep (summer), Oct-Dec (fall)
- Over 2,300 crabs analyzed
- Gonadal maturity
- Morphometric maturity
Methods

• Gonadal Maturity
 – Capable of producing sperm or eggs
Methods

• Morphometric Maturity
 – Allometry
 • Relative growth of parts
 – Mating of small physiologically mature, morphometrically immature crabs has not been documented
Methods

• Morphometric maturity
 – Chelae height and length, body depth, carapace depth, and abdominal width (females)
 – Male Ch-CW and female Ap-CW most informative
 – Piecewise regression used to look for “breakpoints”
 – Two-staged segmented models compared to linear model
 – Tested for parsimony
 • Bayesian Information Criterion (BIC)
 • Akaike’s Information Criterion (AIC)
Methods

- Gonadal maturity
 - Digital images taken of dissected crabs
 - Compared gonad size relative to carapace outline (ImageJ)
 - Characterized gonad color
 - Generated maturity ogives
Methods

Male Gonad Color

<table>
<thead>
<tr>
<th>Male Gonad Color</th>
<th>Maturity Status</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>Immature/Resting</td>
<td>Undetectable or translucent gonadal tract present and flat on hepatopancreas</td>
</tr>
<tr>
<td>White</td>
<td>Developing/Mature</td>
<td>Vas deferens and/or testes thin, relatively small, ~10% or less of the body cavity surface area</td>
</tr>
<tr>
<td>White</td>
<td>Well-developed/Mature</td>
<td>Vas deferens and testes enlarged or swollen, relatively large, ~10% of or more of the body cavity surface area</td>
</tr>
</tbody>
</table>

Female Gonad Color

<table>
<thead>
<tr>
<th>Female Gonad Color</th>
<th>Maturity Status</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>Immature/Resting</td>
<td>Undetectable ovary to a non-lobed ovary present flat on hepatopancreas. Colorless; no vitellogenesis</td>
</tr>
<tr>
<td>Tan</td>
<td>Mature/Developing</td>
<td>A few lobes are visible but ovary remains small. Color ranges from beige to light peach.</td>
</tr>
<tr>
<td>Peach</td>
<td>Mature/Late developing</td>
<td>Small, lobed ovaries. Color ranges from peach to medium orange</td>
</tr>
<tr>
<td>Orange</td>
<td>Mature/Developed</td>
<td>Large, lobed ovaries, tract is enlarged. Color ranges from medium orange to red</td>
</tr>
</tbody>
</table>
Results - Males

![Box plot showing percent cover of gonad against carapace width for males.](image-url)
Results - Males

- GB
- GOMO
- GOMI
- SNEO
- SNEI

Percent Cover vs. Carapace Width (mm)

Category: Clear, White & <10%, White & >10%
Results - Males

Offshore Southern New England

Inshore Southern New England

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>BIC</th>
<th>AIC</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>3</td>
<td>1184</td>
<td>1173</td>
<td>0.97</td>
</tr>
<tr>
<td>piecewise</td>
<td>6</td>
<td>1070</td>
<td>1048</td>
<td>0.98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>BIC</th>
<th>AIC</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>3</td>
<td>1470</td>
<td>1458</td>
<td>0.90</td>
</tr>
<tr>
<td>piecewise</td>
<td>6</td>
<td>1480</td>
<td>1458</td>
<td>0.90</td>
</tr>
</tbody>
</table>
Results - Males

Georges Bank

109 mm CW

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>BIC</th>
<th>AIC</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>3</td>
<td>1059</td>
<td>1049</td>
<td>0.96</td>
</tr>
<tr>
<td>piecewise</td>
<td>6</td>
<td>1000</td>
<td>979</td>
<td>0.97</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Size at morphometric maturity (chela height)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNEO</td>
<td>117</td>
</tr>
<tr>
<td>SNEI</td>
<td>NA</td>
</tr>
<tr>
<td>GB</td>
<td>109</td>
</tr>
<tr>
<td>GOMO</td>
<td>115</td>
</tr>
<tr>
<td>GOMI</td>
<td>103</td>
</tr>
</tbody>
</table>
Results - Females
Results - Females
Results - Females

GOMO

GB

98 mm CW

93 mm CW

SNEO

SNEI

89 mm CW

86 mm CW

Proportion

Carapace Width (mm)
Results-Females

Offshore Southern New England

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>BIC</th>
<th>AIC</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>3</td>
<td>914</td>
<td>904</td>
<td>0.97</td>
</tr>
<tr>
<td>piecewise</td>
<td>6</td>
<td>872</td>
<td>851</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Inshore Southern New England

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>BIC</th>
<th>AIC</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>3</td>
<td>891</td>
<td>881</td>
<td>0.85</td>
</tr>
<tr>
<td>piecewise</td>
<td>6</td>
<td>893</td>
<td>872</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Results - Females

Georges Bank

![Graph showing Abdomen Width (mm) vs Carapace Width (mm) with a trend line at 94 mm CW.]

