

I, Christian Hubicki, do grant permission for my thesis to be copied.

ENERGY-ECONOMICAL HEURISTICALLY BASED CONTROL OF COMPASS GAIT

WALKING ON STOCHASTICALLY VARYING TERRAIN

by

Christian Michael Hubicki

(A Thesis)

Presented to the Faculty of

Bucknell University

In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Mechanical Engineering

Approved: __________________________

 Adviser

 Department Chairperson

 Engineering Thesis Committee Member

 Engineering Thesis Committee Member

(Date: month and year)

ACKNOWLEDGEMENTS

To Mom, Dad, and Alexa, who have always supported me in all my pursuits,

Who always lend a caring ear and never miss an opportunity to feed me,

Who sacrifice routinely for their family in ways I can never repay.

To Keith, who took a chance on an overly confident student five years ago,

Who always made room in his daunting schedule if I needed help,

Who never failed to prove that he was looking out for me.

To Emily, who always makes a rainy day a joy,

Who has dinner cooked when I come back from the lab,

Who could not possibly know how happy she makes me every day.

Thank you all.

ii

Table of Contents

Page

 Acknowledgements .. i

 Table of Contents ... ii

 List of Tables ... vi

 List of Figures .. vii

 Abstract .. xi

 Chapter 1: Introduction .. 1

 Controlling Walking Robots ... 2

 Zero-Moment Point Control ... 2

 Passive-Dynamic Walking .. 3

 Underactuated Systems ... 4

 Limit-Cycle Stability and Robustness .. 6

 Robust Biped Control ... 7

 Metastability ... 9

 Performance Tradeoffs ... 11

 Goal Statement .. 12

 Chapter 2: Simulation Model ... 13

 Hybrid Continuous/Discrete Dynamics .. 13

 Poincare Section ... 14

 Terrain-Crossing Conditions .. 15

iii

 Compass Gait Continuous Dynamics ... 17

 Collisions .. 21

 Impulse ... 23

 Stochastic Terrain Model .. 24

 Validation ... 27

 Actuation and Control ... 27

 Chapter 3: Genetically Optimized Gain Scheduled Control .. 29

 Proportional-Derivative Control ... 29

 Gain-Scheduled Control ... 31

 Control Parameter Set ... 34

 Genetic Optimization .. 34

 “Methinks it is like a weasel” ... 35

 Mutation .. 36

 Fitness Function .. 37

 Robustness Cost Function... 38

 Failure Modes ... 39

 Energy-Speed Weighting Factor ... 41

 Reproduction ... 42

 Convergence ... 43

 Data Collection ... 44

 Genetic Algorithm Results ... 47

iv

 Conclusions... 48

 Chapter 4: Heuristic Control .. 50

 Optimization-Inspired Heuristic ... 50

 Selection Pressures ... 54

 Random Walk ... 54

 Impulse Selection Pressures ... 56

 Gain Schedule Selection Pressures ... 59

 Mean Gain Schedule ... 62

 Tradeoff-Conducive Control Heuristic ... 64

 Heuristic Bounding Parameters .. 66

 Heuristic Parameter Tuning .. 67

 Gradient-Descent Algorithm .. 68

 Tradeoff Curve Metrics .. 69

 Approximated Gradient .. 71

 Heuristic Tradeoff Curve Results ... 73

 Conclusions... 79

 Chapter 5: Reinforcement Learning... 80

 Artificial Intelligence .. 81

 Machine Learning ... 81

 Reinforcement Learning ... 82

 State and Action Value Functions .. 82

v

 Value Iteration .. 84

 Mean First-Passage Time ... 88

 Approximate Optimal Robustness .. 89

 Value-Iteration Robustness Results .. 90

 Chapter 6: Simulated Walking Experiment ... 93

 Value-Iteration Cost Function .. 93

 Action Space ... 94

 Discrete Dynamics .. 96

 Walking Experiment Results .. 97

 Walking Experiment Conclusions .. 100

 Chapter 7: Conclusions and Future Work .. 102

 Summary ... 102

 Conclusions... 103

 Future Work .. 104

 Bibliography .. 106

 Appendix .. 110

 Simulated Walking Experiment Code .. 110

 Approximate Optimal Robustness Code .. 169

 Genetic Optimization Algorithm Code ... 196

 Gradient-Descent Heuristic Parameter Tuning Code ... 222

vi

List of Tables

 Page

Table 3.1: Parameters used in the genetic algorithm for mutating and

reproducing the control parameter sets

43

Table 3.2: The maximum and minimum values denoting the range of state

space used to generate the reported data with the genetic algorithm

45

Table 4.1: State variables used for testing the gradient-descent algorithm 71

Table 4.2: Gradient-descent exploration values by which heuristic

bounding parameters are changed in order to find the path of greatest

descent; the initial bounding parameter values for the algorithm are

also included in this table

73

Table 4.3: State variables used for a second run of the gradient-descent

algorithm

76

Table 5.1: Discretization of variables for approximating the system states,

actions, and terrain heights

83

Table 6.1: State variables used for gradient-descent algorithm to obtain the

six heuristic bounding parameters for the simulated walking

experiment

95

Table 6.2: Heuristic bounding parameters resulting from gradient-descent

algorithm for the simulated walking experiment

96

Table 6.3: Discretization of variables for approximating the system states,

actions, and terrain heights for simulated walking experiment

97

vii

List of Figures

 Page

Figure 1.1: Honda Motor Company’s prototype humanoid robot, ASIMO,

which is likely the most well-known example of bipedal robot control

using zero-moment point methods

3

Figure 1.2: Dynamic bipedal robots built by Collins and Ruina at Cornell

University; Collins robot (left) and Cornell Ranger (right).

4

Figure 1.3: A visualization of the “Acrobot” (left) and a stroboscopic

sequence of various attempts to balance it (Wiklendt 2009) using a

spiked neural network approach (right).

5

Figure 1.4: Visuals of the first reference (Espiau 1994) to the compass gait

walking model (left) and its current implementation (Byl 2008) with a

more obvious resemblance to the Acrobot (right).

6

Figure 1.5: Basin of attraction depicted by shaded region (left) for pictured

compass gait model (right) (Byl 2009)

7

Figure 1.6: Illustration of the concept of “capture regions” (Pratt 2006),

which are regions which to place the foot center of pressure to recover

from a push

8

Figure 1.7: The M2V2 humanoid robot developed by the Institute for

Human and Machine Cognition (Pratt 2008)

9

Figure 1.8: Visualization of stochastic terrain for the compass gait model

10

Figure 1.9: The results of control of the compass gait model on rough

terrain using a Value-Iteration Reinforcement Learning Algorithm (Byl

2009)

11

Figure 2.1: Five stages of the single-step transfer function beginning at

Poincare section i and terminating at section i+1: detect terrain crossing

of lead leg, apply instantaneous impulse in line with trailing leg, compute

plastic collision at leading leg, swap ground revolute joint and state

variables, compute continuous dynamics with hip-torque actuation until

terrain cross is detected

17

viii

Figure 2.2: A diagram of the utilized compass gait model

19

Figure 2.3: Rigid body representation of the compass gait for collision

computations

22

Figure 2.4: Illustration of the core concept of the stochastic terrain model: a

ground height which varies in accordance to a given probability

distribution

25

Figure 2.5: Frame of animation of walking sequence picturing a

representative terrain roughness (Note: smoothness of terrain in

animation is purely aesthetic)

27

Figure 3.1: Compass gait model discretized by interleg angle for gain-

scheduled control

32

Figure 3.2: The surviving control parameter set’s fitness value plotted over

80 generations, indicating that the convergence criterion is met at

generation 59

44

Figure 3.3: 55 solutions generated by the genetic algorithm (one data set)

plotted in energy-speed tradeoff space with a quadratic data fit

48

Figure 4.1: All impulse magnitude values for 51 genetic optimizations

plotted with a linear trend line, revealing a strong linear correlation

51

Figure 4.2: All proportional gain schedule values for 51 genetic

optimizations, revealing no obvious trend

52

Figure 4.3: All derivative gain schedule values for 51 genetic optimizations,

revealing no obvious trend

53

Figure 4.4: The percentile values of 5000 normal (σ = 0.125) random walks

over time (50% indicating the median, 75% denoting the third quartile,

etc.)

55

Figure 4.5: A sample genetic optimization following the change in impulse

magnitude over 80 generations.

56

Figure 4.6: Plot of impulse magnitude drift due to the genetic algorithm

against the random walk probability profiles (i.e., at generation 15, over

99% of random walks produced drift numbers greater than the impulse

magnitude drift at that time, meaning that less than 1% of random walks

produced such extreme values)

57

ix

Figure 4.7: A statistical analysis of 5000 random walks with σ = 0.125

(identical to impulse mutation rate), observing the percentage of random

walks which remained within 0.08 of their starting value over several

generations

58

Figure 4.8: A sample genetic optimization following the change in the

proportional gains in the gain schedule over 80 generations

59

Figure 4.9: A sample genetic optimization following the change in the

derivative gains in the gain schedule over 80 generations

60

Figure 4.10: Beginning at the generation of convergence, the drift in

proportional gain is plotted against the percentile ranges of random

walks (i.e., the 50% line indicates the median value, 75% is the third

quartile value). The dotted lines from bottom to top are the following

percentages: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99%.

61

Figure 4.11: Beginning at the generation of convergence, the drift in

derivative gain is plotted against the percentile ranges of random walks

(i.e., the 50% line indicates the median value, 75% is the third quartile

value). The dotted lines from bottom to top are the following

percentages: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99%.

62

Figure 4.12: Mean values for 51 optimized gain schedules produced by the

genetic algorithm for various weighting factors. Each point indicates a

gain associated with a lower-bound swing angle ratio range in the gain

schedule.

63

Figure 4.13: Several genetically optimized values (all 51 genetic

optimizations) of a single, sample sector of the proportional gain

schedule plotted against the resulting controller speed (essentially a

single gain schedule entry from Figure 4.2)

65

Figure 4.14: Several genetically optimized values (all 51 genetic

optimizations) of a single, sample sector of the derivative gain schedule

plotted against the resulting controller speed (essentially a single gain

schedule entry from Figure 4.3)

65

Figure 4.15: A visualization of the gradient descent process on a contour plot,

progressing from initial guess (x0) to the most recent approximate

minimum (x4) by traversing the maximum gradient.

69

Figure 4.16: Illustrations of energy-speed tradeoff curves highlighting

examples of varying performance in mean energy and speed range

70

x

Figure 4.17: An illustration of a hypothetical one-dimensional (left) and two-

dimensional performance curves. The one-dimensional case shows how

moving in the two possible directions (left and right) yields predictions

of the gradient. The two-dimensional case indicates the diagonal motion

used to explore and approximate a higher dimensional gradient.

72

Figure 4.18: Tradeoff curves for genetically optimized solutions and the

tuned heuristic tradeoff controller

74

Figure 4.19: Tradeoff curves for genetically optimized solutions and the

tuned heuristic tradeoff controller for the second set of state variables

and desired step angle

77

Figure 4.20: Comparison of the mean “ramped” and “flat” gain profiles on

their performance in energy-speed tradeoffs

78

Figure 5.1: Visualization of state-value functions (V) and action-value

functions (Q) as vectors indexed by (enumerating distinct states) and

(enumerating distinct actions)

84

Figure 5.2: Markov Decision Process (MDP) Matrix

85

Figure 5.3: A visualization of the relationship between the action-value

function (), transition matrix (
), and state-value function () where

 represents the current step number, is the current state number, is

the state number potentially occupied for the next step, and is an index

enumerating all of the available state actions

87

Figure 5.4: Block diagram of the value-iteration reinforcement learning

process

88

Figure 5.5: Visualization of the updating process for the state-value function

using the value of the best action (())

88

Figure 5.6: Comparison of resulting mean-first passage times of the value-

iteration algorithm with published data (Byl 2009)

91

Figure 6.1: Energy-Speed Tradeoff Curve for 1 km Walk using Value-

Iteration compared to the Tuned Single-Step Curve

99

xi

Abstract

The field of legged robotics has been long anticipated in the popular media to

herald a revolution in both civilian and military life. From mechanical fire fighters

barreling through burning apartments with minimal regard for self-preservation to nimble

explorers bounding up Martian ridges who never complain about the cold, finding

applications for bipedal machines requires little imagination. Despite their promised

dexterity and overall popular appeal, in the early 21
st
 century, bipedal robots are seldom

sighted outside of university research labs or cutting-edge technology firms.

The absence of these legged machines in our daily lives can be attributed to

significant technical barriers in performance. The largely untold flaw of Honda’s

flagship robotic humanoid, ASIMO, is that its exorbitant energy consumption drains its

generously sized battery pack in roughly 30 minutes, nullifying its utility outside of

relatively short public demonstrations. Recognizing that this energy limitation is not

unique to ASIMO but common among current-generation walking robots, academic

researchers have recently pushed to develop highly energy-economical bipeds. The

consequence has been a series of prototypes which trade an abundance of actuation and

control authority for an underactuated approach dubbed Dynamic Walking. Specifically,

Cornell University developed two internationally publicized walking machines; one

which boasted energy economy on par with human walking (for short distances) and the

Cornell Ranger which set a world record for walking 5.6 miles on a single battery charge.

While delivering such significant advances in energy economy, dynamic walking

robots have still largely fallen short in applications with high speed requirements or

xii

rough terrain. This investigation uses simulation to explore the inherent tradeoffs of

controlling high-speed and highly robust walking robots while minimizing energy

consumption. Using a novel controller which optimizes robustness, energy economy,

and speed of a simulated robot on rough terrain, the user can adjust their priorities

between these three outcome measures and systematically generate a performance curve

assessing the tradeoffs associated with these metrics.

The novel robot controller is a two-tiered hierarchical system consisting of a

tradeoff-conducive control heuristic used for individual steps and an overseeing Artificial

Intelligence algorithm to decide which step to take. The tradeoff-conducive control

heuristic is shown to have marked advantage over traditional proportional-derivative

controllers. This control heuristic rapidly generates controllers which span a wide range

of step speed and energy economy for the simulated biped. Generated controllers are

also shown to produce the same step speed while using smaller energy budgets than their

traditional counterparts. The overseeing algorithm (a value-iteration reinforcement

learning algorithm) is demonstrated to be capable of selecting these single-step

controllers in a manner resulting in sustained walks over a kilometer in length while

producing the desired energy-speed tradeoffs.

1

Chapter 1: Introduction

Ever since 1959, robots have been built to assist humans in a variety of dull, dirty,

and dangerous jobs (Kurfess 2005). From the earliest industrial robots which were used

in such applications as painting wheelbarrows, applications for robots have ballooned

into countless sectors of research, industrial, and military enterprises. Robots assemble

our cars, inspect for bombs, perform surgery, explore Mars, and sweep our floors.

Despite all these advances in technology, robots still struggle to do what many people

consider to be trivial. Robots cannot yet walk like humans.

While many robots have been built which can repeatedly place one foot in front of

the other, none can do so on the same energy budget as humans without sacrificing the

stability and agility of which humans are capable. To emphasize the point, arguably the

world’s most famous bipedal robot, ASIMO, consumes an estimated 16 times the amount

of energy that a human requires to walk (Collins 2005). The problem is profound and

high-profile enough that a $200,000 “W-Prize” has been offered for a robot capable of

traversing a ten-kilometer obstacle course with limited time and a strict energy budget.

This prize remains unclaimed as it is simply very difficult to make a robot so robust to

avoid falling, economical in energy consumption, and sufficiently speedy to meet the

requirements on an obstacle course.

This problem for walking robots is disappointing as human-like locomotion is a

critical means of navigating urban environments. Humans can bound up stairs, step over

obstacles, squeeze into elevators, and dart around other humans. Humans are also

capable of handling extreme natural terrains like cliff walls, thick forests, mountains, and

2

sandy deserts. Before even beginning to address these extreme conditions, solutions must

be found for designing robots which can walk with performance on par with humans.

Much of this room for improvement may be filled by advances in robot control.

Controlling Walking Robots

Walking robots are plagued with some significant technical barriers for entry into

military, industrial, and consumer markets. With exception to some recently-developed

robust prototypes such as the M2V2 (Pratt 2008), bipedal robots simply fall too easily to

be left unattended even in the absence of significantly challenging terrain or antagonistic

agents. Compensating for this lack of robustness, many prototypes have traditionally

employed fully-actuated control systems to dominate the dynamics and eliminate falls.

By using such heavy actuation, these control strategies inherently constrain the overall

robot agility and require extravagant energy budgets to implement (Collins 2005).

Zero-Moment Point Control

The origins of modern, formalized bipedal robot control date back as far as 1968.

Miomir Vukobratovic produced a number of papers which acted as the foundation for

Zero-Moment Point (ZMP) Control (Vukobratovic 2004). In effect, the ZMP approach to

locomotive control preserves the dynamic balance of the biped for the entirety of each

stride. This approach regulates the motion of the biped’s mechanical linkages such that

the biped’s weight and reaction forces can be counteracted by a single point load applied

at a point (the zero-moment point) by the foot. If this force is applied within the foot

3

area, it ensures that the sole of the robotic foot is in full, flat contact with the surface.

This balanced gait and “stable” ground-foot contact eliminates many of the dynamic

challenges associated with bipedal gait control. The ZMP is a concept utilized

pervasively in the field of bipedal robotic control. Perhaps the most notable instance of

ZMP implementation is the Honda Motor Company’s flagship humanoid robot, ASIMO,

which is pictured in Figure 1.1.

Figure 1.1: Honda Motor Company’s prototype humanoid robot, ASIMO, which is likely

the most well-known example of bipedal robot control using zero-moment point methods

Passive-Dynamic Walking

Since 1990 (McGeer 1990), there has been a push by researchers to use the

inherent dynamics of legged systems, not an abundance of actuation, to facilitate forward

motion and stability. Sacrificing the luxury of complete control authority over the

physical state of the robot resulted in a considerable alleviation of its energy burden.

This finding gave rise to the field of passive-dynamic walking, an approach which

inspired walking machines capable of achieving stable gaits using a shallow downward

4

slope as its solitary energy source, as shown for example on the left in Figure 1.2.

Requiring such meager resources, these bipeds became the mold for so-called dynamic

walking robots, which seek to minimize actuation costs of level-terrain walkers (Collins

2005). Such robots include Cornell’s “Ranger”, shown on the right in Figure 1.2, which

currently holds the record for walking 5.6 miles, the longest distance walked by a

machine without being touched or refueled (Karssen 2007).

Figure 1.2: Dynamic bipedal robots built by Collins and Ruina at Cornell University;

Collins robot (left) and Cornell Ranger (right).

Underactuated Systems

While the energetic performance of dynamic walking robots is promising and

their gaits are technically stable, relatively small disturbances can force the robot into an

irrecoverable state. Furthermore, the relinquishing of control authority that allowed for

the development of such economical machines has moved these bipeds firmly into the

category of underactuated mechanical systems (Spong 1998). An underactuated system

5

is one that lacks the proper number of actuators to control the number of degrees of

freedom in the system.

A classic and relevant example of underactuation is the gymnastic “acrobot”.

Figure 1.3 (left) depicts the acrobot as a double pendulum with a single actuator

providing a torque at the distal joint. The challenge of this system is to design a

controller to balance the acrobot upright in a “headstand” as shown in a stroboscopic

representation in Figure 1.3. Despite having a mere two degrees of freedom, controlling

this system proves to be deceptively complex and has been approached using techniques

as sophisticated as spiked neural networks and genetic algorithms (Wiklendt 2008).

Figure 1.3: A visualization of the “Acrobot” (left) and a stroboscopic sequence of various

attempts to balance it (Wiklendt 2008) using a spiked neural network approach (right).

The acrobot provides a particularly apt example for not only under-actuated

systems, but also a simple model for walking machines called the compass gait. The

original compass gait walking model (Espiau 1994) as shown in Figure 1.4 (left), like the

acrobot, is a double pendulum actuated only through a torque applied at the revolute-

jointed hip. It is casually noted in recent papers (Byl 2008) that the compass gait model

is dynamically equivalent to the acrobot, a comparison which is more obvious when

6

viewing the compass gait visualized in Figure 1.4 (right). While the goals of compass

gait control are dissimilar to the common acrobot balancing challenge, the comparison

reveals the need for implementation of complex control systems for even a single leg

swing, let alone a series of steps. This underscores the nonlinear nature of the compass

gait model and the consequent challenges associated with its control.

Figure 1.4: Visuals of the first reference (Espiau 1994) to the compass gait walking

model (left) and its current implementation (Byl 2008) with a more obvious resemblance

to the Acrobot (right).

Limit-Cycle Stability and Robustness

A number of investigations have been published studying the compass gait in the

purely passive case, i.e. zero hip torque. The literature regarding the stability analysis of

the two-dimensional passive walker has been numerously replicated and the methods are

well-established within the dynamic walking community. In such a system where there is

no active controller, the most common means of achieving a self-perpetuating gait is

through limit-cycle walking (Hobbelen 2007). Limit-cycle walking is achieved when

each step is dynamically identical to the previous step, resulting in a sustained (but not

7

necessarily stable) gait. The gait is deemed “stable” if, when given a small perturbation,

the system converges back to a limit cycle gait.

Furthermore, the ability of the machine to reject larger disturbances reflects the

system’s robustness. The region of the walker’s state-space over which the system

converges to a sustained gait is dubbed the basin of attraction. The size of this basin acts

as an indicator of system robustness, as shown in Figure 1.5 (left) for a passive compass-

gait walker. Figure 1.5 (right) defines the state variables for the compass gait used on the

axes for the plotted basin of attraction. It has been an ongoing goal for dynamic walking

researchers to increase the size of the attractive basin as currently-sized basins often

result in generally poor disturbance rejection in practice (Byl 2009).

Figure 1.5: Basin of attraction depicted by shaded region (left) for pictured compass gait

model (right) (Byl 2009)

Robust Biped Control

Various approaches are under investigation to satisfy the demand for more robust

walking bipeds. One such method approaches robustness as a push recovery problem

8

(Pratt 2006). Balancing a biped on one foot is the archetypal problem for push recovery.

If push recovery were implemented on a ZMP controlled robot such as ASIMO, small

pushes require only an adjustment of the standing foot’s center of pressure (CoP) to

sufficiently maintain balance. However, for larger disturbances, it may be necessary to

take additional steps to avoid falling. To assess whether such a step needs to be taken to

regain balance after a push, a capture region is computed. A capture region is an area on

the ground a foot’s CoP must occupy to avoid a fall. If the capture region does not

intersect the standing foot, a step must be taken by the raised foot which lands in the

capture region as illustrated in Figure 1.6.

Figure 1.6: Illustration of the concept of “capture regions” (Pratt 2006), which are regions

in which to place the foot center of pressure to recover from a push

Furthermore, capture regions have been expanded upon to solve more problems

than simple push recovery. Capture regions have been used as a means of solving

9

intermittent terrain problems (i.e., stepping stones) via multiple capture regions. If a

capture region is not reachable in one step, perhaps it is possible to reach by taking more

steps. Intermediate capture regions are then defined to reach the next capture region.

Capture regions can even be used as a generalized walking approach, treating a sequence

of steps as a series of forward falls, as utilized for the control of the IHMC M2V2 (Pratt

2008) shown in Figure 1.7. Using capture points has shown superior robustness to

traditional ZMP approaches, which makes for an excellent safe-guard against falling

when large disturbances are detected. However, the method lacks the utilization of

inherent dynamics that make dynamic walkers energetically economical.

Figure 1.7: The M2V2 humanoid robot developed by the Institute for Human and

Machine Cognition (Pratt 2008)

Metastability

An alternative approach to robust walking has been recently developed for

dynamic walkers using the concept of “metastability” (Tedrake 2006). While dynamic

10

walkers have been traditionally controlled with a limit cycle gait in mind, taking a

metastability-based approach allows for the robot states to “wander” around a much

larger region in state-space, so long as the transitory states do not lead to walking failure.

Furthermore, a metastable approach does not require a deterministic model of reality.

The dynamics can be modeled probabilistically which allows for the addition of

stochastic disturbances. As such, stochastic terrain can be incorporated in the walking

model (as depicted in Figure 1.8) and can be approached using metastability methods.

Figure 1.8: Visualization of stochastic terrain for the compass gait model

In essence, if the system is controlled in a manner that is highly metastable (walks

for many steps without falling) on rough terrain, then such an approach would be

considered highly robust. By using an artificially intelligent algorithm, “approximate

optimal control” (Byl 2008) of the compass gait on rough terrain was developed to

maximize the number of steps to failure. The results of research by Byl and Tedrake at

MIT for controlling of the compass gait model on rough terrain using this method are

11

shown in Figure 1.9. This approach has resulted in simulated walkers which take as

many as an estimated 10
14

 steps (denoted by a metastability metric called mean first-

passage time or MFPT) before falling on rough terrain.

Figure 1.9: The results of control of the compass gait model on rough terrain using a

Value-Iteration Reinforcement Learning Algorithm (Byl 2009)

Performance Tradeoffs

It is clear that the metastability approach to handling rough terrain walking is

quite powerful in developing highly-robust controllers. While an impressive result for

robustness, the actuation utilized in these highly robust simulations are far from

economical in regard to energy consumption. Energy economy is a significant motivator

for the development of dynamic walking methods and should be kept in focus.

Furthermore, decreases in energy consumption are likely to result in a loss in

walking speed. It also remains unknown how changing walking speed will impact

walker’s robustness and vice versa. The result of these possibly synergistic or

12

antagonistic relationships may result in an interesting tradeoff problem. To investigate

any such relationship, a means must be developed to synthesize controllers which can

optimally meet demands of robustness, energy economy, and speed to the desires of a

user.

Goal Statement

The goal of this thesis is to produce a method of synthesizing controllers capable

of controlling a simulated walking robot on rough terrain. Furthermore, the aim is to

traverse such terrain while being able to produce a wide range of performance over three

key parameters: robustness, energy economy, and speed. Using the techniques employed

for metastable walking as a starting point, supplemental methods for controlling single

steps with high speed or low energy cost must be developed via optimization techniques.

In turn the metastability methods must be modified to accommodate more than the single

robustness metric. Accomplishing such a feat would be a novel contribution to the field

of dynamic walking.

13

Chapter 2: Simulation Model

Central to any simulation-based investigation is the definition of the system

model. In dynamic walking, a number of models have been used in the study of gait

control. Some models have complex kinematic layouts incorporating feet, knees, an

upper body, and sometimes arms (Yin 2007). Models have more recently begun to

incorporate springs which may produce dynamics more advantageous to walking (Hurst

2008). Some models are so rudimentary that their relationship to walking is less

intuitive, as is the case in the example of the rimless wheel (McGeer 1990).

Among the simpler of the proposed frameworks is the compass gait model.

Ignoring effects such as three-dimensional dynamics, foot-slipping, and collision

elasticity, the compass gait model provides a platform upon which the most fundamental

principles of bipedal walking can be isolated and probed. Variations upon the compass

gait have been used as the basis for foundational research on the stability (Espiau 1994),

energy economy (Kuo 2002), and terrain robustness (Byl 2009) of dynamic bipedal

locomotion. Its relative simplicity and considerable precedence render the compass gait

most conducive to investigation into the control of performance tradeoffs in dynamic

bipedal robots.

Hybrid Continuous/Discrete Dynamics

On the most basic level, this simulation uses a hybrid system of continuous and

discrete dynamics: the compass gait walking model being modeled as a discrete series of

dynamically continuous steps. Governed by Newtonian mechanics for the swing of each

14

leg, the continuity is punctuated by a series of impact events resulting from the swing leg

colliding with the terrain. This discretization, in addition to being necessary in the

modeling of ground impacts, has advantages in the analysis of the long-term gait.

Instantaneously prior to these impacts, a conceptual snapshot is taken called a Poincare

section. This concept is vital to the analysis of dynamic walking.

Poincare Section

A critical tool for analyzing continuous systems on a discrete level, a Poincare

section is a representative snapshot of the system states. If the system state variables are

an accurate and sufficient representation of the dynamics, these recorded state variables

taken at this instant can be used as indicators of performance on a greater time scale. In

application to dynamic walking, a Poincare section can be taken immediately preceding

the swing leg’s collision with the ground, capturing the state variables at that instant.

Subsequently, a Poincare section is taken in the same situation for each of the following

steps, generating a discrete series of representative states in a sequence of steps. If these

states are identical over the series of sections, the walker is considered to be in a limit-

cycle condition, indicating each step is dynamically equivalent to the last. In

visualization, the walkers gait would appear perfectly steady. More complex linear-

algebra-based analysis has been used to characterize the stability of such gaits using this

discrete framework (Goswami 1996). This framework will serve here as a basis for a

form of robustness analysis contingent upon a discrete system formulation.

15

In this study, as per the aforementioned example, a Poincare section is defined at

the instant immediately prior to the swing leg collision. This situation is defined as the

first time-step in which the swing leg has met terrain-crossing conditions. Figure 2.1

depicts the sequence of events which occur between hypothetical Poincare section i and

its subsequent counterpart Poincare section i+1. The transition from one Poincare

section to the following section is defined as the Step-to-Step transfer function. The step-

to-step transfer function comprises five stages: terrain cross detection, pre-collision

impulse actuation, swing leg collision, swing/stance leg switch, applied hip torque and

continuous dynamics.

Terrain-Crossing Conditions

Terrain-crossing conditions, the criteria at which a Poincare section is defined, are

only met when the swing leg crosses the current terrain boundary and vertical velocity of

the end point of the leg with respect to ground is negative, which precedes any collision

computations or applied impulses. This criterion prevents the inevitable “scuffing” that

occurs with straight-legged walkers that cannot reduce their leg length mid-step. Both

legs being the same length, as the swing leg approaches the stance leg, the swing leg must

cross the terrain boundary to which the stance leg is connected. In effect, this would

cause the swing leg to “scuff” the ground. A common assumption to avoid scuffing is to

simply turn off collision detection until the legs cross each other after some arbitrary

small separation distance. To meet this anti-scuffing requirement, terrain crossing

16

detection is only active once the swing leg is 5 cm in front of the stance leg ground pivot,

which approximates the act of retracting the swing leg to avoid premature collisions.

The leg retraction that would be necessary in an actuated device is modeled as

have zero dynamical significance outside of collision detection, which is mirrored in the

design of prototypes (Iida 2009) which seek to minimize the impact of this retraction in

the design. A step is considered a failure if the simulation fails to terminate after five

simulation seconds or the main body crosses the terrain boundary, as this indicates that

the walker has fallen backward or tripped forward prior to activating the collision

detection. If a step failure occurs, a Poincare section is taken but is tagged with a flag

indicating the occurrence of a failure.

17

Figure 2.1: Five stages of the single-step transfer function beginning at Poincare section i

and terminating at section i+1: detect terrain crossing of lead leg, apply instantaneous

impulse in line with trailing leg, compute plastic collision at leading leg, swap ground

revolute joint and state variables, compute continuous dynamics with hip-torque

actuation until terrain cross is detected

Compass Gait Continuous Dynamics

Disregarding the discrete impact events, the compass gait model is essentially a

double pendulum. The planted (stance) leg is connected to ground via a revolute joint.

18

In turn, the swing leg is revolute-jointed to the free-swinging end of the stance leg. Each

leg is modeled as a massless rod with a lumped point mass at the center. At the

connection of these two legs, the hip joint is the main body which is similarly modeled as

a point mass. This continuous model includes one mode of actuation, a torque (τ) applied

at the hip joint (the second mode of actuation, the pre-collision impulse, is discrete and is

not included in the continuous model). The hip actuator exerts an ideal torque at the hip

joint between both legs which serves to control the angle between the two legs (the

“interleg” angle). The control law for this hip torque is described in the following

chapter. The terrain boundary distance (δ), the vertical displacement with respect to the

ground pivot, is recalculated for each step in accordance with a stochastic terrain model.

A diagram of the utilized compass gait model is shown in Figure 2.2 which illustrates the

kinematic layout, relevant masses and dimensions, key variables, coordinate system and

the directionality of the actuating torque. These model parameters were chosen to

replicate the parameters of similar research (Byl 2009).

19

Figure 2.2: A diagram of the utilized compass gait model

The Compass Gait model yields four state variables, corresponding to the angles

and angular velocities of each leg: , , and their respective time derivatives ̇ , and ̇ .

These state variables, in conjunction with the hip actuator, are governed by the

continuous acrobot dynamics (Spong 1994) between discrete impact events. The

equations of motion and prerequisite variable assignments are given in Eq. 2.1-2.13. A

Newton-Euler numerical solution is computed in MATLAB using a fixed time-step of

0.001 seconds. This time-step allowed the simulation to compute approximately twelve

steps per second and resulted in numerical errors of less than 0.01 radians, which was

deemed acceptable accuracy given that the controller will be subjected to stochastic

terrain which will be a far more dominant effect over many steps.

