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Most empirical tests of mediation utilize cross-sectional data despite the fact that mediation
consists of causal processes that unfold over time. The authors considered the possibility that
longitudinal mediation might occur under either of two different models of change: (a) an
autoregressive model or (b) a random effects model. For both models, the authors demon-
strated that cross-sectional approaches to mediation typically generate substantially biased
estimates of longitudinal parameters even under the ideal conditions when mediation is
complete. In longitudinal models where variable M completely mediates the effect of X on Y,
cross-sectional estimates of the direct effect of X on Y, the indirect effect of X on Y through
M, and the proportion of the total effect mediated by M are often highly misleading.
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Mediation is of fundamental interest in many areas of
psychology because of the central role it can play in an-
swering questions about underlying processes. After discov-
ering a relation between two variables, investigators fre-
quently seek to clarify the mechanism (or mediational
process) underlying this relation. Over the past 20 years,
most efforts to test for mediation have been based on
cross-sectional data and have involved methods described
by Baron and Kenny (1986) and elaborated by numerous
authors (e.g., Kenny, Kashy, & Bolger, 1998; MacKinnon,
Lockwood, Hoffman, West, & Sheets, 2002; Shadish, Cook,
& Campbell, 2002; Shrout & Bolger, 2002). Although most
methodological discussions and substantive investigations
of mediation have ignored any consideration of time se-
quence, a few recent articles have begun to consider the
explicit role of time in studying mediational processes (Cole
& Maxwell, 2003; Collins, Graham, & Flaherty, 1998;
Kenny, Korchmaros, & Bolger, 2003; MacCallum & Aus-

tin, 2000; Tein, Sandler, MacKinnon, & Wolchik, 2004).
An earlier but very important strand of research was estab-
lished by Gollob and Reichardt (1985, 1987, 1991), who
emphasized the importance of time in the formation and
interpretation of structural equation models. Despite these
calls for longitudinal approaches to mediation, the modal
methodology for testing mediation continues to be cross-
sectional. The overarching goal of this article is to describe
the circumstances under which and the degree to which
cross-sectional efforts to estimate mediation will be biased
and potentially seriously misleading.

How prevalent is the use of cross-sectional designs to test
mediation? To address this question, we reviewed the liter-
ature. Using PsycINFO, we discovered that the five Amer-
ican Psychological Association journals most likely to have
published articles that tested mediational hypotheses were
the Journal of Personality and Social Psychology, the Jour-
nal of Consulting and Clinical Psychology, the Journal of
Applied Psychology, Health Psychology, and Developmen-
tal Psychology. In 2005 alone, these journals collectively
published 68 articles (containing 72 studies) that described
tests of mediation in their titles or abstracts. Of these, 28
(39%) were based on completely cross-sectional designs.
Another 10 (14%) ignored or abused the longitudinal struc-
ture of their own data by focusing on only a single wave,
averaging across waves, or treating later variables as pre-
dictors of earlier variables when testing for mediation.
Taken together, 53% of the reviewed studies were essen-
tially cross-sectional in that they tested mediation with
methods that did not allow time for an independent variable
to have an effect on a dependent variable. Within the
remaining truly longitudinal studies, other problems arose.
For example, 27 (38% of all mediational studies) were what
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we have called half-longitudinal designs (Cole & Maxwell,
2003), insofar as time elapsed either between the measure-
ment of X (the presumed causal variable) and M (the pre-
sumed mediator) or between M and Y (the presumed depen-
dent variable), but not both. In other words, two of the three
variables were obtained concurrently. Among the remaining
7 studies that had fully longitudinal designs, only one (a)
controlled for prior levels of M when testing the association
between X at Time 1 and the mediator at Time 2 and (b)
controlled for prior levels of Y when testing the association
between the mediator at Time 2 and the dependent variable
at Time 3. This review reveals two important things: (a) that
cross-sectional tests of mediation are still the norm in pre-
mier journals from a diversity of psychological disciplines
and (b) that mediational tests of longitudinal data only
rarely reflect recent methodological advances (e.g., Cole &
Maxwell, 2003; Collins et al., 1998; Kenny et al., 2003;
Tein et al., 2004; see also Gollob & Reichardt, 1991).

Why have cross-sectional analyses of mediational pro-
cesses persisted despite methodological arguments that lon-
gitudinal designs are more appropriate? One factor is that
little is known about the practical consequences of using
cross-sectional designs to study mediation. If differences
between longitudinal and cross-sectional analyses of medi-
ation are small in practice, researchers might be justified in
continuing to study mediation with cross-sectional designs
despite a theoretical disadvantage. On the other hand, if
differences are likely to be large in practice, longitudinal
designs may be necessary.

This article has two goals. The first is to establish conditions
under which cross-sectional analyses of mediation can be
expected to yield the same conclusion as longitudinal designs.
In particular, we derive specific conditions under which cross-
sectional analyses can be trusted to provide accurate inferences
about longitudinal mediational processes. If substantive re-
searchers can justify these specific conditions, longitudinal
designs are unnecessary. However, in many situations, these
conditions will be difficult to justify, in which case cross-
sectional analyses will yield different results from longitudinal
analyses. This leads to our second goal, which is to examine
the magnitude of this difference. If the difference is small,
cross-sectional analyses might be justified as providing a good
approximation to a longitudinal analysis. However, if the dif-
ference is large, any interpretation of cross-sectional analyses
may be questionable. Thus, a major goal of this article is to
ascertain the extent to which cross-sectional designs are likely
to provide a good approximation to underlying longitudinal
mediational processes.

Two Models of Change

By its very definition, mediation implies change over
time. Some variable X influences a mediator M, which in
turn influences an outcome variable Y. In this article, we

focus on mediational processes where all three variables, X,
M, and Y, potentially change over time. For example, pa-
rental depression (X) might influence parenting behavior
(M), which then promotes child depression (Y). Further-
more, we expect parental depression as well as parenting
behavior and child depression to change over time.1 Al-
though change is central to the concept of mediation, it is
nevertheless true in virtually all behavioral studies that any
given variable measured at time t correlates with itself when
measured at a later time t � 1. We use the term stability to
represent this property, recognizing that this definition im-
plies some degree of rank-order correlation over time but
does not directly imply any restrictions on means or stan-
dard deviations. For example, depression scores measured
in April are likely to correlate with depression scores mea-
sured 6 months later in October. If this correlation were
large, one would say that depression is stable even if the
mean depression score changes during this period. Thus,
any viable model of change must allow variables to dem-
onstrate some stability over time. Lord (1967, 1969) pointed
out nearly 40 years ago that there are two fundamentally
different conceptualizations of change, both of which allow
variables to exhibit stability over time.

One model of change stipulates that the value of a vari-
able at some future time t � 1 depends at least in part on the
value of that same variable at some earlier time t. This type
of conceptualization typically is translated into an autore-
gressive statistical model of change. In the simplest case,
the value of Y for any given individual i at time t � 1 is a
linear function of that same person’s score on Y at time t:

Yit�1 � �0 � �1Yit � εit. (1)

As long as �1 is nonzero, Y necessarily exhibits at least
some degree of stability over time. By allowing stability to
be represented as a parameter in the model, it is unnecessary
to stipulate in advance the precise correlation between Y at
time t and Y at time t � 1. In many situations, a central
question of interest is the extent to which future values of Y
depend not only on prior values of Y but also on other
variables. For example, introducing an additional variable
M into the model shown in Equation 1 provides an estimate
of the extent to which M is related to future values of Y,
controlling for earlier values of Y:

Yit�1 � �0 � �1Yit � �2Mit � εit. (2)

1 A different situation arises where only M and Y would be
expected to change over time. For example, X might represent
group membership, which could be stable over time. Groups might
either be naturally occurring, such as sex, or formed by the
experimenter, ideally through random assignment. In either case, it
is important to note that this is a different design than we consider
here.
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The key point here is that the influence of M on changes in
Y can be assessed by forming a regression model in which
both M and Y at time t are used as predictors of Y at time t �
1. This basic idea can easily be extended to latent-variable
models, where multiple indicators are available for M at
time t and for Y at times t and t � 1.

A second model of change stipulates that each person has
some potentially unique trajectory of change over time. This
type of model goes by various names, including random
effects, multilevel, and latent growth curve models. We use
the term random effects model with the understanding that
in most situations, these various terms are essentially inter-
changeable. From the random effects perspective, an indi-
vidual’s score on some variable Y can be expressed as a
function of time. In the simple case of straight-line growth,
a suitable model can be written as

Yit � �0i � �1itiYit � εit. (3)

Although Equation 3 bears some resemblance to Equa-
tion 1, there are two critical differences. First, in the auto-
regressive model of Equation 1, Y at any time point depends
at least partly on Y at an earlier time point. In contrast, in the
random effects model of Equation 3, Y does not depend
directly on previous values of Y but instead depends simply
on the time of measurement. At first glance, this new
formulation might seem incapable of allowing Y to exhibit
the stability over time that variables almost always display.
However, the second critical difference between this for-
mulation and the autoregressive model allows for stability.
Notice that each model parameter (i.e., �0i and �1i) in
Equation 3 contains an i subscript, unlike the parameters of
the model in Equation 1. The presence of this subscript
reflects the fact that each individual is allowed to have his or
her own intercept and slope. As a consequence, each person
potentially has a unique trajectory of change over time. In
other words, individuals vary in their initial values of Y and
also vary in their rate of change in Y over time. Such
variability in these random effects �0i and �1i allows scores
on variable Y at time t � 1 to correlate with scores on Y at
time t. Thus, the random effects model, like the autoregres-
sive model, is capable of representing data where variables
exhibit stability over time.