<table>
<thead>
<tr>
<th>Model</th>
<th>df</th>
<th>BIC</th>
<th>AIC</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple</td>
<td>3</td>
<td>485</td>
<td>476</td>
<td>0.94</td>
</tr>
<tr>
<td>piecewise</td>
<td>6</td>
<td>477</td>
<td>460</td>
<td>0.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Size at morphometric maturity (abdomen)</th>
<th>Size at 50% gonadal maturity (physiological)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNEO</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>SNEI</td>
<td>NA</td>
<td>86</td>
</tr>
<tr>
<td>GB</td>
<td>94</td>
<td>93</td>
</tr>
<tr>
<td>GOMO</td>
<td>NA</td>
<td>98</td>
</tr>
<tr>
<td>GOMI</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>
Results - Females

<table>
<thead>
<tr>
<th>Region</th>
<th>N</th>
<th>Range</th>
<th>Mean</th>
<th>SE</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNEO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFRF commercial traps</td>
<td>19</td>
<td>82-120</td>
<td>101.2</td>
<td>2.5</td>
<td>102.0</td>
</tr>
<tr>
<td>CFRF ventless traps</td>
<td>6</td>
<td>94-121</td>
<td>105.5</td>
<td>3.8</td>
<td>103.5</td>
</tr>
<tr>
<td>SNEI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFRF commercial traps</td>
<td>26</td>
<td>89-120</td>
<td>105.1</td>
<td>1.8</td>
<td>106.0</td>
</tr>
<tr>
<td>CFRF ventless traps</td>
<td>1</td>
<td>106</td>
<td>106</td>
<td>NA</td>
<td>106.0</td>
</tr>
<tr>
<td>MADMF VTS</td>
<td>7</td>
<td>93-110</td>
<td>102.1</td>
<td>2.1</td>
<td>102.0</td>
</tr>
<tr>
<td>MADMF Tagging</td>
<td>6</td>
<td>105-129</td>
<td>114</td>
<td>3.8</td>
<td>111.0</td>
</tr>
<tr>
<td>GB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFRF commercial traps</td>
<td>36</td>
<td>75-135</td>
<td>106.1</td>
<td>2.4</td>
<td>106.5</td>
</tr>
<tr>
<td>CFRF ventless traps</td>
<td>9</td>
<td>101-119</td>
<td>113.4</td>
<td>1.9</td>
<td>115.0</td>
</tr>
<tr>
<td>MADMF Tagging</td>
<td>64</td>
<td>99-128</td>
<td>115.6</td>
<td>0.9</td>
<td>116.0</td>
</tr>
<tr>
<td>GOMO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MADMF Tagging</td>
<td>3</td>
<td>98-116</td>
<td>106.7</td>
<td>5.2</td>
<td>106.0</td>
</tr>
<tr>
<td>GOMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MADMF VTS</td>
<td>47</td>
<td>86-126</td>
<td>107.2</td>
<td>1.3</td>
<td>109.0</td>
</tr>
<tr>
<td>MADMF Tagging</td>
<td>5</td>
<td>101-127</td>
<td>110.6</td>
<td>4.6</td>
<td>110.0</td>
</tr>
</tbody>
</table>
Tagging Project
Tagging Project

Preliminary results

• Overall tag return rate of 2.4%

• Average male traveled 9.3 km (median 4.1)

• Average female traveled 1.6 km (median 0.7)

• Only two t-bar tagged crabs appear to have molted and reported with measurements upon recapture

• 18 recaptures have gone at least a year without molting (124-159 mm CW males, max 720 days)
Thank you

DMF staff: Ricky Alexander, Michael Auriemma, John Boardman, Theresa Burnham, Vincent Manfredi, Matt Roux, Brendan Reilly, Mark Szymanski, Mike Trainor, Mike Walsh, Kelly Whitmore, and Steve Wilcox

Derek Perry
Invertebrate Fisheries Biologist
Massachusetts Division of Marine Fisheries
Derek.perry@state.ma.us

Funding provided by Saltonstall-Kennedy Program and ASMFC