20

Eq. 2.1

Eq. 2.2

 (

)

 Eq. 2.3

Eq. 2.4

 (

)

Eq. 2.5

 (
)

Eq. 2.6

Eq. 2.7

 ̇

 ̇ ̇

Eq. 2.8

 ̇

Eq. 2.9

Eq. 2.10

Eq. 2.11

 ̈

(
)

Eq. 2.12

 ̈
 ̈

 Eq. 2.13

21

Collisions

The process of walking, while otherwise modeled using continuous dynamics, is

punctuated by a discrete series of impacts. In the utilized model, all collisions are

assumed to be perfectly inelastic, which facilitates key features of the compass gait

model. For the compass gait model to be valid, the stance leg must remain planted

throughout the continuous leg swing. Any elasticity in the collision would inherently

result in a momentary separation of the colliding leg and the ground. While the dynamics

of an airborne biped can be calculated, the lack of a ground-reaction force to constrain the

stance leg motion would likely result in highly aberrant limb behavior. Furthermore,

subsequent re-collisions would ensue as a direct result of an airborne stance leg which

would complicate a meaningful definition of a successful step. Collisions are one of the

primary means of energy loss for the compass gait walker.

Collisions are modeled as occurring instantaneously with perfect plasticity, an

event which exchanges the ground and free joints at the legs’ distal points from the main

body. Originally developed for a model more complicated than the compass gait model,

the collision is computed using the visual model in Figure 2.3. Figure 2.3 details the

three rigid bodies which are simplified to point masses in the compass gait model. The

arrowed distances indicate the separation of the centers of mass of the rigid bodies (in

this case, the masses are concentrated in the centers of the legs and at the hip) and the two

revolute joints. Using angular momentum conservation equations, post-collision

velocities are computed using the formulations in Eq. 2.15-2.18. The components of the

distances in the x and y directions are used for the variables r2ax, r2ay, r2bx, r2by, r3ax, r3ay,

22

r3bx, and r3by. The rotational inertias of the links about the center of mass (J1, J2 and J3),

because they are point masses, are zero (set to 10
-6

 kg-m
2
 to avoid divide-by-zero errors).

The leg angles are transformed, post-collision, in a manner which effectively swaps the

swing and stance legs, allowing for a self-perpetuating walking sequence.

Figure 2.3: Rigid body representation of the compass gait for collision computations

[

]

Eq. 2.14

r3a

y

x

r3b

r1

r2a

r2b

23

 [̇
 ̇

 ̇

 ̇

 ̇
 ̇

] Eq. 2.15

 [̇
 ̇

 ̇

 ̇

 ̇
 ̇

] Eq. 2.16

 Eq. 2.17

Impulse

One of the primary modes of actuation for the compass gait (and rigid-linked

walkers in general) is the pre-collision impulse. Modeled as an instantaneous push-off of

the back-foot, the pre-collision impulse has been demonstrated to be an efficient means of

imparting energy for forward motion of the biped (Kuo 2002). When tested on rough

terrain (Byl 2009), impulse actuation was necessary to successfully traverse terrain with

significant roughness. This finding was replicated with this model, showing that a pre-

collision impulse was important in rough terrain walking. The effect of the impulse is

calculated in a very similar method to the collision computation, and is in effect, an

intentional collision. The equations for the impulse calculation are shown in Eq. 2.19-

2.22.

24

[

]

Eq. 2.18

 [̇
 ̇

 ̇

 ̇

 ̇
 ̇

]

Eq. 2.19

 [̇
 ̇

 ̇

 ̇

 ̇
 ̇

]

Eq. 2.20

 Eq. 2.21

Stochastic Terrain Model

At their core, many examples of walker-challenging terrain can be represented as

a series of changes in terrain height, and as such, are modeled thusly in the stochastically

varying terrain biped model. To provide proper application to later-described control

methods, a discretized probability function of changes in ground-height-per-step is used

to stochastically model terrain. The current terrain height is regenerated at the beginning

25

of each new step which means, in effect, the terrain height is constant for the duration of

the stride, regardless of step size. The stochastic terrain model is visualized in Figure 2.4,

illustrating that the terrain height changes are generated by a characteristic (Gaussian)

probability function.

Figure 2.4: Illustration of the core concept of the stochastic terrain model: a ground

height which varies in accordance to a given probability distribution

 In the numerical experiments presented, a Gaussian distribution is selected to

approximate a generically coarse surface with a “roughness” characterized by its standard

deviation, as done in prior work by Byl (2009). It should be noted that the proposed

methods in no way obligate a Gaussian probability distribution for terrain height as

depicted in Figure 2.4. On the contrary, the versatility of this approach allows for

discrete distribution functions which can be tailored to accommodate more specialized

and exotic features (i.e., stairs, hurdles, or blocks).

26

This model is not designed to approximate any specific terrain instance in the

manner of a predefined obstacle course, but instead, acts as a statistical representation of

a given type of terrain. A representative approximation of stochastically generated

terrain is pictured in Figure 2.5, which interpolates the terrain linearly between the

resulting footholds.

Additionally, the stochastic terrain biped model has no memory of the absolute

position of the walker, and hence cannot account for position-dependent terrain features.

Efforts have been successful in characterizing terrain attributes in a manner which

remains amenable to reinforcement-learning techniques yet are ill-approximated by a

single probability distribution function (i.e., pits and chasms). While pits and chasms can

be superficially modeled as a sizeable drop in height, attempts to navigate this feature

would result in the inevitable failure of the walker. This inherent limitation is the product

of the model’s inability to represent position-dependent features, which renders the act of

spanning the gap impossible. Byl (2009) has demonstrated the usefulness of a

deterministic wrapping terrain model in its ability to represent intermittent terrain, which

accommodates “no-go” regions that add further constraints to the walking controller.

The addition of such a repeating terrain sample can extend terrain models in their

applicability to practical scenarios, and consequently, their navigability via

reinforcement-learning techniques.

27

Figure 2.5: Frame of animation of walking sequence picturing a representative terrain

roughness (Note: smoothness of terrain in animation is purely aesthetic)

Validation

The continuous dynamics were validated by comparison with similar models

constructed in SimMechanics and ADAMS. With a sufficiently small simulation time

step (10
-6

 seconds), the output variables for the continuous dynamics were identical to

other simulations within 10
-5

 radians. Furthermore, the energy levels were continuously

measured to ensure that energy remained conserved during unactuated motions. The full

model (with collisions) was tested and shown that the model with no actuation would

produce stable passive-dynamic walking on a downward slope. When equilibrium

passive-dynamic walking was achieved, it was verified that the work done by gravity was

equivalent to the energy lost in each plastic collision.

Actuation and Control

The two modes of actuation in the model are the pre-collision impulse (push-off)

and the applied hip torque (forward kick). There are several established means of using

these inputs to effectively control the compass gait which vary in complexity. The goal

28

of this thesis being to synthesize controllers with a wide performance range, it is

necessary to utilize these actuation methods for their respective strengths in regard to

energy economy, speed, and robustness. The following chapter outlines some traditional

approaches for control in dynamic walking as well as a novel method proposed by this

investigation.

29

Chapter 3: Genetically Optimized Gain-Scheduled Control

By nature, walking models have a number of features which render their control

difficult for traditional methods. The continuous dynamics of the system are nonlinear,

limiting their tractability with linear techniques. Linearization methods, while common

tools for solving nonlinear control problems, require approximations (e.g., small angle

assumptions) to be useful. Most problematically, the compass gait model is

underactuated for the duration of the swing. The lack of direct actuation at the ankle joint

surrenders all authority over the stance leg behavior to the momentum transfer of the

swing leg controller and Newtonian dynamics. Despite these inherent complexities,

relatively simple controllers have been shown to be effective in various experimental

prototypes that are well-modeled by simple representations like the compass gait (Karssen

2007, Iida 2009)

Proportional-Derivative (PD) Control

Among the most basic of controllers, the proportional controller, also known as P

control, commands a control effort proportional to the control “error”. The control effort

for mechanical systems is often a torque or force, but is always some form of variable

input. The error (e) is defined as the numerical difference between a quantifiable system

state, or system output, and the desired system state. The coefficient by which the control

effort is proportional to the controller error is dubbed the controller gain (KP). The

commanded control effort, a hip torque (τ) in this application, forces the interleg angle (α)

30

to converge upon the desired interleg angle (αdes) using the control law shown in equation

3.1.

)(  desPP KeK Eq. 3.1

The standard proportional controller is often supplemented by adding further

terms to the control law. One such addition is a derivative term which regulates the rate

of change of the system output with respect to time. This requires the inclusion of an

additional gain (KD), dubbed the derivative gain. The control law for the Proportional-

Derivative (PD) Controller is given in equation 3.2. The derivative term often serves to

diminish oscillations and is often necessary to expedite convergence to the desired

output. For this application, the desired time derivative of the interleg angle is always set

to zero. This creates the functional equivalent of a mechanical damper which retards

velocity. Also of note, the derivative controller can serve as a significant energy

dissipater in a mechanical system.

)()(   desDdesP KK Eq. 3.2

The values for the proportional and derivative gains are paramount in tuning the

behavior of the system. Generally speaking, heightened proportional gains can be

implemented to tighten control of the system and decrease convergence time, but tend to

require more energy consumption on the part of the actuators. Conversely, lower

proportional gains tend to increase convergence time and alleviate the energy burden.

31

Tradeoffs emerge in selecting the derivative gain as well. Derivative gains are critical in

minimizing “overshoot” and damping the system behavior. Serving as a dissipater, these

values also have significant effect on energy consumption.

In application to dynamic walking, either high or low proportional or derivative

gains could be advantageous depending upon the scenario. For a simplistic example,

high proportional gains for the interleg controller could be desirable for comparatively

rough terrain, which would assure each step has converged to the desired interleg angle

before landing on an aberrantly tall surface (provided the derivative gain is sufficiently

large to prevent grossly overshooting the desired leg angle). Applications demanding

greater energy economy could sacrifice such high-fidelity stepping, using lowered

proportional gains and reduced dissipative derivative gains to save on power

consumption.

Advantageously, this control method has sufficient algorithmic simplicity that

equivalent control can be achieved using mechanical springs and dampers (Wisse 2007).

However, what this research seeks to find is a tradeoff-conducive controller. The

generous computational resources available both on and off-board with current

technology allow for a more thorough exploration of potential controllers which feature

superior tradeoffs in robustness, energy economy, and speed.

Gain-Scheduled Control

A common approach to controlling nonlinear systems is gain-scheduling. In the

aforementioned section, a PD controller was described as having a set of gains, one each

32

for the proportional and derivative terms respectively, which fully describe the behavior

of the controller. In systems where different points in the system state space may have

different responses to the control effort, it can become advantageous to apply different

sets of gains. This approach is called gain scheduling. For the application at hand, the

interleg angle is chosen as the key variable to be discretized for the purposes of gain

scheduling, as illustrated in Figure 3.1.

Figure 3.1: Compass gait model discretized by interleg angle for gain-scheduled control

The interleg angle was chosen as a target variable for gain-scheduled control for a

number of reasons. The position of the swing leg in relation to the stance leg is an

excellent indicator of the net torque on the ground pivot as a result of gravity (i.e., a

swing leg held behind the stance leg will tend to cause a backward fall). Given the swing

is largely unidirectional (neglecting small oscillations due to P-control near the desired

33

angle), the interleg angle correlated to the time elapsed during the swing. In addition, a

common alternative to a pure PD controller in dynamic walking is the “activate at mid-

stance” approach (Byl 2008), where the controller is turned on only after the swing leg

passes the vertical. This is a rudimentary example of gain-scheduling by discretizing the

leg angle into two regions, which results in greater energy economy and somewhat

slower controller convergence time. A gain schedule with a higher resolution

discretization has the opportunity to further improve upon this increased energy economy

by refining the gain-schedule.

Lastly, the gain schedules’ angle discretization is normalized with respect to the

desired interleg angle () instead of absolute interleg angle. The normalization is a

convenience that helps ensure that if the desired interleg angle is changed, the gain

schedule will have this new target angle as a goal. In particular, normalization assures

that gains which were tuned to control the leg when close to the target angle continue to

apply close to the target even in the event that is changed (these near-target gains in

essence serve to hold the leg steady). Normalized angles are represented as the ratio of

the interleg angle to ; -1.0 would represent an interleg angle of and 0.0

would indicate leg cross. The normalized angle range is divided into ten sectors in order

to provide a relatively fine resolution. Eight of these sectors are evenly split between a

relative angle of -1.0 and 1.0, with the two remaining sectors capturing every value

outside of that range. This level of discretization was chosen as it was thought that eight

intermediate sectors would provide sufficient resolution to examine a general shape of the

profile.

34

Control Parameter Set

It is important to recall from the previous chapter that the hip torque is only one of

two methods of actuating the compass gait model. The pre-collision impulse is a critical

component of the walker’s actuation. The impulse is a significant contributor to the

system kinetic energy, and consequently, can be a significant drain on the actuator energy

supply. As such, important tradeoffs are likely to be found in the variation of this

impulse magnitude. This “push-off” control has only one parameter of variation, the

magnitude of the applied impulse (which is always applied along the stance-leg direction,

depicted in Figure 2.1). Given the potential prominence in its role for control, this scalar

impulse magnitude is appended to the gain schedule as another parameter for adjustment.

Including values other than simply controller gains, the gain schedule with the additional

applied impulse magnitude is now more aptly dubbed the control parameter set.

Genetic Optimization

A genetic algorithm is a stochastically driven global search heuristic which seeks

an optimal solution to a defined problem. Inspired by biological evolution, a genetic

algorithm utilizes random variation, selection, and reproduction to search for an

approximate, optimal solution by maximizing the desirability or solution fitness. A

genetic algorithm requires three key components, a genetic representation of the solution

domain, a fitness function, and a reproduction algorithm.

35

“Methinks it is like a weasel”

A classic example for the use of a genetic algorithm is the “weasel” program

(Dawkins 1986). The task entails creating a program to generate a target 28 character

string, starting from a series of 28 random characters. Using only random variation to

edit the string, the program must produce the phrase “METHINKS IT IS LIKE A

WEASEL”, a line from Shakespeare’s Hamlet. Intuitively, this scenario conjures

comparisons to the thought experiment of monkeys randomly pounding on typewriters

writing Shakespeare. The probability of such monkeys pounding on keyboards (random

character generation) stumbling upon this particular Shakespeare quotation is vanishingly

small (≈1:10
40

). However, by supplementing this random variation with selective and

reproductive algorithms, this stochastic approach becomes a powerful means of

navigating enormous design spaces to find a workable solution.

The sequence of characters serves as a simple genetic representation, which is

required for a genetic algorithm. Each character (analogously, a gene) can be randomly

varied (mutated) independently from its neighboring characters. When a mutation

occurs, the character is replaced with another randomly selected character from the

alphabet. The string closest to the desired string (a metric of fitness) survives and

reproduces, creating several offspring which undergo the same process. A sample output

of the weasel program which uses a mutation probability (likelihood of any given

character being replaced by a randomly selected character) of 5% and yields 25 children

per generation is shown below.

36

Generation 000: ZKVQMKSONOLPKRRAHGWUMNQRMXTI

Generation 020: ZXVHMKKS DOWISZCFKK M WIMYEM

Generation 040: ZBTHJTKS DOWIS OFKE M WIZREM

Generation 060: MGTHYUKS NT IS LIKE A WERREZ

Generation 080: MOTHZCKS IT IS LIKE A WE MEG

Generation 100: MOTHITKS IT IS LIKE A WEAKEN

Generation 120: METHINKS IT IS LIKE A WEAKEY

Generation 140: METHINKS IT IS LIKE A WEACEL

Generation 160: METHINKS IT IS LIKE A WEACEL

Generation 168: METHINKS IT IS LIKE A WEASEL

The result is a fast convergence to the target phrase, which demonstrates the

ability for algorithms with selection and random variation to rapidly traverse a vast set of

possible solutions. While the above example is rather trivial, this approach to solving

problems can be applied to the control parameter set to optimize the output of the

controller.

Mutation

Mutations are the means of random variation in this genetic algorithm. When

modifying the control parameter set, mutations are modeled as a random fluctuation of

the numerical values following a Gaussian probability distribution. With a Gaussian

model of variation, the magnitude of the standard deviation controls the rate of “genetic

drift” due to mutations. The proportional gain schedule, derivative gain schedule, and

applied impulse each have their own independent mutation rate (standard deviation of

Gaussian noise). Mutations are calculated separately for each entry of the control

parameter set, allowing each of the individual gains in the schedule (and the impulse

magnitude) to drift independently.

37

Fitness Function

Analogous to an organism attempting to survive in its environment, a control

parameter set attempts to “survive” by successfully controlling a robot step. As such,

each child parameter set is tested using the compass gait simulation described in Chapter

2. The fitness function is designed to encourage the desired properties of the optimized

control parameter set. In this investigation, robustness, energy and speed are of primary

concern and form the basis of the fitness function. The fitness function (F), being both

the conceptual and mathematical negative of undesirable cost (C), is formulated in

equation 3.3 as a function of consumed energy (E), average speed of the step (S), a cost

associated with the robustness of the controller (CR), and a weighting factors to generate

tradeoffs (and).

 Eq. 3.3

To retrieve the necessary energy consumption and speed values, the candidate

control parameter set is tested by controlling a single step of the compass gait model.

The model is initialized to a specific, narrow range of state space with a single

preselected value. The initial state variables are randomly generated within the

bounds of this defined range of state space, which allows for a small range of disturbance

rejection to be developed for the controller. It was found that the use of a larger area of

the state space resulted in poor convergence of the algorithm. To elaborate, when the

initial state variables were allowed to vary significantly each generation, the solution with

the highest fitness varied too much each generation to determine if an optimal solution

38

was reached. To mitigate this problem, a very narrow range in state-space was used for

the optimization.

The cost function for the energy-economy () is quite trivial and as shown in Eq.

3.4 is simply the product of the energy consumed (E) and its weighting factor ().

 Eq. 3.4

The incentive for a speed optimizing controller is to increase speed. As a result, the

speed cost function () is the product of the inverse of speed (S) and its corresponding

weighting factor (), as Eq. 3.5 illustrates. The role of weighting factors will be

explained in greater detail later in the chapter.

Eq. 3.5

Robustness Cost Function

To facilitate robustness, a given control parameter set must “successfully

complete” a step, or receive a significant penalty to its fitness. Successful step

completion is defined, in this case, as the swing leg having reached the set interleg angle

and zero interleg angular velocity within an assigned tolerance before the swing leg

collides with the ground. This ensures not only that the walker remains upright, but

avoids the premature termination of the step before reaching the desired step size.

One could easily envision this robustness cost function reducing to a simple

Boolean operation which assigns a penalty if fallen. However, while such a binary view

of success may be satisfactory for an evaluation of the end product, it can be important to

39

the genetic algorithm to be given an indicator of their “proximity” to success or failure.

Envision trying to shoot a basketball free throw while blindfolded. When attempting to

tune such a challenging shot, it would be useful to be told the direction that the shot is

off-target, and preferably the magnitude of the error. By adding two more components to

the cost function which indicate the proximity to a successful step, the genetic algorithm

can be encouraged to move in the “right direction” when trapped in states of failure with

otherwise little chance of escape. These two components are developed from an

understanding of the two modes of step failure for the compass gait model: tripping

forward and falling backward.

Failure Modes

Tripping forward occurs when the swing leg collides with the ground before

taking an adequately large stride. This premature collision sends the walker falling head

over heels. The indicator used to dissuade this failure mode is the “convergence height”

(hc), the height at which the leg controller converges on the desired angle (within

specified tolerance). This height is calculated even if convergence is reached after

colliding with the terrain by continuing the dynamics computations assuming the

collision had never occurred. As the convergence height decreases, the walker is closer

to (or perhaps deeper in) failure. To greatly discourage negative convergence heights, the

“tripping forward” cost function () is set to an exponential decay described

mathematically in Eq. 3.6., If the convergence height is lower than the terrain height (),

the step is considered a failure. Tripping forward often occurs when the hip torque

40

controller gains are too low or the applied impulse is too high. The values for the

coefficients and exponents in Eq. 3.6 were selected by increasing their magnitudes until

they were effective at preventing controllers which “trip” from surviving the algorithm’s

selection process.

 Eq. 3.6

Falling backward, as the name implies, occurs when the stance leg forward

velocity slows to the point where gravity pulls the walker backward. Insufficient applied

impulse or excessively large hip controller proportional gains (due to the momentum

exchange of a quick forward leg swing) will tend to result in falling backward. The

indicator utilized for this failure mode is the maximal backward angular velocity of the

stance leg (vbackward). By discouraging backward velocities via the exponential growth

relationship between the “backward falling cost” () and vbackward in Eq. 3.7, the genetic

algorithm favors controllers which maintain a satisfactory forward velocity. The

coefficients and exponents in Eq. 3.7 were increased until they were effective at

preventing controllers which fall backward from surviving the algorithm’s selection

process.

 Eq. 3.7

The “tripping forward” and “falling backward” failure terms are finally

supplemented by the simplest failure term indicating the presence of a failed step ()

by the simple Boolean relationship shown in Eq. 3.8. These three failure terms are

41

summed via Eq. 3.9 into the final robustness cost . The cost value for falling (500)

was chosen to ensure that falling controllers would consistently result in inferior fitness

to controllers with even extraordinarily high energy costs and low speed.

 {

 if fallen

 else

Eq. 3.8

 Eq. 3.9

Energy-Speed Weighting Factor

When attempting to produce a tradeoff, it is essential to define a numerical factor

which adds or reduces “weight” to the various metrics being traded off. In this

application, the two candidate metrics for trade-off are the energy economy and speed of

forward progress. While the goal of this research is to generate meaningful tradeoffs in

robustness as well as energy and speed, a tradeoff in robustness for a single tested step is

likely not meaningful in a system designed to take over hundreds or thousands of steps.

It will be found later that much of long-term failures in walking result from uneven

terrain forcing the robot into less viable future states. As such, a constant high penalty is

assessed by this algorithm to any control parameter set which results in a failed step.

The energy and speed weighting factors (and respectively) are

incorporated into the cost relationship as per Eq. 3.10 and are constrained such that they

sum to a constant quantity (a value of 10, which is a magnitude large enough to

encourage the desired energy speed tradeoff but small enough not to overwhelm the cost

of falling) as expressed in Eq. 3.11.

42

 Eq. 3.10

 Eq. 3.11

Constraining the sum of the weighting factors creates an effective sliding scale between a

cost function demanding energy economy versus high speed. It is expected that running

the genetic algorithm with a variety of weighting factor pairs will produce a tradeoff

curve with solutions sweeping from great energy economy to great speed.

Reproduction

The ability of favored solutions to pass down their traits through a form of

heredity is foundational to genetic algorithms. For this investigation, only a single

control parameter set survives from each generation to reproduce. The reproduction is

“asexual” and does not utilize the genetic crossover sometimes used in genetic

algorithms, meaning that all offspring of the sole surviving control parameter set are

mutated copies of their parent. Each of the many offspring (50, which was chosen for

computation speed because it resulted in convergence in fewer than 100 generations) is

originally identical to the parent and then are modified using the mutation algorithm. As

described in the previous mutation section, each numerical value is modified by adding

the results of a scaled Gaussian random number generator. The Gaussian distribution

having its peak centered at zero modification allows most of the values do be minimally

affected by the mutation, but inevitably results in a few values making a large shift each

generation. The mutation rates for the algorithm, as well as value bounds and algorithm

43

parameters, are given in table 3.1, indicating the standard deviation of the alteration made

by the mutation each generation. The mutation parameters were chosen so the changes

per generation were both large enough to reach convergence levels within 100

generations (saving computation time) and small enough so noise from the mutations

would not obscure convergence.

Mutation Parameters

 Pre-collision

Impulse

Proportional Gains Derivative Gains

Mutation Rate

(standard deviation)

0.125 0.125 0.05

Initial Value 4 5 0.5

Minimum Value 0 0 0

Maximum Value 7 20 5

Reproduction Parameters

Number of

Surviving Parents

for each Generation

1 Number of

Offspring Produced

for each Generation

50

Table 3.1: Parameters used in the genetic algorithm for mutating and reproducing the

control parameter sets

Convergence

An optimal control parameter set is only reached once the algorithm is deemed

converged, a state which should be specifically defined. The convergence is determined

by observing values of the fitness function over several generations and assessing

whether the values have become relatively constant. Numerically, the algorithm is

deemed converged when the current generation’s fitness value does not differ from any

of its previous ten generations’ fitness values by more than a given threshold (a numerical

value of 1.0, a value approximately 1% of the total range of typical fitness values).

44

Figure 3.2 shows a typical pattern of convergence for the fitness values, including the

point of convergence given the aforementioned criteria. The genetic algorithm generally

converged in fewer than 80 generations.

Figure 3.2: The surviving control parameter set’s fitness value plotted over 80

generations, indicating that the convergence criterion is met at generation 59

Data Collection

For a given data set (which can be used to plot a single tradeoff curve), the

genetic algorithm was run for a narrow region in state space (less than 1% of the total

range), with a particular control action, but over a wide range of energy-speed weighting

factors. Each run of the algorithm produced an optimized control parameter set which

was then tested by simulating a step with 500 randomly generated starting states within

the defined narrow state space region. The region in state space from which the initial

simulation states are selected is outlined in Table 3.2, which lists the upper and lower

bounds for each of the state variables, as well as the desired interleg angle and terrain

height. The initial state variable ranges chosen for this data set were selected because

-250

-200

-150

-100

-50

0 10 20 30 40 50 60 70 80

Fi
tn

e
ss

 V
al

u
e

Generation

Typical Convergence of Fitness Values over Generations

Fitness Data

Convergence

45

they did not require extraordinarily large impulses or gains in order to avoid falling,

meaning it is a reasonably viable range of states.

Genetic Algorithm State Space Range Parameters

State Variable Units Minimum Value Maximum Value

X1: vertical leg separation (m) 0.00 0.00

X2: horizontal leg separation (m) 0.449 0.451

X3: stance leg angular velocity (º/sec) -61.0 -59.0

X4: swing interleg angular

velocity

(º/sec) -1.00 1.00

 : desired interleg angle (º) 25.0 25.0

δ: terrain height (m) 0.00 0.00

Table 3.2: The maximum and minimum values denoting the range of state space used to

generate the reported data with the genetic algorithm

The resulting 500 simulation runs assure that the generated control parameter set

will not fail to take a step within that state space range. In addition, the large number of

test runs (perhaps excessively large given the limited breadth of the state range) provides

a more solid statistical basis for assessing the energy and speed. The mean values of the

speed and energy consumed for the step taken are recorded in addition to the median and

standard deviation. The standard deviation was universally found to be two orders of

magnitude smaller than the mean, so variation in this figure was considered insignificant.

The energy consumed was further processed into the more generally applicable

metric of specific cost of transport (SCT) which is the non-dimensional quantity of energy

consumed per unit weight per unit distance traveled. This resulting data pair consisting

of the single-step speed and specific cost of transport of this control parameter set forms a

single point in energy-speed tradeoff space.

46

A variety of points can be generated in tradeoff space by two means. A wide

range is primarily achieved by modifying the energy-speed weighting factors, which is

intended to influence, if not completely control, the resulting point’s position in tradeoff

space. Secondarily, simply running the algorithm repeatedly can yield somewhat

differing results due to the inherently stochastic nature of the genetic algorithm. Both

methods were used in producing the presented data.

From the outset of data collection, the ratios of weighting factors necessary to

produce a wide tradeoff curve were not intuitively clear. The weighting ratio selection

was continually assessed throughout the data collection process as more was learned

about the relationship between the weighting factors and the resulting position of the

points in tradeoff space. No points were omitted in reporting in order to avoid selection

bias.

The basic procedure in selecting weighting factors sought to first find the

extremes of the tradeoff curve by amplifying the discrepancy between the weighting

factors. The weighting of energy economy was increased until the resulting points

produced no greater advantage in reduced energy consumption (data which essentially

duplicated the results of less extreme weighting ratios). Conversely, attempts to find an

upper boundary on step speed were met with the realization that walker speed was only

limited by saturation of the actuators. After arbitrarily deciding that 1.25 m/s was a

sufficient upper bound on speed for the purposes of this investigation, it was found that

intermediate results were easily generated by incrementally adjusting the weighting

factors from one extreme to the other. The correspondence between increasing weighting

47

factors and the change in position on energy-speed axes indicates that the fitness function

is appropriate for easily generating tradeoffs.

Genetic Algorithm Results

For this single slice of state space (as defined in Table 3.2), 55 data points were

collected using weighting factors ranging from 10:1 to 1:43 ratios of energy economy to

speed. All of these data points represent control parameter sets which never failed during

500 random test runs within the narrow scope of their state-space tuning. Figure 3.3

shows each of these points plotted on energy-speed tradeoff space. The plot shows a

clear optimal performance frontier which is well fit by a quadratic regression

(R
2
=0.9924). As can be seen in Figure 3.3, the minimum energy cost found for this

commanded step is equal to a value of the specific cost of transport of approximately 0.3,

which corresponded to a minimum step speed of approximated 0.33 m/s. The opposite

extreme corresponded to a speed of 1.25 m/s and a specific cost of transport of

approximately 1.5.

48

Figure 3.3: 55 solutions generated by the genetic algorithm (one data set) plotted in

energy-speed tradeoff space with a quadratic data fit

Conclusions

The devised genetic algorithm, when varied in weighting ratios, produced a clear

optimal performance frontier with a strong quadratic nature. This quadratic relationship

between energy consumption and speed is in line with well-established principles of

mechanics which relate the kinetic energy of a system to the square of its velocity. The

actuator work must provide the requisite kinetic energy (which has an inherent quadratic

R² = 0.9924

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Sp
e

ci
fi

c
C

o
st

 o
f

Tr
an

sp
o

rt

Single-Step Speed (m/s)

Various Genetically Optimized Solutions

Genetically Optimized Solutions

Quadratic Fit of Optimized Solutions

49

relationship to speed) to propel the system at the resulting speed, an indication of the

tradeoff curve’s significant quadratic relationship.

As currently devised, the genetic algorithm is impractical for implementing

tradeoff-conducive control for a walking robot. Each of these data points required

executing the genetic algorithm to convergence, a process which typically needed 20

minutes of computing time. Furthermore, each collected point represent only a single

point on a tradeoff curve within one small slice of the overall robot state space, rendering

such an approach so exhaustive that it is computationally intractable. To be sufficiently

effective as a tradeoff-conducive controller, a more generalized or efficient means of

producing tradeoffs must be developed.

50

Chapter 4: Heuristic Control

While the term “heuristic” has many definitions depending on the context of its

use, in a broad sense, it refers to a process or rule which is generally successful, but has

not been demonstrated to be universally effective. Often regarded as guidelines or

“rules of thumb”, heuristics are typically used when robust, generally applicable solutions

are inconvenient or unavailable. In the face of an inconvenience in the form of

computational intractability, developing a heuristic is an attractive alternative for the

generation of controllers capable of tradeoffs over a range of performance.

Optimization-Inspired Heuristic

Despite a genetic algorithm being an unwieldy tool for generating a controller for

every possible action, the results generated by such an algorithm can be analyzed to find

patterns or common features in the results. An obvious route involves looking at the

control parameter sets produced by the genetic algorithm and plotting trends in the

parameter values against the controller outcome measures, in this case energy and speed.

If such a clear trend exists, then the control parameters could be approximated and fitted

functions could be used to quickly synthesize a controller capable of producing effective

tradeoffs. Figure 4.1 plots the impulse magnitude obtained by the genetic algorithm

against its corresponding resulting speed. The pre-collision impulse magnitude follows a

strongly linear trend (R
2
 = 0.9736) over the entire range of possible speeds. This stands

in contrast to Figures 4.2 and 4.3 which show the proportional and derivative gain

schedules respectively plotted against the resulting step speed.