Each of these two models of change has its proponents.
Although we describe situations where each type of model
might be particularly appropriate, we do not attempt to
adjudicate which model is better. Instead, we consider each
model in turn. First, we presume that the autoregressive
model is the appropriate model of change for certain phe-
nomena. From this perspective, we consider a model of
mediation. Our key question is the extent to which cross-
sectional designs can be relied upon to provide an accurate
reflection of mediation if the true process follows an au-
toregressive model. Second, we presume that the random

effects model is a more realistic model of change for other
types of phenomena. We then consider mediation from this
perspective. Our key question is the extent to which cross-
sectional designs can be relied upon to provide an accurate
reflection of mediation when the true process follows a
random effects model.

Mediation From the Perspective of an
Autoregressive Model of Change

We begin our consideration of the autoregressive model
with a hypothetical example. A developmental psychopa-
thologist might wonder why parental depression is associ-
ated with child depression. One possibility is that depressed
parents engage in problematic parenting practices, which in
turn foster depression in their children. Implicit in this
answer is the view that a third variable (problematic par-
enting) at least partially explains the association between
two other variables (parental depression and child depres-
sion). The simplest design for studying mediation involves
obtaining a measure of each of the three variables. A typical
statistical model of the hypothesized relations among these
variables is depicted in Figure 1. This model suggests that
parental depression (X) has some influence on problematic
parenting (M), and both parental depression and problem-
atic parenting may have some direct effect on childhood
depression (Y). The direct effect of X on Y is reflected by c�.
Of course, X may also have an indirect effect on Y through
M, represented by the product a�b� in the model. In the
current example, the key research question is whether prob-
lematic parenting behavior mediates the effect of parental
depression on child depression.

In any such test, one must consider the advantages of
obtaining multiple measures of each construct and using
structural equation modeling. Such an approach enables the
investigator to avoid the bias that is typically produced by
random error of measurement. Throughout the current arti-
cle, we assume that the variables are latent or are otherwise
measured without error. In other words, we assume a best
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Figure 1. Cross-sectional mediation model. X � independent
variable; M � mediator; Y � dependent variable.
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case scenario of variables measured with no error either
because they are latent variables or because they reflect
certain manifest variables such as gender and age that can
be measured perfectly.2

To address this question (i.e., whether problematic par-
enting mediates the effect of parental depression on child
depression), let us imagine that a researcher first obtains
cross-sectional data from 100 families on all three variables.
Table 1 contains correlations between these three variables
that might derive from such a study. The results of a
standard mediational analysis using ordinary least squares
regression are shown in Figure 2. Several conclusions can
be drawn here: (a) The independent variable does signifi-
cantly predict the mediator, (b) the mediator does not sig-
nificantly predict the dependent variable, and (c) the inde-
pendent variable remains a significant predictor of the
dependent variable even when controlling for the mediator.
From these results, we would infer that problematic parent-
ing is not a mediator (or, more carefully stated, we would
infer that we have no clear basis for concluding that prob-
lematic parenting is a mediator of the relation between
parental depression and child depression).

Figure 2 shows that the estimated direct effect of parental
depression on child depression is 0.22. The estimated indi-
rect effect is the product of 0.37 and 0.15, which equals
0.05. The estimated total effect, which is the sum of the
direct effect and the indirect effect, equals 0.27. The pro-
portion of the total effect mediated by problematic parenting
is symbolized as PM and computed as the ratio of the
indirect effect (0.05) to the total effect (0.27); here, PM

equals 0.19. Thus, the single best estimate from the ob-
served data is that 19% of the total effect of parental
depression on child depression can be attributed to prob-
lematic parenting, whereas the remaining 81% cannot be
explained by problematic parenting.3

This example reflects a cross-sectional design in which all
three variables have been measured simultaneously, proba-
bly the most common type of mediational study in psychol-
ogy. In reality, however, causal effects such as those de-
picted in Figures 1 and 2 obviously occur over time. That is,
some amount of time must elapse between the cause and its
effect (Cohen, Cohen, West, & Aiken, 2003; Collins et al.,
1998; Gollob & Reichardt, 1985, 1987, 1991). A depiction

of how X, M, and Y might relate to one another over time is
shown in Figure 3, which is an example of an autoregressive
model. Unlike the models shown in Figures 1 and 2, the
longitudinal model in Figure 3 explicitly depicts the time
sequence relating the cause (X) to the mediator (M) and the
effect (Y). In this path diagram, the autoregressive effects of
X, M, and Y are represented by paths x, m, and y, respec-
tively. The direct effects of X3 M, M3 Y, and X3 Y are
represented by paths a, b, and c, respectively.

Continuing our hypothetical example, let us imagine that
the investigator is undaunted by the previous null results.
Indeed, compelled by the need for longitudinal data, the
researcher extends the cross-sectional study for two addi-
tional waves, obtains data on the same 100 individuals (and
on the same three variables), and turns the previous cross-
sectional study into a three-wave panel design. The corre-
lations for this study appear in Table 2. The cross-sectional

2 Our purpose in this article is to evaluate the performance of
cross-sectional measures of mediation under ideal conditions. To
the extent that fallible manifest variables form the basis of cross-
sectional analyses, known biases will occur in estimating relevant
model parameters. Of course, it is possible that multiple sources of
bias could counteract one another, but such wishful thinking is
rarely correct. In almost all circumstances, the types of problems
with cross-sectional efforts to test longitudinal mediation general-
ize to situations in which X, M, and Y are measured with error.

3 Shrout and Bolger (2002) and MacKinnon, Lockwood, and
Williams (2004) have shown that a bias-corrected bootstrap con-
fidence interval for the indirect effect can be more informative than
simply testing the statistical significance of each path in the pre-
sumed structural model. Forming such a 95% confidence interval
for these data reveals that the indirect effect of parental depression
on child depression through problematic parenting (i.e., the effect
of X on Y through M) plausibly ranges from �0.01 to 0.15. Thus,
it is plausible that the population indirect effect equals zero, and
we have no clear basis for concluding that problematic parenting
mediates the relation between parental depression and child de-
pression.
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Figure 2. Cross-sectional model parameter estimates (and 95%
confidence intervals) based on the correlation matrix from Table 1.

Table 1
Correlation Matrix for Hypothetical Data Relating
Parental Depression, Problematic Parenting Behavior, and
Child Depression

Variable 1 2 3

1. Parental depression (X) 1.00
2. Problematic parenting (M) .37 1.00
3. Child depression (Y) .27 .23 1.00

Note. X � independent variable; M � mediator; Y � dependent variable.
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correlations for Waves 2 and 3 are essentially the same as
they were for Wave 1. Consequently, the cross-sectional
mediational analyses at Wave 2 and at Wave 3 yield essen-
tially the same disappointing results as those at Wave 1.
Structural equation analysis reveals that the longitudinal
model in Figure 3 fits the data well, �2(22, N � 100) �
23.06, p � .40, root-mean-square error of approximation �
.022, and generates the results shown in Figure 4. These
longitudinal results yield several important conclusions: (a)
The independent variable (parental depression) significantly
predicts the mediator (problematic parenting), (b) the me-
diator (problematic parenting) significantly predicts the de-
pendent variable (child depression), and (c) the direct effect
of parental depression on child depression becomes nonsig-
nificant after controlling for problematic parenting, t �
0.17, p � .86. The standardized regression coefficient from
parental depression to child depression is only 0.01. The
indirect effect ab is 0.08, which is 88% of the total effect of
0.09. In other words, an estimated 88% of the total effect is
mediated by problematic parenting. By all accounts, these
longitudinal conclusions completely contradict the cross-
sectional conclusions—even when the cross-sectional ap-
proach is applied to data derived from the larger longitudi-
nal study.4 Clearly, the cross-sectional results can be highly
misleading. Even more disturbing, however, is the fact that
the problem is not limited to this example but extends to
almost all cross-sectional efforts to estimate mediational
parameters.

This example highlights the need to understand more
completely the implications of taking a cross-sectional ap-
proach to what is essentially a longitudinal process. In the
remainder of this article, we examine the implications of
longitudinal processes on (a) estimates of the cross-sec-
tional direct effect of X on Y, (b) estimates of the cross-
sectional indirect effect of X on Y through M, and (c)
cross-sectional estimates of proportion of total effect medi-
ated by M. We do so first by considering each of these
estimates from the perspective of an underlying autoregres-

sive longitudinal model. We then consider the same three
estimates from the perspective of an underlying random
effects longitudinal model. In all cases, we rely on mathe-
matical derivations of possible biases that can result from
cross-sectional analyses of true longitudinal processes. As
we explain later, such bias immediately renders any statis-
tical tests or confidence intervals of questionable value. If
cross-sectional analyses are shooting at the wrong target,
statistical tests and confidence intervals will necessarily be
distorted. Thus, our focus throughout is twofold: (a) ascer-
taining when cross-sectional parameters differ from param-
eters in longitudinal models and (b) quantifying the magni-
tude of these differences.

Estimating the Cross-Sectional Direct Effect of X on
Y: Autoregressive Model

When might it seem reasonable to assess mediational
processes using cross-sectional data? Let us consider an
expanded version of the longitudinal example examined
above. Figure 5 depicts such a model in which the media-
tional processes extend over t waves. As in our cross-
sectional example, we focus on the specific case in which
there is no direct path from X to Y (i.e., path c � 0),
indicating that M completely mediates the X3 Y relation at
every time interval. In many situations, dynamic relations
such as these may have stabilized; the path coefficients
connecting any pair of variables at adjacent time points are
the same regardless of the specific time period. In addition,
the system itself may have reached equilibrium such that
cross-sectional correlations among X, M, and Y are the same
at every time point. To the extent that both of these assump-
tions hold, a longitudinal analysis may seem unnecessary
because the only reason cross-sectional correlations among
X, M, and Y would differ from one time point to another
would be because of sampling error. Thus, the only apparent
value in obtaining measures at multiple time points might
seem to be the fact that one would derive more precise
estimates due to simple replication over time. Under such
conditions, a cross-sectional mediational analysis might
seem entirely reasonable; the benefits gained from a longi-
tudinal study might not seem to justify the extra cost and
effort. However, we show below that even when these
conditions are met, cross-sectional analyses very rarely re-

4 An expanded version of this longitudinal model might include
a path that allows X to cause Y directly at a time lag of 1 time unit,
instead of 2 units. This model also provides a good fit to the data.
However, both direct paths from parental depression to child
depression are essentially zero in this model. Furthermore, a model
with no direct paths whatsoever from parental depression to child
depression also fits these data very well. Thus, all the results of all
three models agree that it is plausible that parental depression has
no direct effect on child depression.
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Figure 3. Longitudinal mediation model. X � independent vari-
able; M � mediator; Y � dependent variable.
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veal the true nature of mediational processes as conceptu-
alized in the longitudinal model of Figure 5.