51

Figure 4.1: All impulse magnitude values for 51 genetic optimizations plotted with a

linear trend line, revealing a strong linear correlation

R² = 0.9736

0

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A
p

p
lie

d
 Im

p
u

ls
e

 M
ag

n
it

u
d

e
 (

kg
-m

 s
-1

)

Step Speed (m/s)

Applied Impulse Magnitudes vs. Step Speed from 51
Genetic Optimizations

Genetically Optimized Solutions

Linear Trendline

52

Figure 4.2: All proportional gain schedule values for 51 genetic optimizations, revealing

no obvious trend

0

1

2

3

4

5

6

7

8

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

P
ro

p
o

rt
io

n
al

 G
ai

n
 V

al
u

e
 (

N
m

/d
e

gr
e

e
)

Step Speed (m/s)

Proportional Gain Schedules vs. Speed from 51 Genetic Optimizations

(-∞,-1)

[-1,-0.75)

[-0.75,-0.5)

[-0.5,-0.25)

[-0.25,0)

[0,0.25)

[0.25,0.5)

[0.5,0.75)

[0.75,1)

[1,∞)

53

Figure 4.3: All derivative gain schedule values for 51 genetic optimizations, revealing no

obvious trend

There are numerous reasons to suspect that the pre-collision impulse has the

largest influence on the dynamics of each step. It has been shown to be a highly effective

means of imparting kinetic energy to the forward motion of a walker (Kuo 2002) and is

likely a significant source of energy expenditure in any genetically optimized walker

controller. As such, the pre-collision impulse is subject to significant selection pressures

from the genetic algorithm and dissuades random drift in the applied impulse via the

selection process. Such obvious trends not being present in the gain schedules, a more

quantitative means of detecting the importance of parameters is needed.

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

D
e

ri
va

ti
ve

 G
ai

n
 V

al
u

e
 (

N
m

-s
/d

e
gr

e
e

)

Step Speed (m/s)

Derivative Gain Schedules vs. Speed from 51 Genetic Optimizations

(-∞,-1)

[-1,-0.75)

[-0.75,-0.5)

[-0.5,-0.25)

[-0.25,0)

[0,0.25)

[0.25,0.5)

[0.5,0.75)

[0.75,1)

[1,∞)

54

Selection Pressures

A selection pressure (sometimes called an evolutionary pressure) is an incentive

or disincentive induced by the selection procedure of an evolutionary process which acts

on specific traits. For example, an organism which relies heavily on its ability to outrun

predators may have a strong selection pressure on its running speed. As a result, the

pressure will tend to produce subsequent generations in which high running speed is

enhanced or conserved (i.e., protected from degradation). Traits which are largely

unrelated to the organism’s survival have low selection pressures, and will tend to “drift”

due to aggregate variation. These selection pressures play a tangible role in the

interpretation of the results of the genetic algorithm. By examining the variation over

time (generations) in the control parameters (analogously, the organism traits), the

qualitative strength of the selection pressures can be hypothesized by inference.

Identifying parameters which are largely conserved after fitness convergence, meaning

they experience a lack of drift that would otherwise be associated with random mutations,

suggests that such parameters could be critical to the success of the controller.

Random Walk

A series of random changes in a variable as a result of the application of (but not

limited to) genetic algorithms is called a random walk. A series of random mutations as

described in the genetic algorithm (a normalized random variation) can be similarly

considered a random walk phenomenon. When observed over time, these random walks

have a distinct statistical behavior, notably an increasing variance over time. A simple

55

statistical analysis of 5000 runs of a random walk using a normalized random change is

shown in Figure 4.4. It depicts the percentile ranking of the values of the random walks

over time, demonstrating a “fanning out” of the variation over time. However, if acted

upon by an outside force, such as a selection pressure, one would expect the fluctuations

in parameters to deviate significantly from this random walk distribution.

Figure 4.4: The percentile values of 5000 normal (σ = 0.125) random walks over time

(50% indicating the median, 75% denoting the third quartile, etc.)

While a rigorous statistical analysis would be able to detect the probability of a

particular variation being explainable by a random walk, a quicker and more simplistic

analysis was used to qualitatively assess which parameters have a strong effect on the

controller fitness. Two metrics were employed to find deviations from a random walk:

rapid changes which were too fast to occur by an unguided random walk and values

which were implausibly stagnant if subjected to random variation.

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 6 11 16 21 26 31 36 41 46 51

D
ri

ft
 f

ro
m

 In
it

ia
l V

al
u

e

Generation

5000 Random Walks - Percentiles

1%

5%

10%

25%

50%

75%

90%

95%

99%

56

Impulse Selection Pressures

The progression of the pre-collision impulse magnitude while being optimized is

displayed for a sample run of the genetic algorithm in Figure 4.5, which shows a fairly

typical qualitative convergence behavior. The initial 15 generations appear to plummet

followed by a slow drift to convergence (note that the convergence threshold “goal-line”

is determined by controller fitness (defined in Chapter 3) and not convergence of the

impulse magnitude). While such a qualitative assessment can be useful, Figure 4.6 helps

quantify the drastic nature of the drift by overlaying the change in the impulse magnitude

with the percentile values predicted by chance.

For the beginning 15 generations, the impulse drifts so fast compared to the result

of 5000 random walks of equivalent mutation rate that it surpasses the 99
th

 percentile

values. This renders the pre-convergence behavior of the impulse magnitude highly

improbable if attributed entirely to a random walk. The suggestion of this result is that

lower pre-collision impulse magnitudes were favored by the selection algorithm, which

resulted in a rapid reduction of the impulse magnitude.

Figure 4.5: A sample genetic optimization following the change in impulse magnitude

over 80 generations.

2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25

0 10 20 30 40 50 60 70 80

Im
p

u
ls

e
 M

ag
n

it
u

d
e

 (
kg

-
m

/s
)

Generation

Impulse Magnitude during Sample Genetic Optimization

Impulse Magnitude

Fitness Convergence

57

Figure 4.6: Plot of impulse magnitude drift due to the genetic algorithm against the

random walk probability profiles (i.e., at generation 15, over 99% of random walks

produced drift numbers greater than the impulse magnitude drift at that time, meaning

that less than 1% of random walks produced such extreme values)

Furthermore, the impulse magnitude was also observed after fitness convergence

was reached. Figure 4.5 shows this post-fitness convergence behavior which is

remarkably stagnant. Once fitness convergence is reached, the impulse magnitude never

deviated from the value at convergence by more than 0.08 kg-m/s (out of approximately

1.0 kg-m/s) for the 21 generations recorded after convergence. The 5000 random walks

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

1 6 11 16 21 26 31 36 41 46 51

D
ri

ft
 f

ro
m

 In
it

ia
l V

al
u

e

Generation

 Sample Impulse Drift vs. Random Walk

1%

5%

10%

25%

50%

75%

90%

95%

99%

Impulse Magnitude Drift

58

of the same mutation rate were assessed to determine the probability of such a stagnant

parameter value emerging by chance. After 12 generations, every single random walk

had deviated from its initial value by more than 0.08 at some point, far short of the 21

generations for which the impulse magnitude remained within that window. Figure 4.7

plots the number of random walks which remain within this threshold over a number of

generations, showing how quickly this level of preservation becomes an unlikely

phenomenon for random walks. This implausible behavior adds further to the body of

evidence that the magnitude of the pre-collision impulse was subjected to a strong

selective pressure in the genetic algorithm.

Figure 4.7: A statistical analysis of 5000 random walks with σ = 0.125 (identical to

impulse mutation rate), observing the percentage of random walks which remained within

0.08 of their starting value over several generations

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e

rc
e

n
ta

ge
 o

f
R

an
d

o
m

 W
al

ks
 e

xc
e

e
d

in
g

V
ar

ia
ti

o
n

 o
f

C
co

n
ve

rg
e

d
 Im

p
u

ls
e

(t

h
re

sh
o

ld
: 0

.0
8

 k
g-

m
/s

)

Generation after Fitness Convergence

Probabilistic Assessment of Impulse Conservation

59

Gain Schedule Selection Pressures

 In contrast to the pre-collision impulse magnitude, the proportional and derivative

gains do not change as rapidly or converge as clearly. Figures 4.8 and 4.9 show the

change in the proportional and derivative gain schedules (respectively) over the course of

80 generations. This sample run of the genetic algorithm is the same sample used in the

impulse analysis. While it appears that various gains begin to fan out, it is not clear

whether the values ever converge after the fitness is achieved convergence (the

convergence criterion is outlined in Chapter 3).

Figure 4.8: A sample genetic optimization following the change in the proportional gains

in the gain schedule over 80 generations

0

1

2

3

4

5

6

7

0 20 40 60 80

P
ro

p
o

rt
io

n
al

 C
o

n
tr

o
lle

r
G

ai
n

 (
K

P
)

(N
m

/d
e

gr
e

e
)

Generation

Proportional Gain Schedule during Sample Genetic Optimization
(-∞,-1)

[-1,-0.75)

[-0.75,-0.5)

[-0.5,-0.25)

[-0.25,0)

[0,0.25)

[0.25,0.5)

[0.5,0.75)

60

Figure 4.9: A sample genetic optimization following the change in the derivative gains in

the gain schedule over 80 generations

The case for strong selection pressures in the proportional and derivative gain

schedules is considerably weaker than that for the impulse magnitude. Figure 4.10 plots

the drift of the proportional gain schedules after fitness convergence against the

percentile ranges of random walks. Two of the gains breach the 1% values, indicating a

likely pressure continuing to act after fitness convergence. However, the remaining gains

vary significantly enough (qualitatively) that it appears their values are not being

preserved by selection, but not to such an extreme that a random walk would be an

improbable explanation.

The same is generally true of the derivative gains. Figure 4.11 again shows that

only two gains convincingly vary (outside of the 99
th

 percentile). While the null

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80

D
e

ri
va

ti
ve

 C
o

n
tr

o
lle

r
G

ai
n

 (
K

D
)

(N
m

-s
/d

e
gr

e
e

)

Generation

Derivative Gain Schedule during Sample Genetic Optimization

(-∞,-1)

[-1,-0.75)

[-0.75,-0.5)

[-0.5,-0.25)

[-0.25,0)

[0,0.25)

61

hypothesis (variation completely explained by random walk) cannot be rejected for many

of these gains, the possibility remains that the proportional gains are interdependent or

are the results of many redundant solutions being found (redundant in the sense that the

performance is similar despite the gain schedule being different). For example, two gains

adjacent in their interleg angle discretization may make similar contributions to the

forward motion of the swing leg, with the exact order of the gains not being particularly

significant.

Figure 4.10: Beginning at the generation of convergence, the drift in proportional gain is

plotted against the percentile ranges of random walks (i.e., the 50% line indicates the

median value, 75% is the third quartile value). The dotted lines from bottom to top are

the following percentages: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99%.

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

2.00

59 64 69 74 79

P
ro

p
o

rt
io

n
al

 C
o

n
tr

o
lle

r
G

ai
n

 (
K

P
)

(N
m

/d
e

gr
e

e
)

Generation

Proportional Gain Schedule drift after Fitness
Convergence with Random Walk Probabilities

(-∞,-1)

[-1,-0.75)

[-0.75,-0.5)

[-0.5,-0.25)

[-0.25,0)

[0,0.25)

[0.25,0.5)

[0.5,0.75)

[0.75,1)

[1,∞)

62

Figure 4.11: Beginning at the generation of convergence, the drift in derivative gain is

plotted against the percentile ranges of random walks (i.e., the 50% line indicates the

median value, 75% is the third quartile value). The dotted lines from bottom to top are

the following percentages: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99%.

Mean Gain Schedule

The behavior of the controller gains when subjected to a genetic algorithm

indicates some effect on performance, but it is not as obvious an effect as is present for

the pre-collision impulse. Furthermore, the existence of redundant or interdependent

solutions has yet to be explored. Without a detailed, multivariate analysis of each of the

components of the gain schedule, it is difficult to assess the exact nature of the

interactions between the gains. However, operating under the hypothesis that redundant

solutions exist for the gain schedule, a representative solution can be used to develop an

effective controller. If a representative gain schedule can be used to produce a tradeoff

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

59 64 69 74 79

D
e

ri
va

ti
ve

 C
o

n
tr

o
lle

r
G

ai
n

 (
K D

)
(N

m
-s

/d
e

gr
e

e
)

Generation

Derivative Gain Schedule drift after Fitness Convergence
with Random Walk Probabilities

(-∞,-1)

[-1,-0.75)

[-0.75,-
0.5)
[-0.5,-
0.25)
[-0.25,0)

[0,0.25)

[0.25,0.5)

[0.5,0.75)

[0.75,1)

63

curve similar to the genetic optimizations, it would be strong evidence of the redundancy

of solutions for gain profiles.

Such a representative gain schedule profile (gain profile) was produced by taking

the mean values for each of the ten individual gains over all of the 51 optimized gain

schedules. This mean “ramped” profile is shown in Figure 4.12, which is named for the

inclined shape of the profile with the proportional and derivative gains increasing and

decreasing respectively as the interleg angle approaches the target angle (the swing angle

ratio approaches one). This ramped profile is used as the basic gain profile, proportional

(
) and derivative (

), for a control heuristic.

Figure 4.12: Mean values for 51 optimized gain schedules produced by the genetic

algorithm for various weighting factors. Each point indicates a gain associated with a

lower-bound swing angle ratio range in the gain schedule.

0

1

2

3

4

5

6

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

C
o

n
tr

o
lle

r
G

ai
n

 V
al

u
e

 (
N

m
/d

e
gr

e
e

 o
r

N
m

-s
/d

e
gr

e
e

)

Swing Angle Ratio (Current Interleg Angle / Desired Interleg Angle)

Mean "Ramped" Gain Schedule Profile distilled from
Genetically Optimizations Solutions

Proportional Gain Schedule (Mean Values)

Derivative Gain Schedule (Mean Values)

64

Tradeoff-Conducive Control Heuristic

Using the strong linear relationship between required speed and applied impulse

as well the ramped gain profile synthesized from averaging 51 optimization-generated

profiles, the components are now in place to produce a heuristic capable of generating

efficient tradeoffs for step control, henceforth called a tradeoff-conducive control

heuristic. The highly linear speed-impulse relationship is used as a starting point for

adjusting the controller to accommodate faster versus energy efficient steps. As the

demand for step speed increases, the heuristic controller scales the applied impulse

linearly to match the increased speed requested.

Unlike the impulse magnitude, it is less obvious how the heuristic should handle

any adjustment to the gain profile in response to varying demands for tradeoffs. Some

less-definitive insights can be deduced from the genetic optimization data by plotting

individual gain values against their resulting speed. Figures 4.13 and 4.14 show some

representative proportional and derivative gain schedule values respectively plotted

against the controller’s resulting speed. The linear trend lines produced are often positive

in slope for proportional gains, and negative in slope for derivative gains. However, the

R
2
 values for some sample proportional and derivative gains are quite low (0.3171 and

0.4075 respectively) when compared to the impulse trends (0.9736). Despite the less

convincing nature of these trends, linear scaling was also used to scale the magnitudes of

the proportional and derivative gain profiles with respect to speed demand.

65

Figure 4.13: Several genetically optimized values (all 51 genetic optimizations) of a

single, sample sector (-1.0 to -0.75 normalized interleg angle) of the proportional gain

schedule plotted against the resulting controller speed (essentially a single gain schedule

entry from Figure 4.2)

Figure 4.14: Several genetically optimized values (all 51 genetic optimizations) of a

single, sample sector (-1.0 to -0.75 normalized interleg angle) of the derivative gain

schedule plotted against the resulting controller speed (essentially a single gain schedule

entry from Figure 4.3)

R² = 0.3171

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

P
ro

p
o

rt
io

n
al

 G
ai

n
 (

N
m

/d
e

gr
e

e
)

Step Speed

Sample Proportional Gain Schedule Values vs. Step Speed

Optimized Gain Values from
Individual Schedule Sector
Linear Trendline

R² = 0.4075

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

D
e

ri
va

ti
ve

 G
ai

n
 (

N
m

-s
/d

e
gr

e
e

)

Step Speed

Sample Derivative Gain Schedule Values vs. Step Speed

Optimized Gain Values from
Individual Schedule Sector

Linear Trendline

66

Heuristic Bounding Parameters

With the heuristic controller dependent upon a linear relationship between the

tradeoff and the parameters, the bounds for the linear scale are imperative in determining

the breadth of the tradeoff as well as the slope at which the parameters are scaled. There

are two bounds used for scaling each of the applied impulse, the proportional gain

schedule, and the derivative gain schedule, which yields six bounding parameters. These

six heuristic bounding parameters fully describe the tradeoff controller in that they

produce a controller yielding every performance demand between maximal energy-

efficiency and highest speed via linear interpolation.

Given the six heuristic bounding parameters, controllers are generated by

specifying the energy-speed weighting factor (
). Similar to the weighting factor

used for the genetic algorithm, this value sets the desired operating point on the spectrum

between an energy efficient controller and a fast one. The value is set between zero and

one, with zero producing the most energy efficient controller and one producing the

fastest step. The equations for the interpolation and scaling of the control parameters

used in the control parameter set, applied impulse (), proportional gain profile (),

and derivative profile (), are described in Eq. 4.1-4.3 as functions of the two impulse

bounds (and), proportional profile scaling bounds (
 and

), and derivative

profile scaling bounds (
 and

). Again, the greater of the two values need not be the

first, as such an arrangement would indicate a decreasing scaling factor with increasing

weight to step speed.

67

() Eq. 4.1

[
(

)

] Eq. 4.2

[
(

)

] Eq. 4.3

Lingering questions remain regarding how these six heuristic bounding

parameters are selected. Superficially, it appears as though this attempt at creating a less

complex heuristic has simply substituted one parameter optimization problem (the

genetic algorithm) for another (the tuning of the heuristic bounding parameters).

However, this heuristic can result in two significant advantages over the genetic

algorithm. First, the results of a single run of the genetic algorithm to tune the control

parameter set produce a single point on the tradeoff curve, while a tuned set of heuristic

bounding parameters generates the entire energy-speed tradeoff curve and its

corresponding set of controllers. Secondly, the heuristic controller is governed by a mere

six parameters, as opposed to the 21 which define each control parameter set on the

tradeoff curve. This marked decrease in the number of parameters benefits the

computational tractability of the problem.

Heuristic Parameter Tuning

 To have an efficient and objective means of tuning the heuristic bounding

parameters, an automatic “heuristic parameter tuner” was developed to find an optimal

set. Unlike the genetic algorithm which “tunes” the 21 variable control parameter set,

this heuristic tuning algorithm needs to find a solution in a search space of only six

68

variables. As such, the smaller computational burden allows for more deterministic

algorithms to be used (as opposed to stochastically-driven techniques like the genetic

algorithm). This heuristic parameter tuner utilizes a primitive gradient-descent algorithm

to navigate toward an optimal set of parameters.

Gradient-Descent Algorithm

Gradient descent algorithms operate by starting with a guessed solution and

computing the gradient of the performance function at that point. This gradient,

essentially being the “slope” of the performance when plotted against the dependent

variables (the heuristic parameters), indicates the direction in which the performance

increases to the greatest degree (or decreases undesirable qualities to the greatest degree).

After determining the direction of the steepest gradient, the guessed solution is updated

by “moving” in that direction. Often, the magnitude of this move is adjusted in

proportion to the slope magnitude, but this feature was omitted to facilitate algorithmic

simplicity. Figure 4.15 visualizes the gradient-descent process on a contour plot as a

navigation from initial guess x0 to the minimum value at the center, following the path of

greatest descent.

69

Figure 4.15: A visualization of the gradient descent process on a contour plot,

progressing from initial guess (x0) to the most recent approximate minimum (x4) by

traversing the maximum gradient.

Tradeoff Curve Metrics

 The most valuable qualities in an energy-speed tradeoff curve are the

minimization of energy (mean energy) for any given desired speed and the range of speed

(speed range) which the tradeoff curves accommodate. Superior energy performance is

signified by a curve which is positioned lower on the vertical energy axis, indicating that

for a given point on the horizontal axis (step speed), the controller has found a more

energy-efficient solution. A wider range on the horizontal axis indicates the controller

can produce a great variety of step speeds, meaning a more versatile tradeoff curve.

Figure 4.16 uses an illustration to convey visual examples of superior and inferior “mean

energy” and “speed range”. The formula for performance () is given in Eq. 4.4 as a

function of the vector of all controller energy values (̅) and upper and lower bounds of

70

the resulting speeds (and respectively) with larger resulting negative values

indicating superior performance. The coefficient of 2.0 for the speed range term was

hand-tuned to produce a speed range that is similar to the tradeoff curve generated by the

genetic optimization (as shown in Figure 3.3). During the performance evaluation

process, any points in the tradeoff curve which fail at taking a successful step are

removed from the curve and do not contribute to the speed range or mean energy

calculations.

 ̅ Eq. 4.4

Figure 4.16: Illustrations of energy-speed tradeoff curves highlighting examples of

varying performance in mean energy and speed range

 To calculate P, a tradeoff curve must first be generated using the candidate

heuristic bounding parameters. This process requires two steps: the generation of the

control parameter sets and the subsequent testing of the control parameter sets for a single

b

Energy

Speed

Energy

a

c

d

Mean Energy (b < a)

Curve b is preferred
Speed Range (d > c)
Curve d is preferred

Speed

71

step. The heuristic bounding parameters indicate an upper and lower bound, but to

approximate this tradeoff curve, intermediate points must be calculated. This is achieved

by generating controllers using various values of the energy-speed weighting factor

(
). Ten values of this weighting factor were spaced between zero and one,

generating ten separate control parameter sets (the number ten was selected to be large

enough to discern the quadratic shape of a resulting curve). Each of these ten control

parameter sets are tested using the simulated compass gait. The resulting ten energy-

speed data points are plotted on the same energy-speed “tradeoff space” for which the

genetic algorithm results were reported. The state variables and desired step angle used,

shown in Table 4.1, were the mean values of the genetic algorithm’s state space range

outlined in Table 3.2. This similarity makes the results of the genetic algorithm and

gradient heuristic comparable.

Gradient-Descent Algorithm State Variables

State Variable Units Value

X1: vertical leg separation (m) 0.00

X2: horizontal leg separation (m) 0.45

X3: stance leg angular velocity (º/sec) -60.0

X4: interleg angular velocity (º/sec) 0

 : desired interleg angle (º) 25.0

δ: terrain height (m) 0.00

Table 4.1: State variables used for testing the gradient-descent algorithm

Approximated Gradient

 Since no closed-form solution exists from which to take partial derivatives and

analytically determine the gradient of the tradeoff curve performance, one must be

72

approximated for the purpose of the gradient-descent algorithm. For a similar problem

with a single input variable, the gradient, equivalent to the slope in this simplified case,

can be estimated by taking a finite “step” in one direction and comparing the output of

the original position. This will give an estimation of the one-dimensional gradient,

indicating the best direction for the next iteration of the gradient-descent algorithm. The

same general process can be used for multiple variable inputs and exploring multi-

dimensional space. For this simple estimation of the direction of maximum gradient, a

small change is made in a diagonal direction (as shown in figure 4.17, checking points

directly left and right for one dimension and in the four diagonal directions for two

dimensions), and the change in output (tradeoff curve performance) is observed.

Figure 4.17: An illustration of a hypothetical one-dimensional (left) and two-dimensional

performance curves. The one-dimensional case shows how moving in the two possible

directions (left and right) yields predictions of the gradient. The two-dimensional case

indicates the diagonal motion used to explore and approximate a higher dimensional

gradient.

However, when using six variables (as is the case with the heuristic bounding

parameters), the problem expands to six dimensions. In six dimensions, there are 64 (2
6
)

possible diagonal movements to explore and approximate the gradient by this manner.

dx1 dx2

dy1

dy2

x

y

73

The gradient descent algorithm explores each of these 64 possible options and finds the

path which yields the greatest decrease. The tested point yielding the greatest decrease in

the performance curve (performance is a bit of a misnomer as the formula yields larger

negative values for good performance) becomes the new starting point for the next

iteration of the algorithm. The changes in impulse magnitude, proportional and

derivative gains applied to explore the nearby space are listed in Table 4.1. These values

are identical to their corresponding mutation rates in the genetic algorithm described in

Table 3.1. These relatively small values were chosen in order to keep the changes

relatively small, decreasing the likelihood of a downward gradient being “skipped over”.

The algorithm is run until convergence which occurs when further iterations result in

repeating previously encountered heuristic bounding parameters.

Gradient-Descent Exploration Values

Impulse Magnitude Proportional Gains Derivative Gains

0.125 Nm/s 0.125 Nm/degree 0.05 Nm-s/degree

Initial Parameter Values

Impulse Magnitude Proportional Gains Derivative Gains

Minimum Maximum Minimum Maximum Minimum Maximum

3.0 Nm/s 3.4 Nm/s 1.0

Nm/degree

1.4

Nm/degree

0.8 Nm-

s/degree

1.2 Nm-

s/degree

Table 4.2: Gradient-descent exploration values by which heuristic bounding parameters

are changed in order to find the path of greatest descent; the initial bounding parameter

values for the algorithm are also included in this table

Heuristic Tradeoff Curve Results

 After tuning the heuristic bounding parameters using the aforementioned

gradient-descent algorithm, the resulting tradeoff curve was plotted against the previous

genetic algorithm data. Figure 4.18 shows the results of running the gradient-descent

74

algorithm to convergence. The “auto-tuned” heuristic curve closely approximates the

data generated by the individually genetically optimized controllers. This result is very

promising and has a number of potential implications for controlling the compass gait

over a range of possible speed-energy demands.

Figure 4.18: Tradeoff curves for genetically optimized solutions and the tuned heuristic

tradeoff controller

It was hypothesized earlier in this chapter that redundant solutions may exist for

values of the gain schedules. This result supports this hypothesis as many different gain

profiles were generated by the genetic algorithm and the single mean gain profile

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Sp
e

ci
fi

c
C

o
st

 o
f

Tr
an

sp
o

rt

Single-Step Speed (m/s)

Single-Step Control Trade-off Curve with Heuristic
Performance

Genetically Optimized Solutions

Auto-tuned Heuristic Performance

75

produced similar results. This is an encouraging finding as a representative mean profile

may be useful in other regions of state space and step sizes than this one case.

Furthermore, the closeness of the two tradeoff curves is worthy of note as the gradient

descent algorithm had no means of knowing where the genetic algorithm tradeoff data

was located. This implies that the gradient descent algorithm, which takes significantly

less time to run than collecting the genetic algorithm data (at least a factor of ten), can

predict an optimal performance curve on par with the genetic algorithm.

To test the notion that a representative gain profile can predict an optimal

performance curve similar to that generated by the genetic algorithm, a different system

state and step angle were chosen for a second run of the gradient-descent algorithm and

the genetic algorithm. Table 4.3 lists the new system states and desired step angle for this

new data set. These new states were selected to have a significant difference in most

state variables (X4, however, is almost always near zero since the derivative controller

attenuates the interleg angular velocity) in order gauge versatility of the heuristic

approach. In this test, the gradient-descent algorithm was run before generating new

genetic algorithm data to control for any biases in selecting the gradient-descent initial

conditions. All of the parameters, procedures and initial conditions were unchanged from

the previous data set, with the exception that only 24 genetic optimizations were run in

order to save computation time.

76

Gradient-Descent Algorithm State Variables

State Variable Units Value

X1: vertical leg separation (m) 0.05

X2: horizontal leg separation (m) 0.55

X3: stance leg angular velocity (º/sec) -30.0

X4: interleg angular velocity (º/sec) 0

 : desired interleg angle (º) 20.0

δ: terrain height (m) 0.00

Table 4.3: State variables used for a second run of the gradient-descent algorithm

 The results for the second run of both the genetic algorithm and gradient-descent

algorithm are plotted in Figure 4.19. Using the same mean gain schedule and gradient-

descent algorithm, the tuned heuristic again closely matches the genetically optimized

controller performance. This suggests that the tuned tradeoff heuristic (using the same

mean gain profiles
 and

) may be a useful means of quickly (without running

additional optimizations) generating controllers which produce a wide tradeoff range.

This property suggests that this control heuristic, a representative “ramped” gain schedule

coupled with linear scaling, can be called tradeoff-conducive.

77

Figure 4.19: Tradeoff curves for genetically optimized solutions and the tuned heuristic

tradeoff controller for the second set of state variables and desired step angle

While these results indicate that the mean “ramped” gain profile can be scaled

effectively for tradeoffs, it is reasonable to question whether this particular profile is

actually an improvement over other profiles. An exhaustive assessment of all other

possible gain profiles is unreasonable, but it is worth investigating whether the ramped

profile is better suited for tradeoffs than “traditional” profiles. The most traditional

profile is a constant proportional and derivative gain, which is the equivalent of a single

traditional PD controller. For this investigation, the mean “ramped” profile was further

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Sp
e

ci
fi

c
C

o
st

 o
f

Tr
an

sp
o

rt

Step Speed (m/s)

Single-Step Energy Speed Trade-off Curve with Heuristic
Performance (second run)

Genetically Optimized Solutions

Auto-Tuned Heuristic (E:R = 1:2)

78

averaged into a “flat” profile with a constant proportional and derivative gain (KP = 4.01

Nm/degree and KD = 0.85 Nm-s/degree) and tuned with the gradient-descent algorithm

using the same parameters, initial values, state variables and desired step angle.

Figure 4.20: Comparison of the mean “ramped” and “flat” gain profiles based on their

performance in energy-speed tradeoffs

 Figure 4.20 compares the tuned performance of the “ramped” and “flat” profiles

plotted on energy-speed coordinates. The ramped profile performance yields a range of

speed approximately quadruple that of the flat profile. In addition, the energy cost of the

flat profile is significantly greater (0.4 addition specific cost of transport at minimum)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sp
e

ci
fi

c
C

o
st

 o
f

Tr
an

sp
o

rt

Step Speed (m/s)

Single-Step Energy Speed Trade-off Curve for "Ramped"
and "Flat" Gain Profiles

Tuned "Ramped" Profile

Tuned "Flat" Profile

79

than the flat profile. This suggests that the flat gain profile is not as tradeoff-conducive

as the genetic optimization-inspired ramped profile. Put more simply, Figure 4.20

demonstrates that gain scheduling is superior to no gain scheduling for this application.

Conclusions

 The endeavor of constructing a representative gain schedule and scaling the

controller to achieve demands for energy economy and speed has been demonstrated to

be successful for a single step. Furthermore, this success comes with the added

computational benefit that these controllers can be rapidly generated by simple numerical

scaling and not by optimization techniques. This tradeoff-conducive approach is critical

for the final component of the completed walking controller, an overseeing “step

chooser” or “agent” in the form of an artificially intelligent reinforcement learning

algorithm. Controllers synthesized by this tradeoff-conducive control heuristic are

ultimately used as a toolset at the disposal of the reinforcement learning agent.

80

Chapter 5: Reinforcement Learning

Inspired by the results of genetic optimization, a control heuristic was devised to

produce energy-speed tradeoffs for a single step. If controlled using the initial state and

terrain height at which the heuristic was tuned, the designed heuristic controller should

never fail. However, this investigation seeks to control a simulated walking robot on

rough terrain over the course of many steps (henceforth dubbed a sustained walk). In

such a scenario, the walker is not constrained to a tiny slice of the state space and the

terrain is modeled as a stochastically-generated series of varying terrain heights. This is

important even if the terrain is flat and the heuristic is tuned over a large swath of the

state space, the output states for an individual step may be unsuitable for continued

walking. For example, even if a given single step is successful (in that the walker has not

fallen), the system state after the step may have values (such as catastrophically slow

velocities) which make future steps too difficult to achieve.

While the tradeoff-conducive control heuristic is novel, the controls problem

posed by stochastic terrain is not. By intelligently choosing the step size according to the

current system state, a compass gait walker has been shown to be able to traverse rough

terrain. A reinforcement learning algorithm was implemented to develop a policy for

choosing step sizes for each system state (Byl 2008). Similarly, to fulfill the goals of the

investigation at hand, a reinforcement learning controller was devised to assess the

current system state, selects the step size () and energy-speed weighting factor (
) to

produce energy-speed tradeoffs for a sustained walk.

81

Artificial Intelligence

Artificial intelligence (AI), a term coined in 1956 by computer scientist John

McCarthy, refers to the science and engineering of making intelligent machines

(McCarthy 2007). The applications of this broad concept in the decades since its

inception have included planning (Wilkins 1988), pattern recognition (Bishop 1995),

machine learning (Michalski 1986), and knowledge representation (Brachman 1985).

Many of these applications of AI have found a home in the field of robotics. While

planning (Latombe 1991) and obstacle recognition (Regensburger 1994) are important

fields which employ artificial intelligence in robotics, it is machine learning which is

most relevant to implementing this tradeoff-conducive control heuristic over a long

sequence of steps or sustained walk.

Machine Learning

 As has been loosely defined (Nilsson 1998), a machine learns whenever it

changes its structure, program, or data (based on its inputs or in response to external

information) in such a manner that its expected future performance improves. A variety

of methods have been employed to facilitate this ability for a machine to change its

structure, program, or data, which span two major categories: supervised and

unsupervised learning. Supervised learning methods such as gradient-descent-learning

neural networks function by observing and reacting to examples provided by a

knowledgeable, external supervisor (Sutton 1998). Unsupervised methods lack such an

82

overseer or instructor. One such unsupervised approach, reinforcement learning, is the

method of primary interest for this investigation.

Reinforcement Learning

 Reinforcement learning does not require comparison to known solutions as a

means of learning, but instead only requires interaction with its environment in order to

change its program for improved performance. Central to reinforcement learning is the

concept of reward, a numerical value awarded to the algorithm as a result of good

performance. A reinforcement learning algorithm seeks to maximize a metric of long-

term reward, termed value (Sutton 1998). By seeking maximum value instead of

maximum reward, the algorithm is less likely to make short-term “greedy” mistakes

which hamper long-term performance. Reinforcement learning algorithms come in many

flavors such as policy iteration, value iteration, and asynchronous dynamic programming.

Due to its prior use with the compass gait model (Byl 2008) and its relative

computational simplicity compared to its counterparts, the value-iteration algorithm was

employed for learning how to walk economically.

State and Action Value Functions

 At its most basic level, the value iteration algorithm learns which actions are most

“valuable” at particular system states. By identifying states which are valuable, actions

can be selected which are likely to result in valuable states, a process which tends to

converge to optimal performance. Assigning value to states and actions requires the

83

definition of a functional relationship between states, actions and their respective values.

This need is met in the form of the state value function and the action value function.

 While it is possible to define these as functions of continuous system states, this

implementation of value iteration deals entirely with states and actions that have been

discretized. A visualization of these discrete functions is shown in Figure 5.1, detailing

their relationship to discrete states (s) and discrete actions (a). This manner of

discretizing states was chosen to closely mirror prior implementation for using a value-

iteration algorithm to control the compass gait (Byl 2009) and is detailed in Table 5.1.

This provides a base for comparison with previously published data.

State Variable, Action Variable, and Stochastic variable Discretization

Discretized

Variables
Units Elements Discretization (MATLAB Vector Format)

X1: vertical leg

separation
m 19

[-0.1, -0.05, -0.04, -0.03:0.005:0.03, 0.04, 0.05,

0.1]

X2: horizontal leg

separation
m 10 [0.16:0.06:0.7]

X3: stance leg

angular velocity
deg/s 15 [-140:10:0]

X4: swing interleg

angular velocity
deg/s 9 [-20:5:20]

 : desired

interleg angle
deg 9 [15:2.78:40]

δ: terrain height m 17 [0.05, 0.04, 0.03:-0.005:-0.03, -0.04, -0.05]

Table 5.1: Discretization of variables for approximating the system states, actions, and

terrain heights

84

Figure 5.1: Visualization of state-value functions (V) and action-value functions (Q) as

vectors indexed by (enumerating distinct states) and (enumerating distinct actions)

Value Iteration

 The value-iteration algorithm requires a reward function (), a state-value

function (), an action-value function (), a Markov Decision Process (
), and a

discount factor (). It should be noted that the term “vector” in this chapter refers to a

one-dimensional programming structure (akin to a MATLAB vector). The Markov

Decision Process (abbreviated MDP, notated
) is a square matrix containing

“transition probabilities”, meaning each matrix entry contains the probability that a

particular state () will result in another particular state () after performing a particular

control action (). A separate MDP is generated for each possible control action before

any learning takes place, so the MDP does not update as a result of the reinforcement

85

learning method. Every single discrete state is simulated with each possible control

action and every possible terrain height. The resulting state from each of these tests is

binned to the nearest state in the discretized state space (described in detail in Table 5.1

with a single symmetric bin for each discrete state and bin boundaries placed at the

average value of two adjacent states) and the probability of that terrain instance occurring

is assigned to the MDP. Figure 5.2 illustrates the MDP, showing the states and on

the axes and the probability of transition mapped inside.

Figure 5.2: Markov Decision Process (MDP) Matrix

The state-value function (SVF) is a vector representing the “value” of being in a

particular state () before an action is taken. Using a discrete function associating a

value with each discrete state, the state-value function indicates whether a given state is

likely to yield greater long-term reward, i.e., value. The SVF is initialized to all zero

values, which are later updated through the value-iteration algorithm.

The action-value function (AVF) is a vector assessing the “value” of taking

different control actions () at a given state, . The AVF uses the MDP and state-value

86

function to probabilistically assess the value of each action. The cost function, ,

computes the costs of each possible result of this immediate, upcoming step, which are

then multiplied by their respective probabilities. This process is detailed mathematically

in Eq. 5.1.

  )(),,(1 jVajigTQ nk

j

a

ijn
k

  Eq. 5.1

Multiplying the probability of stepping into each possible state (via the MDP)

with the corresponding value of that post-step state (via the SVF) yields an expected

value of the future state. The expected future state value is multiplied by the adjustable

“discount factor”, (), which weights the importance of planning ahead in the

value computation (higher discount factors favor long-term thinking). In this

investigation, a discount factor of 0.9 was chosen to replicate prior published data. The

action which yields the most “valuable” result, , is selected for use by the

controller. The AVF is completely recalculated before each step because the SVF, which

is needed to calculate the AVF, is updated after every step. Figure 5.3 illustrates the

aforementioned process by showing how the MDP and current SVF are incorporated into

Eq. 5.1.

87

Figure 5.3: A visualization of the relationship between the action-value function (),

Markov Decision Process matrix (
), and state-value function () where represents

the current step number, is the current state number, is the state number potentially

occupied for the next step, and is an index enumerating all of the available state actions

The state-value function updates after every step, a process which is visualized in

block form in Figure 5.4. The action-value function is calculated using the MDP and

current state-value function. The best action is determined by selecting the discrete

action with the optimal value. The state-value function is updated by replacing the entry

for the current state with the optimal value in the action-value function, which is

cartooned in Figure 5.5. Due to the AVF’s consideration of future state values, the

updated SVF now contains a better assessment of future performance when starting from

a given state (). The optimal step is then taken which interacts with a randomly

generated terrain height, and results in a new state.

88

Figure 5.4: Block diagram of the value-iteration reinforcement learning process

Figure 5.5: Visualization of the updating process for the state-value function using the

value of the best action ()

Mean First-Passage Time

 For an application such as a robot walking on significantly rough terrain, classic

definitions of stability regions are not necessarily the ideal standard for measuring the

89

reliability of a walker. When subjected to large stochastic disturbances, walking robots

are likely to fail eventually due to some series of drastic events. As such, it is more apt to

describe the robustness in terms of the expected duration between failures. This metric is

dubbed the mean first-passage time (Tedrake 2006) which is the expected amount of time

(in this case, the number of steps taken) before the robot first falls.

 The calculation of the mean first passage time (MFPT) requires a Markov

Decision Process matrix generated after the learning process is complete. This MDP is

computed using the best actions possible (as determined by calculating the action-value

function for every possible state and selecting the highest valued action, the result of

which is called a policy) and determining the probability of transitioning to any of the

given states. Given this MDP, which is a large square matrix, the eigenvalues are

calculated and ranked. The second largest of these eigenvalues () is used in Eq. 5.2 to

calculate the MFPT. The details of the derivation of the MFPT formula (Byl 2009) are of

cursory interest to this investigation, especially as it is used exclusively to compare

preliminary results with other research.

 Eq. 5.2

Approximate Optimal Robustness

 A previously published approach (Byl 2009) used this algorithm to maximize the

number of steps to failure while walking on rough terrain. This is accomplished by

setting the reward function to encourage future steps and punishing failed steps as shown

in Eq. 5.3.

90

 {

Eq. 5.3

The stochastic terrain is defined by a Gaussian distribution with a terrain roughness

defined by the standard deviation (and a mean value of zero). Once a roughness is

selected, probabilities are binned into the nearest discrete terrain height listed in Table

5.1, creating a discrete probability function.

Value-Iteration Robustness Results

 With each of the components in place for the value-iteration algorithm, it is

important to compare the results of this algorithm with other data. Using nearly identical

parameters, models, and methods (differing only in Poincare section definition and state

discretization) to those in a paper by Byl and Tedrake (Byl 2009), the results should be

comparable. For the single step controller, a standard proportional-derivative controller

was used (KP = 10 Nm/degree and KD = 1 Nm/degree) and a constant pre-collision

impulse magnitude (2 kg-m-s
-1

) was used for in both this investigation and the referenced

paper.

 Many terrain roughness values were selected between 0.00375 and 0.0125 m, a

range which is encompassed by previously published data (Byl 2009). For each of these

values for terrain roughness, the value-iteration algorithm was run and the MFPT

calculated every 10,000 steps. If three successive MFPT computations were found to

have varied by less than 5%, the algorithm was considered converged and it was assumed

that more learning would not make an appreciable difference in performance.

91

 The resulting MFPT for many magnitudes of terrain roughness by both this

investigation and the cited study (Byl 2009) are plotted in Figure 5.6 on semi-log axes.

The trends of both data sets are largely the same, exhibiting an expected drop in MFPT as

the terrain gets “rougher”. The Hubicki-Buffinton data generally yielded an order of

magnitude larger MFPT, but this may be due to differences in how the Poincare sections

are defined (Chapter 2) or other differences in the state-space discretization (small

changes to which the MFPT metric may be relatively sensitive). Nonetheless, this data

confirms that the value-iteration algorithm programmed for this thesis produces

robustness at least on par with published data.

Figure 5.6: Comparison of resulting mean-first passage times of the value-iteration

algorithm with published data (Byl 2009)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014

M
e

an
 F

ir
st

 P
as

sa
ge

 T
im

e
 (

St
e

p
s

to
 F

ai
lu

re
)

Terrain Roughness / Standard Deviation (m)

Reinforcement Learning Control on Rough Terrain

Byl-Tedrake Data
(Approximated)

Hubicki-Buffinton Data

92

 With the value-iteration algorithm in operation, it can now be coupled with the

toolset provided by the tradeoff-conducive control heuristic. While the above value-

iteration algorithm only had the ability to choose the desired step size, this next addition

will allow the algorithm to choose both the step size and the control parameter set which

propels the walker that single-step distance. Essentially, the algorithm will have to

decide not only how far ahead to put the robot’s foot, but also how quickly and

economically it gets there. It is surmised that this added freedom will allow for long

sustained walks exhibiting similar tradeoffs to those demonstrated in Chapter 4.

93

Chapter 6: Simulated Walking Experiment

With heuristically synthesized single step controllers and an overseeing algorithm

to intelligently select step actions, the elements are in place for testing the complete

hierarchical walking controller on rough terrain. Lingering questions about the proposed

hierarchical controller largely concern the transition from single-step controller to “many-

step” controller. The tradeoff-conducive controller heuristic provides a set of actions

capable of a wide range of energy economy and speed performance to the value-iteration

algorithm. It remains to be seen how effectively the value-iteration algorithm can make

use of this toolset to produce a sustained walk.

Value-Iteration Cost Function

 In the previous chapter, the cost function for the value-iteration algorithm

rewarded each additional step taken, seeking to maximize the number of steps taken

before falling. A cost function for the final hierarchical controller must incentivize

robustness, energy economy, and speed. The proposed cost function, shown in Eq. 6.1,

includes the distance taken by the step (D), the energy cost of the step (E), the time taken

to complete the step (t), and their weighting factors (, , and respectively).

 Eq. 6.1

The robustness term () rewards longer travel distances, as opposed to the

previous function which rewards an increased number of steps. The energy economy

term (

) is based on the inverse of the specific cost of transport metric, the energy

94

cost per unit distance traveled per unit weight. Simply incorporating the energy cost per

step could result in many small energy-conservative steps instead of good energy

economy for the sustained walk. The speed term (

) is intuitive as it rewards larger

distances traversed in less time. Like so many other cost functions discussed in this

investigation, the weighting factors are chosen as needed by the user with larger values

associated with greater incentive to improve robustness, energy economy, or speed.

While a hypothetical user would select a single set of weighting factors to suit their

application, this investigation selects a wide range to demonstrate a breadth of

performance capability. Aside from a changed cost function, the value-iteration

algorithm remains unchanged from its description in the previous chapter.

Action Space

 A well-defined action space capable of producing near-optimal steps is only

possible due to the tradeoff-conducive control heuristic. Using the ramped gain schedule

plotted in Figure 4.12 and the six heuristic bounding parameters, the value-iteration

algorithm has access to a library of controllers that have been shown to approximate

optimal performance. A remaining weakness pertains to the fact that the heuristic

bounding parameters are tuned to a single point in state space using the gradient-descent

algorithm in Chapter 4. The state variables outlined in Table 6.1 were chosen because

they represent the mean values of the defined discrete state space in Table 5.1. As such,

they perhaps have the best chance of being the best point in state space to represent the

entire state space. The one variable not chosen by taking the mean value is the terrain

95

height. The terrain height was set at 1 cm above the starting height, as that will be the

terrain roughness (standard deviation) used for the final simulated walking experiment.

Gradient-Descent Algorithm State Variables

State Variable Units Value

X1: vertical leg separation (m) 0.00

X2: horizontal leg separation (m) 0.46

X3: stance leg angular velocity (º/sec) -70

X4: interleg angular velocity (º/sec) 0

 : desired interleg angle (º) 27.5

δ: terrain height (m) 0.01

Table 6.1: State variables used for gradient-descent algorithm to obtain the six heuristic

bounding parameters for the simulated walking experiment

The resulting heuristic bounding parameters are listed in Table 6.2, values which

fully detail how to scale the pre-collision impulse and gain schedule for varying needs of

energy economy and speed. To review, a highly energy economical controller would be

generated using values closer to the minimum values. Conversely, a high-speed

controller would be generated by using values closer to the listed maximum values. For

the final walking experiment, six control parameter sets (see Chapter 3 for definition)

were generated using Eq. 4.1-4.3 in Chapter 4. These six evenly spaced values for

energy-speed weighting factor (
) spanned between zero and one (0.0, 0.2, 0.4, 0.6,

0.8, 1.0). Six control sets were presumed to provide sufficient resolution on the tradeoff

curve for the value-iteration algorithm to have sufficient variety from which to select

appropriate actions.

96

Heuristic Bounding Parameters for Walking Simulation

Impulse Magnitude Proportional Gains Scaling Derivative Gain Scaling

Minimum

()

Maximum

()

Minimum

(
)

Maximum

(
)

Minimum

(
)

Maximum

(
)

1.75 Nm/s 6.27 Nm/s 0.75 2.29 0.90 1.35

Table 6.2: Heuristic bounding parameters resulting from gradient-descent algorithm for

the simulated walking experiment

Discrete Dynamics

 The tradeoff-conducive controller heuristic has been used to create a set of six

control parameter sets for a range of energy and speed demands. The discrete dynamics

are computed using these six discrete control parameter sets, a discrete set of step sizes

(), a discrete state space, and a discretized terrain probability function. The

discretizations of step sizes, state space, and terrain are listed in Table 6.3, which was

kept identical to the values used in Chapter 5 for simplicity. Every combination of

control parameter set, step size, state variable, and terrain height are simulated and the

output state variables, distance traversed, time taken, and energy consumed for each are

stored in a database. Energy consumed is computed as the sum of the kinetic energy

imparted by the pre-collision impulse, the positive work done by the hip actuator, and the

negative work done by the hip actuator (the hip actuator is not regenerative and consumes

energy to dissipate the system energy). This database is a discrete representation of the

dynamics and outcomes for all possible actions.

97

State Variable, Action Variable, and Stochastic variable Discretization

Discretized

Variables
Units Elements Discretization (MATLAB Vector Format)

X1: vertical leg

separation
m 19

[-0.1, -0.05, -0.04, -0.03:0.005:0.03, 0.04, 0.05,

0.1]

X2: horizontal leg

separation
m 10 [0.16:0.06:0.7]

X3: stance leg

angular velocity
deg/s 15 [-140:10:0]

X4: swing interleg

angular velocity
deg/s 9 [-20:5:20]

 : desired

interleg angle
deg 9 [15:2.78:40]

δ: terrain height m 17 [0.05, 0.04, 0.03:-0.005:-0.03, -0.04, -0.05]

Table 6.3: Discretization of variables for approximating the system states, actions, and

terrain heights for simulated walking experiment

Walking Experiment Results

 With the dynamics approximated by discretization, the value-iteration algorithm

is ready to learn how to walk. A wide variety of combinations of weighting factors (,

 , and) were used (all with values inclusively bounded by zero and one). The

terrain roughness (standard deviation) is set to 1 cm, as this roughness yielded distances

on the order of a kilometer in Chapter 5, which is a reasonable distance to simulate and

save computation time

 The simulation is initialized with a random state within the discretized state space

and iterates the value-iteration algorithm with each step. If a fall occurs, the state is re-

initialized to a random state and the iteration continues. The learning is halted when the

simulated robot was able to successfully walk one kilometer many consecutive times (ten

times was deemed to be sufficient given the computational rigor of the simulation) and

98

the average energy economy and speed compared to subsequent one-kilometer walks did

not deviate by more than 5%. A change of less than 5% in performance over ten

kilometers of learning indicates that there is likely little further learning that would

greatly improve performance.

 Each set of weighting factors resulted in an average walking speed and specific

cost of transport (energy consumed per unit distance per unit weight) which was plotted

on an energy-speed curve. The results of using a variety of weighting factors were

surprisingly consistent. Dozens of unique sets of weighting factors ultimately lumped

their resulting performance very near (within 0.05 m/s and 0.05 transport cost) one of

three points which are the average values of many closely lumped solutions. These three

points are plotted in Figure 6.1 against the corresponding performance of the tuned

single-step controller (heuristic bounding parameters for which are listed in Table 6.2).

In addition, the single-step tradeoff curve generated using no gain schedule (a “flat”

profile optimized using the gradient-descent technique) is provided for comparison to

traditional PD techniques.

99

Figure 6.1: Energy-Speed Tradeoff Curve for 1 km Walk using Value-Iteration compared

to the Tuned Single-Step Curve

 The performance of the value-iteration algorithm is somewhat inferior to the

tuned single-step controller, which is to be expected. The single-step controller is tuned

to a single point in state space while the one-kilometer walker likely encounters a much

larger swath of state space and must contend with changing terrain. What is important to

note is that the speed range of the 1 kilometer walk is quite similar to that of the single-

step curve. Also, the results are staggering when compared with the traditional (no gain

schedule) single-step controller which was optimized using gradient descent (Chapter 4).

The one-kilometer-walk tradeoff curve is much wider than the traditional controller,

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

S
p

ec
if

ic
 C

o
st

 o
f

T
ra

n
sp

o
rt

Step Speed (m/s)

Energy-Speed Tradeoff Curve for 1 km Walk using the Value-

Iteration compared to Tuned Single-Step Curve

Single Step Tuned PD Controller

Single-Step Tuned Heuristic

Sustained Walks using Value-Iteration

(over 1 km sustained walk)

Single-Step Tuned Non-Gain-

Scheduled PD Controller

100

which provides the increased versatility which is the primary motivation for developing a

tradeoff-conducive controller heuristic. Additionally, the one-kilometer-walk delivers far

more speed for a given energy cost even without the traditional controller suffering the

effects of rough terrain over many steps.

Walking Experiment Conclusions

 Despite the many possible sources of performance degradation in coupling the

value-iteration algorithm with the single-step controller heuristic for a sustained walk, the

resulting controller still resulted in a far greater range of performance (speed and energy

economy) than an optimized version of the traditional non-gain-scheduled proportional

derivative controller. The resulting hierarchical controller also made far more

economical use of its energy budget for the achieved speeds. This makes a strong

argument for the use of a “ramped” gain schedule for controlling the leg swing of

walking robots.

One surprising result was the lack of resolution exhibited by the one-kilometer

sustained walk curve, meaning that only three distinct points were found on the

performance curve. It is likely caused by relatively few control parameter sets (six) being

generated for this experiment. A small number of control parameter sets were generated

in response to computational limitations. While it is mathematically and computationally

simple to generate a control parameter set using a tradeoff-conducive control heuristic,

calculating the discrete dynamics for expedient execution of the value-iteration algorithm

is significantly slowed by each additional control option.

101

It is also not clear from these results how significant different system states are to

the performance of the tuned heuristic bounding parameters. In this experiment, it can

only be inferred that their impact is less than catastrophic for the complete hierarchical

controller. The smaller the effect of the system state on performance, the more powerful

this heuristic approach may be for controlling walking robots.

102

Chapter 7: Conclusions and Future Work

Summary

The aim of this investigation has been to develop solutions to some of the major

problems currently hampering the field of dynamic walking and walking machines in

general. In particular, the ability to robustly control a dynamic walking robot on rough

terrain while optimizing energy consumption and speed has not been adequately

addressed by research to date. The hierarchical controller developed in this thesis has

been demonstrated to outperform more traditional approaches in simulation on a simple

walking model known as the Compass Gait. The result is an artificially-intelligent

algorithm which selects control actions generated by a novel control heuristic.

The development of this heuristic likely proved to be the most intriguing insight

in the investigation. By taking a statistical look at the results of many computation-

intensive genetic optimizations, it was discovered that a wide range of optimized gain

schedules could be represented by a simple, optimization-inspired “ramped” gain profile.

Furthermore, this ramped profile and pre-collision impulse (leg push-off) magnitude

could simply be scaled to meet the energy and speed demands of the control designer,

yielding a simple control heuristic. Upon further testing, this heuristic also proved

capable of closely approximating the results of independent walking optimizations over a

wide range of performance tradeoffs, and was hence termed a tradeoff-conducive control

heuristic.

103

Conclusions

 The tradeoff curves generated by the tradeoff-conducive control heuristic vastly

outperformed controllers without gain scheduling in regard to the breadth of available

tradeoffs and energy economy. The control heuristic also excelled at synthesizing these

controllers using trivially simple calculations as opposed to the generally lengthy

computations required by optimization techniques. When coupled with a value-iteration

reinforcement learning algorithm, the control heuristic still greatly outperformed the

tradition non-gain-scheduled controller. As gain schedules are not standard practice in

controlling walking robots, these results make a compelling case for their use in

producing a wide performance range.

The value-iteration algorithm has proved to be a useful technique, which is not

surprising as reinforcement learning has been in use for decades. However, the algorithm

becomes less useful as the number of state variables increases. Each state variable adds a

new dimension to the problem which exponentially expands the computational demands.

This property of reinforcement learning algorithms limits its utility for systems more

complicated than the compass gait.

 This novel approach of developing a tradeoff-conducive control heuristic is not

without its flaws. The six heuristic bounding parameters must be deduced by some

means, for which a gradient-descent algorithm was used. It is has not been determined

how sensitive the heuristic parameters are to changes in the initial state variables.

Furthermore, it has not been shown how changing the mass parameters of the robot

model affects the validity of the ramped profile. The mass parameters in this study use

104

very heavy legs (each equivalent to the mass of the main body) as it accentuates the

difficulty of the underactuated controls problem. Far lighter legs might affect the slopes

of the ramped profile, but the lightened legs would also diminish their effect on the

dynamics.

Future Work

 There are some experiments which could bolster the findings presented here with

additional evidence. Given the success of the control heuristic for the particular mass

properties in this investigation, it would be prudent to replicate these results for robots

with different mass parameters. In particular, the effect of different mass ratios between

the legs and main body may change some aspect of the representative “ramped” gain

profile. Quantification of the heuristic parameters’ sensitivity to initial states would also

be important in assessing the ease with which the heuristic can be generalized across the

state space.

 In regard to the value-iteration algorithm, the problem of dimensionality remains.

It would be useful to run lengthier simulations to reproduce the sustained-walk tradeoff

curve with more than six control parameter sets. In the long term, solutions to high-

dimensional problems are needed which would allow for the control of robots with more

degrees of freedom. A potential approach may rely on simplifying more articulated

walkers into a model similar to the compass gait by lumping some links together as an

approximately rigid leg. Such an approach may provide a straight-forward extension to

walking with revolute knees akin to humans. It is likely that for a significant subset of

105

kneed walking motions, the compass gait model can serve as a close approximation to the

more complex dynamics of walking with jointed knees. In such situations of

approximate equivalence, the tradeoff-conducive control heuristic documented in this

investigation could retain much of its performance capability with little modification.

 More possibilities for advancements lie in the terrain modeling which is quite

flexible in accommodating interesting features. By modifying the discrete probability

distribution, the robot can encounter the equivalent of steps, hurdles, or other obstacles.

The policy generated by the learning algorithm is capable of being analyzed and mined

for useful stepping strategies, perhaps resulting in control heuristics for common

obstacles. Wrapping terrain has also been explored and used to model intermittent terrain

(pits) or very particularly shaped obstacles (Byl 2008).

 Ultimately, the techniques developed for generating tradeoffs in control of

walking robots can be applied to control in other applications. In the field of mobile

robotics alone, there are likely tradeoffs in running, climbing, and jumping which may be

synthesized in a similar manner to this investigation. In fact, some running models are

even simpler than the compass gait, such as the spring-loaded inverted pendulum (SLIP)

model (Schwind 1998). As robots inevitably become more dynamic, knowing the

energetic costs and how to execute these inherently dynamic and energetically intensive

actions will further enable these machines to make informed decisions about how to do

more with less.

106

Bibliography

1. Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford: Clarendon.

2. Brachman, R., Levesque, H. (1985). Readings in Knowledge Representation. Los

Altos, CA: Morgan Kaufmann.

3. Byl, K., Tedrake, R. (2008). Approximate optimal control of the compass gait on

rough terrain. International Conference on Robotics and Automation, 1258–1263.

4. Byl, K., Tedrake, R. (2009). Metastable Walking Machines. International Journal of

Robotics Research, 28(8), 1040-1064.

5. Collins, S., Ruina, A. (2005). A Bipedal Walking Robot with Efficient and Human-

Like Gait. Proceedings of the 2005 IEEE International Conference on Robotics and

Automation, 1983-1988.

6. Dawkins, R. (1986). The Blind Watchmaker. New York: Norton.

7. Espiau, B., Goswami, A., Compass gait revisited. (1994). Proceedings of the

International Federation on Automatic Controls, Symposium on Robot Control,

839–846.

8. Goswami, A., Espiau, B., Keramane, A. (1996). Limit cycles and their stability in a

passive bipedal gait. Proceedings of IEEE International Conference on Robotics and

Automation, 246–251.

9. Hobbelen, D., Wisse, M. (2007). Limit cycle walking. Humanoid Robots, Human-

Like Machines, 14.

107

10. Hurst, J., Chestnutt, J., Rizzi, A. (2007). Design and philosophy of the BiMASC, a

highly dynamic biped. Proceedings of the IEEE International Conference on

Robotics and Automation, 1863–1868.

11. Iida, F., Tedrake, R. (2009). Minimalistic control of a compass gait robot in rough

terrain. Proceedings of the IEE/RAS International Conference on Robotics and

Automation.

12. International Journal of Humanoid Robotics, 1(1), 157-173.

13. Karssen, J. (2007). Design and construction of the Cornell Ranger, a world record

distance walking robot. Internship Report, Cornell University.

14. Kuo, A., Donelan, J., Ruina, A. (2002). Energetic Consequences of Walking Like an

Inverted Pendulum: Step-to-Step Transitions. Exercise & Sport Sciences Reviews,

33(2), 88-97.

15. Kurfess, T. (2005). Robotics and Automation Handbook. Boca Raton: CRC.

16. Latombe, J. (1991). Robot Motion Planning. Boston: Kluwer Academic.

17. McCarthy, J. (2007). Formal Reasoning Group. Retrieved August 10, 2010, from

http://www-formal.stanford.edu/jmc/whatisai/node1.html

18. McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics

Research, 9(2),62–82.

19. Mitchell, T., Carbonell, J., Michalski, R. (1986). Machine Learning: a Guide to

Current Research. Boston: Kluwer Academic.

20. Nilsson, N. (1998). Artificial Intelligence: a New Synthesis. San Francisco, CA:

Morgan Kaufmann.

108

21. Pratt, J., Carff, J., Drakunov, S., Goswami, A. (2006). Capture Point: A Step toward

Humanoid Push Recovery. International Conference on Humanoid Robots, 200-207

22. Pratt, J., Krupp, B. (2008). Design of a bipedal walking robot. Proceedings of the

SPIE, 6962.

23. Regensburger, U., Graefe, V. (1994) “Visual Recognition of Obstacles on Roads,”

IEEE International Conference on Intelligent Robots and Systems, 982-987.

24. Schwind, W., Koditschek, D. (1997). Characterization of monoped equilibrium gaits.

Proceedings of the IEEE International Conference on Robotics and Automation,

1986-1992.

25. Spong, M. (1998). Underactuated mechanical systems. Control Problems in

Robotics and Automation, 230.

26. Sutton, R., Barto, A. (1998) Reinforcement Learning: an Introduction. Cambridge,

MA: MIT.

27. Tedrake R., Byl K., Pratt J. (2006). Probabilistic stability in legged systems:

Metastability and the mean first passage time (FPT) stability margin. In progress.

28. Vukobratovic, M., Borovac, B. (2004). Zero-moment point – thirty five years of its

life. International Journal of Humanoid Robotics, 1(1), 157-173.

29. Wiklendt, L., Chalup, S., Middleton, R. (2008). A Small Spiking Neural Network

with LQR Control Applied to the Acrobot. Neural Computing and Applications, 17.

30. Wilkins, D. (1988). Practical Planning: Extending the Classical AI Planning

Paradigm. San Mateo, CA: Morgan Kaufmann.

109

31. Wisse, M., Hobbelen, D., Schwab, A. (2007). Adding an Upper Body to Passive

Dynamic Walking Robots by Means of a Bisecting Hip Mechanism. IEEE

Transactions on Robotics, 23(1), 112-123.

32. Yin, K., Loken, K., Van de Panne, M. (2007). Simbicon: Simple biped locomotion

control. ACM Transactions on Graphics, Proceedings of SIGGRAPH, 105.

110

Appendix

Note:

For privacy reasons, the body of the code for “EmailSimulationUpdate.m” and

“RunUpdateRequestSystem.m” was not included in the documentation. Every instance of these

functions may be commented out without adversely affecting the code.