Appendix A shows the derivations of the cross-sectional
zero-order correlations among X, M, and Y from the model
shown in Figure 5. These derivations assume that (a) M at
time t fully mediates the relation between X at time t � 1
and Y at time t � 1, (b) the path coefficients a, b, x, m, and
y are invariant over time, and (c) the system has reached
equilibrium so that the cross-sectional correlations among
X, M, and Y do not depend on the time of measurement.
Under these conditions, Appendix A shows that the popu-
lation cross-sectional correlations are given by

�XtMt
�

ax

1 � mx
, (4)

�Xt,Yt
�

abx2

�1 � mx	�1 � xy	
, and (5)

�MtYt
�

bm

�1 � my	
�

a2bx

�1 � mx	�1 � my	�1 � xy	
. (6)

The essential question is how well do the cross-sectional
parameters a�, b�, and c� as shown in Figure 1 accurately
represent the underlying longitudinal mediational process.
We begin with c�, which represents the direct effect of X on
Y controlling for M. The population value of c� in the
cross-sectional analysis can be derived from the correlations
shown in Equations 4 through 6:

c� �
�XtYt

� �XtMt
�MtYt

1 � �XtMt

2 , (7)

c� �

abx2

�1 � mx	�1 � xy	
� � ax

�1 � mx	� bm

�1 � my	

�
a2bx

�1 � mx	�1 � my	�1 � xy	 ��
1 � �XtMt

2 , and (8)

c� �
abx
�XtXt�1 � �MtMt�1�

�1 � mx	�1 � my	�1 � xy	�1 � �XtMt

2 	
, (9)

Y1 Y2 Y3

.37

X1

M1

X2

M2

X3

M3

.32

.69

X X

M M

Y

Y

.46

.43

.88

.33

.71

.43

.01.23

.37

.27

321

.37.32

1

1

2

2

X

3

.89
X X

M M

Y

.46.27

.43.28

.43.31

.01.01

Y1 Y2 Y3

.37

X1

M1

X2

M2

X3

M3

.32

.69

X X

M M

Y

Y

.46

.43

.88

.33

.71

.43

.01.23

.37

.27

321

.37.32

1

1

2

2

X

3

.89
X X

M M

Y

.46.27

.43.28

.43.31

.01.01

Figure 4. Longitudinal parameter estimates based on Table 2.
X � independent variable; M � mediator; Y � dependent variable.
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Figure 5. Extended longitudinal model of complete mediation,
where path c (the direct effect of X on Y) is zero. X � independent
variable; M � mediator; Y � dependent variable.

Table 2
Correlation Matrix for Hypothetical Longitudinal Data Relating Parental Depression (X),
Problematic Parenting (M), and Child Depression (Y) Across Three Waves

Variable 1 2 3 4 5 6 7 8 9

1. X1 1.00
2. M1 .37 1.00
3. Y1 .27 .23 1.00
4. X2 .89 .30 .26 1.00
5. M2 .39 .42 .12 .36 1.00
6. Y2 .29 .48 .76 .28 .21 1.00
7. X3 .79 .31 .21 .88 .27 .22 1.00
8. M3 .33 .26 .08 .43 .44 .15 .37 1.00
9. Y3 .33 .39 .66 .31 .44 .78 .29 .22 1.00

Note. The three uppermost correlations are the same as those in Table 1. X � independent variable; M �
mediator; Y � dependent variable.
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where �XtXt�1 and �MtMt�1 refer to the stability of X and M,
respectively, between two adjacent time points. In other
words, �XtXt�1 is the correlation between X at any time t and
X at the previous time point t � 1. Similarly, �MtMt�1 is the
correlation between M at any time t and M at the previous
time point t � 1.

Assuming that a � 0, b � 0, and x � 0, it follows from
Equation 9 that

c� � 0 if and only if �XtXt�1 � �MtMt�1, (10)

c� � 0 if and only if �XtXt�1 � �MtMt�1, and (11)

c� � � 0 if and only if �XtXt�1 � �MtMt�1. (12)

The import of these expressions becomes strikingly evident
when one notes that c� represents the direct effect of X on Y
in the cross-sectional analysis and that the underlying causal
model shown in Figure 5 has no direct effect of X on Y
whatsoever. Thus, the parameter value c� in the cross-
sectional analysis is correct only when it equals zero, which
is true only when X and M are equally stable. In other
words, researchers who analyze cross-sectional mediational
data are estimating an appropriate direct effect of X on Y
(from a longitudinal perspective) if and only if X and M are
equally stable. Recall that this means that the population
correlation between two measures of X at adjacent time
periods must equal the population correlation between two
measures of M at adjacent time periods. In our experience,
this assumption is often dubious and rarely (if ever) tested.
When this condition is not met, cross-sectional analyses will
generate biased estimates of the true direct effect of X on Y
no matter how large a sample size is used.

Although bias is generally undesirable in any statistical
procedure, a saving grace in some situations is that the
direction of bias can be known with certainty. For example,
random error of measurement necessarily lowers the abso-
lute value of the correlation between two variables, so the
population correlation between manifest variables must be
closer to zero than the population correlation between cor-
responding latent variables. Unfortunately, in the current
mediation example, Expressions 11 and 12 show that the
direction of bias that derives from using cross-sectional data
to estimate direct longitudinal effects is unknowable with-
out more information about the relative stability of X and M.
If X is more stable than M, the direct effect will be positive
when it should be zero. However, if X is less stable than M,
the direct effect will be negative when it should be zero.

Our example of parental depression, problematic parent-
ing, and child depression illustrates how bias can arise from
a cross-sectional analysis. Recall that the cross-sectional
analysis implied that 19% of the total effect of parental
depression on child depression was mediated by problem-
atic parenting; however, the corresponding longitudinal

analysis revealed that problematic parenting actually medi-
ated 100% of the effect of parental depression on child
depression. In this example, the cross-sectional analysis is
based upon a subset of the same correlations that gave rise
to the longitudinal results (compare Tables 1 and 2). Both
correlation matrices are completely consistent with the lon-
gitudinal model of Figure 5 with parameter values of x �
0.90, a � 0.30, b � 0.30, y � 0.70, and m � 0.30. In the
model that generated these data, path c � 0, and mediation
was 100% complete. In stark contrast, the cross-sectional
approach suggests that mediation was only 19% complete.5

Why have we been misled by the cross-sectional anal-
ysis? The reason is that in this case, X (parental depres-
sion) has a stability coefficient of 0.90, whereas the
mediator has a stability coefficient of 0.41. Expression 11
shows that when �XtXt�1 � �MtMt�1, c� � 0 under complete
longitudinal mediation. Indeed, Figure 2 shows that c� �
0.22 for these data even though there is no direct effect of
parental depression on child outcome in the longitudinal
model.

Expressions 10, 11, and 12 establish that cross-sectional
analyses can easily generate biased estimates of longitudinal
direct effects. This problem might be negligible if the mag-
nitude of bias were small. Tables 3 and 4 provide population
values for c� (and c) under a variety of plausible conditions.
The rightmost column in Tables 3 and 4 shows that the bias
can be quite substantial. These bias values are easily inter-
preted as they represent the difference between the popula-
tion standardized regression coefficient (c�) in a cross-sec-
tional design and the true value of this effect (c � 0) in the
underlying longitudinal model.

Table 3 depicts situations where X is at least as stable as
M. As implied by Expressions 10 and 11, values of the
cross-sectional parameter c� are necessarily nonnegative in
these cases. Even though there is no direct effect of X on Y
in the longitudinal model, the corresponding direct effect in
the cross-sectional model is almost always positive. Only in
the (unlikely) special case where X and M are equally stable
(both equal to .70 in Table 3) is the cross-sectional direct

5 The statement that problematic parenting accounts for 100% of
the effect of parental depression on child depression may seem to
contradict our earlier statement that the single best estimate in our
numerical example is that problematic parenting accounts for 88%
of the effect of parental depression on child depression. The 100%
figure is the true population value, whereas the 88% figure is the
value obtained in this specific sample. Thus, the discrepancy
between these two values simply reflects sampling error. We could
have created data where, even in the sample, problematic parenting
accounted for exactly 100% of the effect of parental depression on
child depression, but we decided that it would be less misleading
to allow for a certain amount of sampling error in our numerical
example instead of having sample values literally duplicate pop-
ulation values.
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effect parameter c� equal to zero. Most importantly from a
practical perspective, the value of c� can be quite substantial
even in the population. Thus, even in very large samples, a
cross-sectional analysis can yield evidence of a medium to
large direct effect of X on Y even when the actual direct
effect in the longitudinal model is zero.