Simulated Walking Experiment Code

Step 1: Run “GenerateMasterDynamicsTable.m”

Step 2: Run “RunStochasticHeuristicSetup.m”

BipedOneStepEOM.m

%% Inputs:

% IC_StLeg_position

% IC_Base_angle

% IC_StLeg_angvel

% IC_SwLeg_angle

% IC_SwLeg_angvel

% terrain_height_vector

% ACTIVATE_AT_LEG_CROSS

%

% angle_des

% angle_ratio_vec

% gain_schedule

% ratio_schedule

%

% StLeg_mass

% StLeg_inertia

% StLeg_length

% StLCG_ratio

% SwLeg_mass

% SwLeg_inertia

% SwLeg_length

% SwLCG_ratio

% MBody_mass

%% Outputs:

% Base_angle

% Base_angvel

% StLCG_position

% StLCG_velocity

% StLCG_angvel

% StLeg_angle

% StLeg_angvel

% StLeg_angaccel

% MBCG_position

111

% MBCG_velocity

% MBCG_angvel

% MBCG_accel

% SwLeg_angle

% SwLeg_angvel_joint

% SwLeg_angaccel2

% SwLCG_position

% SwLCG_velocity

% SwLCG_angvel

% SwLeg_angle2

% SwLCG_accel

% SwLeg_angaccel

% interleg_angle

% interleg_velocity

% hip_torque

% SwLeg_position

% SwLeg_velocity

% SwLeg_accel

% HitCheck

% TotalHits

% FallCheck

%%

% close all

SLOMO = 1;

FRAMES_PER_SECOND = 30*SLOMO;

NUM_SAMPLES = 1;

ANIMATION_ON = 0;

theta1_init = 1*(IC_Base_angle*pi/180) + pi/2;

theta2_init = pi - IC_SwLeg_angle*pi/180 - IC_Base_angle*pi/180;

theta_dot1_init = IC_StLeg_angvel*pi/180;

theta_dot2_init = IC_SwLeg_angvel*pi/180;

%t_max = 2; % assigned

dt = 1e-3;

if(t_max == 0)

 num_max = 1;

else

 num_max = floor(t_max/dt);

end

theta1 = theta1_init;

theta2 = theta2_init;

theta_dot1 = theta_dot1_init;

theta_dot2 = theta_dot2_init;

tau = 0;

m = StLeg_mass;

mh = MBody_mass;

L = StLeg_length;

% g = 9.81; % Assigned elsewhere

112

a = StLCG_ratio*L;

b = SwLCG_ratio*L;

m1 = m + mh/2;

m2 = m1;

l1 = a + b;

l2 = l1;

lc1 = L - b*m/m1;

lc2 = L - lc1;

I1 = m*(b-lc2)^2 + 0.5*mh*lc2^2;

I2 = I1;

theta1_vec = zeros(num_max,1);

theta2_vec = zeros(num_max,1);

theta_dot1_vec = zeros(num_max,1);

theta_dot2_vec = zeros(num_max,1);

hip_torque = zeros(num_max,1);

interleg_angle = zeros(num_max,1);

interleg_velocity = zeros(num_max,1);

SwLeg_position = zeros(num_max,2);

SwLeg_velocity = zeros(num_max,2);

MBody_inertia(3,3) = 0.0001;

StLeg_inertia(3,3) = 0.0001;

SwLeg_inertia(3,3) = 0.0001;

for index = 2:num_max

 theta1_vec(index-1) = theta1;

 theta2_vec(index-1) = theta2;

 theta_dot1_vec(index-1) = theta_dot1;

 theta_dot2_vec(index-1) = theta_dot2;

 interleg_angle(index-1) = (pi - theta2)*180/pi;

 interleg_velocity(index-1) = theta_dot2*180/pi;

 SwLeg_position(index-1,1) = L*cos(theta1) + L*cos(theta1+theta2);

 SwLeg_position(index-1,2) = L*sin(theta1) + L*sin(theta1+theta2);

 SwLeg_velocity(index-1,1) = L*cos(theta_dot1) +

L*cos(theta_dot1+theta_dot2);

 SwLeg_velocity(index-1,2) = L*sin(theta_dot1) +

L*sin(theta_dot1+theta_dot2);

 hip_torque(index-1) = tau;

 d11 = m1*lc1^2 + m2*(l1^2+lc2^2+2*l1*lc2*cos(theta2)) + I1 + I2;

 d12 = m2*(lc2^2 + l1*lc2*cos(theta2)) + I2;

 d22 = m2*lc2^2 + I2;

 h1 = -m2*l1*lc2*sin(theta2)*theta_dot2^2 -

2*m2*l1*lc2*sin(theta2)*theta_dot2*theta_dot1;

 h2 = m2*l1*lc2*sin(theta2)*theta_dot1^2;

 p1 = (m1*lc1 + m2*l1)*g*cos(theta1) + m2*lc2*g*cos(theta1+theta2);

113

 p2 = m2*lc2*g*cos(theta1+theta2);

 tau = GetControlTorque(interleg_angle(index-1), interleg_velocity(index-

1), -angle_des, angle_ratio_vec, gain_schedule, ratio_schedule);

 theta_dot_dot2 = (d11*(tau - h2 - p2) + d12*(h1 + p1))/(d11*d22 - d12^2);

 theta_dot_dot1 = (d12*theta_dot_dot2 + h1 + p1)/(-d11);

 theta_dot1 = theta_dot_dot1*dt + theta_dot1;

 theta_dot2 = theta_dot_dot2*dt + theta_dot2;

 theta1 = theta_dot1*dt + theta1;

 theta2 = theta_dot2*dt + theta2;

 %%

 % interleg_angle(index-1)

end

theta1_vec(num_max) = theta1;

theta2_vec(num_max) = theta2;

if(num_max > 1)

 theta_dot1_vec(index-1) = theta_dot1;

 theta_dot2_vec(index-1) = theta_dot2;

 hip_torque(index-1) = tau;

else

 theta_dot1_vec(1) = theta_dot1;

 theta_dot2_vec(1) = theta_dot2;

 hip_torque(1) = tau;

 HitCheck = 1;

end

interleg_angle(num_max) = (pi + theta2)*180/pi;

interleg_velocity(num_max) = theta_dot2*180/pi;

clear MBCG_position

clear MBCG_velocity

clear StLCG_position

clear StLCG_velocity

clear SwLeg_position

clear SwLCG_position

clear SwLCG_velocity

clear Base_angvel

clear StLeg_angvel

clear StLCG_angvel

clear SwLeg_angvel

MBCG_position(:,1) = L*cos(theta1_vec)';

MBCG_position(:,2) = L*sin(theta1_vec)';

MBCG_velocity(:,1) = (-L*theta_dot1_vec.*sin(theta1_vec))';

MBCG_velocity(:,2) = (L*theta_dot1_vec.*cos(theta1_vec))';

114

StLCG_position(:,1) = StLCG_ratio*L*cos(theta1_vec)';

StLCG_position(:,2) = StLCG_ratio*L*sin(theta1_vec)';

StLCG_velocity(:,1) = (-L*StLCG_ratio.*sin(theta1_vec).*theta_dot1_vec)';

StLCG_velocity(:,2) = (L*StLCG_ratio.*cos(theta1_vec).*theta_dot1_vec)';

SwLeg_position(:,1) = L*cos(theta1_vec)' + L*cos(theta1_vec+theta2_vec)';

SwLeg_position(:,2) = L*sin(theta1_vec)' + L*sin(theta1_vec+theta2_vec)';

SwLCG_position(:,1) = L*cos(theta1_vec)' +

SwLCG_ratio*L*cos(theta1_vec+theta2_vec)';

SwLCG_position(:,2) = L*sin(theta1_vec)' +

SwLCG_ratio*L*sin(theta1_vec+theta2_vec)';

SwLCG_velocity(:,1) = (-L.*sin(theta1_vec).*theta_dot1_vec)' + (-

SwLCG_ratio*L*sin(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_vec))';

SwLCG_velocity(:,2) = (L.*cos(theta1_vec).*theta_dot1_vec)' +

(SwLCG_ratio*L*cos(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_vec))';

Base_angle = (theta1_vec-pi/2)*180/pi;

SwLeg_angle = -theta2_vec*180/pi + 180 - Base_angle;

Base_angvel(:,1) = theta_dot1_vec*180/pi;

StLeg_angvel(:,1) = Base_angvel.*0;

StLCG_angvel(:,3) = theta_dot1_vec;

SwLeg_angvel(:,3) = (theta_dot1_vec+theta_dot2_vec);

MBCG_angvel = zeros(num_max,3);

SwLeg_angvel_joint = theta_dot2_vec*180/pi;

if(num_max > 1)

 left_height_vec = meshgrid([SwLeg_position(:,2);L],

terrain_height_vector);

 right_height_vec = meshgrid([-L;SwLeg_position(:,2)],

terrain_height_vector);

 terrain_mat = meshgrid(terrain_height_vector, ones(1,num_max+1))';

 position_mat = meshgrid([SwLeg_position(:,1)',-L],

zeros(1,length(terrain_height_vector)));

 % HitCheck_raw = (left_height_vec <= terrain_mat).*(right_height_vec >

 % terrain_mat).*([SwLeg_position(:,1)',-L] > 0.05);

 HitCheck_raw = (left_height_vec <= terrain_mat).*(right_height_vec >

terrain_mat).*(position_mat > 0.05);

 HitCheck_raw(:,length([SwLeg_position(:,1)',-L])) = (1-

sum(HitCheck_raw,2));

 %Assumes only one terrain height

 % HitCheck_raw(length(HitCheck_raw)) = 1;

 final_index = find(HitCheck_raw);

 if(isempty(final_index))

 final_index = length(HitCheck_raw)-1;

 end

 HitCheck = zeros(1,final_index(1));

115

 HitCheck(final_index) = 1;

else

 HitCheck = 1;

 final_index = 1;

end

% length(HitCheck)

if(ANIMATION_ON)

 % hold on

 if(t_max == 0)

 time_interp = t_max;

 theta1_interp = theta1_vec;

 theta2_interp = theta2_vec;

 else

 time_interp = [0:1/FRAMES_PER_SECOND:t_max];

 theta1_interp = interp1(dt*[1:num_max], theta1_vec, time_interp);

 theta2_interp = interp1(dt*[1:num_max], theta2_vec, time_interp);

 end

 for index = [1:length(time_interp)]

 x1 = L*cos(theta1_interp(index));

 y1 = L*sin(theta1_interp(index));

 x2 = x1 + L*cos(theta1_interp(index)+theta2_interp(index));

 y2 = y1 + L*sin(theta1_interp(index)+theta2_interp(index));

 CMx1 = a*cos(theta1_interp(index));

 CMy1 = a*sin(theta1_interp(index));

 CMx2 = x1 + b*cos(theta1_interp(index)+theta2_interp(index));

 CMy2 = y1 + b*sin(theta1_interp(index)+theta2_interp(index));

 plot([0,x1], [0,y1], 'bo-', [x1,x2], [y1,y2], 'ro-', CMx1, CMy1, 'bx',

CMx2, CMy2, 'rx')

 axis equal

 axis([-2,2,-2,2])

 pause(1/FRAMES_PER_SECOND*SLOMO)

 end

end

% figure(4)

% plot(interleg_velocity)

% debug_BA = Base_angle(1)

% debug_SwA = SwLeg_angle(1)

%

% SwLeg_position

116

ComputeBestActionTransitions.m

%% Inputs:

% IC_StLeg_position

% IC_Base_angle

% IC_StLeg_angvel

% IC_SwLeg_angle

% IC_SwLeg_angvel

% terrain_height_vector

% ACTIVATE_AT_LEG_CROSS

%

% angle_des

% angle_ratio_vec

% gain_schedule

% ratio_schedule

%

% StLeg_mass

% StLeg_inertia

% StLeg_length

% StLCG_ratio

% SwLeg_mass

% SwLeg_inertia

% SwLeg_length

% SwLCG_ratio

% MBody_mass

%% Outputs:

% Base_angle

% Base_angvel

% StLCG_position

% StLCG_velocity

% StLCG_angvel

% StLeg_angle

% StLeg_angvel

% StLeg_angaccel

% MBCG_position

% MBCG_velocity

% MBCG_angvel

% MBCG_accel

% SwLeg_angle

% SwLeg_angvel_joint

% SwLeg_angaccel2

% SwLCG_position

% SwLCG_velocity

% SwLCG_angvel

% SwLeg_angle2

% SwLCG_accel

% SwLeg_angaccel

% interleg_angle

% interleg_velocity

% hip_torque

% SwLeg_position

% SwLeg_velocity

% SwLeg_accel

% HitCheck

% TotalHits

117

% FallCheck

%%

% close all

SLOMO = 1;

FRAMES_PER_SECOND = 30*SLOMO;

NUM_SAMPLES = 1;

ANIMATION_ON = 0;

theta1_init = 1*(IC_Base_angle*pi/180) + pi/2;

theta2_init = pi - IC_SwLeg_angle*pi/180 - IC_Base_angle*pi/180;

theta_dot1_init = IC_StLeg_angvel*pi/180;

theta_dot2_init = IC_SwLeg_angvel*pi/180;

%t_max = 2; % assigned

dt = 1e-3;

if(t_max == 0)

 num_max = 1;

else

 num_max = floor(t_max/dt);

end

theta1 = theta1_init;

theta2 = theta2_init;

theta_dot1 = theta_dot1_init;

theta_dot2 = theta_dot2_init;

tau = 0;

m = StLeg_mass;

mh = MBody_mass;

L = StLeg_length;

% g = 9.81; % Assigned elsewhere

a = StLCG_ratio*L;

b = SwLCG_ratio*L;

m1 = m + mh/2;

m2 = m1;

l1 = a + b;

l2 = l1;

lc1 = L - b*m/m1;

lc2 = L - lc1;

I1 = m*(b-lc2)^2 + 0.5*mh*lc2^2;

I2 = I1;

theta1_vec = zeros(num_max,1);

theta2_vec = zeros(num_max,1);

theta_dot1_vec = zeros(num_max,1);

theta_dot2_vec = zeros(num_max,1);

hip_torque = zeros(num_max,1);

interleg_angle = zeros(num_max,1);

interleg_velocity = zeros(num_max,1);

118

SwLeg_position = zeros(num_max,2);

SwLeg_velocity = zeros(num_max,2);

MBody_inertia(3,3) = 0.0001;

StLeg_inertia(3,3) = 0.0001;

SwLeg_inertia(3,3) = 0.0001;

for index = 2:num_max

 theta1_vec(index-1) = theta1;

 theta2_vec(index-1) = theta2;

 theta_dot1_vec(index-1) = theta_dot1;

 theta_dot2_vec(index-1) = theta_dot2;

 interleg_angle(index-1) = (pi - theta2)*180/pi;

 interleg_velocity(index-1) = theta_dot2*180/pi;

 SwLeg_position(index-1,1) = L*cos(theta1) + L*cos(theta1+theta2);

 SwLeg_position(index-1,2) = L*sin(theta1) + L*sin(theta1+theta2);

 SwLeg_velocity(index-1,1) = L*cos(theta_dot1) +

L*cos(theta_dot1+theta_dot2);

 SwLeg_velocity(index-1,2) = L*sin(theta_dot1) +

L*sin(theta_dot1+theta_dot2);

 hip_torque(index-1) = tau;

 d11 = m1*lc1^2 + m2*(l1^2+lc2^2+2*l1*lc2*cos(theta2)) + I1 + I2;

 d12 = m2*(lc2^2 + l1*lc2*cos(theta2)) + I2;

 d22 = m2*lc2^2 + I2;

 h1 = -m2*l1*lc2*sin(theta2)*theta_dot2^2 -

2*m2*l1*lc2*sin(theta2)*theta_dot2*theta_dot1;

 h2 = m2*l1*lc2*sin(theta2)*theta_dot1^2;

 p1 = (m1*lc1 + m2*l1)*g*cos(theta1) + m2*lc2*g*cos(theta1+theta2);

 p2 = m2*lc2*g*cos(theta1+theta2);

 tau = GetControlTorque(interleg_angle(index-1), interleg_velocity(index-

1), -angle_des, angle_ratio_vec, gain_schedule, ratio_schedule);

 theta_dot_dot2 = (d11*(tau - h2 - p2) + d12*(h1 + p1))/(d11*d22 - d12^2);

 theta_dot_dot1 = (d12*theta_dot_dot2 + h1 + p1)/(-d11);

 theta_dot1 = theta_dot_dot1*dt + theta_dot1;

 theta_dot2 = theta_dot_dot2*dt + theta_dot2;

 theta1 = theta_dot1*dt + theta1;

 theta2 = theta_dot2*dt + theta2;

 %%

 % interleg_angle(index-1)

end

theta1_vec(num_max) = theta1;

theta2_vec(num_max) = theta2;

119

if(num_max > 1)

 theta_dot1_vec(index-1) = theta_dot1;

 theta_dot2_vec(index-1) = theta_dot2;

 hip_torque(index-1) = tau;

else

 theta_dot1_vec(1) = theta_dot1;

 theta_dot2_vec(1) = theta_dot2;

 hip_torque(1) = tau;

 HitCheck = 1;

end

interleg_angle(num_max) = (pi + theta2)*180/pi;

interleg_velocity(num_max) = theta_dot2*180/pi;

clear MBCG_position

clear MBCG_velocity

clear StLCG_position

clear StLCG_velocity

clear SwLeg_position

clear SwLCG_position

clear SwLCG_velocity

clear Base_angvel

clear StLeg_angvel

clear StLCG_angvel

clear SwLeg_angvel

MBCG_position(:,1) = L*cos(theta1_vec)';

MBCG_position(:,2) = L*sin(theta1_vec)';

MBCG_velocity(:,1) = (-L*theta_dot1_vec.*sin(theta1_vec))';

MBCG_velocity(:,2) = (L*theta_dot1_vec.*cos(theta1_vec))';

StLCG_position(:,1) = StLCG_ratio*L*cos(theta1_vec)';

StLCG_position(:,2) = StLCG_ratio*L*sin(theta1_vec)';

StLCG_velocity(:,1) = (-L*StLCG_ratio.*sin(theta1_vec).*theta_dot1_vec)';

StLCG_velocity(:,2) = (L*StLCG_ratio.*cos(theta1_vec).*theta_dot1_vec)';

SwLeg_position(:,1) = L*cos(theta1_vec)' + L*cos(theta1_vec+theta2_vec)';

SwLeg_position(:,2) = L*sin(theta1_vec)' + L*sin(theta1_vec+theta2_vec)';

SwLCG_position(:,1) = L*cos(theta1_vec)' +

SwLCG_ratio*L*cos(theta1_vec+theta2_vec)';

SwLCG_position(:,2) = L*sin(theta1_vec)' +

SwLCG_ratio*L*sin(theta1_vec+theta2_vec)';

SwLCG_velocity(:,1) = (-L.*sin(theta1_vec).*theta_dot1_vec)' + (-

SwLCG_ratio*L*sin(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_vec))';

SwLCG_velocity(:,2) = (L.*cos(theta1_vec).*theta_dot1_vec)' +

(SwLCG_ratio*L*cos(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_vec))';

Base_angle = (theta1_vec-pi/2)*180/pi;

SwLeg_angle = -theta2_vec*180/pi + 180 - Base_angle;

120

Base_angvel(:,1) = theta_dot1_vec*180/pi;

StLeg_angvel(:,1) = Base_angvel.*0;

StLCG_angvel(:,3) = theta_dot1_vec;

SwLeg_angvel(:,3) = (theta_dot1_vec+theta_dot2_vec);

MBCG_angvel = zeros(num_max,3);

SwLeg_angvel_joint = theta_dot2_vec*180/pi;

if(num_max > 1)

 left_height_vec = meshgrid([SwLeg_position(:,2);L],

terrain_height_vector);

 right_height_vec = meshgrid([-L;SwLeg_position(:,2)],

terrain_height_vector);

 terrain_mat = meshgrid(terrain_height_vector, ones(1,num_max+1))';

 position_mat = meshgrid([SwLeg_position(:,1)',-L],

zeros(1,length(terrain_height_vector)));

 % HitCheck_raw = (left_height_vec <= terrain_mat).*(right_height_vec >

 % terrain_mat).*([SwLeg_position(:,1)',-L] > 0.05);

 HitCheck_raw = (left_height_vec <= terrain_mat).*(right_height_vec >

terrain_mat).*(position_mat > 0.05);

 HitCheck_raw(:,length([SwLeg_position(:,1)',-L])) = (1-

sum(HitCheck_raw,2));

 %Assumes only one terrain height

 % HitCheck_raw(length(HitCheck_raw)) = 1;

 final_index = find(HitCheck_raw);

 if(isempty(final_index))

 final_index = length(HitCheck_raw)-1;

 end

 HitCheck = zeros(1,final_index(1));

 HitCheck(final_index) = 1;

else

 HitCheck = 1;

 final_index = 1;

end

% length(HitCheck)

if(ANIMATION_ON)

 % hold on

 if(t_max == 0)

 time_interp = t_max;

 theta1_interp = theta1_vec;

 theta2_interp = theta2_vec;

 else

 time_interp = [0:1/FRAMES_PER_SECOND:t_max];

 theta1_interp = interp1(dt*[1:num_max], theta1_vec, time_interp);

 theta2_interp = interp1(dt*[1:num_max], theta2_vec, time_interp);

 end

121

 for index = [1:length(time_interp)]

 x1 = L*cos(theta1_interp(index));

 y1 = L*sin(theta1_interp(index));

 x2 = x1 + L*cos(theta1_interp(index)+theta2_interp(index));

 y2 = y1 + L*sin(theta1_interp(index)+theta2_interp(index));

 CMx1 = a*cos(theta1_interp(index));

 CMy1 = a*sin(theta1_interp(index));

 CMx2 = x1 + b*cos(theta1_interp(index)+theta2_interp(index));

 CMy2 = y1 + b*sin(theta1_interp(index)+theta2_interp(index));

 plot([0,x1], [0,y1], 'bo-', [x1,x2], [y1,y2], 'ro-', CMx1, CMy1, 'bx',

CMx2, CMy2, 'rx')

 axis equal

 axis([-2,2,-2,2])

 pause(1/FRAMES_PER_SECOND*SLOMO)

 end

end

% figure(4)

% plot(interleg_velocity)

% debug_BA = Base_angle(1)

% debug_SwA = SwLeg_angle(1)

%

% SwLeg_position

122

ComputeMDP.m

% COMPUTE_MDP

% state_value_vector

MDP = sparse(max_state_num, max_state_num);

policy = zeros(max_state_num,1);

clock

for s = 1:max_state_num

 [action_index, action_transitions] =

ComputeBestActionTransitions(s, state_value_vector,

stochastic_transition_database, num_actions);

 policy(s) = action_index;

 MDP(s,:) = action_transitions;

% if(sum(MDP(s,:) ~= stochastic_transition_database{9}(s,:)) > 0)

% s

% MDP(s,:)

% pause

% end

end

clock

% eigs(MDP)

save AI_allvars

123

ComputeProbDistribution.m

function prob_distribution = ComputeProbDistribution(terrain_sigma,

mean_value, bin_vector)

%NOTE: bin vector must be NON-INCREASING!!!

%ComputeProbDistribution

log_probability_cutoff = 4; % if 4, probabilities lower than 1:10^4

are ignored

NUM_SAMPLES = 1e6;

rand_samples = randn(1,NUM_SAMPLES)*terrain_sigma;

bin_bound = 0.5*diff(bin_vector)+bin_vector(1:(length(bin_vector)-1));

bin_sum = zeros(1,length(bin_vector));

for m = 1:NUM_SAMPLES

 bin_num = length(find(rand_samples(m) <= bin_bound))+1;

 bin_sum(bin_num) = bin_sum(bin_num) + 1;

end

prob_distribution = bin_sum/sum(bin_sum);

% Cuts off small probabilities (more remote than

10^log_probability_cutoff)

prob_distribution =

round(prob_distribution*10^log_probability_cutoff)/sum(round(prob_dist

ribution*10^log_probability_cutoff));

% plot(bin_vector, prob_distribution, 'kx-')

124

EnergyComputationOneStep.m

% EnergyComputationOneStep

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

s1 = size(MBCG_position);

if(final_index(1) > s1(1))

 final_index(1) = s1(1);

end

PE = g*(MBody_mass.*MBCG_position(1:final_index(1),2) +

StLeg_mass.*StLCG_position(1:final_index(1),2) +

SwLeg_mass.*SwLCG_position(1:final_index(1),2));

KE_MBody = 0.5*MBody_mass*(MBCG_velocity(1:final_index(1),1).^2 +

MBCG_velocity(1:final_index(1),2).^2) +

0.5*MBody_inertia(3,3).*(MBCG_angvel(1:final_index(1),3)*pi/180).^2;

KE_StLeg = 0.5*StLeg_mass*(StLCG_velocity(1:final_index(1),1).^2 +

StLCG_velocity(1:final_index(1),2).^2) +

0.5*StLeg_inertia(3,3).*(StLCG_angvel(1:final_index(1),3)*pi/180).^2;

KE_SwLeg = 0.5*SwLeg_mass*(SwLCG_velocity(1:final_index(1),1).^2 +

SwLCG_velocity(1:final_index(1),2).^2) +

0.5*SwLeg_inertia(3,3).*(SwLeg_angvel(1:final_index(1),3)*pi/180).^2;

% final_index

KE = KE_MBody + KE_StLeg + KE_SwLeg;

% PE

total_energy = PE-PE(1)+KE;

energy_delta = -1*total_energy +

[total_energy(2:length(total_energy));0];

energy_delta = energy_delta(1:(length(energy_delta)-1));

% max_energy = max(total_energy)

% min_energy = min(total_energy)

% figure(5)

% s_ed = size(energy_delta)

% plot(energy_delta)

% plot(total_energy)

125

% pause

% figure(1)

energy_added = sum((energy_delta>=0).*energy_delta);

energy_dissipated = sum((energy_delta<=0).*energy_delta);

energy_net = energy_added + energy_dissipated;

PE_delta = PE(length(PE)) - PE(1);

126

GenerateMasterDynamicsTable.m

%GenerateMasterDynamicsTable

%SAVE:

% [numX1, [X1vec]]

% [numX2, [X2vec]]

% [numX3, [X3vec]]

% [numX4, [X4vec]]

% [numDelta, [delta_vec]]

% [numAlpha, [alpha_vec]]

% [masterDynamicsTable (alpha slice 1)]

% [masterDynamicsTable (alpha slice 2)]

% ...

% [masterDynamicsTable (alpha slice numAlpha)]

% clc

clear

close all

try

 EMAIL_ALERT = 1;

 % [last_update_time, last_update_text] = CheckUpdateRequests;

 addpath P:\UrbanRobots\private\Hubicki\Simulation\2009-12\Tools

 initial_time = clock;

 if(initial_time(5) < 10)

 initial_minutes = ['0' num2str(initial_time(5))];

 else

 initial_minutes = [num2str(initial_time(5))];

 end

 initial_hours = num2str(initial_time(4));

 initial_time_readout = [initial_hours ':' initial_minutes];

 text_body = ['Greetings,' 10 'Your simulation has commenced,

beginning at ' initial_time_readout ' local machine time.' 10

'Regards,' 10 '- CodeBot'];

 if(EMAIL_ALERT)

 EmailSimulationUpdate(['Simulation Commenced at ',

initial_time_readout], text_body)

 end

 % Hubicki state space discretization

 X1_vec = [-0.1, -0.05, -0.04, -0.03:0.005:0.03, 0.04, 0.05, 0.1];

 X2_vec = [0.16:0.06:0.7];

 X3_vec = [-140:10:0];

 X4_vec = [-20:5:20];

127

 % delta_terrain_vec = [0.029 0.02 0.01 0.0 -0.01 -0.02 -0.029];

 delta_terrain_vec = [0.05 0.04 0.03:-0.005:-0.03 -0.04 -0.05];

 % alpha_vec = linspace(15, 40, 5);

 alpha_vec = linspace(27.5, 40, 3);

 impulse_value = 2;

 tradeoff_weighting_vec = linspace(0, 1, 6);

 % X3_vec = [-2.1:0.1:-1.4, -1.25, -1.1];

 % X4_vec = [-1, -0.7, -0.5:0.25:0.75, 1.1, 1.5];

 heuristic_parameters = [1.75 6.27 0.75 2.29 0.9 1.35];

% heuristic_parameters = [1.75 6.27 0.75 2.29 0.9 0.135];

 numX1 = length(X1_vec);

 numX2 = length(X2_vec);

 numX3 = length(X3_vec);

 numX4 = length(X4_vec);

 state_dimensions = [numX1, numX2, numX3, numX4];

 [X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec,

max_state_num] = GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec,

X4_vec);

 % state_in = [-0.02, 0.3, -50, -0];

 root_angle_ratio_vec = [-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

 1];

 root_gain_schedule = 1.0.*[3.217524076 2.854678338

 3.476241818 3.823100867 3.871491193 4.046413024

 4.290005978 4.634429007 4.844104976 5.049151904];

 root_ratio_schedule = [1.486095457 1.045793855 1.085561499

 0.993975082 0.903970409 0.804858655 0.695194153

 0.460624279 0.228208339 0.752267483];

 % angle_ratio_vec = [-1,1];

 % gain_schedule = [10, 10, 10];

 % ratio_schedule = [1 1 1];

 action = [25 2 1 1 1];

 angle_ratio_vec = root_angle_ratio_vec;

 gain_schedule = root_gain_schedule;

 ratio_schedule = root_ratio_schedule;

 % time1 = clock;

 % [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed] = StepToStepTFarchive(state_in, action,

delta_terrain_vec);

 time2 = clock;

128

 state_num = zeros(1,length(delta_terrain_vec));

 % for m = 1:length(delta_terrain_vec)

 % state_num(m) = GetStateNumber(states_out(m,:), is_fallen(m),

X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec,

state_dimensions);

 % end

 time1 = clock;

 blank_trans_matrix = zeros(max_state_num,

length(delta_terrain_vec));

 blank_trans_matrix(1,:) = ones(1, length(delta_terrain_vec));

 master_dynamics_database =

cell(length(tradeoff_weighting_vec),length(alpha_vec));

 master_distance_database =

cell(length(tradeoff_weighting_vec),length(alpha_vec));

 master_time_database =

cell(length(tradeoff_weighting_vec),length(alpha_vec));

 master_energy_database =

cell(length(tradeoff_weighting_vec),length(alpha_vec));

 clock

 for tradeoff_index = 1:length(tradeoff_weighting_vec)

 tradeoff_weight = tradeoff_weighting_vec(tradeoff_index);

 impulse_value = tradeoff_weight*(heuristic_parameters(2) -

heuristic_parameters(1)) + heuristic_parameters(1);

 gain_schedule =

root_gain_schedule.*(tradeoff_weight*(heuristic_parameters(4) -

heuristic_parameters(3)) + heuristic_parameters(3));

 ratio_schedule =

root_ratio_schedule.*(tradeoff_weight*(heuristic_parameters(6) -

heuristic_parameters(5)) + heuristic_parameters(5));

 for p = 1:length(alpha_vec)

 action = [alpha_vec(p) impulse_value 1 1 1];

 new_trans_matrix = blank_trans_matrix;

 new_distance_matrix = zeros(max_state_num,1);

 new_time_matrix = blank_trans_matrix;

 new_energy_matrix = zeros(max_state_num,1);

 for q = 2:max_state_num

129

 index_vector = GetStateIndices(q, state_dimensions);

 state_in = [X1_vec(index_vector(1))

X2_vec(index_vector(2)) X3_vec(index_vector(3))

X4_vec(index_vector(4))];

 [states_out, is_fallen, distance_traversed,

time_elapsed, energy_consumed] = StepToStepTFarchive(state_in, action,

delta_terrain_vec);

% energy_consumed1 = energy_consumed

 [dummy1, dummy1, dummy1, dummy1, energy_consumed,

dummy1, dummy1] = StepToStepGetEnergy(state_in, action,

delta_terrain_vec, [1,5]);

% energy_consumed

 % distance_traversed

 % time_elapsed

 % energy_consumed

 % pause

 state_num = zeros(1,length(delta_terrain_vec));

 for n = 1:length(delta_terrain_vec)

 state_num(n) = GetStateNumber(states_out(n,:),

is_fallen(n), X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec,

state_dimensions);

 end

 if(sum(state_num ~= 1) > 0)

% state_in

%

% state_num

 distance_traversed = max(states_out(:,2));

% time_elapsed

% energy_consumed

% pause

 end

 new_trans_matrix(q,:) = state_num;

 new_distance_matrix(q,1) = distance_traversed;

 new_time_matrix(q,:) = time_elapsed;

 new_energy_matrix(q,1) = energy_consumed;

 end

 master_dynamics_database{tradeoff_index, p} =

new_trans_matrix;

130

 master_distance_database{tradeoff_index, p} =

new_distance_matrix;

 master_time_database{tradeoff_index, p} = new_time_matrix;

 master_energy_database{tradeoff_index, p} =

new_energy_matrix;

 % disp('cycle done')

 % pause

 end

 end

 time2 = clock;

 time1

 time2

 % cellplot(master_dynamics_database)

 final_time = clock;

 if(final_time(5) < 10)

 final_minutes = ['0' num2str(final_time(5))];

 else

 final_minutes = [num2str(final_time(5))];

 end

 final_hours = num2str(final_time(4));

 final_time_readout = [final_hours ':' final_minutes];

 elapsed_time = final_time - initial_time;

 elapsed_hours = num2str(elapsed_time*[0 0 24 1 0 0]');

 elapsed_minutes = num2str(elapsed_time(5));

 text_body = ['Greetings,' 10 'Your simulation beginning at '

initial_time_readout ' has executed without error.' 10 'Total run time:

' elapsed_hours ' hours and ' elapsed_minutes ' minutes.' ...

 10 'Regards,' 10 '- CodeBot'];

 if(EMAIL_ALERT)

 EmailSimulationUpdate(['Simulation Complete at '

final_time_readout '!'], text_body)

 end

 save 'dynamics_database.mat' master_dynamics_database

master_distance_database master_time_database master_energy_database

X1_vec X2_vec X3_vec X4_vec delta_terrain_vec alpha_vec

tradeoff_weighting_vec root_angle_ratio_vec root_gain_schedule

root_ratio_schedule heuristic_parameters

 save generated_dynamics_data_all

catch ME

 rep = getReport(ME)

131

 rep_email = getReport(ME, 'extended', 'hyperlinks', 'off');

 text_body = ['The error report was recorded as follows:' 10 ' ' 10

rep_email 10 ' ' 10 'Regards,' 10 '- CodeBot'];

 if(EMAIL_ALERT)

 EmailSimulationUpdate('Simulation Update: Untimely

Termination', text_body)

 end

end

132

GenerateStochasticHeuristicTable.m

function [stochastic_transition_database] =

GenerateStochasticTransitionHeuristicTable(master_dynamics_database,

prob_distribution, max_state_num, num_actions, num_weights)

blank_transition_table = sparse(max_state_num, max_state_num);

num_delta = length(prob_distribution);

stochastic_transition_database = cell(num_weights,num_actions);

for tradeoff_index = 1:num_weights

 for p = 1:num_actions

 % clock

 current_transition_table = blank_transition_table;

 for q = 1:max_state_num

 for r = 1:num_delta

current_transition_table(q,master_dynamics_database{tradeoff_index,p}(

q,r)) =

current_transition_table(q,master_dynamics_database{tradeoff_index,p}(

q,r)) + prob_distribution(r);

 %

current_transition_table(q,master_dynamics_database{p}(q,r))

 % pause(0.1)

 end

 % if(sum(current_transition_table(q,:) > 0.999) ==

0)

 % q

 % current_transition_table(q,:)

 % pause(0.1)

 % end

 end

 stochastic_transition_database{tradeoff_index,p} =

current_transition_table;

 end

end

133

GetControlTorque.m

function tau = GetControlTorque(interleg_angle, interleg_velocity,

angle_des, angle_ratio_vec, gain_schedule, ratio_schedule)

% angle_ratio_vec = -angle_ratio_vec;

% angle_des

% angle_ratio_vec.*abs(angle_des)

% interleg_angle

% gain_schedule

% ratio_schedule

index = find(-interleg_angle > angle_ratio_vec.*abs(angle_des));

% if(-interleg_angle >=

angle_ratio_vec(length(angle_ratio_vec))*abs(angle_des))

% KP = gain_schedule(length(angle_ratio_vec));

% KD = KP*ratio_schedule(length(angle_ratio_vec));

% disp('highest')

% elseif(-interleg_angle <= angle_ratio_vec(1)*angle_des)

% KP = gain_schedule(1);

% KD = KP*ratio_schedule(1);

% disp('lowest')

% else

% index = find(interleg_angle > angle_ratio_vec.*abs(angle_des));

% KP = gain_schedule(index(length(index)));

% KD = ratio_schedule(index(length(index)))*KP;

% index(length(index))

% end

if(isempty(index))

 used_index = 1;

 KP = gain_schedule(used_index);

% KD = KP*ratio_schedule(used_index);

 KD = ratio_schedule(used_index);

else

 used_index = max(index)+1;

 KP = gain_schedule(used_index);

% KD = KP*ratio_schedule(used_index);

 KD = ratio_schedule(used_index);

end

% disp(['index: ',num2str(used_index)])

tau = -KP*(angle_des-interleg_angle) - KD*interleg_velocity;

134

GetStateBoundaryVectors.m

function [X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec,

max_state_num] = GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec,

X4_vec)

X1_bound_vec = [X1_vec(1) 0.5*diff(X1_vec)+X1_vec(1:(length(X1_vec)-1))

X1_vec(length(X1_vec))];

X2_bound_vec = [X2_vec(1) 0.5*diff(X2_vec)+X2_vec(1:(length(X2_vec)-1))

X2_vec(length(X2_vec))];

X3_bound_vec = [X3_vec(1) 0.5*diff(X3_vec)+X3_vec(1:(length(X3_vec)-1))

X3_vec(length(X3_vec))];

X4_bound_vec = [X4_vec(1) 0.5*diff(X4_vec)+X4_vec(1:(length(X4_vec)-1))

X4_vec(length(X4_vec))];

max_state_num = 1 +

length(X1_vec)*length(X2_vec)*length(X3_vec)*length(X4_vec);

135

GetStateIndices.m

function index_vector = GetStateIndices(state_num, state_dimensions)

state_num = state_num - 1;

state1_index = floor((state_num-1)/prod(state_dimensions(2:4)))+1;

state_num = state_num - (state1_index-1)*prod(state_dimensions(2:4));

state2_index = floor((state_num-1)/prod(state_dimensions(3:4)))+1;

state_num = state_num - (state2_index-1)*prod(state_dimensions(3:4));

state3_index = floor((state_num-1)/prod(state_dimensions(4:4)))+1;

state_num = state_num - (state3_index-1)*prod(state_dimensions(4:4));

state4_index = state_num;

index_vector = [state1_index state2_index state3_index state4_index];

136

GetStateNumber.m

function state_num = GetStateNumber(state_in, is_fallen, X1_bound_vec,

X2_bound_vec, X3_bound_vec, X4_bound_vec, state_dimensions)

X1_bin = length(find(state_in(1) >= X1_bound_vec));

X2_bin = length(find(state_in(2) >= X2_bound_vec));

X3_bin = length(find(state_in(3) >= X3_bound_vec));

X4_bin = length(find(state_in(4) >= X4_bound_vec));

if(is_fallen || X1_bin == 0 || X1_bin > state_dimensions(1) || X2_bin

== 0 || X2_bin > state_dimensions(2) || X3_bin == 0 || X3_bin >

state_dimensions(3) || X4_bin == 0 || X4_bin > state_dimensions(4))

 state_num = 1; % Outside of discrete states so assigned to

absorbing state (state 1)

else

 state_num = 1 + (X1_bin-

1)*state_dimensions(2)*state_dimensions(3)*state_dimensions(4) +

(X2_bin-1)*state_dimensions(3)*state_dimensions(4) + (X3_bin-

1)*state_dimensions(4) + X4_bin;

end

137

ImpulseComputationEOM.m

function [omega2, omega3, KE_vec, PE_vec] =

ImpulseComputationEOM(impulse_mag)

%% Get vector information

% disp(['Impulse: ',num2str(impulse_mag)])

final_index = evalin('base','final_index(1)');

assignin('caller','final_index',final_index);

assignin('base','final_index',final_index);

%% Get Inertial Values

m1 = evalin('base','MBody_mass');

m2 = evalin('base','StLeg_mass');

m3 = evalin('base','SwLeg_mass');

J1 = evalin('base','MBody_inertia(3,3)');

J2 = evalin('base','StLeg_inertia(3,3)');

J3 = evalin('base','SwLeg_inertia(3,3)');

% Get incline measurement and gravity (for potential energy

calculation only)

incline = evalin('base','incline');

g = evalin('base','g');

%% Get CG Geometries

r1x = 0;

r1y = 0;

r2ax = evalin('base','StLCG_position(final_index, 1) -

IC_StLeg_position(1)');

r2ay = evalin('base','StLCG_position(final_index, 2) -

IC_StLeg_position(2)');

r2bx = evalin('base','StLCG_position(final_index, 1) -

MBCG_position(final_index, 1)');

r2by = evalin('base','StLCG_position(final_index, 2) -

MBCG_position(final_index, 2)');

r3ax = evalin('base','SwLCG_position(final_index, 1) -

SwLeg_position(final_index, 1)');

r3ay = evalin('base','SwLCG_position(final_index, 2) -

SwLeg_position(final_index, 2)');

r3bx = evalin('base','SwLCG_position(final_index, 1) -

MBCG_position(final_index, 1)');

r3by = evalin('base','SwLCG_position(final_index, 2) -

MBCG_position(final_index, 2)');

138

%% Get Position and Velocity Values

% Set Position Variables

MB_CGpos_x = evalin('base','MBCG_position(final_index, 1)');

MB_CGpos_y = evalin('base','MBCG_position(final_index, 2)');

StLeg_CGpos_x = evalin('base','StLCG_position(final_index, 1)');

StLeg_CGpos_y = evalin('base','StLCG_position(final_index, 2)');

SwLeg_CGpos_x = evalin('base','SwLCG_position(final_index, 1)');

SwLeg_CGpos_y = evalin('base','SwLCG_position(final_index, 2)');

% Set velocity variables

x1dot_pre = evalin('base','MBCG_velocity(final_index, 1)');

y1dot_pre = evalin('base','MBCG_velocity(final_index, 2)');

omega1_pre = 0;

x2dot_pre = evalin('base','StLCG_velocity(final_index, 1)');

y2dot_pre = evalin('base','StLCG_velocity(final_index, 2)');

omega2_pre = evalin('base','Base_angvel(final_index)');

x3dot_pre = evalin('base','SwLCG_velocity(final_index, 1)');

y3dot_pre = evalin('base','SwLCG_velocity(final_index, 2)');

omega3_pre = evalin('base','SwLeg_angvel(final_index, 3)');

%% Pre-Impulse Energy Computation

Body_Vars = [MB_CGpos_x, MB_CGpos_y, x1dot_pre, y1dot_pre,

omega1_pre*pi/180, m1, J1];

StLeg_Vars = [StLeg_CGpos_x, StLeg_CGpos_y, x2dot_pre, y2dot_pre,

omega2_pre*pi/180, m2, J2];

SwLeg_Vars = [SwLeg_CGpos_x, SwLeg_CGpos_y, x3dot_pre, y3dot_pre,

omega3_pre*pi/180, m3, J3];

[KE1, PE1] = EnergyComputation(Body_Vars, StLeg_Vars, SwLeg_Vars,

incline, g);

% disp('Pre-Impulse Energy')

% disp(['KE: ',num2str(KE1,10)])

% disp(['PE: ',num2str(PE1,10)])

% disp(['Total: ',num2str(KE1+PE1,10)])

%% Impulse Transformation Matrix

A = zeros(19);

A(01,01) = 1; A(01,10) = 1/m1;

A(02,02) = 1; A(02,11) = 1/m1;

A(03,03) = 1; A(03,10) = r1y/J1; A(03,11) = -r1x/J1;

A(04,04) = 1; A(04,12) = 1/m2; A(04,14) = 1/m2;

A(05,05) = 1; A(05,13) = 1/m2; A(05,15) = 1/m2;

A(06,06) = 1; A(06,12) = r2ay/J2; A(06,13) = -r2ax/J2; A(06,14) =

r2by/J2; A(06,15) = -r2bx/J2;

A(07,07) = 1; A(07,16) = 1/m3; A(07,18) = 1/m3;

A(08,08) = 1; A(08,17) = 1/m3; A(08,19) = 1/m3;

139

A(09,09) = 1; A(09,16) = r3ay/J3; A(09,17) = -r3ax/J3; A(09,18) =

r3by/J3; A(09,19) = -r3bx/J3;

A(10,10) = 1; A(10,14) = 1; A(10,18) = 1;

A(11,11) = 1; A(11,15) = 1; A(11,19) = 1;

A(12,12) = 1;

A(13,13) = 1;

% Changed for introducing pre-collision impulse

A(14,16) = 1;

A(15,17) = 1;

% A(14,07) = 1; A(14,09) = r3ay;

% A(15,08) = 1; A(15,09) = -r3ax;

% END change for impulse

A(16,01) = -1; A(16,04) = 1; A(16,06) = r2by;

A(17,02) = -1; A(17,05) = 1; A(17,06) = -r2bx;

A(18,01) = -1; A(18,07) = 1; A(18,09) = r3by;

A(19,02) = -1; A(19,08) = 1; A(19,09) = -r3bx;

%%

b = zeros(19,1);

b(01) = x1dot_pre;

b(02) = y1dot_pre;

b(03) = omega1_pre*pi/180;

b(04) = x2dot_pre;

b(05) = y2dot_pre;

b(06) = omega2_pre*pi/180;

b(07) = x3dot_pre;

b(08) = y3dot_pre;

b(09) = omega3_pre*pi/180;

%%

% Add Applied Impulse (as per Kuo 2005)

r_stance_x = r2ax - r2bx;

r_stance_y = r2ay - r2by;

r_stance_mag = sqrt(r_stance_x^2 + r_stance_y^2);

imp_comp_x = impulse_mag*r_stance_x/r_stance_mag;

imp_comp_y = impulse_mag*r_stance_y/r_stance_mag;

b(12) = -imp_comp_x;

b(13) = -imp_comp_y;

% b

%%

140

x = A\b;

% omega2 = x(6)*180/pi;

% omega3 = x(9)*180/pi;

%

% disp('Impulse Applied...')

%% Pre-Collision Impulse Applied

%***

*%

% Now calculating collision with ground

%***

*%

%% Ground Collision Computation

% Setting pre-collision variables equal to post-impulse variables

x1dot_pre = x(1);

y1dot_pre = x(2);

omega1_pre = x(3);

x2dot_pre = x(4);

y2dot_pre = x(5);

omega2_pre = x(6);

x3dot_pre = x(7);

y3dot_pre = x(8);

omega3_pre = x(9);

%% Post-Impulse/Pre-Collision Energy Computation

Body_Vars = [MB_CGpos_x, MB_CGpos_y, x1dot_pre, y1dot_pre, omega1_pre,

m1, J1];

StLeg_Vars = [StLeg_CGpos_x, StLeg_CGpos_y, x2dot_pre, y2dot_pre,

omega2_pre, m2, J2];

SwLeg_Vars = [SwLeg_CGpos_x, SwLeg_CGpos_y, x3dot_pre, y3dot_pre,

omega3_pre, m3, J3];

[KE2, PE2] = EnergyComputation(Body_Vars, StLeg_Vars, SwLeg_Vars,

incline, g);

% disp('Post-Impulse Energy')

% disp(['KE: ',num2str(KE2)])

% disp(['PE: ',num2str(PE2)])

% disp(['Total: ',num2str(KE2+PE2)])

% x

%% Collision Transformation Matrix

A = zeros(19);

141

A(01,01) = 1; A(01,10) = 1/m1;

A(02,02) = 1; A(02,11) = 1/m1;

A(03,03) = 1; A(03,10) = r1y/J1; A(03,11) = -r1x/J1;

A(04,04) = 1; A(04,12) = 1/m2; A(04,14) = 1/m2;

A(05,05) = 1; A(05,13) = 1/m2; A(05,15) = 1/m2;

A(06,06) = 1; A(06,12) = r2ay/J2; A(06,13) = -r2ax/J2; A(06,14) =

r2by/J2; A(06,15) = -r2bx/J2;

A(07,07) = 1; A(07,16) = 1/m3; A(07,18) = 1/m3;

A(08,08) = 1; A(08,17) = 1/m3; A(08,19) = 1/m3;

A(09,09) = 1; A(09,16) = r3ay/J3; A(09,17) = -r3ax/J3; A(09,18) =

r3by/J3; A(09,19) = -r3bx/J3;

A(10,10) = 1; A(10,14) = 1; A(10,18) = 1;

A(11,11) = 1; A(11,15) = 1; A(11,19) = 1;

A(12,12) = 1;

A(13,13) = 1;

A(14,07) = 1; A(14,09) = r3ay;

A(15,08) = 1; A(15,09) = -r3ax;

A(16,01) = -1; A(16,04) = 1; A(16,06) = r2by;

A(17,02) = -1; A(17,05) = 1; A(17,06) = -r2bx;

A(18,01) = -1; A(18,07) = 1; A(18,09) = r3by;

A(19,02) = -1; A(19,08) = 1; A(19,09) = -r3bx;

%%

b = zeros(19,1);

b(01) = x1dot_pre;

b(02) = y1dot_pre;

b(03) = omega1_pre*pi/180;

b(04) = x2dot_pre;

b(05) = y2dot_pre;

b(06) = omega2_pre*pi/180;

b(07) = x3dot_pre;

b(08) = y3dot_pre;

b(09) = omega3_pre*pi/180;

%%

x = A\b;

% Get post-collision states

x1dot_pre = x(1);

y1dot_pre = x(2);

omega1_pre = x(3);

x2dot_pre = x(4);

y2dot_pre = x(5);

omega2_pre = x(6);

x3dot_pre = x(7);

y3dot_pre = x(8);

omega3_pre = x(9);

%% Post-Collision Energy Computation

142

Body_Vars = [MB_CGpos_x, MB_CGpos_y, x1dot_pre, y1dot_pre, omega1_pre,

m1, J1];

StLeg_Vars = [StLeg_CGpos_x, StLeg_CGpos_y, x2dot_pre, y2dot_pre,

omega2_pre, m2, J2];

SwLeg_Vars = [SwLeg_CGpos_x, SwLeg_CGpos_y, x3dot_pre, y3dot_pre,

omega3_pre, m3, J3];

[KE3, PE3] = EnergyComputation(Body_Vars, StLeg_Vars, SwLeg_Vars,

incline, g);

% disp('Post-Collision Energy')

% disp(['KE: ',num2str(KE3,10)])

% disp(['PE: ',num2str(PE3,10)])

% disp(['Total: ',num2str(KE3+PE3,10)])

%

% % x

%

% disp([' '])

% pause

omega2 = x(6)*180/pi;

omega3 = x(9)*180/pi;

KE_vec = [KE1, KE2, KE3];

PE_vec = [PE1, PE2, PE3];

143

InitialConditionTransformation.m

function [theta_stance, theta_swing] =

InitialConditionTransformation(X1, X2, L)

x1 = X1/L;

x2 = X2/L;

theta1 = acos((-x1^2 - x2^2 + x1^4/(x1^2 + x2^2) + (x1^2*x2^2)/ ...

 (x1^2 + x2^2) - (x1*sqrt(4*x1^2*x2^2 - x1^4*x2^2 + 4*x2^4 -

2*x1^2*x2^4 - ...

 x2^6))/(x1^2 + x2^2))/(2*x2));

theta2 = -acos(x1^2/(2*x2) - x2/2 - x1^4/(2*x2*(x1^2 + x2^2)) -

(x1^2*x2)/ ...

 (2*(x1^2 + x2^2)) + (x1*sqrt(4*x1^2*x2^2 - x1^4*x2^2 + 4*x2^4 - ...

 2*x1^2*x2^4 - x2^6))/(2*x2*(x1^2 + x2^2)));

theta1 = pi - theta1;

theta2 = pi - theta2;

% plot([0,L*cos(theta1)],[0,L*sin(theta1)],'b-

',[L*cos(theta1),L*cos(theta1)+L*cos(theta2)],[L*sin(theta1),L*sin(the

ta1)+L*sin(theta2)],'r-')

% axis equal

% grid on

theta1b = theta1-pi/2;

theta2b = -1*(theta2+pi/2-2*pi);

% plot([0,-L*sin(theta1b)],[0,L*cos(theta1b)],'b-',[-L*sin(theta1b),-

L*sin(theta1b)-L*sin(theta2b)],[L*cos(theta1b),L*cos(theta1b)-

L*cos(theta2b)],'r-')

% axis equal

% grid on

theta_stance = theta1b*180/pi;

theta_swing = theta2b*180/pi;

144

InitStepToStepParams.m

function InitStepToStepParams(States_X)

% Currently starts simulation with Swing Leg just as it lands (before

% impulse and collision)

X1 = States_X(1); % Change in Height (Height_back_leg -

Height_front_leg)

X2 = States_X(2); % Horizontal Coordinate Change (Horz_coord_front_leg

- Horz_coord_back_leg)

X3 = States_X(3); % Stance Leg Angular Velocity

X4 = States_X(4); % Swing Leg Angular Velocity

Leg_length = 1.0;

[theta_stance, theta_swing] = InitialConditionTransformation(X1, X2,

Leg_length);

StOmega = X3;

SwOmega = X4;

%%

% Simulation Parameters

assignin('base','g', 9.81); %m/s^2

assignin('caller','g', 9.81);

% assignin('base','incline',0.5); %degrees

%%

% Component Parameters

assignin('base','k_spring',0); %Hip spring constant

%%

% Initial Conditions

%Body Parameters

% IC_MBody_position

assignin('base','IC_MBody_velocity',0);

%Stance Leg Parameters

assignin('base','IC_StLeg_position',[-X2, X1, 0]);

assignin('base','IC_Base_angle',theta_stance);

assignin('base','IC_StLeg_angvel',StOmega); %negative value indicates

"forward" swing

assignin('base','Stance_position',0);

%Swing Leg Parameters

assignin('base','IC_SwLeg_angle',theta_swing);

assignin('base','IC_SwLeg_angvel',SwOmega); %negative value indicates

"forward" fall

assignin('base','IC_StLeg_angle',0);

145

assignin('base','incline',0);

assignin('caller','incline',0);

assignin('caller','IC_StLeg_position',[-X2, X1, 0]);

assignin('caller','IC_Base_angle',theta_stance);

assignin('caller','IC_StLeg_angvel',StOmega); %negative value

indicates "forward" swing

assignin('caller','Stance_position',0);

assignin('caller','IC_SwLeg_angle',theta_swing);

assignin('caller','IC_SwLeg_angvel',SwOmega); %negative value

indicates "forward" fall

assignin('caller','IC_StLeg_angle',0);

%%

% Main Body Parameters

MBody_mass = 2;

assignin('base','MBody_mass',MBody_mass); %kg

assignin('base','MBody_inertia',diag([0.0001,0.0001,0.0001]));

assignin('caller','MBody_mass',MBody_mass); %kg

assignin('caller','MBody_inertia',diag([0.0001,0.0001,0.0001]));

%%

% Stance Leg Parameters

StLeg_mass = 2;

StLeg_length = Leg_length;

assignin('base','StLeg_mass',StLeg_mass);

assignin('base','StLeg_inertia',diag([0.0001,0.0001,0.0001]));

assignin('base','StLeg_length',StLeg_length);

assignin('base','StLCG_ratio',0.5); %ratio of distance from hip joint

to leg CG to length of leg (0.1 = CG is 10% down length of leg)

assignin('caller','StLeg_mass',StLeg_mass);

assignin('caller','StLeg_inertia',diag([0.0001,0.0001,0.0001]));

assignin('caller','StLeg_length',StLeg_length);

assignin('caller','StLCG_ratio',0.5);

%%

% Swing Leg Parameters

SwLeg_mass = 2;

SwLeg_length = Leg_length;

assignin('base','SwLeg_mass',SwLeg_mass);

assignin('base','SwLeg_inertia',diag([0.0001,0.0001,0.0001]));

assignin('base','SwLeg_length',SwLeg_length);

assignin('base','SwLCG_ratio',1-0.5); %ratio of distance from hip

joint to leg CG to length of leg (0.1 = CG is 10% down length of leg)

assignin('caller','SwLeg_mass',SwLeg_mass);

assignin('caller','SwLeg_inertia',diag([0.0001,0.0001,0.0001]));

assignin('caller','SwLeg_length',SwLeg_length);

assignin('caller','SwLCG_ratio',1-0.5);

%%

%Calculation of Initial Variables

146

% assignin('base','StLeg_angle',0);

% assignin('base','SwLeg_angle',2*angle1);

147

RunStochasticHeuristicSetup

% RunStochasticSetup

clc

% clear

close all

load dynamics_database

NUM_EPISODES = 1e5;

STATE_INITIALIZATION_ON = 0;

DETERMINED_START_STATE = 1;

USE_RANDOM_RESTART = 1;

RANDOM_RESTART_EVERY = 1000; %meters of travel

num_actions = length(alpha_vec);

num_weights = length(tradeoff_weighting_vec);

terrain_sigma = 0.01;

SUSTAINED_WALK_TRADEOFF_WEIGHTS = [1 1.25 0.0325]; %RES

starting_state = [0; 0.46; -70; -0];

[X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, max_state_num]

= GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec, X4_vec);

state_dimensions = [length(X1_vec), length(X2_vec), length(X3_vec),

length(X4_vec)];

% prob_distribution = [0 0 0 0 0 0.0060 0.0605 0.2420 0.3830 0.2420

0.0605 0.0060 0 0 0 0 0];

prob_distribution = ComputeProbDistribution(terrain_sigma, 0,

delta_terrain_vec);

cum_probs = cumsum(prob_distribution);

clock

stochastic_transition_database =

GenerateStochasticTransitionHeuristicTable(master_dynamics_database,

prob_distribution, max_state_num, num_actions, num_weights);

disp('Stochastic Generation Complete! Learning Commencing...')

state_value_vector = -1*zeros(max_state_num, 1);

state_value_vector(1) = 0;

148

states_in = [-0.02, 0.3, -50, -0];

if(DETERMINED_START_STATE)

 current_state_num = GetStateNumber(starting_state, 0, X1_bound_vec,

X2_bound_vec, X3_bound_vec, X4_bound_vec, state_dimensions);

else

 current_state_num = GetStateNumber(states_in, 0, X1_bound_vec,

X2_bound_vec, X3_bound_vec, X4_bound_vec, state_dimensions);

end

step_count = 0;

step_num_tracker = -1*zeros(1, NUM_EPISODES);

walk_num = 1;

clock

total_distance_traveled = 0;

total_energy_consumed = 0;

total_time_taken = 0;

counter = 1;

for ep_num = 1:NUM_EPISODES

 [action_index, tradeoff_index, action_value] =

SelectHeuristicAction(current_state_num, state_value_vector,

stochastic_transition_database, prob_distribution,

master_dynamics_database, master_energy_database,

master_distance_database, master_time_database, num_actions,

num_weights);

 % current_state_num

 state_value_vector(current_state_num) = action_value;

 % action_index

 [current_state_num, possible_state_transitions, energy_expended,

distance_stepped, time_taken] = TakeHeuristicAction(action_index,

tradeoff_index, current_state_num, master_dynamics_database,

master_energy_database, master_distance_database, master_time_database,

cum_probs);

 total_distance_traveled = total_distance_traveled +

distance_stepped;

 total_energy_consumed = total_energy_consumed + energy_expended;

 total_time_taken = total_time_taken + time_taken;

 % current_state_num

 % possible_state_transitions

 % pause(0.1)

149

 % current_state_num

 % pause(1)

 if(current_state_num == 1 || (USE_RANDOM_RESTART &&

(RANDOM_RESTART_EVERY < total_distance_traveled)))

 step_num_tracker(walk_num) = step_count;

 % disp([num2str(step_count), ' step walk'])

 % current_state_num = GetStateNumber(states_in, 0,

X1_bound_vec,

 % X2_bound_vec, X3_bound_vec, X4_bound_vec,

state_dimensions);

 if(total_distance_traveled == 0 || total_energy_consumed == 0

|| total_time_taken == 0)

 disp('No steps taken this walk')

 else

 step_count

 total_distance_traveled

 specific_cost_of_transport =

total_energy_consumed/total_distance_traveled/3/9.81

 average_walk_speed =

total_distance_traveled/total_time_taken

 end

 if(counter <= max_state_num && STATE_INITIALIZATION_ON)

 current_state_num = counter;

 counter = counter + 1;

 elseif(DETERMINED_START_STATE)

 current_state_num = GetStateNumber(starting_state, 0,

X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec,

state_dimensions);

 else

 current_state_num = ceil(rand*max_state_num);

 end

 % current_state_num

 % current_state_num = find(min(state_value_vector),1)

 walk_num = walk_num + 1;

 step_count = 0;

 total_distance_traveled = 0;

 total_energy_consumed = 0;

 total_time_taken = 0;

 else

 step_count = step_count+1;

 end

 if(mod(ep_num,100000) == 0)

150

 disp(num2str(ep_num))

 min_value = min(state_value_vector)

 find(min(state_value_vector) == state_value_vector,5)

 if(total_distance_traveled == 0 || total_energy_consumed == 0

|| total_time_taken == 0)

 disp('No steps taken this walk')

 else

% step_count

% total_distance_traveled

 specific_cost_of_transport =

total_energy_consumed/total_distance_traveled/3/9.81

 average_walk_speed =

total_distance_traveled/total_time_taken

 end

 hist(state_value_vector, linspace(-10,0,11))

 axis([-11 1 0 30000])

 pause(0.05)

 end

end

clock

save run_all_vars

plot(step_num_tracker)

pause(0.1)

disp('Computing Markov Decision Process Matrix')

ComputeMDP

151

SelectHeuristicAction.m

function [action_index, tradeoff_index, action_value] =

SelectHeuristicAction(current_state_num, state_value_vector,

stochastic_transition_database, prob_distribution,

master_dynamics_database, master_energy_database,

master_distance_database, master_time_database, num_actions,

num_weights)

gamma = 0.9;

SUSTAINED_WALK_TRADEOFF_WEIGHTS =

evalin('base','SUSTAINED_WALK_TRADEOFF_WEIGHTS');

action_value_vector = zeros(num_weights, num_actions);

% min_action_value =

gamma*stochastic_transition_database{1}(current_state_num,:)*state_val

ue_vector + -1*(current_state_num > 1);

min_action_value = 0;

min_action_index = 1;

min_tradeoff_index = 1;

for tradeoff_index = 1:num_weights

 for m = 1:num_actions

 % current_action_value =

gamma*stochastic_transition_database{tradeoff_index,m}(current_state_n

um,:)*state_value_vector +

(stochastic_transition_database{tradeoff_index,m}(current_state_num,1)

- 1);

 % Robustness contribution

 future_value =

gamma*stochastic_transition_database{tradeoff_index,m}(current_state_n

um,:)*state_value_vector;

 robustness_action_value =

(stochastic_transition_database{tradeoff_index,m}(current_state_num,1)

- 1)*master_distance_database{tradeoff_index,m}(current_state_num);

 % Energy contribution

 if(master_energy_database{tradeoff_index,m}(current_state_num)

~= 0)

 energy_action_value =

(stochastic_transition_database{tradeoff_index,m}(current_state_num,1)

-

1)*master_distance_database{tradeoff_index,m}(current_state_num)/maste

r_energy_database{tradeoff_index,m}(current_state_num);

 else

152

 energy_action_value = 0;

 end

 % Speed contribution

 if(master_time_database{tradeoff_index,m}(current_state_num)

~= 0)

 %0.0001 added to avoid divide by zero error

%

size((master_dynamics_database{tradeoff_index,m}(current_state_num,:)

~= 1))

%

size((master_time_database{tradeoff_index,m}(current_state_num,:)+0.00

01))

%

size(master_distance_database{tradeoff_index,m}(current_state_num))

%

size(stochastic_transition_database{tradeoff_index,m}(current_state_nu

m,:))

 speed_action_value = sum(-

1*(master_dynamics_database{tradeoff_index,m}(current_state_num,:) ~=

1)./(master_time_database{tradeoff_index,m}(current_state_num,:)+0.000

1).*master_distance_database{tradeoff_index,m}(current_state_num).*(pr

ob_distribution));

 else

 speed_action_value = 0;

 end

 current_action_value = future_value +

SUSTAINED_WALK_TRADEOFF_WEIGHTS(1)*robustness_action_value +

SUSTAINED_WALK_TRADEOFF_WEIGHTS(2)*energy_action_value +

SUSTAINED_WALK_TRADEOFF_WEIGHTS(3)*speed_action_value;

 action_value_vector(tradeoff_index, m) = current_action_value;

 if(current_action_value <= min(min(action_value_vector)))

 min_action_value = current_action_value;

 min_action_index = m;

 min_tradeoff_index = tradeoff_index;

 end

 end

end

% current_state_num

% action_value_vector

action_index = min_action_index;

tradeoff_index = min_tradeoff_index;

153

action_value = min_action_value;

% pause

154

StepToStepGetEnergy.m

function [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed, y_converged, min_stance_angvel] =

StepToStepGetEnergy(state_in, action, delta_terrain_vec,

threshold_values)

% Initialize Parameters

angle_des = action(1);

PGain = action(3);

DGain = action(4);

ACTIVATE_AT_LEG_CROSS = action(5);

% threshold_values format

% threshold_values = [minimum acceptable angle error (deg), minimum

% acceptable angular velocity error (deg/sec)]

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

assignin('base','terrain_height_vector',0);

InitStepToStepParams(state_in)

applied_impulse = action(2);

assignin('base','t_max',0);

evalin('base','BipedOneStepEOM');

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

final_index = 1;

EnergyComputationOneStep

SwitchStanceOneStepEOM

155

assignin('base','IC_StLeg_position',IC_StLeg_position);

assignin('base','IC_Base_angle',IC_Base_angle);

assignin('base','IC_StLeg_angle',IC_StLeg_angle);

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle);

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel);

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel);

assignin('base','KE_vec',KE_vec);

assignin('base','PE_vec',PE_vec);

angle_des = action(1);

PGain = action(3);

DGain = action(4);

assignin('base','terrain_height_vector',delta_terrain_vec);

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

assignin('base','t_max',0.75);

evalin('base','BipedOneStepEOM');

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

SwLeg_angvel_joint = evalin('base','SwLeg_angvel_joint');

final_index = evalin('base','final_index');

assignin('base','final_index',final_index - 1);

EnergyComputationOneStep

impulse_work = KE_vec(2) - KE_vec(1);

collision_work = KE_vec(3) - KE_vec(2);

hip_actuator_work = energy_net;

hip_actuator_energy_added = energy_added;

gravity_work = -1*PE_delta;

hip_actuator_work = hip_actuator_work - gravity_work;

156

total_work = impulse_work + collision_work + hip_actuator_work +

gravity_work;

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1)

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1);

%% DEBUG

% for(m = 1:length(HitCheck(1,:)))

% index = find(HitCheck(:,m),1);

% if(isempty(index))

% states_out(:,m) = [0;0;0;0];

% is_fallen(1,m) = 1;

%

% distance_traversed(1,m) = 0;