Table 4 depicts situations where M is at least as stable as
X. As implied by Expression 12, values of the cross-sec-
tional parameter c� are necessarily negative whenever M is
more stable than X. Even though there is no direct effect of
X on Y in the longitudinal model, the corresponding direct
effect parameter in the cross-sectional model is negative.
Only in the special case where X and M are equally stable

(both equal to .70 in Table 4) is the cross-sectional direct
effect parameter c� equal to zero. All other cases generate
negatively biased values for the direct effect of X on Y. The
magnitude of bias shown in Table 4 is generally less than
that in Table 3. Even so, some of the negative values in
Table 4 are large enough (in absolute value) to cause con-
sternation in a researcher who would probably be perplexed
by an analysis suggesting a negative direct effect among
variables all of which are positively related. Our analysis
shows that such an occurrence may simply reflect the kind
of bias that can arise from the cross-sectional analysis of a
longitudinal phenomenon. Except for the special (and un-
usual) case where the independent variable X and the me-

Table 4
Bias in the Estimated Direct Effect of X on Y When M Is at Least as Stable as X and the True Direct Effect (Longitudinal Path c)
Equals Zero

Stability Longitudinal parametersa Cross-sectional parametersb
Bias

(c� � c)�XtXt�1
�MtMt�1

a b c x m y �XM �MY �XY c�

0.7 0.9 0.5 0.4 0.0 0.7 0.60 0.5 0.60 0.61 0.26 �0.17 �0.17
0.7 0.8 0.5 0.4 0.0 0.7 0.52 0.5 0.55 0.51 0.24 �0.07 �0.07
0.7 0.7 0.5 0.4 0.0 0.7 0.45 0.5 0.51 0.43 0.22 0.00 0.00
0.6 0.9 0.5 0.4 0.0 0.6 0.65 0.5 0.49 0.60 0.17 �0.17 �0.17
0.6 0.8 0.5 0.4 0.0 0.6 0.57 0.5 0.46 0.50 0.16 �0.09 �0.09
0.6 0.7 0.5 0.4 0.0 0.6 0.49 0.5 0.42 0.42 0.15 �0.04 �0.04
0.5 0.9 0.5 0.4 0.0 0.5 0.71 0.5 0.39 0.60 0.10 �0.15 �0.15
0.5 0.8 0.5 0.4 0.0 0.5 0.62 0.5 0.36 0.50 0.10 �0.10 �0.10
0.5 0.7 0.5 0.4 0.0 0.5 0.53 0.5 0.34 0.41 0.09 �0.06 �0.06

Note. X � independent variable; M � mediator; Y � dependent variable; a � direct effect of X 3 M; b � direct effect of M 3 Y; c � direct effect of
X 3 Y; x � autoregressive effect of X; m � autoregressive effect of M; y � autoregressive effect of Y; c� � cross-sectional direct effect of X 3 Y.
a Hypothetical path coefficients for the longitudinal model depicted in Figure 5. b The cross-sectional parameters that would emerge for the model depicted
in Figure 1 if the longitudinal model in Figure 5 were the true model.

Table 3
Bias in the Estimated Direct Effect of X on Y When X Is at Least as Stable as M and the True Direct Effect (Longitudinal Path c)
Equals Zero

Stability Longitudinal parametersa Cross-sectional parametersb
Bias

(c� � c)�XtXt�1
�MtMt�1

a b c x m y �XM �MY �XY c�

1.0 0.7 0.5 0.4 0.0 1.0 0.33 0.5 0.74 0.51 0.60 0.48 0.48
1.0 0.5 0.5 0.4 0.0 1.0 0.19 0.5 0.62 0.36 0.49 0.44 0.44
1.0 0.3 0.5 0.4 0.0 1.0 0.04 0.5 0.52 0.23 0.42 0.41 0.41
0.9 0.7 0.5 0.4 0.0 0.9 0.36 0.5 0.67 0.48 0.44 0.22 0.22
0.9 0.5 0.5 0.4 0.0 0.9 0.22 0.5 0.56 0.33 0.37 0.27 0.27
0.9 0.3 0.5 0.4 0.0 0.9 0.06 0.5 0.48 0.20 0.31 0.28 0.28
0.8 0.7 0.5 0.4 0.0 0.8 0.40 0.5 0.59 0.45 0.32 0.08 0.08
0.8 0.5 0.5 0.4 0.0 0.8 0.25 0.5 0.50 0.30 0.27 0.15 0.15
0.8 0.3 0.5 0.4 0.0 0.8 0.09 0.5 0.43 0.19 0.23 0.18 0.18
0.7 0.7 0.5 0.4 0.0 0.7 0.45 0.5 0.51 0.43 0.22 0.00 0.00
0.7 0.5 0.5 0.4 0.0 0.7 0.28 0.5 0.44 0.29 0.19 0.08 0.08
0.7 0.3 0.5 0.4 0.0 0.7 0.11 0.5 0.38 0.17 0.16 0.12 0.12

Note. X � independent variable; M � mediator; Y � dependent variable; a � direct effect of X3 M; b � direct effect of M3 Y; c � direct effect of
X 3 Y; x � autoregressive effect of X; m � autoregressive effect of M; y � autoregressive effect of Y; c� � cross-sectional direct effect of X 3 Y.
a Hypothetical path coefficients for the longitudinal model depicted in Figure 5. b The cross-sectional parameters that would emerge for the model in
Figure 1 if the longitudinal model in Figure 5 were the true model.
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diator M are equally stable, analysis of cross-sectional cor-
relations will tend to indicate the presence of a direct effect
of X on the dependent variable Y even when no such direct
effect exists from a longitudinal perspective.

Estimating the Cross-Sectional Indirect Effect of X
on Y Through M: Autoregressive Model

The previous sections have demonstrated the potential for
serious bias in cross-sectional estimation of the direct effect
of X on Y. We now turn our attention to cross-sectional
estimation of the indirect effect. Previously, we have shown
that a necessary and sufficient condition for the cross-
sectional analysis to correctly identify the absence of a
longitudinal direct effect of X on Y is that X and M be
equally stable. However, even this condition does not guar-
antee that the cross-sectional analysis will accurately reflect
the magnitude of the longitudinal indirect effect of X on Y
through M. In fact, the indirect effect a�b� in the cross-
sectional model generally provides a poor estimate of the
longitudinal indirect effect ab even under the best of cir-
cumstances.

Appendix B shows that when longitudinal path c equals
zero, the difference between the indirect effect ab in the
longitudinal model and a�b� in the cross-sectional analysis
can be written as

a�b� � ab �
ab
 x2 � �1 � mx	�1 � xy	�

�1 � mx	�1 � xy	
� c�. (13)

Even if X and M are equally stable (in which case, the
cross-sectional path c� also equals zero), a�b� will equal ab
if and only if one of three additional conditions holds: (a)
a � 0, (b) b � 0, or (c) x2 � (1 � mx)(1 � xy). Mediation
is not possible if either a or b equals 0, and the third
condition appears to have no straightforward interpretation
or meaning. Thus, even if X and M are equally stable and
even if there is complete mediation, the cross-sectional
analysis will almost never reflect the longitudinal indirect
effect accurately.

The panels of Figure 6 graph the difference between the
cross-sectional indirect effect a�b� and the longitudinal in-
direct effect ab for selected parameter values. These graphs
show that even when X and M are equally stable, the
cross-sectional indirect effect generally does not equal the
indirect effect of the longitudinal model. As implied by
Equation 13, the graphs also show that the direction of the
bias can be either positive or negative. Furthermore, the
graphs reveal that the magnitude of bias can be substantial
in either direction. When X and M exhibit low stability (i.e.,
when �XtXt�1 and �MtMt�1 are close to .1), the cross-sectional
indirect effect can be as much as 0.30 to 0.40 less than the
longitudinal indirect effect. Conversely, when X and M are
relatively stable (i.e., when �XtXt�1 and �MtMt�1 are close to .9),

the cross-sectional indirect effect can be 0.40 to 0.50 more
than the longitudinal indirect effect. We hasten to note that
the values shown in Figure 6 reflect situations where X and
M are equally stable. We imposed this constraint because it
represents the only case in which the cross-sectional assess-
ment that c� � 0 is accurate. Recall that when these stabil-
ities are not equal to one another, the estimation of c� is
substantially biased (see Tables 3 and 4). Although this
inaccuracy might happen to counterbalance the discrepan-
cies shown in Figure 6, it is also quite possible that this
additional discrepancy will serve to increase the bias even
further. (Of course, the specific patterns shown in Figure 6
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Figure 6. Bias in cross-sectional indirect effect index (a�b�).
a � direct effect of X 3 M; b � direct effect of M 3 Y; y �
autoregressive effect of Y; a� � cross-sectional direct effect of
X 3 M; b� � cross-sectional direct effect of M 3 Y; �XX �
stability of X; �MM � stability of M.
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might not hold if c� were nonzero.) In general, Equation 13
and Figure 6 together show that cross-sectional values of
indirect effects are often substantially different from corre-
sponding longitudinal indirect effects, even in very large
samples.

Cross-Sectional Estimation of Proportion of Total
Effect Mediated by M: Autoregressive Model

Suppose some variable M has been found to mediate the
relation between two other variables X and Y. An interesting
follow-up question is typically to ascertain what proportion
of the total effect of X on Y is mediated by the variable M
(Shrout & Bolger, 2002). In a cross-sectional analysis such
as depicted in Figure 1, the proportion of the total effect that
is mediated by M is written as PM and can be expressed as

PM �
a�b�

�XY
. (14)

Shrout and Bolger (2002) pointed out that an important
advantage of the index PM is that it provides a continuous
measure of the strength of mediation instead of reducing
mediation to a dichotomous yes–no decision. In this sense,
PM is an effect size index and conveys information about the
magnitude of the mediated effect. MacKinnon, Warsi, and
Dwyer (1995) found that large sample sizes (e.g., 500 or
more participants) are usually required to obtain stable
estimates of the population value of PM. Shrout and Bolger
described a bootstrap procedure for obtaining standard er-
rors and confidence intervals for PM. Together, these two
articles demonstrate the hazards of overinterpreting values
of PM unless point estimates are accompanied by corre-
sponding confidence intervals, especially in small samples.
However, an even more basic question is the extent to which
a cross-sectional estimate of PM is likely to be biased, a
problem not solved by forming a confidence interval, even
in large samples.