% time_elapsed(1,m) = 0;

%

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% energy_consumed(1,m) = hip_actuator_energy_added;

%

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% else

% X1out = IC_StLeg_position(2) - SwLeg_position(index,2);

% X2out = SwLeg_position(index,1) - IC_StLeg_position(1);

% X3out = Base_angvel(index);

% X4out = SwLeg_angvel_joint(index);

%

% distance_traversed(1,m) = MBCG_position(index,1) -

MBCG_position(1,1);

% time_elapsed(1,m) = sim_time(index) - sim_time(1);

%

% states_out(:,m) = [X1out; X2out; X3out; X4out];

% is_fallen(1,m) = 0;

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% energy_consumed(1,m) = hip_actuator_energy_added;

%

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% end

% end

%

% final_index = length(Base_angle)

final_index = evalin('base','final_index');

157

X1out = 0;

X2out = 0;

X3out = 0;

X4out = 0;

% X1out = IC_StLeg_position(2) - SwLeg_position(final_index,2);

% X2out = SwLeg_position(final_index,1) - IC_StLeg_position(1);

% X3out = Base_angvel(final_index);

% X4out = SwLeg_angvel_joint(final_index);

states_out = [X1out; X2out; X3out; X4out];

% size_SwLeg_position = evalin('base','size(SwLeg_position)');

% states_out = 0;

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1'));

% distance_traversed = evalin('base','SwLeg_position(final_index(1),1)

- IC_StLeg_position(1)');

% time_elapsed = evalin('base','final_index(1)*dt');

distance_traversed = 0;

time_elapsed = 0;

energy_consumed = energy_added + abs(energy_dissipated) + impulse_work;

% energy_added

% energy_dissipated

% impulse_work

% meet_threshold_vec = (abs(angle_des +

evalin('base','interleg_angle(1:final_index(1))')) <

threshold_values(1)).*(abs(evalin('base','interleg_velocity(1:final_in

dex(1))')) < threshold_values(2));

% index_meet_threshold = find(meet_threshold_vec);

%

% Swing_ypos = evalin('base','SwLeg_position(:,2)');

% terrain_cross = (evalin('base','SwLeg_position(1:final_index(1))')

% if(~isempty(index_meet_threshold))

% y_converged = Swing_ypos(index_meet_threshold(1));

% else

% is_fallen = 1;

% y_converged = min(Swing_ypos(1:final_index));

% end

%

% min_stance_angvel = min(-1*Base_angvel(1:(numel(Base_angvel)-1)));

y_converged = 0;

min_stance_angvel = 0;

158

StepToStepGOA.m

function [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed, y_converged, min_stance_angvel] =

StepToStepGOA(state_in, action, delta_terrain_vec, threshold_values)

% Initialize Parameters

angle_des = action(1);

PGain = action(3);

DGain = action(4);

ACTIVATE_AT_LEG_CROSS = action(5);

% threshold_values format

% threshold_values = [minimum acceptable angle error (deg), minimum

% acceptable angular velocity error (deg/sec)]

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

assignin('base','terrain_height_vector',0);

InitStepToStepParams(state_in)

applied_impulse = action(2);

assignin('base','t_max',0);

evalin('base','BipedOneStepEOM');

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

final_index = 1;

EnergyComputationOneStep

SwitchStanceOneStepEOM

159

assignin('base','IC_StLeg_position',IC_StLeg_position);

assignin('base','IC_Base_angle',IC_Base_angle);

assignin('base','IC_StLeg_angle',IC_StLeg_angle);

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle);

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel);

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel);

assignin('base','KE_vec',KE_vec);

assignin('base','PE_vec',PE_vec);

angle_des = action(1);

PGain = action(3);

DGain = action(4);

assignin('base','terrain_height_vector',delta_terrain_vec);

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

assignin('base','t_max',0.75);

evalin('base','BipedOneStepEOM');

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

SwLeg_angvel_joint = evalin('base','SwLeg_angvel_joint');

final_index = evalin('base','final_index');

assignin('base','final_index',final_index - 1);

EnergyComputationOneStep

impulse_work = KE_vec(2) - KE_vec(1);

collision_work = KE_vec(3) - KE_vec(2);

hip_actuator_work = energy_net;

hip_actuator_energy_added = energy_added;

gravity_work = -1*PE_delta;

160

hip_actuator_work = hip_actuator_work - gravity_work;

total_work = impulse_work + collision_work + hip_actuator_work +

gravity_work;

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1)

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1);

%% DEBUG

% for(m = 1:length(HitCheck(1,:)))

% index = find(HitCheck(:,m),1);

% if(isempty(index))

% states_out(:,m) = [0;0;0;0];

% is_fallen(1,m) = 1;

%

% distance_traversed(1,m) = 0;

% time_elapsed(1,m) = 0;

%

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% energy_consumed(1,m) = hip_actuator_energy_added;

%

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% else

% X1out = IC_StLeg_position(2) - SwLeg_position(index,2);

% X2out = SwLeg_position(index,1) - IC_StLeg_position(1);

% X3out = Base_angvel(index);

% X4out = SwLeg_angvel_joint(index);

%

% distance_traversed(1,m) = MBCG_position(index,1) -

MBCG_position(1,1);

% time_elapsed(1,m) = sim_time(index) - sim_time(1);

%

% states_out(:,m) = [X1out; X2out; X3out; X4out];

% is_fallen(1,m) = 0;

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% energy_consumed(1,m) = hip_actuator_energy_added;

%

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% end

% end

%

% final_index = length(Base_angle)

final_index = evalin('base','final_index');

161

X1out = IC_StLeg_position(2) - SwLeg_position(final_index,2);

X2out = SwLeg_position(final_index,1) - IC_StLeg_position(1);

X3out = Base_angvel(final_index);

X4out = SwLeg_angvel_joint(final_index);

states_out = [X1out; X2out; X3out; X4out];

% size_SwLeg_position = evalin('base','size(SwLeg_position)');

% states_out = 0;

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1'));

distance_traversed = evalin('base','SwLeg_position(final_index(1),1) -

IC_StLeg_position(1)');

time_elapsed = evalin('base','final_index(1)*dt');

energy_consumed = energy_added + abs(energy_dissipated) + impulse_work;

% energy_added

% energy_dissipated

% impulse_work

meet_threshold_vec = (abs(angle_des +

evalin('base','interleg_angle(1:final_index(1))')) <

threshold_values(1)).*(abs(evalin('base','interleg_velocity(1:final_in

dex(1))')) < threshold_values(2));

index_meet_threshold = find(meet_threshold_vec);

Swing_ypos = evalin('base','SwLeg_position(:,2)');

% terrain_cross = (evalin('base','SwLeg_position(1:final_index(1))')

if(~isempty(index_meet_threshold))

 y_converged = Swing_ypos(index_meet_threshold(1));

else

 is_fallen = 1;

 y_converged = min(Swing_ypos(1:final_index));

end

min_stance_angvel = min(-1*Base_angvel(1:(numel(Base_angvel)-1)));

162

StepToStepTFarchive.m

function [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed] = StepToStepTFarchive(state_in, action,

delta_terrain_vec)

% Initialize Parameters

angle_des = 0;

PGain = 0;

DGain = 0;

ACTIVATE_AT_LEG_CROSS = 1;

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

assignin('base','terrain_height_vector',0);

InitStepToStepParams(state_in)

% pause

applied_impulse = action(2);

% sim('BipedSimOneStep',0)

assignin('base','t_max',0);

evalin('base','BipedOneStepEOM');

% pause

% assignin('base','StLCG_position',StLCG_position);

% assignin('base','MBCG_position',MBCG_position);

% assignin('base','SwLeg_position',SwLeg_position);

% assignin('base','SwLCG_position',SwLCG_position);

%

% assignin('base','MBCG_velocity',MBCG_velocity);

% assignin('base','StLCG_velocity',StLCG_velocity);

% assignin('base','Base_angvel',Base_angvel);

% assignin('base','SwLCG_velocity',SwLCG_velocity);

% assignin('base','SwLeg_angvel',SwLeg_angvel);

% assignin('base','StLeg_angvel',StLeg_angvel);

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

163

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

final_index = 1;

% pause

EnergyComputationOneStep

% pause

SwitchStanceOneStepEOM

% pause

assignin('base','IC_StLeg_position',IC_StLeg_position);

assignin('base','IC_Base_angle',IC_Base_angle);

assignin('base','IC_StLeg_angle',IC_StLeg_angle);

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle);

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel);

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel);

assignin('base','KE_vec',KE_vec);

assignin('base','PE_vec',PE_vec);

% angle_des = action(1);

% PGain = -100;

% DGain = -10;

angle_des = action(1);

PGain = action(3);

DGain = action(4);

assignin('base','terrain_height_vector',delta_terrain_vec);

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

% sim('BipedSimOneStep')

assignin('base','t_max',1.5);

evalin('base','BipedOneStepEOM');

% assignin('base','StLCG_position',StLCG_position);

% assignin('base','MBCG_position',MBCG_position);

% assignin('base','SwLeg_position',SwLeg_position);

% assignin('base','SwLCG_position',SwLCG_position);

%

% assignin('base','MBCG_velocity',MBCG_velocity);

164

% assignin('base','StLCG_velocity',StLCG_velocity);

% assignin('base','Base_angvel',Base_angvel);

% assignin('base','SwLCG_velocity',SwLCG_velocity);

% assignin('base','SwLeg_angvel',SwLeg_angvel);

% assignin('base','StLeg_angvel',StLeg_angvel);

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

final_index = evalin('base','final_index');

%DEBUG

% EnergyComputationOneStep

%/DEBUG

impulse_work = KE_vec(2) - KE_vec(1);

collision_work = KE_vec(3) - KE_vec(2);

hip_actuator_work = energy_net;

hip_actuator_energy_added = energy_added;

gravity_work = -1*PE_delta;

hip_actuator_work = hip_actuator_work - gravity_work;

total_work = impulse_work + collision_work + hip_actuator_work +

gravity_work;

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1)

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1);

HitCheck = evalin('base','HitCheck');

dt = evalin('base','dt');

num_max = evalin('base','num_max');

interleg_velocity = evalin('base','interleg_velocity');

index_hit_list = mod(find(HitCheck),length(delta_terrain_vec));

HitList(index_hit_list + (index_hit_list ==

0).*length(delta_terrain_vec)) =

floor(find(HitCheck)/length(delta_terrain_vec));

165

HitList = num_max*(HitList > num_max) + HitList.*(HitList <= num_max);

X1 = IC_StLeg_position(2) - SwLeg_position(HitList,2);

X2 = SwLeg_position(HitList,1) - IC_StLeg_position(1);

X3 = Base_angvel(HitList);

X4 = interleg_velocity(HitList);

% interleg_velocity

states_out = [X1 X2 X3 X4];

is_fallen = (HitList == num_max);

% length(HitCheck(1,:))

% for m = 1:length(HitCheck(1,:))

% index = find(HitCheck(:,m),1);

%

% if(isempty(index))

%

% % states_out

%

% % states_out(:,m) = [0;0;0;0];

% is_fallen(1,m) = 1;

%

% distance_traversed(1,m) = 0;

% time_elapsed(1,m) = 0;

%

% energy_consumed(1,m) = 0;

% else

%

% index

%

% X1out = IC_StLeg_position(2) - SwLeg_position(index,2)

% X2out = SwLeg_position(index,1) - IC_StLeg_position(1)

% X3out = Base_angvel(index)

% X4out = SwLeg_angvel(index)

%

% distance_traversed(1,m) = MBCG_position(index,1) -

MBCG_position(1,2);

% % time_elapsed(1,m) = sim_time(index) - sim_time(1);

% time_elapsed(1,m) = index.*dt;

%

% states_out

%

% states_out(:,m) = [X1out; X2out; X3out; X4out];

% is_fallen(1,m) = 0;

% energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% end

% end

166

% energy_consumed = 0;

% time_elapsed = 0;

% distance_traversed = 0;

% MBCG_position

final_index = evalin('base','final_index');

% is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1'))

if(sum(is_fallen == 0) > 0)

% distance_traversed =

evalin('base','SwLeg_position(mod(final_index(1),t_max/dt),1) -

SwLeg_position(1,1)');

 distance_traversed = states_out(2);

% time_elapsed = evalin('base','mod(final_index(1),t_max/dt)*dt');

 time_elapsed = evalin('base','dt')*HitList.*(1-is_fallen);

 energy_consumed = energy_added +

abs(energy_dissipated)+impulse_work;

% Energy Computation fails to calculate energy added and

dissipated: use StepToStepGOA for Energy

% impulse_work

% energy_added

% energy_dissipated

 controller_p_error = 0;

 controller_d_error = 0;

% controller_p_error =

abs(angle_des+evalin('base','interleg_angle(mod(final_index(1),t_max/d

t))'));

% controller_d_error =

abs(evalin('base','interleg_velocity(mod(final_index(1),t_max/dt))'));

else

 energy_consumed = 0;

 time_elapsed = 0;

 distance_traversed = 0;

end

167

SwitchStanceOneStepEOM.m

% SwitchStanceOneStep

% StLCG_position = evalin('base','StLCG_position');

% SwLCG_position = evalin('base','SwLCG_position');

% MBCG_position = evalin('base','MBCG_position');

[omega2, omega3, KE_vec, PE_vec] =

ImpulseComputationEOM(applied_impulse);

%Stance Leg Parameters

% IC_StLeg_position = [SwLeg_position(final_index, 1),

SwLeg_position(final_index, 2), 0];

IC_StLeg_position = [0, 0, 0];

% IC_Base_angle = -SwLeg_angle(final_index)

% IC_StLeg_angle = 0;

% IC_SwLeg_angle = -Base_angle(final_index)-90

IC_Base_angle = -SwLeg_angle(final_index);

IC_StLeg_angle = 0;

IC_SwLeg_angle = -Base_angle(final_index);

IC_StLeg_angvel = omega3; %negative value indicates "forward" swing

IC_SwLeg_angvel = omega2; %negative value indicates "forward" fall

Stance_position = SwLeg_position(final_index, 1);

168

TakeHeuristicAction.m

function [new_state_num, possible_state_transitions, energy_expended,

distance_stepped, time_taken] = TakeHeuristicAction(action_index,

tradeoff_index, current_state_num, master_dynamics_table,

master_energy_database, master_distance_database, master_time_database,

cum_probs)

rand_num = rand;

resulting_states = master_dynamics_table{tradeoff_index,

action_index}(current_state_num,:);

resulting_energies = master_energy_database{tradeoff_index,

action_index}(current_state_num);

resulting_distances = master_distance_database{tradeoff_index,

action_index}(current_state_num);

resulting_times = master_time_database{tradeoff_index,

action_index}(current_state_num,:);

result_index = find(rand_num < cum_probs, 1);

new_state_num = resulting_states(result_index);

possible_state_transitions = resulting_states;

energy_expended = resulting_energies; %ENERGY is assumed constant over

various terrain heights

distance_stepped = resulting_distances; %DISTANCE is assumed constant

over various terrain heights

time_taken = resulting_times(result_index);

169

Approximate Optimal Robustness Code

Step 1: Run “GenerateMasterDynamicsTable.m”

Step 2: Run “RunStochasticSetup.m”

BipedOneStepEOM.m

See page 109.

ComputeBestActionTransitions.m

See page 115.

ComputeMDP.m

See page 121.

ComputeProbDistribution.m

See page 122.

ContinueStochastic.m

% ContinueStochastic

% clc

% clear

close all

load dynamics_database

NUM_EPISODES = 1e5;

num_actions = length(alpha_vec);

[X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, max_state_num]

= GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec, X4_vec);

state_dimensions = [length(X1_vec), length(X2_vec), length(X3_vec),

length(X4_vec)];

prob_distribution = [0 0 0.0028 0.0092 0.0276 0.0657 0.1212 0.1743

0.1984 ...

 0.1743 0.1212 0.0657 0.0276 0.0092 0.0028 0 0];

cum_probs = cumsum(prob_distribution);

170

stochastic_transition_database =

GenerateStochasticTransitionTable(master_dynamics_database,

prob_distribution, max_state_num, num_actions);

disp('Stochastic Generation Complete! Learning Commencing...')

% state_value_vector = -1*ones(max_state_num, 1);

% state_value_vector(1) = 0;

states_in = [-0.02, 0.3, -50, -0];

current_state_num = GetStateNumber(states_in, 0, X1_bound_vec,

X2_bound_vec, X3_bound_vec, X4_bound_vec, state_dimensions);

step_count = 0;

step_num_tracker = -1*zeros(1, NUM_EPISODES);

walk_num = 1;

clock

counter = 1;

for ep_num = 1:NUM_EPISODES

 [action_index, action_value] = SelectAction(current_state_num,

state_value_vector, stochastic_transition_database, num_actions);

 % current_state_num

 state_value_vector(current_state_num) = action_value;

 % action_index

 [current_state_num, possible_state_transitions] =

TakeAction(action_index, current_state_num, master_dynamics_database,

cum_probs);

 % current_state_num

 % possible_state_transitions

 % pause(0.1)

 % current_state_num

 % pause(1)

 if(current_state_num == 1)

 step_num_tracker(walk_num) = step_count;

 % disp([num2str(step_count), ' step walk'])

 % current_state_num = GetStateNumber(states_in, 0,

X1_bound_vec,

 % X2_bound_vec, X3_bound_vec, X4_bound_vec,

state_dimensions);

 if(counter <= max_state_num)

 current_state_num = counter;

171

 counter = counter + 1;

 else

 current_state_num = ceil(rand*max_state_num);

 end

% current_state_num

 % current_state_num = find(min(state_value_vector),1)

 walk_num = walk_num + 1;

 step_count = 0;

 else

 step_count = step_count+1;

 end

 if(mod(ep_num,1000) == 0)

 disp(num2str(ep_num))

 min_value = min(state_value_vector)

 find(min(state_value_vector) == state_value_vector,5)

 end

end

clock

save run_all_vars

plot(step_num_tracker)

pause(0.1)

disp('Computing Markov Decision Process Matrix')

ComputeMDP

172

EnergyComputatioOneStep.m

See page 123

GenerateMasterDynamicsTable.m

%GenerateMasterDynamicsTable

%SAVE:

% [numX1, [X1vec]]

% [numX2, [X2vec]]

% [numX3, [X3vec]]

% [numX4, [X4vec]]

% [numDelta, [delta_vec]]

% [numAlpha, [alpha_vec]]

% [masterDynamicsTable (alpha slice 1)]

% [masterDynamicsTable (alpha slice 2)]

% ...

% [masterDynamicsTable (alpha slice numAlpha)]

% clc

clear

close all

try

 EMAIL_ALERT = 1;

% [last_update_time, last_update_text] = CheckUpdateRequests;

 addpath P:\UrbanRobots\private\Hubicki\Simulation\2009-12\Tools

 initial_time = clock;

 if(initial_time(5) < 10)

 initial_minutes = ['0' num2str(initial_time(5))];

 else

 initial_minutes = [num2str(initial_time(5))];

 end

 initial_hours = num2str(initial_time(4));

 initial_time_readout = [initial_hours ':' initial_minutes];

 text_body = ['Greetings,' 10 'Your simulation has commenced,

beginning at ' initial_time_readout ' local machine time.' 10

'Regards,' 10 '- CodeBot'];

 if(EMAIL_ALERT)

 EmailSimulationUpdate(['Simulation Commenced at ',

initial_time_readout], text_body)

 end

 % Hubicki state space discretization

173

 X1_vec = [-0.1, -0.05, -0.04, -0.03:0.005:0.03, 0.04, 0.05, 0.1];

 X2_vec = [0.16:0.06:0.7];

 X3_vec = [-140:10:0];

 X4_vec = [-20:5:20];

 % delta_terrain_vec = [0.029 0.02 0.01 0.0 -0.01 -0.02 -0.029];

 delta_terrain_vec = [0.05 0.04 0.03:-0.005:-0.03 -0.04 -0.05];

 alpha_vec = linspace(15, 40, 9);

 impulse_value = 2;

 % X3_vec = [-2.1:0.1:-1.4, -1.25, -1.1];

 % X4_vec = [-1, -0.7, -0.5:0.25:0.75, 1.1, 1.5];

 numX1 = length(X1_vec);

 numX2 = length(X2_vec);

 numX3 = length(X3_vec);

 numX4 = length(X4_vec);

 state_dimensions = [numX1, numX2, numX3, numX4];

 [X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec,

max_state_num] = GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec,

X4_vec);

 % state_in = [-0.02, 0.3, -50, -0];

 angle_ratio_vec = [-1,1];

 gain_schedule = [10, 10, 10];

 ratio_schedule = [1 1 1];

 action = [25 2 1 1 1];

 % time1 = clock;

 % [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed] = StepToStepTFarchive(state_in, action,

delta_terrain_vec);

 time2 = clock;

 state_num = zeros(1,length(delta_terrain_vec));

 % for m = 1:length(delta_terrain_vec)

 % state_num(m) = GetStateNumber(states_out(m,:), is_fallen(m),

X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec,

state_dimensions);

 % end

 time1 = clock;

 blank_trans_matrix = zeros(max_state_num,

length(delta_terrain_vec));

 blank_trans_matrix(1,:) = ones(1, length(delta_terrain_vec));

 master_dynamics_database = cell(1,length(alpha_vec));

174

 for p = 1:length(alpha_vec)

 action = [alpha_vec(p) impulse_value 1 1 1];

 new_trans_matrix = blank_trans_matrix;

 for q = 2:max_state_num

 index_vector = GetStateIndices(q, state_dimensions);

 state_in = [X1_vec(index_vector(1)) X2_vec(index_vector(2))

X3_vec(index_vector(3)) X4_vec(index_vector(4))];

 [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed] = StepToStepTFarchive(state_in, action,

delta_terrain_vec);

 state_num = zeros(1,length(delta_terrain_vec));

 for n = 1:length(delta_terrain_vec)

 state_num(n) = GetStateNumber(states_out(n,:),

is_fallen(n), X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec,

state_dimensions);

 end

 new_trans_matrix(q,:) = state_num;

 end

 master_dynamics_database{p} = new_trans_matrix;

 end

 time2 = clock;

 time1

 time2

% cellplot(master_dynamics_database)

 final_time = clock;

 if(final_time(5) < 10)

 final_minutes = ['0' num2str(final_time(5))];

 else

 final_minutes = [num2str(final_time(5))];

 end

 final_hours = num2str(final_time(4));

 final_time_readout = [final_hours ':' final_minutes];

 elapsed_time = final_time - initial_time;

 elapsed_hours = num2str(elapsed_time*[0 0 24 1 0 0]');

 elapsed_minutes = num2str(elapsed_time(5));

175

 text_body = ['Greetings,' 10 'Your simulation beginning at '

initial_time_readout ' has executed without error.' 10 'Total run time:

' elapsed_hours ' hours and ' elapsed_minutes ' minutes.' ...

 10 'Regards,' 10 '- CodeBot'];

 if(EMAIL_ALERT)

 EmailSimulationUpdate(['Simulation Complete at '

final_time_readout '!'], text_body)

 end

 save 'dynamics_database.mat' master_dynamics_database X1_vec

X2_vec X3_vec X4_vec delta_terrain_vec alpha_vec impulse_value

catch ME

 rep = getReport(ME)

 rep_email = getReport(ME, 'extended', 'hyperlinks', 'off');

 text_body = ['The error report was recorded as follows:' 10 ' ' 10

rep_email 10 ' ' 10 'Regards,' 10 '- CodeBot'];

 if(EMAIL_ALERT)

 EmailSimulationUpdate('Simulation Update: Untimely

Termination', text_body)

 end

end

176

GenerateStochasticTransitionTable.m

function [stochastic_transition_database] =

GenerateStochasticTransitionTable(master_dynamics_database,

prob_distribution, max_state_num, num_actions)

blank_transition_table = sparse(max_state_num, max_state_num);

num_delta = length(prob_distribution);

stochastic_transition_database = cell(1,num_actions);

for p = 1:num_actions

 % clock

 current_transition_table = blank_transition_table;

 for q = 1:max_state_num

 for r = 1:num_delta

current_transition_table(q,master_dynamics_database{p}(q,r)) =

current_transition_table(q,master_dynamics_database{p}(q,r)) +

prob_distribution(r);

 %

current_transition_table(q,master_dynamics_database{p}(q,r))

 % pause(0.1)

 end

% if(sum(current_transition_table(q,:) > 0.999) == 0)

% q

% current_transition_table(q,:)

% pause(0.1)

% end

 end

 stochastic_transition_database{p} = current_transition_table;

end

177

GetControlTorque.m

See page 132

GetStateBoundaryVectors.m

See page 133

GetStateIndicies.m

See page 134

GetStateNumber.m

See page 135

InitialConditionTransformation.m

See page 142

InitStepToStepParams.m

See page 143

178

RunStochasticSetup.m

% RunStochasticSetup

clc

clear

close all

load dynamics_database

NUM_EPISODES = 1e6;

num_actions = length(alpha_vec);

terrain_sigma = 0.01;

[X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, max_state_num]

= GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec, X4_vec);

state_dimensions = [length(X1_vec), length(X2_vec), length(X3_vec),

length(X4_vec)];

% prob_distribution = [0 0 0 0 0 0.0060 0.0605 0.2420 0.3830 0.2420

0.0605 0.0060 0 0 0 0 0];

prob_distribution = ComputeProbDistribution(terrain_sigma, 0,

delta_terrain_vec);

cum_probs = cumsum(prob_distribution);

stochastic_transition_database =

GenerateStochasticTransitionTable(master_dynamics_database,

prob_distribution, max_state_num, num_actions);

disp('Stochastic Generation Complete! Learning Commencing...')

state_value_vector = -1*zeros(max_state_num, 1);

state_value_vector(1) = 0;

states_in = [-0.02, 0.3, -50, -0];

current_state_num = GetStateNumber(states_in, 0, X1_bound_vec,

X2_bound_vec, X3_bound_vec, X4_bound_vec, state_dimensions);

step_count = 0;

step_num_tracker = -1*zeros(1, NUM_EPISODES);

walk_num = 1;

clock

counter = 1;

for ep_num = 1:NUM_EPISODES

179

 [action_index, action_value] = SelectAction(current_state_num,

state_value_vector, stochastic_transition_database, num_actions);

 % current_state_num

 state_value_vector(current_state_num) = action_value;

 % action_index

 [current_state_num, possible_state_transitions] =

TakeAction(action_index, current_state_num, master_dynamics_database,

cum_probs);

 % current_state_num

 % possible_state_transitions

 % pause(0.1)

 % current_state_num

 % pause(1)

 if(current_state_num == 1)

 step_num_tracker(walk_num) = step_count;

 % disp([num2str(step_count), ' step walk'])

 % current_state_num = GetStateNumber(states_in, 0,

X1_bound_vec,

 % X2_bound_vec, X3_bound_vec, X4_bound_vec,

state_dimensions);

 if(counter <= max_state_num)

 current_state_num = counter;

 counter = counter + 1;

 else

 current_state_num = ceil(rand*max_state_num);

 end

% current_state_num

 % current_state_num = find(min(state_value_vector),1)

 walk_num = walk_num + 1;

 step_count = 0;

 else

 step_count = step_count+1;

 end

 if(mod(ep_num,1000) == 0)

 disp(num2str(ep_num))

 min_value = min(state_value_vector)

 find(min(state_value_vector) == state_value_vector,5)

 hist(state_value_vector, linspace(-10,0,11))

 axis([-11 1 0 10000])

 pause(0.05)

 end

180

end

clock

save run_all_vars

plot(step_num_tracker)

pause(0.1)

disp('Computing Markov Decision Process Matrix')

ComputeMDP

181

SelectAction.m

function [action_index, action_value] = SelectAction(current_state_num,

state_value_vector, stochastic_transition_database, num_actions)

gamma = 0.9;

action_value_vector = zeros(1, num_actions);

min_action_value =

gamma*stochastic_transition_database{1}(current_state_num,:)*state_val

ue_vector + -1*(current_state_num > 1);

min_action_index = 1;

for m = 1:num_actions

 % current_action_value =

gamma*stochastic_transition_database{m}(current_state_num,:)*state_val

ue_vector + -1*(current_state_num > 1);

 current_action_value =

gamma*stochastic_transition_database{m}(current_state_num,:)*state_val

ue_vector + (stochastic_transition_database{m}(current_state_num,1) -

1);

 action_value_vector(m) = current_action_value;

 if(current_action_value <= min(action_value_vector))

 min_action_value = current_action_value;

 min_action_index = m;

 end

end

% current_state_num

% action_value_vector

action_index = min_action_index;

action_value = min_action_value;

% pause

182

StepToStepStochastic.m

function [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed, controller_p_error, controller_d_error] =

StepToStepStochastic(state_in, action, delta_terrain_vec)

% Initialize Parameters

angle_des = action(1);

PGain = action(3);

DGain = action(4);

ACTIVATE_AT_LEG_CROSS = action(5);

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

assignin('base','terrain_height_vector',0);

InitStepToStepParams(state_in)

applied_impulse = action(2);

% sim('BipedSimGainSchedule',0)

assignin('base','t_max',0);

evalin('base','BipedOneStepEOM');

% pause

% assignin('base','StLCG_position',StLCG_position);

% assignin('base','MBCG_position',MBCG_position);

% assignin('base','SwLeg_position',SwLeg_position);

% assignin('base','SwLCG_position',SwLCG_position);

%

% assignin('base','MBCG_velocity',MBCG_velocity);

% assignin('base','StLCG_velocity',StLCG_velocity);

% assignin('base','Base_angvel',Base_angvel);

% assignin('base','SwLCG_velocity',SwLCG_velocity);

% assignin('base','SwLeg_angvel',SwLeg_angvel);

% assignin('base','StLeg_angvel',StLeg_angvel);

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

183

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

% pause

final_index = 1;

EnergyComputationOneStep

SwitchStanceOneStepEOM

assignin('base','IC_StLeg_position',IC_StLeg_position);

assignin('base','IC_Base_angle',IC_Base_angle);

assignin('base','IC_StLeg_angle',IC_StLeg_angle);

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle);

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel);

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel);

assignin('base','KE_vec',KE_vec);

assignin('base','PE_vec',PE_vec);

% KE_vec

% PE_vec

angle_des = action(1);

PGain = action(3);

DGain = action(4);

assignin('base','terrain_height_vector',delta_terrain_vec);

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

% myopts = simset('MinStep', evalin('base','min_step_size'));

% sim('BipedSimGainSchedule', 10)

assignin('base','t_max',1.5);

evalin('base','BipedOneStepEOM');

% sim('BipedSimOneStep', 10, myopts)

% assignin('base','StLCG_position',StLCG_position);

% assignin('base','MBCG_position',MBCG_position);

% assignin('base','SwLeg_position',SwLeg_position);

% assignin('base','SwLCG_position',SwLCG_position);

%

% assignin('base','MBCG_velocity',MBCG_velocity);

% assignin('base','StLCG_velocity',StLCG_velocity);

% assignin('base','Base_angvel',Base_angvel);

% assignin('base','SwLCG_velocity',SwLCG_velocity);

184

% assignin('base','SwLeg_angvel',SwLeg_angvel);

% assignin('base','StLeg_angvel',StLeg_angvel);

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

final_index = evalin('base','final_index');

EnergyComputationOneStep

impulse_work = KE_vec(2) - KE_vec(1);

collision_work = KE_vec(3) - KE_vec(2);

hip_actuator_work = energy_net;

hip_actuator_energy_added = energy_added;

gravity_work = -1*PE_delta;

hip_actuator_work = hip_actuator_work - gravity_work;

total_work = impulse_work + collision_work + hip_actuator_work +

gravity_work;

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1)

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1);

%% DEBUG

% for(m = 1:length(HitCheck(1,:)))

% index = find(HitCheck(:,m),1);

% if(isempty(index))

% states_out(:,m) = [0;0;0;0];

% is_fallen(1,m) = 1;

%

% distance_traversed(1,m) = 0;

% time_elapsed(1,m) = 0;

%

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% energy_consumed(1,m) = hip_actuator_energy_added;

%

185

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% else

% X1out = IC_StLeg_position(2) - SwLeg_position(index,2);

% X2out = SwLeg_position(index,1) - IC_StLeg_position(1);

% X3out = Base_angvel(index);

% X4out = SwLeg_angvel_joint(index);

%

% distance_traversed(1,m) = MBCG_position(index,1) -

MBCG_position(1,1);

% time_elapsed(1,m) = sim_time(index) - sim_time(1);

%

% states_out(:,m) = [X1out; X2out; X3out; X4out];

% is_fallen(1,m) = 0;