How accurate is the cross-sectional index PM shown in
Equation 14 as an index of longitudinal mediation? To
answer this question, notice that M completely mediates the
relation between X and Y according to the longitudinal
model of Figure 5. Thus, from the longitudinal perspective,
the true value of PM equals 1.0. It then follows that the
magnitude of the cross-sectional proportional index to the
corresponding longitudinal proportional index is simply
given by the ratio on the right side of Equation 14:

PM(cross-sectional)

PM(longitudinal)
�

a�b�

�XY
, (15)

where �XY is the correlation between X and Y at a fixed point
in time and thus can be denoted as �XtYt

.
Equation 15 can be rewritten by substituting for a�b� from

Equation B1 in Appendix B, yielding

PM(cross-sectional)

PM(longitudinal)
� 1 �

c�

�XtYt

. (16)

Substituting for c� from Equation 9 and for �XtYt
from

Appendix A and subsequently rearranging terms yields

PM(cross-sectional)

PM(longitudinal)
� 1 �

�XtXt�1 � �MtMt�1

x�1 � my	�1 � �XtMt

2 	
, (17)

as long as a, b, and x are all nonzero. Equation 17 shows that
the cross-sectional index PM will always differ from the
longitudinal index PM except in the special case where X
and M are equally stable. Furthermore, when X is more
stable than M, the cross-sectional index will be smaller than
the longitudinal index. Conversely, when X is less stable
than M, the cross-sectional index will be larger than the
longitudinal index.

Figure 7 provides an indication of the possible magnitude
of the discrepancy between the cross-sectional and longitu-
dinal indices. The x-axis of the figure depicts the parameter
x, which is the stability of X. The y-axis depicts Equation 17,
expressed as a percentage. Thus, the horizontal line at a
height of 100 represents situations where the cross-sectional
and longitudinal indices are equivalent to one another.
Points above this line reflect situations where the cross-
sectional index is larger than the longitudinal index,
whereas points below this line reflect situations where the
cross-sectional index is smaller than the longitudinal index.
The figure shows the percentage for two arbitrary but rea-
sonable sets of parameter values. In particular, when a �
0.30, m � 0.69, and y � 0.60, the cross-sectional index
tends to be larger than the longitudinal index. For example,
when the stability of X is around .50, the cross-sectional
index is nearly twice as large as the longitudinal index. The
cross-sectional index remains larger than the longitudinal
index until the stability of X exceeds .91, at which point the
percentage begins to drop rapidly. When the stability of X
reaches its maximum value of 1.00, the cross-sectional
index is less than half as large as the longitudinal index for
this configuration of parameter values.

A second set of parameter values shows a very different
curve (see Figure 7). Specifically, when a � 0.50, m � 0.33,
and y � 0.50, the cross-sectional index is always less than
the longitudinal index for stability values of X between .50
and 1.00. When the stability of X is near .50, the cross-
sectional index is only slightly less than the longitudinal
index; however, the ratio steadily declines for more stable
values of X, reaching a point where the cross-sectional index
is less than 20% of the longitudinal index as X approaches
perfect stability. In general, Equation 17, together with
Figure 7, shows that even in very large samples, a cross-
sectional index of the proportion of total effect mediated by
a variable M can be either much larger or much smaller than
the corresponding longitudinal index. Furthermore, the
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cross-sectional data do not provide enough information to
evaluate whether the cross-sectional index is likely to be too
small or too large, so the direction of bias is unknown in the
absence of longitudinal data.

A Random Effects Model of Mediation

We have seen that cross-sectional analyses can produce
very misleading conclusions regarding mediation when the
true nature of change follows an autoregressive model.
However, the autoregressive model is only one plausible
model of change. We now turn our attention to a rival
model, namely, the random effects model. There are many
different specific models we might consider because ran-
dom effects models are actually an entire class of models.
For this reason, we rely on the specific random effects
model of mediation proposed by Kenny et al. (2003) in
which X, M, and Y change over time. In doing so, we also
want to acknowledge that Cheong, MacKinnon, and Khoo
(2001, 2003) have developed an appropriate random effects
model for a situation where X represents a fixed interven-
tion. As in the case of the autoregressive model, we consider
the special case where the mediator M completely mediates
the effect of X on Y; however, we note that the model

developed by Kenny et al. (2003) also allows for partial
mediation.

In the case of complete mediation, Kenny et al.’s (2003)
model stipulates that X, M, and Y for individual i at time t
are related as follows:

Mit � d1i � aiXit � eit, and (18)

Yit � d2i � biMit � fit. (19)

To understand this model more completely, let us borrow an
example originally presented by Kenny et al. Suppose that
X is an indicator variable reflecting the occurrence or ab-
sence of a specific stressor for an individual on a given day.
(For our purposes, it does not matter whether X is categor-
ical or continuous, so X could also reflect level of stress on
a given day.) Further suppose that M reflects an individual’s
level of coping on that day and Y reflects the individual’s
mood that day. In a longitudinal design, all three variables
would be measured over a period of days for a group of
individuals.

According to Equations 18 and 19, an individual’s coping
(M) on any given day will depend in part on whether the
individual experienced the specific stressor (X) on that day.
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Figure 7. Estimated PM (proportion of the total effect of X on Y that is mediated by M) as a
percentage of actual PM for selected parameter values. X � independent variable; M � mediator;
Y � dependent variable; a � direct effect of X 3 M; m � autoregressive effect of M; y �
autoregressive effect of Y.
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Similarly, that individual’s mood will depend in part on his
or her level of coping on that day. The fact that X (stress)
does not appear as an explanatory variable for Y (mood) in
Equation 19 reflects the fact that M completely mediates the
relation between X and Y in this version of the model. Of
course, rarely will stress perfectly explain coping, and rarely
will coping perfectly explain mood. Unexplained effects are
represented by the error terms eit and fit.

Several characteristics of this model are especially im-
portant for our purposes. First, notice that scores on X are
allowed to change over time. Equation 18 shows that such
changes on X will translate into corresponding changes on
M to the extent that the ai parameter is nonzero. Similarly,
from Equation 19, changes on M will result in changes on Y
to the extent that the bi parameter is nonzero. Thus, even
though time is not an explicit term in either equation, the
model is in fact a model of change insofar as X is allowed
to change over time (as reflected by the t subscript associ-
ated with X), M is dependent on X, and Y is dependent on
M.6 Second, notice that the extent to which M depends on X
and the extent to which Y depends on M can vary across
individuals, as reflected by the presence of an i subscript for
the ai and bi parameters. Third, notice the presence of two
additional random effects, namely, d1i and d2i. These ran-
dom effects allow M and Y to exhibit stability over time.

We show below that d1i and d2i play an especially im-
portant role in our derivations, so we want to take a moment
now to consider their meaning. To understand the role
played by these terms, we first consider d1i in Equation 18.
Notice that the presence of an i subscript for this parameter
indicates that it is a random effect allowed to vary over
individuals. However, the absence of a t subscript implies
that this effect does not vary over time and thus is a
perfectly stable individual-differences variable. Suppose for
a moment that every individual had the same value for the
d1i parameter (i.e., suppose that the variance of this random
effect parameter were zero). This would imply that every
person experiencing the stressor should have the same level
of coping except for random error. Similarly, if every per-
son had the same value of d2i, all individuals with a specific
level of coping should have the same level of mood except
for random error. In reality, however, consistent individual
differences in coping almost certainly exist even holding the
stressor constant. Likewise, consistent individual differ-
ences in mood almost certainly exist even for persons who
exhibit the same level of coping. Allowing d1i and d2i to
vary over individuals allows for such consistent individual
differences.

It may be useful to pause for a moment to consider how
the random effects model allows for stability over time. As
we have just seen, the d1i and d2i random effects reflect
consistent individual differences. In essence, these random
effects represent baseline levels of M and Y. For example, as
the presence of the stressor X fluctuates from one day to the

next, a given person’s level of coping (M) similarly fluctu-
ates as a function of the ai parameter. The critical point is
that this fluctuation occurs around the d1i value, and the
level of d1i generally varies from person to person. In other
words, some individuals simply cope better than others
either in the presence or absence of the specific stressor X.
To the extent that this is true, daily M scores are fluctuating
around each person’s baseline level of coping. As a conse-
quence, M will exhibit some degree of stability in the sense that
scores across individuals at one time point will tend to correlate
with scores at another time point because each individual has
his or her constant baseline level around which scores fluctuate
over time. A similar argument applies for Y.

Estimating the Cross-Sectional Direct Effect of X on
Y: Random Effects Model

Suppose that the random effects model of the previous
section depicts the true nature of the process whereby M
completely mediates the effect of X on Y. To what extent is
it possible to capture this process accurately with cross-
sectional data? We pursue the answer to this question by
assuming that the mediational process follows the Kenny et
al. (2003) model of mediation and then determining how
well a cross-sectional approach reveals the true longitudinal
mediation process.

Suppose a researcher collects cross-sectional data on X,
M, and Y at some fixed point in time. Appendix C shows
that when complete mediation occurs in the Kenny et al.
(2003) model, the correlations among X, M, and Y at any
point in time t can be written in terms of the underlying
model parameters as follows:

�XM � a � 
Xd1, (20)

�MY � b � 
d1d2 � a
Xd2, and (21)

�XY � ab � 
Xd2 � b
Xd1. (22)

The direct effect of X on Y in a cross-sectional media-
tional model equals the standardized regression coefficient
for X in a regression model where Y is predicted from both
X and M, which can be written as

6 This model specifies contemporaneous effects of X on M and
of M on Y. In some situations, such as daily stress (X), daily coping
(M), and daily mood (Y), as discussed by Kenny et al. (2003), this
model seems reasonable. In other situations, lagged effects might
be deemed more appropriate. An extension of our derivations
could consider a cross-sectional analysis of such a lagged longi-
tudinal model. Even more stringent conditions would need to hold
before a cross-sectional analysis would yield unbiased estimates of
parameters in a lagged longitudinal model.
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�YX�M �
�XY � �XM�MY

1 � �XM
2 . (23)

The population value of this direct effect can be found by
substituting expressions for the correlations from Equations
20 through 22 into Equation 23, which, after straightforward
algebra, reduces to

�YX�M �

Xd2 � �
d1d2 � a
Xd2	�a � 
Xd1	

1 � �XM
2 . (24)

However, keep in mind that Equations 20 through 22 are
based on a model of complete mediation as reflected by the
model formulation shown in Equations 18 and 19. Thus, the
true value of the direct effect is zero. Consequently, the
expression in Equation 24 represents the bias in the cross-
sectional estimate of the true direct effect in the random
effects model.

To understand the bias shown in Equation 24, we need to
probe the meaning of three covariance terms, 
d1d2, 
Xd1, and

Xd2. Recall that the random effect d1i represents the base-
line level of M (controlling for X) for individual i, whereas
the random effect d2i represents the baseline level of Y
(controlling for M) for individual i. Thus, Equation 24
shows that the magnitude of bias in the direct effect depends
on the covariances among these random effects. Would
these random effects typically be correlated with one an-
other? To answer this question, let us return to the example
where X represents the presence of a stressor, M is coping,
and Y is mood. Then, the random effect d1i represents the
baseline level of daily coping (controlling for the stressor)
for individual i. Similarly, the random effect d2i represents
the adjusted baseline level of daily mood (controlling for
coping) for individual i. In other words, each person has
some adjusted baseline level of daily mood, taking into
account the influence that daily coping has on daily mood
for each person. The covariance 
d1d2 will be nonzero if
individuals with higher adjusted baseline levels of coping
have different adjusted baseline levels of mood than indi-
viduals with lower adjusted baseline levels of coping.

The covariance of X with d1 reflects the extent to which
individuals with higher levels of the stressor (X) tend to
have different adjusted baseline levels of coping (M) than
individuals with lower levels of the stressor. Similarly, the
covariance of X with d2 reflects the extent to which indi-
viduals with higher levels of the stressor tend to have
different adjusted baseline levels of mood than individuals
with lower levels of the stressor.

Only under extremely limited conditions will a cross-
sectional analysis provide an unbiased estimate of the true
direct effect from the random effects model. The bias shown
in Equation 24 will equal zero if and only if


Xd2 � �
d1d2 � a
Xd2	�a � 
Xd1	 � 0. (25)

In practice, Equation 25 will hold under remarkably few
conditions. The most straightforward case where the bias
will equal zero is if both covariances 
d1d2 and 
Xd2 happen
to equal zero, but it is difficult to develop a convincing
rationale for such an expectation. In particular, these co-
variances will equal zero only if (a) all influences on M
other than X are uncorrelated with all influences on Y other
than M and (b) all influences on Y other than M are uncor-
related with X.7

A potentially important simplification occurs in the spe-
cial case where X is randomly assigned to each individual,
as Kenny et al. (2003) suggested is ideal. To understand
how random assignment might work here, it is important to
realize that by design, X varies within a person. Thus,
random assignment of X here would mean that on certain
randomly selected days, X would take on one value,
whereas on other randomly selected days, X would take on
a different value. For example, a high stress induction might
be introduced on certain random days but not on others. In
any event, when X is randomly assigned, X cannot covary in
the population with either d1 or d2. Thus, for there to be no
bias in the cross-sectional design, d1 and d2 must be uncor-
related. Although this is a weaker assumption than the one
underlying the more general case, it will nevertheless be a
difficult one for most researchers to justify, thus still limit-
ing the value of the cross-sectional analysis.

Equation 25 suggests that cross-sectional estimates of the
direct effect will typically be biased. Equation 24 provides
the mathematical expression for the magnitude of bias.
Nevertheless, it is difficult to judge from these equations
how large the bias is likely to be in practical terms. Figure
8 shows the magnitude of bias in the cross-sectional direct
effect for certain fixed values of model parameters. Specif-
ically, this figure is based on parameter values of a � 0.60
and b � 0.50. Furthermore, the standard deviations of both
d1 and d2 are assumed to equal 0.50. For simplicity, �Xd1 is
assumed to be equal to �Xd2. The x-axis of the figure repre-
sents this common correlation between X and each of the d
variables. Finally, two curves appear in the figure, one
corresponding to a situation where d1 and d2 are uncorre-
lated and another corresponding to a situation where they
correlate 0.50 with one another.

Several practical implications emerge from Figure 8.
First, the magnitude of bias in the cross-sectional direct
effect parameter can be substantial, sometimes reaching
values that would typically be interpreted as a large effect
size even when the true longitudinal parameter equals zero.

7 A more general formulation of the random effects model could
include time as an explicit predictor of both M and Y. Appendix D
derives an expression comparable to Equation 25, demonstrating
the conditions under which the cross-sectional estimate of the
direct effect will be unbiased in this more general formulation.
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Second, the direction of bias can be either positive or
negative. In other words, the cross-sectional estimate can be
either too large or too small depending primarily on the
magnitude of the correlations of X with d1 and d2. Unfor-
tunately, this makes meaningful interpretation especially
complicated because, with cross-sectional data, there is no
way to know whether direct effect estimates will generally
be too small or too large. Third, the correlation between d1

and d2 has relatively little effect on the bias until X becomes
positively correlated with d1 and d2, at which point the
correlation between the d variables becomes an important
determinant of the bias. Fourth, even though Figure 8 per-
tains to a specific set of parameter values, the basic point is
more general: Substantial bias can exist in cross-sectional
estimates of direct effects when the true mediational process
follows the longitudinal random effects model (represented
in Equations 18 and 19).

Estimating the Cross-Sectional Indirect Effect of X
on Y Through M: Random Effects Model

The previous section has shown that stringent assump-
tions must be met for a cross-sectional design to yield
unbiased estimates of longitudinal mediation based on the
random effects model. We now turn our attention to the
corresponding indirect effect. A distinguishing characteris-
tic of the random effects model is that each individual is
allowed to have a unique indirect effect because the effect

of X on M is allowed to vary over individuals, as is the effect
of M on Y. As a consequence, Kenny et al. (2003) showed
that the average indirect effect is not necessarily equal to ab
because

E�aibi	 � ab � 
ab. (26)

Thus, assessing bias in a cross-sectional design requires
comparing the expression in Equation 26 with the expected
value of the indirect effect as assessed in a cross-sectional
design. Appendix E shows that this bias can be written as

bias � �a � 
Xd1	

� � �b � 
d1d2 � a
Xd2	 � �a � 
Xd1	�ab � 
Xd2 � b
Xd1	

1 � �XM
2 �

� �ab � 
ab	. (27)

Recall that the cross-sectional estimate of the direct effect is
unbiased if the covariance terms 
d1d2 and 
Xd2 equal zero.
Even if both of these terms and the additional covariance
term 
Xd1 all equal zero, the bias in the indirect effect
simplifies not to zero but instead to

bias � �
ab. (28)

Thus, even under these conditions, the bias will still be
nonzero to the extent that there is some correlation between
the ai and bi random effects.
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Figure 9 shows the magnitude of bias in the cross-sec-
tional indirect effect for certain fixed values of model pa-
rameters. Specifically, all parameters are assumed to have
the same values as in Figure 8. As shown in Equations 26
through 28, another parameter that must be considered when
evaluating bias in indirect effects is the covariance between
ai and bi. For simplicity, this covariance is assumed to equal
zero in Figure 8. However, inspection of Equation 27 shows
that the influence of a nonzero covariance would simply
shift the bias upward or downward by an amount exactly
equal to the covariance itself. Of course, if the covariance
between ai and bi were substantial, this could have a sizable
effect on the bias of the cross-sectional indirect effect. In
some situations, such a covariance could counteract the bias
depicted in Figure 9, whereas in other situations, it could
exacerbate the bias depicted in the figure.

Several practical implications emerge from Figure 9.
First, the magnitude of bias in the cross-sectional indirect
effect parameter can be substantial, often reaching values
that would typically be interpreted as corresponding to a
medium effect size and occasionally exceeding values that
would usually be considered to be large. Second, as we have
seen for the direct effect, the direction of bias in the indirect
effect can be either positive or negative. In other words, the
cross-sectional estimate of the indirect effect can be either
too large or too small depending primarily on the magnitude
of the correlation of X with d1 and d2. Unfortunately, this

again makes meaningful interpretation of cross-sectional
results especially complicated because there is no general
way to know whether indirect effect estimates obtained
from cross-sectional analyses will be too small or too large.
Third, the correlation between d1 and d2 has relatively little
effect on the bias in the indirect effect until X becomes
positively correlated with d1 and d2, at which point the
degree of correlation between the d variables becomes an
important determinant of the bias. Fourth, comparing the
pattern of bias in Figure 9 with the pattern shown earlier in
Figure 8 reveals that (for certain configurations of parameter
values) both the indirect effect and the direct effect may be
substantially overestimated. At first glance, this may seem
counterintuitive because the total effect is partitioned into
these two components. However, implicit in these two fig-
ures is the point that the total effect in the cross-sectional
design may bear little resemblance to the longitudinal total
effect. Thus, the total amount being partitioned can be much
larger in the cross-sectional design, leading to an overesti-
mation of both the direct effect and the indirect effect. Fifth,
it should be kept in mind that this figure pertains to a
specific set of parameter values. Nevertheless, the basic
point is more general. Namely, substantial bias can and
typically will contaminate cross-sectional estimates of indi-
rect effects when the true mediational process follows the
longitudinal random effects model represented in Equations
18 and 19.
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Cross-Sectional Estimation of Proportion of Total
Effect Mediated by M: Random Effects Model

As discussed in the context of the autoregressive model,
an interesting follow-up question in mediation analysis in-
volves ascertaining what proportion of the total effect of X
on Y is mediated by the variable M. Of particular interest is
the extent to which a cross-sectional analysis can be relied
upon to reflect the true proportion if the longitudinal process
conforms to the random effects model shown in Equations
18 and 19.

Under this random effects model, the ratio of the cross-
sectional proportional index to the corresponding longitu-
dinal proportional index is

PM(cross-sectional)

PM(longitudinal)
�

�MX�YM�X

�XY
. (29)

Substituting from Equations C6, E3, and C11 in the appen-
dixes into Equation 29 yields

PM(cross-sectional)

PM(longitudinal)
�

�a � 
Xdt
	

�ab � 
Xd2 � b
Xdt
	

�

�b � 
d1d2 � a
Xd2	 � �a � 
Xd1	�ab � 
Xd2 � b
Xd1	

1 � �xM
2 .

(30)

In general, the cross-sectional proportion index will differ
from the longitudinal index. The only plausible exception is
the case where all three previously mentioned covariances,
namely, 
d1d2, 
Xd1, and 
Xd2, equal zero. In this special case,
the expression shown in Equation 30 simplifies to a value of
1.00, implying that the cross-sectional proportion index will
be identical to the longitudinal index in the population.
However, when one or more of these covariances are non-
zero, the cross-sectional index is generally not the same as
the longitudinal index. Figure 10 shows the discrepancy
between the cross-sectional index and the longitudinal index
for a fixed but reasonable set of values of these covariance
parameters. Specifically, all parameters are once again as-
sumed to have the same values as in Figure 8.

Several practical implications emerge from Figure 10.
First, the magnitude of bias in the cross-sectional propor-
tional index can be substantial. Second, as we have shown
to be true of the direct effect and the indirect effect, the
direction of bias can be either positive or negative. In other
words, the cross-sectional estimate of the proportion of the
total effect that is mediated can be either too large or too
small. Once again, this makes meaningful interpretation of
cross-sectional results especially complicated. Third, the
bias in the cross-sectional index is sensitive to the correla-
tion of X with d1 and d2 as well as to the correlation between
d1 and d2. Larger values of the correlation of X with d1 and
d2 lead to smaller relative sizes of the cross-sectional index.
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However, whether this reduces or increases the bias in the
cross-sectional index depends in no small part on the cor-
relation between d1 and d2. Fourth, although the figure
represents a specific set of parameter values, the more
general point remains: Substantial bias can exist in cross-
sectional estimates of the proportion of the total effect that
is mediated when the true mediational process follows the
longitudinal random effects model represented in Equations
18 and 19.

Conclusion

The major conclusion of this article is that cross-sectional
examination of mediation will typically generate biased
estimates of longitudinal mediation parameters even under
the ideal situation when mediation is complete. Further-
more, the magnitude of bias can be substantial. This con-
clusion holds for two rather different types of longitudinal
models, namely, an autoregressive model and a random
effects model.

Although bias in cross-sectional analyses of mediation is
likely regardless of which longitudinal model accurately
reflects the true longitudinal nature of mediation, the exact
pattern of bias depends on the specific longitudinal model.
For the autoregressive model, three sets of specific conclu-
sions emerge. First, estimates of the cross-sectional direct
effect of predictor X on outcome Y are positively biased
when X is more stable than the mediator M; conversely,
estimates of the cross-sectional direct effect of X on Y are
negatively biased when M is more stable than X. The
magnitude of this bias can be substantial. Second, estimates
of the cross-sectional indirect effect of X on Y through M are
also substantially biased under a wide range of conditions.
When X and M are relatively unstable, the cross-sectional
indirect effect can be substantially negatively biased; how-
ever, when X and M are relatively stable, the cross-sectional
indirect effect can be substantially positively biased. Third,
cross-sectional estimates of the proportion of the total effect
mediated by M also evince substantial positive or negative
bias relative to the corresponding longitudinal index. The
direction of this bias depends upon the relative stabilities of
X and M. Given previous work on the relation between
cross-sectional and longitudinal models (e.g., Gollob &
Reichardt, 1985, 1987, 1991), it should perhaps come as no
surprise that cross-sectional designs and analyses cannot
generally be counted on as faithful representations of lon-
gitudinal processes. Nevertheless, the degree of bias re-
vealed in the current article suggests that cross-sectional
tests of longitudinal mediation processes have extremely
limited applicability.

The fundamental reason for the inability of the cross-
sectional model to capture longitudinal processes as re-
flected by the autoregressive model is its failure to allow for

autoregressive effects of M and Y across time. That is,
cross-sectional models do not allow statistical control for
prior M or prior Y. As such, the cross-sectional model is
misspecified, and parameter estimates are generally biased.
As Reichardt and Gollob (1986) pointed out, the cross-
sectional model is also misspecified because it fails to allow
for causation to occur over time and instead presumes that
X at time t causes M at the same time t. The preferred
solution to this problem is to include prior measures of X,
M, and Y in the model to allow for autoregressive effects
and time lags in presumed causal effects. An alternative
approach is Gollob and Reichardt’s (1987) latent longitudi-
nal analysis when only cross-sectional data are available.
Unfortunately, this approach requires tenuous assumptions
or substantial prior knowledge about longitudinal parame-
ters that underlie the cross-sectional data.

Cross-sectional analyses will also typically fail to repre-
sent longitudinal processes as reflected by a longitudinal
random effects model. To the extent that baseline levels of
the mediator and the outcome vary across individuals and
correlate either with one another or with levels of the
presumed cause (X), bias will emerge in cross-sectional
estimates of the direct effect, the indirect effect, and the
proportion of the total effect that is mediated by the medi-
ator. The magnitude of bias can be substantial, and to make
matters worse, the direction of bias is unknown unless
strong assumptions can be made about various covariances
among the random effects parameters. As in the autoregres-
sive model, the failure of cross-sectional analysis stems
from its inability to model stable relations between variables
over time. In other words, the cross-sectional analysis is
unable to determine the extent to which correlations be-
tween measures reflect an influence of one measure on
another over time or instead reflect ongoing stable relations
between measures.

Conspicuous by its absence from this article is any dis-
cussion of hypothesis testing. We have not considered hy-
pothesis testing here because the bias inherent in cross-
sectional designs has disastrous consequences for
hypothesis tests. In particular, the fact that cross-sectional
parameters generally differ from corresponding longitudinal
parameters implies that hypothesis tests based on cross-
sectional data will also be biased (cf. Casella & Berger,
2002). As a consequence, when the population value of a
longitudinal parameter is zero, we have seen that the cor-
responding cross-sectional parameter can be very different
from zero. In this case, it is entirely possible for the rejec-
tion rate of the hypothesis test to approach 1.00 even though
the longitudinal parameter exactly equals zero (i.e., the
longitudinal null hypothesis is true). Type I errors become
essentially inevitable, especially in large samples. Similarly,
tests of non-null hypotheses can have very low power
because a cross-sectional parameter value close to zero can
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correspond to a sizable longitudinal parameter value. In
such a case, statistical power can be very low even though
the true longitudinal parameter is very different from zero.
Unfortunately, avoiding hypothesis tests by relying on con-
fidence intervals fares no better. It is possible that the true
coverage rate of a 95% cross-sectional confidence interval
for a longitudinal parameter approaches a value of 0%. In
fact, larger sample sizes will typically lead to lower cover-
age probabilities because the interval hones in on a biased
estimate of the true longitudinal parameter. What appears to
be a very accurate interval (because of a large sample size)
may in fact have an upper bound and a lower bound neither
of which is remotely close to the true longitudinal parameter
value. The important practical point here is that the substan-
tial bias that typically exists in cross-sectional analyses of
mediation can render p values or confidence intervals ob-
tained from cross-sectional data essentially meaningless.

Longitudinal designs offer additional advantages beyond
the ability to eliminate bias in parameter estimates. Perhaps
most importantly, as MacKinnon et al. (2002) emphasized,
longitudinal designs can yield information about temporal
precedence and thus allow examination of which variables
are causes and which variables are effects. For example, it
may be the case that although maternal depression contrib-
utes to child depression, the opposite is also true. Longitu-
dinal designs are especially well suited to examine such
complex causal relations.

Several limitations of the current work suggest avenues
for future research. First, we have focused only on what
many researchers may regard as the ideal (or hoped-for)
situation: one in which there is complete mediation. Our
results show that cross-sectional analyses of processes in-
volving complete longitudinal mediation cannot generally
be trusted to yield accurate estimates of true underlying
longitudinal processes. A more complex situation arises
when longitudinal mediation is incomplete (i.e., when M is
controlled, the longitudinal direct effect of X on Y does not
go to zero). The magnitude of bias in cross-sectional anal-
yses remains to be explored in the more complicated case of
partial longitudinal mediation.

A second limitation is that the current article does not
examine the role of time-lag duration in the design and
analysis of longitudinal studies. As has been discussed
elsewhere (e.g., Cole & Maxwell, 2003; Gollob &
Reichardt, 1985, 1987, 1991), estimates of effects in longi-
tudinal models can change greatly depending on the chosen
time lag. In this respect, continuous time models (e.g.,
Boker, Neale, & Rausch, 2004; Oud & Jansen, 2000) offer
an interesting alternative because parameter values are un-
affected by choice of time lag between adjacent measure-
ment occasions.

A third limitation is that we constrained the current article
to focus on mediation when X, M, and Y are all changing

over time. Important special cases exist in which X might be
fixed in time. In experimental designs or therapy outcome
studies, where participants are assigned to treatment or
control conditions, investigators are often interested in the
potential mediators of the manipulation or treatment. Close
examination of mediation in such designs is clearly war-
ranted.

In summary, we find that cross-sectional approaches to
longitudinal mediation can substantially over- or underesti-
mate longitudinal effects even under the ideal conditions
where mediation is complete, longitudinal parameter esti-
mates are completely stable, and sample size is very large.
We anticipate that similar problems will emerge under less
ideal circumstances, such as partial mediation. We urge
researchers interested in mediational processes to include
multiple waves of data in their designs and analyses, and we
call upon methodologists to continue development of ap-
propriate models for understanding how psychological pro-
cesses unfold over time.
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Appendix A

Derivation of Correlations From Autoregressive Model

Expression for the XM Correlation

From the model depicted in Figure 5, we see that

Xt � xXt�1 � εXt
, and (A1)

Mt � mMt�1 � aXt�1 � εMt
. (A2)

The covariance of Xt and Mt can be expressed as

C�Xt, Mt	 � mxC�Xt�1, Mt�1	 � axC�Xt�1, Xt�1	. (A3)

Assuming that all variables are standardized, covariances
are equal to correlations, so Equation A3 can be rewritten as

�XtMt
� mx�Xt�1Mt�1 � ax. (A4)

At equilibrium, correlations are equal across waves, which
implies that

�XtMt
� �Xt�1Mt�1. (A5)

Substituting Equation A5 into Equation A4 yields

�XtMt
� mx�XtMt

� ax. (A6)

Rearranging terms and solving for the correlation between X
and M leads to

(Appendixes continue)
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�XtMt
�

ax

�1 � mx	
. (A7)

Expression for the XY Correlation

From the Figure 5 model, we see that

Yt � bMt�1 � yYt�1 � εYt
, and (A8)

Xt � xXt�1 � εXt
. (A9)

The covariance of Xt and Yt can be expressed as

C�Xt, Yt	 � bxC�Xt�1, Mt�1	 � xyC�Xt�1, Yt�1	. (A10)

Assuming standardized variables and equal correlations
across waves, Equation A10 can be rewritten as

�XtYt
� bx�XtMt

� xy�XtYt
. (A11)

Rearranging terms and substituting from Equation A7 yields

�XtYt
�

abx2

�1 � mx	�1 � xy	
. (A12)

Expression for the MY Correlation

From the Figure 5 model, we see that

Mt � mMt�1 � aXt�1 � εMt
, and (A13)

Yt � bMt�1 � yYt�1 � εYt
. (A14)

It follows that the covariance of Mt and Yt can be expressed
as

C�Mt, Yt	 � bmC�Mt�1, Mt�1	 � abC�Xt�1, Mt�1	

� myC�Mt�1, Yt�1	 � ayC�Xt�1, Yt�1	. (A15)

Assuming standardized variables and equal correlations
across waves, Equation A15 can be rewritten as

�MtYt
� bm � ab�XtMt

� my�MtYt
� ay�XtYt

. (A16)

Rearranging terms and substituting from Equations A7 and
A12 yields

�MtYt
�

bm

�1 � my	
�

a2bx

�1 � mx	�1 � my	�1 � xy	
. (A17)

One More Correlation

For our purposes, it is also useful to develop the expres-
sion for the stability of M: �MtMt�1. Starting with the longi-
tudinal model depicted in Figure 5, we see that

Mt � mMt�1 � aXt�1 � εMt
. (A18)

The correlation of Mt with Mt�1 can be expressed as

�MtMt�1 � m � a�XtMt
. (A19)

Appendix B

Derivation of the Difference Between Cross-Sectional and Longitudinal Indirect Effects in Autoregressive
Model

From the tracing rule (Kenny, 1979, pp. 30–34), the
product of the paths a� and b� can be expressed as

a�b� � �XtYt
� c�. (B1)

Appendix A shows that the correlation between X and Y is
given by

�XtYt
�

abx2

�1 � mx	�1 � xy	
. (B2)

Substituting Equation B2 into Equation B1 yields

a�b� �
abx2

�1 � mx	�1 � xy	
� c�. (B3)

It then follows that the difference between a�b� and ab can
be written as

a�b� � ab �
ab
 x2 � �1 � mx	�1 � xy	�

�1 � mx	�1 � xy	
� c�. (B4)
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Appendix C

Derivation of Cross-Sectional Correlations Based on the Random Effects Model

In the case of complete mediation, Kenny et al.’s (2003)
model stipulates that X, M, and Y for individual i at time t
are related as follows:

Mit � d1i � aiXit � eit, and (C1)

Yit � d2i � biMit � fit. (C2)

The following derivations assume that d1i, d2i, ai, and bi are
all random effects. A further assumption is that the error
terms (i.e., eit and fit) do not correlate with one another or
with any of the random effects in the model. In addition, the
distribution of all random effects and error terms is assumed
to be multivariate normal.

Expression for the XM Correlation

From Equation C1, the covariance between X and M at a
fixed time t can be written as

C�Xit, Mit	 � C�Xit, d1i � aiXit � eit	. (C3)

Equation C3 can be rewritten as

C�Xit, Mit	 � 
Xd1 � C�Xit, aiXit	. (C4)

On the basis of Bohrnstedt and Goldberger (1969), the
rightmost term of Equation C4 can be written as

C�Xit, aiXit	 � a
X
2 � �X
aX (C5)

under multivariate normality. With an additional assump-
tion that X and M are standardized (across individuals at
time t), Equation C4 simplifies to

�XM � a � 
Xd1. (C6)

Expression for the XY Correlation

From Equation C2, the covariance between X and Y at a
fixed time t can be written as

C�Xit, Yit	 � C�Xit, d2i � biMit � fit	. (C7)

Equation C7 can be rewritten as

C�Xit, Yit	 � 
Xd2 � C�Xit, biMit	. (C8)

On the basis of Bohrnstedt and Goldberger (1969), the
rightmost term of Equation C9 can be written as

C�Xit, biMit	 � b
XM � �M
bX (C9)

under multivariate normality. With an additional assump-
tion that X and M are standardized (across individuals at
time t), Equation C9 simplifies to

�XY � 
Xd2 � b�XM. (C10)

Because Equation C6 provides an expression for �XM, Equa-
tion C10 can be rewritten as

�XY � ab � 
Xd2 � b
Xd1. (C11)

Expression for the MY Correlation

From Equation C2, the covariance between M and Y at a
fixed time t can be written as

C�Mit, Yit	 � C�Mit, d2i � biMit � fit	. (C12)

Equation C11 can be rewritten as

C�Mit, Yit	 � 
Md2 � C�Mit, biMit	. (C13)

On the basis of Bohrnstedt and Goldberger (1969), the
rightmost term of Equation C13 can be written as

C�Mit, biMit	 � b
M
2 � �M
bM (C14)

under multivariate normality. With an additional assump-
tion that X and M are standardized (across individuals at
time t), Equation C14 simplifies to

�MY � 
Md2 � b. (C15)

Equation C15 can be written in more basic terms by real-
izing that

C�Mit, d2i	 � C�d1i � aiXit � eit, d2i	. (C16)

Equation C16 simplifies to

C�Mit, d2i	 � 
d1d2 � a
Xd2. (C17)

Substituting Equation C17 into Equation C14 yields

�MY � b � 
d1d2 � a
Xd2. (C18)

(Appendixes continue)
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Appendix D

More General Formulation of Random Effects Model

A more general formulation of the Kenny et al. (2003)
mediation model would allow both M and Y to increase or
decrease systematically with time irrespective of any influ-
ence on X. For example, M and Y might display straight-line
growth even if X is neither systematically increasing nor
decreasing. In such a case, a more general formulation of
the model can be written by adding individual slopes to the
model as depicted in Equations 18 and 19 of the text,
resulting in models of the form

Mit � d1i
* � d3i

* t � aiXit � eit, and (D1)

Yit � d2i
* � d4i

* t � biMit � fit, (D2)

where t represents the value of time.
The model shown in Equations 18 and 19 can be regarded

as equivalent to the model shown in Equations D1 and D2
by conceptualizing d1i and d2i of Equations 18 and 19 as the
status at time t of individual i on M controlling for X and on
Y controlling for M, respectively. From this perspective, the
derivations developed for this model in the text continue to
apply, but the interpretation of the d1i and d2i is no longer
the adjusted baseline but is instead the adjusted score at the
specific moment in time t.

Alternatively, expressions could be derived in terms of
the more general model shown in Equations D1 and D2. For
example, consider the condition under which the bias in the
cross-sectional direct effect will equal zero, as shown in
Equation 25 of the text:


Xd2 � �
d1d2 � a
Xd2	�a � 
Xd1	 � 0. (D3)

This expression can be rewritten in terms of the straight-line
growth model by realizing that

d1i � d1i
* � d3i

* t, and (D4)

d2i � d2i
* � d4i

* t. (D5)

Substituting the expressions from Equations D4 and D5 into
Equation D3 and rearranging terms shows that the condition
for no bias in terms of the straight-line growth model
parameters can be written as


Xd2
* � t
Xd4

* � �
d1
*d2

* � t
d2
*d3

* � t
d1
*d4

* � t2
d3
*d4

* � a
Xd2
*

� at
Xd4
*	�a � 
Xd1

* � t
Xd3
*	 � 0. (D6)

Although Equation D6 looks even more daunting than
Equation 25 in the text, they are in fact mathematically
equivalent after taking into account the difference in mean-
ing of the parameters. The important practical point is that
regardless of which way the model is parameterized, very
stringent conditions must hold for the cross-sectional anal-
ysis to yield an unbiased estimate of the longitudinal direct
effect of X on Y. Although we have only demonstrated the
correspondence between models for the direct effect, a
similar correspondence also holds for the indirect effect.

Appendix E

Derivation of the Difference Between Cross-Sectional and Longitudinal Indirect Effects in Random Effects Model

As shown by Equation 26, the true average indirect effect
in the random effects model is given by

E�aibi	 � ab � 
ab. (E1)

The bias in the cross-sectional estimate of the true random
effects indirect effect can then be written as

bias � �MX�YM�X � �ab � 
ab	. (E2)

From Equations 15 through 17, �YM�X can be expressed as

�YM�X �
�b � 
d1d2 � a
Xd2	 � �a � 
Xd1	�ab � 
Xd2 � b
Xd1	

1 � �XM
2 .

(E3)

Substituting from Equations 15 and E3 into Equation E2
yields

bias � �a � 
Xd1	

� � �b � 
d1d2 � a
Xd2	 � �a � 
Xd1	�ab � 
Xd2 � b
Xd1	

1 � �XM
2 �

� �ab � 
ab	. (E4)
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