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% energy_consumed(1,m) = hip_actuator_energy_added;

%

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% end

% end

% final_index = length(Base_angle)

final_index = evalin('base','final_index');

% size_SwLeg_position = evalin('base','size(SwLeg_position)');

states_out = 0;

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1'));

distance_traversed = evalin('base','SwLeg_position(final_index(1),1) -

SwLeg_position(1,1)');

time_elapsed = evalin('base','final_index(1)*dt');

energy_consumed = energy_added + abs(energy_dissipated)+impulse_work;

controller_p_error =

abs(angle_des+evalin('base','interleg_angle(final_index(1))'));

controller_d_error =

abs(evalin('base','interleg_velocity(final_index(1))'));

186

StepToStepTFarchive.m

function [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed] = StepToStepTFarchive(state_in, action,

delta_terrain_vec)

% Initialize Parameters

angle_des = 0;

PGain = 0;

DGain = 0;

ACTIVATE_AT_LEG_CROSS = 1;

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

assignin('base','terrain_height_vector',0);

InitStepToStepParams(state_in)

% pause

applied_impulse = action(2);

% sim('BipedSimOneStep',0)

assignin('base','t_max',0);

evalin('base','BipedOneStepEOM');

% pause

% assignin('base','StLCG_position',StLCG_position);

% assignin('base','MBCG_position',MBCG_position);

% assignin('base','SwLeg_position',SwLeg_position);

% assignin('base','SwLCG_position',SwLCG_position);

%

% assignin('base','MBCG_velocity',MBCG_velocity);

% assignin('base','StLCG_velocity',StLCG_velocity);

% assignin('base','Base_angvel',Base_angvel);

% assignin('base','SwLCG_velocity',SwLCG_velocity);

% assignin('base','SwLeg_angvel',SwLeg_angvel);

% assignin('base','StLeg_angvel',StLeg_angvel);

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

187

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

final_index = 1;

% pause

EnergyComputationOneStep

% pause

SwitchStanceOneStepEOM

% pause

assignin('base','IC_StLeg_position',IC_StLeg_position);

assignin('base','IC_Base_angle',IC_Base_angle);

assignin('base','IC_StLeg_angle',IC_StLeg_angle);

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle);

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel);

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel);

assignin('base','KE_vec',KE_vec);

assignin('base','PE_vec',PE_vec);

% angle_des = action(1);

% PGain = -100;

% DGain = -10;

angle_des = action(1);

PGain = action(3);

DGain = action(4);

assignin('base','terrain_height_vector',delta_terrain_vec);

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

% sim('BipedSimOneStep')

assignin('base','t_max',1.5);

evalin('base','BipedOneStepEOM');

% assignin('base','StLCG_position',StLCG_position);

% assignin('base','MBCG_position',MBCG_position);

% assignin('base','SwLeg_position',SwLeg_position);

% assignin('base','SwLCG_position',SwLCG_position);

%

% assignin('base','MBCG_velocity',MBCG_velocity);

% assignin('base','StLCG_velocity',StLCG_velocity);

188

% assignin('base','Base_angvel',Base_angvel);

% assignin('base','SwLCG_velocity',SwLCG_velocity);

% assignin('base','SwLeg_angvel',SwLeg_angvel);

% assignin('base','StLeg_angvel',StLeg_angvel);

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

final_index = evalin('base','final_index');

%DEBUG

% EnergyComputationOneStep

%/DEBUG

impulse_work = KE_vec(2) - KE_vec(1);

collision_work = KE_vec(3) - KE_vec(2);

hip_actuator_work = energy_net;

hip_actuator_energy_added = energy_added;

gravity_work = -1*PE_delta;

hip_actuator_work = hip_actuator_work - gravity_work;

total_work = impulse_work + collision_work + hip_actuator_work +

gravity_work;

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1)

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1);

HitCheck = evalin('base','HitCheck');

dt = evalin('base','dt');

num_max = evalin('base','num_max');

interleg_velocity = evalin('base','interleg_velocity');

index_hit_list = mod(find(HitCheck),length(delta_terrain_vec));

HitList(index_hit_list + (index_hit_list ==

0).*length(delta_terrain_vec)) =

floor(find(HitCheck)/length(delta_terrain_vec));

189

HitList = num_max*(HitList > num_max) + HitList.*(HitList <= num_max);

X1 = IC_StLeg_position(2) - SwLeg_position(HitList,2);

X2 = SwLeg_position(HitList,1) - IC_StLeg_position(1);

X3 = Base_angvel(HitList);

X4 = interleg_velocity(HitList);

% interleg_velocity

states_out = [X1 X2 X3 X4];

is_fallen = (HitList == num_max);

% for(m = 1:length(HitCheck(1,:)))

% index = find(HitCheck(:,m),1);

% if(isempty(index))

% states_out(:,m) = [0;0;0;0];

% is_fallen(1,m) = 1;

%

% distance_traversed(1,m) = 0;

% time_elapsed(1,m) = 0;

%

% energy_consumed(1,m) = 0;

% else

% X1out = IC_StLeg_position(2) - SwLeg_position(index,2);

% X2out = SwLeg_position(index,1) - IC_StLeg_position(1);

% X3out = Base_angvel(index);

% X4out = SwLeg_angvel(index);

%

% distance_traversed(1,m) = MBCG_position(index,1) -

MBCG_position(1,2);

% % time_elapsed(1,m) = sim_time(index) - sim_time(1);

% time_elapsed(1,m) = index.*dt;

%

% states_out(:,m) = [X1out; X2out; X3out; X4out];

% is_fallen(1,m) = 0;

% energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% end

% end

energy_consumed = 0;

time_elapsed = 0;

distance_traversed = 0;

% MBCG_position

% final_index = evalin('base','final_index');

%

% is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1'));

% distance_traversed = evalin('base','SwLeg_position(final_index(1),1)

- SwLeg_position(1,1)');

190

% time_elapsed = evalin('base','final_index(1)*dt');

% energy_consumed = energy_added + abs(energy_dissipated)+impulse_work;

% controller_p_error =

abs(angle_des+evalin('base','interleg_angle(final_index(1))'));

% controller_d_error =

abs(evalin('base','interleg_velocity(final_index(1))'));

191

StepToStepTFEOM.m

function [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed, controller_p_error, controller_d_error] =

StepToStepTFEOM(state_in, action, delta_terrain_vec)

% Initialize Parameters

angle_des = action(1);

PGain = action(3);

DGain = action(4);

ACTIVATE_AT_LEG_CROSS = action(5);

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

assignin('base','terrain_height_vector',0);

InitStepToStepParams(state_in)

applied_impulse = action(2);

% sim('BipedSimGainSchedule',0)

assignin('base','t_max',0);

evalin('base','BipedOneStepEOM');

% pause

% assignin('base','StLCG_position',StLCG_position);

% assignin('base','MBCG_position',MBCG_position);

% assignin('base','SwLeg_position',SwLeg_position);

% assignin('base','SwLCG_position',SwLCG_position);

%

% assignin('base','MBCG_velocity',MBCG_velocity);

% assignin('base','StLCG_velocity',StLCG_velocity);

% assignin('base','Base_angvel',Base_angvel);

% assignin('base','SwLCG_velocity',SwLCG_velocity);

% assignin('base','SwLeg_angvel',SwLeg_angvel);

% assignin('base','StLeg_angvel',StLeg_angvel);

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

192

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

% pause

final_index = 1;

EnergyComputationOneStep

SwitchStanceOneStepEOM

assignin('base','IC_StLeg_position',IC_StLeg_position);

assignin('base','IC_Base_angle',IC_Base_angle);

assignin('base','IC_StLeg_angle',IC_StLeg_angle);

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle);

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel);

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel);

assignin('base','KE_vec',KE_vec);

assignin('base','PE_vec',PE_vec);

% KE_vec

% PE_vec

angle_des = action(1);

PGain = action(3);

DGain = action(4);

assignin('base','terrain_height_vector',delta_terrain_vec);

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

% myopts = simset('MinStep', evalin('base','min_step_size'));

% sim('BipedSimGainSchedule', 10)

assignin('base','t_max',1.5);

evalin('base','BipedOneStepEOM');

% sim('BipedSimOneStep', 10, myopts)

% assignin('base','StLCG_position',StLCG_position);

% assignin('base','MBCG_position',MBCG_position);

% assignin('base','SwLeg_position',SwLeg_position);

% assignin('base','SwLCG_position',SwLCG_position);

%

% assignin('base','MBCG_velocity',MBCG_velocity);

% assignin('base','StLCG_velocity',StLCG_velocity);

% assignin('base','Base_angvel',Base_angvel);

193

% assignin('base','SwLCG_velocity',SwLCG_velocity);

% assignin('base','SwLeg_angvel',SwLeg_angvel);

% assignin('base','StLeg_angvel',StLeg_angvel);

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

final_index = evalin('base','final_index');

EnergyComputationOneStep

impulse_work = KE_vec(2) - KE_vec(1);

collision_work = KE_vec(3) - KE_vec(2);

hip_actuator_work = energy_net;

hip_actuator_energy_added = energy_added;

gravity_work = -1*PE_delta;

hip_actuator_work = hip_actuator_work - gravity_work;

total_work = impulse_work + collision_work + hip_actuator_work +

gravity_work;

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1)

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1);

%% DEBUG

% for(m = 1:length(HitCheck(1,:)))

% index = find(HitCheck(:,m),1);

% if(isempty(index))

% states_out(:,m) = [0;0;0;0];

% is_fallen(1,m) = 1;

%

% distance_traversed(1,m) = 0;

% time_elapsed(1,m) = 0;

%

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% energy_consumed(1,m) = hip_actuator_energy_added;

194

%

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% else

% X1out = IC_StLeg_position(2) - SwLeg_position(index,2);

% X2out = SwLeg_position(index,1) - IC_StLeg_position(1);

% X3out = Base_angvel(index);

% X4out = SwLeg_angvel_joint(index);

%

% distance_traversed(1,m) = MBCG_position(index,1) -

MBCG_position(1,1);

% time_elapsed(1,m) = sim_time(index) - sim_time(1);

%

% states_out(:,m) = [X1out; X2out; X3out; X4out];

% is_fallen(1,m) = 0;

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% energy_consumed(1,m) = hip_actuator_energy_added;

%

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% end

% end

% final_index = length(Base_angle)

final_index = evalin('base','final_index');

% size_SwLeg_position = evalin('base','size(SwLeg_position)');

states_out = 0;

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1'));

distance_traversed = evalin('base','SwLeg_position(final_index(1),1) -

SwLeg_position(1,1)');

time_elapsed = evalin('base','final_index(1)*dt');

energy_consumed = energy_added + abs(energy_dissipated)+impulse_work;

controller_p_error =

abs(angle_des+evalin('base','interleg_angle(final_index(1))'));

controller_d_error =

abs(evalin('base','interleg_velocity(final_index(1))'));

195

SwitchStanceOneStep.m

See page 168

TakeAction.m

function [new_state_num, possible_state_transitions] =

TakeAction(action_index, current_state_num, master_dynamics_table,

cum_probs)

rand_num = rand;

resulting_states =

master_dynamics_table{action_index}(current_state_num,:);

result_index = find(rand_num < cum_probs, 1);

new_state_num = resulting_states(result_index);

possible_state_transitions = resulting_states;

196

Genetic Optimization Algorithm Code

Step 1: Run “genopt3m1.m”

BipedOneStepEOM.m

%% Inputs:

% IC_StLeg_position

% IC_Base_angle

% IC_StLeg_angvel

% IC_SwLeg_angle

% IC_SwLeg_angvel

% terrain_height_vector

% ACTIVATE_AT_LEG_CROSS

%

% angle_des

% angle_ratio_vec

% gain_schedule

% ratio_schedule

%

% StLeg_mass

% StLeg_inertia

% StLeg_length

% StLCG_ratio

% SwLeg_mass

% SwLeg_inertia

% SwLeg_length

% SwLCG_ratio

% MBody_mass

%% Outputs:

% Base_angle

% Base_angvel

% StLCG_position

% StLCG_velocity

% StLCG_angvel

% StLeg_angle

% StLeg_angvel

% StLeg_angaccel

% MBCG_position

% MBCG_velocity

% MBCG_angvel

% MBCG_accel

% SwLeg_angle

% SwLeg_angvel_joint

% SwLeg_angaccel2

% SwLCG_position

197

% SwLCG_velocity

% SwLCG_angvel

% SwLeg_angle2

% SwLCG_accel

% SwLeg_angaccel

% interleg_angle

% interleg_velocity

% hip_torque

% SwLeg_position

% SwLeg_velocity

% SwLeg_accel

% HitCheck

% TotalHits

% FallCheck

%%

% close all

SLOMO = 1;

FRAMES_PER_SECOND = 30*SLOMO;

NUM_SAMPLES = 1;

ANIMATION_ON = 0;

theta1_init = 1*(IC_Base_angle*pi/180) + pi/2;

theta2_init = pi - IC_SwLeg_angle*pi/180 - IC_Base_angle*pi/180;

theta_dot1_init = IC_StLeg_angvel*pi/180;

theta_dot2_init = IC_SwLeg_angvel*pi/180;

%t_max = 2; % assigned

dt = 1e-3;

if(t_max == 0)

 num_max = 1;

else

 num_max = floor(t_max/dt);

end

theta1 = theta1_init;

theta2 = theta2_init;

theta_dot1 = theta_dot1_init;

theta_dot2 = theta_dot2_init;

tau = 0;

m = StLeg_mass;

mh = MBody_mass;

L = StLeg_length;

% g = 9.81; % Assigned elsewhere

a = StLCG_ratio*L;

b = SwLCG_ratio*L;

198

m1 = m + mh/2;

m2 = m1;

l1 = a + b;

l2 = l1;

lc1 = L - b*m/m1;

lc2 = L - lc1;

I1 = m*(b-lc2)^2 + 0.5*mh*lc2^2;

I2 = I1;

theta1_vec = zeros(num_max,1);

theta2_vec = zeros(num_max,1);

theta_dot1_vec = zeros(num_max,1);

theta_dot2_vec = zeros(num_max,1);

hip_torque = zeros(num_max,1);

interleg_angle = zeros(num_max,1);

interleg_velocity = zeros(num_max,1);

SwLeg_position = zeros(num_max,2);

SwLeg_velocity = zeros(num_max,2);

MBody_inertia(3,3) = 0.0001;

StLeg_inertia(3,3) = 0.0001;

SwLeg_inertia(3,3) = 0.0001;

for index = 2:num_max

 theta1_vec(index-1) = theta1;

 theta2_vec(index-1) = theta2;

 theta_dot1_vec(index-1) = theta_dot1;

 theta_dot2_vec(index-1) = theta_dot2;

 interleg_angle(index-1) = (pi - theta2)*180/pi;

 interleg_velocity(index-1) = theta_dot2*180/pi;

 SwLeg_position(index-1,1) = L*cos(theta1) + L*cos(theta1+theta2);

 SwLeg_position(index-1,2) = L*sin(theta1) + L*sin(theta1+theta2);

 SwLeg_velocity(index-1,1) = L*cos(theta_dot1) +

L*cos(theta_dot1+theta_dot2);

 SwLeg_velocity(index-1,2) = L*sin(theta_dot1) +

L*sin(theta_dot1+theta_dot2);

 hip_torque(index-1) = tau;

 d11 = m1*lc1^2 + m2*(l1^2+lc2^2+2*l1*lc2*cos(theta2)) + I1 + I2;

 d12 = m2*(lc2^2 + l1*lc2*cos(theta2)) + I2;

 d22 = m2*lc2^2 + I2;

 h1 = -m2*l1*lc2*sin(theta2)*theta_dot2^2 -

2*m2*l1*lc2*sin(theta2)*theta_dot2*theta_dot1;

199

 h2 = m2*l1*lc2*sin(theta2)*theta_dot1^2;

 p1 = (m1*lc1 + m2*l1)*g*cos(theta1) + m2*lc2*g*cos(theta1+theta2);

 p2 = m2*lc2*g*cos(theta1+theta2);

 tau = GetControlTorque(interleg_angle(index-1),

interleg_velocity(index-1), -angle_des, angle_ratio_vec, gain_schedule,

ratio_schedule);

 theta_dot_dot2 = (d11*(tau - h2 - p2) + d12*(h1 + p1))/(d11*d22 -

d12^2);

 theta_dot_dot1 = (d12*theta_dot_dot2 + h1 + p1)/(-d11);

 theta_dot1 = theta_dot_dot1*dt + theta_dot1;

 theta_dot2 = theta_dot_dot2*dt + theta_dot2;

 theta1 = theta_dot1*dt + theta1;

 theta2 = theta_dot2*dt + theta2;

 %%

% interleg_angle(index-1)

end

theta1_vec(num_max) = theta1;

theta2_vec(num_max) = theta2;

if(num_max > 1)

 theta_dot1_vec(index-1) = theta_dot1;

 theta_dot2_vec(index-1) = theta_dot2;

 hip_torque(index-1) = tau;

else

 theta_dot1_vec(1) = theta_dot1;

 theta_dot2_vec(1) = theta_dot2;

 hip_torque(1) = tau;

 HitCheck = 1;

end

interleg_angle(num_max) = (pi + theta2)*180/pi;

interleg_velocity(num_max) = theta_dot2*180/pi;

clear MBCG_position

clear MBCG_velocity

clear StLCG_position

clear StLCG_velocity

clear SwLeg_position

clear SwLCG_position

clear SwLCG_velocity

clear Base_angvel

200

clear StLeg_angvel

clear StLCG_angvel

clear SwLeg_angvel

MBCG_position(:,1) = L*cos(theta1_vec)';

MBCG_position(:,2) = L*sin(theta1_vec)';

MBCG_velocity(:,1) = (-L*theta_dot1_vec.*sin(theta1_vec))';

MBCG_velocity(:,2) = (L*theta_dot1_vec.*cos(theta1_vec))';

StLCG_position(:,1) = StLCG_ratio*L*cos(theta1_vec)';

StLCG_position(:,2) = StLCG_ratio*L*sin(theta1_vec)';

StLCG_velocity(:,1) = (-

L*StLCG_ratio.*sin(theta1_vec).*theta_dot1_vec)';

StLCG_velocity(:,2) =

(L*StLCG_ratio.*cos(theta1_vec).*theta_dot1_vec)';

SwLeg_position(:,1) = L*cos(theta1_vec)' +

L*cos(theta1_vec+theta2_vec)';

SwLeg_position(:,2) = L*sin(theta1_vec)' +

L*sin(theta1_vec+theta2_vec)';

SwLCG_position(:,1) = L*cos(theta1_vec)' +

SwLCG_ratio*L*cos(theta1_vec+theta2_vec)';

SwLCG_position(:,2) = L*sin(theta1_vec)' +

SwLCG_ratio*L*sin(theta1_vec+theta2_vec)';

SwLCG_velocity(:,1) = (-L.*sin(theta1_vec).*theta_dot1_vec)' + (-

SwLCG_ratio*L*sin(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_v

ec))';

SwLCG_velocity(:,2) = (L.*cos(theta1_vec).*theta_dot1_vec)' +

(SwLCG_ratio*L*cos(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_

vec))';

Base_angle = (theta1_vec-pi/2)*180/pi;

SwLeg_angle = -theta2_vec*180/pi + 180 - Base_angle;

Base_angvel(:,1) = theta_dot1_vec*180/pi;

StLeg_angvel(:,1) = Base_angvel.*0;

StLCG_angvel(:,3) = theta_dot1_vec;

SwLeg_angvel(:,3) = (theta_dot1_vec+theta_dot2_vec);

MBCG_angvel = zeros(num_max,3);

SwLeg_angvel_joint = theta_dot2_vec*180/pi;

if(num_max > 1)

 left_height_vec = meshgrid([SwLeg_position(:,2);L],

terrain_height_vector);

 right_height_vec = meshgrid([-L;SwLeg_position(:,2)],

terrain_height_vector);

 terrain_mat = meshgrid(terrain_height_vector, ones(1,num_max+1))';

201

 HitCheck_raw = (left_height_vec <=

terrain_mat).*(right_height_vec >

terrain_mat).*([SwLeg_position(:,1)',-L] > 0.05);

 %Assumes only one terrain height

% HitCheck_raw(length(HitCheck_raw)) = 1;

 final_index = find(HitCheck_raw);

 if(isempty(final_index))

 final_index = length(HitCheck_raw)-1;

 end

 HitCheck = zeros(1,final_index(1));

 HitCheck(final_index) = 1;

else

 HitCheck = 1;

 final_index = 1;

end

if(ANIMATION_ON)

% hold on

 if(t_max == 0)

 time_interp = t_max;

 theta1_interp = theta1_vec;

 theta2_interp = theta2_vec;

 else

 time_interp = [0:1/FRAMES_PER_SECOND:t_max];

 theta1_interp = interp1(dt*[1:num_max], theta1_vec,

time_interp);

 theta2_interp = interp1(dt*[1:num_max], theta2_vec,

time_interp);

 end

 for index = [1:length(time_interp)]

 x1 = L*cos(theta1_interp(index));

 y1 = L*sin(theta1_interp(index));

 x2 = x1 + L*cos(theta1_interp(index)+theta2_interp(index));

 y2 = y1 + L*sin(theta1_interp(index)+theta2_interp(index));

 CMx1 = a*cos(theta1_interp(index));

 CMy1 = a*sin(theta1_interp(index));

 CMx2 = x1 + b*cos(theta1_interp(index)+theta2_interp(index));

 CMy2 = y1 + b*sin(theta1_interp(index)+theta2_interp(index));

 plot([0,x1], [0,y1], 'bo-', [x1,x2], [y1,y2], 'ro-', CMx1,

CMy1, 'bx', CMx2, CMy2, 'rx')

 axis equal

 axis([-2,2,-2,2])

 pause(1/FRAMES_PER_SECOND*SLOMO)

 end

end

% figure(4)

202

% plot(interleg_velocity)

% debug_BA = Base_angle(1)

% debug_SwA = SwLeg_angle(1)

%

% SwLeg_position

203

EnergyComputationOneStep.m

See page 123

GenerateTestSchedule.m

function test_schedule = GenerateTestSchedule(test_conditions,

num_tests)

% num_tests = 9;

test_schedule = zeros(5,num_tests);

X1_min = test_conditions(1,1);

X1_max = test_conditions(1,2);

X2_min = test_conditions(2,1);

X2_max = test_conditions(2,2);

X3_min = test_conditions(3,1);

X3_max = test_conditions(3,2);

X4_min = test_conditions(4,1);

X4_max = test_conditions(4,2);

terrain_mean = test_conditions(7,2);

terrain_sigma = test_conditions(7,2);

for m = 1:num_tests

 X1 = rand*(X1_max-X1_min)+X1_min;

 X2 = rand*(X2_max-X2_min)+X2_min;

 X3 = rand*(X3_max-X3_min)+X3_min;

 X4 = rand*(X4_max-X4_min)+X4_min;

 terrain_height = randn*terrain_sigma + terrain_mean;

 if(terrain_height > 3*terrain_sigma+terrain_mean)

 terrain_height = 0.1;

 elseif(terrain_height < -3*terrain_sigma+terrain_mean)

 terrain_height = -0.1;

 end

 test_schedule(:,m) = [X1; X2; X3; X4; terrain_height];

end

204

genopt3m1.m

% Gain Scheduling Format

% Ratio of desired interleg angle

% [-0.5, 0, 0.5] length: n-1

% Initial Gain Selection (1st index indicates gain before crossing

angle 1)

% [10, 10, 10, 10] length: n

% Kd/Kp ratio (1st index indicates ratio before crossing angle 1)

% [0.1, 0.1, 0.1, 0.1] length: n

try

 clc

 clear

 close all

 EMAIL_ALERT = 0;

 [last_update_time, last_update_text] = CheckUpdateRequests;

 addpath P:\UrbanRobots\private\Hubicki\Simulation\2009-12\Tools

 set_height = 0;

 MUTATION_SIGMA_GAIN = 0.125;

 MUTATION_SIGMA_RATIO = 0.01*5;

 MUTATION_SIGMA_IMPULSE = 0.125;

 MAX_GENERATIONS = 80;

 NUM_OFFSPRING = 50;

 NUM_DISCRETE_POINTS = 10;

 NUM_TESTS = 1;

 INITIAL_GAIN = 5;

 INITIAL_RATIO = 0.1*5;

 INITIAL_IMPULSE = 1;

 MIN_GAIN = 0;

 MIN_RATIO = 0;

 MIN_IMPULSE = 0;

 MAX_IMPULSE = 7;

 WEIGHTING = [150 0.375 10.625];

 SAVE_FILE_ON = 1;

 SAVE_EVERY = 10;

 current_time = clock;

205

 str_store = [num2str(current_time(1)) '_' num2str(current_time(2))

'_' num2str(current_time(3)) '_' num2str(current_time(4)) '_'

num2str(current_time(5)) '_' num2str(floor(current_time(6)))];

 savefile = ['GOAdata_' str_store '.txt'];

 halt_requested = 0;

 angle_ratio_vec = linspace(-1,1,NUM_DISCRETE_POINTS-1);

 gain_schedule = ones(1,NUM_DISCRETE_POINTS).*INITIAL_GAIN;

 ratio_schedule = ones(1,NUM_DISCRETE_POINTS).*INITIAL_RATIO;

 applied_impulse = INITIAL_IMPULSE;

 X1_min = 0;

 X1_max = 0;

 X2_min = 0.449;

 X2_max = 0.451;

 X3_min = -61; %-30;

 X3_max = -59; %-40;

 X4_min = -1; %25;

 X4_max = 1; %35;

 Impulse_min = 5;

 Impulse_max = 5;

 alpha_des_min = 25;

 alpha_des_max = 25;

 terrain_height_mean = 0.000;

 terrain_height_sigma = 0.00;

 test_conditions = [X1_min, X1_max;

 X2_min, X2_max;

 X3_min, X3_max;

 X4_min, X4_max;

 Impulse_min, Impulse_max;

 alpha_des_min, alpha_des_max;

 terrain_height_mean, terrain_height_sigma];

 parent_gain_schedule = gain_schedule;

 parent_ratio = ratio_schedule;

 parent_impulse = applied_impulse;

 gen = 0;

 done = 0;

 track_gen = zeros(MAX_GENERATIONS,3+2*NUM_DISCRETE_POINTS);

 while(~done && gen < MAX_GENERATIONS)

 gen = gen + 1;

 num_os = 1;

 [child_gain_matrix, dummy] = meshgrid(parent_gain_schedule,

ones(1,NUM_OFFSPRING));

206

 [child_ratio_matrix, dummy] = meshgrid(parent_ratio,

ones(1,NUM_OFFSPRING));

 child_impulse_matrix = ones(NUM_OFFSPRING,1).*parent_impulse;

 mutation_gain_matrix = randn(NUM_OFFSPRING,

NUM_DISCRETE_POINTS)*MUTATION_SIGMA_GAIN;

 mutation_ratio_matrix = randn(NUM_OFFSPRING,

NUM_DISCRETE_POINTS)*MUTATION_SIGMA_RATIO;

 mutation_impulse_matrix = randn(NUM_OFFSPRING,

1)*MUTATION_SIGMA_IMPULSE;

 child_gain_matrix = child_gain_matrix + mutation_gain_matrix;

 child_ratio_matrix = child_ratio_matrix +

mutation_ratio_matrix;

 child_impulse_matrix = child_impulse_matrix +

mutation_impulse_matrix;

 child_gain_matrix = (child_gain_matrix >=

MIN_GAIN).*child_gain_matrix + (child_gain_matrix <

MIN_GAIN).*MIN_GAIN;

 child_ratio_matrix = (child_ratio_matrix >=

MIN_RATIO).*child_ratio_matrix + (child_ratio_matrix <

MIN_RATIO).*MIN_RATIO;

 child_impulse_matrix = (child_impulse_matrix >=

MIN_IMPULSE).*child_impulse_matrix + (child_impulse_matrix <

MIN_IMPULSE).*MIN_IMPULSE;

 hold on

 test_schedule = GenerateTestSchedule(test_conditions,

NUM_TESTS);

 fitness = zeros(NUM_OFFSPRING,2);

 for m = 1:NUM_OFFSPRING

 % m

 current_index = m;

 gain_schedule = child_gain_matrix(current_index,:);

 ratio_schedule = child_ratio_matrix(current_index,:);

 current_fit = GetFitnessTestSchedule(angle_ratio_vec,

child_gain_matrix(current_index,:),

child_ratio_matrix(current_index,:),

child_impulse_matrix(current_index), WEIGHTING, test_conditions,

test_schedule, set_height)

 fitness(current_index,:) = [current_fit, current_index];

 % plot([angle_ratio_vec(1)-1,angle_ratio_vec],

child_gain_matrix(current_index,:), 'bx', [angle_ratio_vec(1)-

1,angle_ratio_vec],

child_ratio_matrix(current_index,:).*child_gain_matrix(current_index,:

), 'rx', -1.5, child_impulse_matrix(current_index), 'gx')

 plot([angle_ratio_vec(1)-1,angle_ratio_vec],

child_gain_matrix(current_index,:), 'bx', [angle_ratio_vec(1)-

207

1,angle_ratio_vec], child_ratio_matrix(current_index,:), 'rx', -1.5,

child_impulse_matrix(current_index), 'gx')

 pause(0.02)

 % fitness(current_index,:)

 % fitness

 end

 hold off

 % close all

 clf

 adjust_mat = zeros(NUM_OFFSPRING,2);

 adjust_mat(:,1) = [1:NUM_OFFSPRING]'*0.00001;

 sorted_fitness = sortrows(fitness+adjust_mat);

 offsize = size(sorted_fitness);

 if(sorted_fitness(1,1) == 0)

 done = 1;

 end

 parent_gain_schedule =

child_gain_matrix(sorted_fitness(1,2),:);

 parent_ratio = child_ratio_matrix(sorted_fitness(1,2),:);

 parent_impulse = child_impulse_matrix(sorted_fitness(1,2));

 store_vec = [gen sorted_fitness(1,1) parent_gain_schedule

parent_ratio parent_impulse];

 track_gen(gen,:) = store_vec;

 RunUpdateRequestSystem

 if(mod(gen,SAVE_EVERY) == 0 && SAVE_FILE_ON)

 save_mat = track_gen(1:gen,:);

save(savefile,'WEIGHTING','NUM_DISCRETE_POINTS','NUM_OFFSPRING','NUM_T

ESTS','MUTATION_SIGMA_GAIN','MUTATION_SIGMA_RATIO','test_conditions','

save_mat','-ascii');

 end

 if(mod(gen,SAVE_EVERY) == 0 && halt_requested)

 done = 1;

 end

 end

 gain_schedule = parent_gain_schedule;

 ratio_schedule = parent_ratio;

 TestGS1

208

 text_body = ['Greetings,' 10 'Your simulation has executed without

error.' 10 'Regards,' 10 '- CodeBot'];

 if(EMAIL_ALERT)

 EmailSimulationUpdate('Simulation Complete!', text_body)

 end

catch ME

 rep = getReport(ME)

 rep_email = getReport(ME, 'extended', 'hyperlinks', 'off');

 text_body = ['The error report was recorded as follows:' 10 ' ' 10

rep_email 10 ' ' 10 'Regards,' 10 '- CodeBot'];

 if(EMAIL_ALERT)

 EmailSimulationUpdate('Simulation Update: Untimely

Termination', text_body)

 end

end

209

GetControlTorque.m

See page 132

GetFitnessTestSchedule.m

function fitness = GetFitnessTestSchedule(angle_ratio_vec,

gain_schedule, ratio_schedule, applied_impulse, weighting,

test_conditions, test_schedule, set_height)

% weighting

weight_time = weighting;

weight_energy = 1-weighting;

threshold_values(1) = 1;

threshold_values(2) = 5;

% test_conditions

%

% [X1_min, X1_max;

% [X2_min, X2_max;

% [X3_min, X3_max;

% [X4_min, X4_max;

% [Impulse_min, Impulse_max;

% [alpha_des_min, alpha_des_max]

% [terrain_height_min, terrain_height_max]

X1_min = test_conditions(1,1);

X1_max = test_conditions(1,2);

X2_min = test_conditions(2,1);

X2_max = test_conditions(2,2);

X3_min = test_conditions(3,1);

X3_max = test_conditions(3,2);

X4_min = test_conditions(4,1);

X4_max = test_conditions(4,2);

Impulse_min = test_conditions(5,1);

Impulse_max = test_conditions(5,2);

alpha_des_min = test_conditions(6,1);

alpha_des_max = test_conditions(6,2);

terrain_height_min = test_conditions(7,1);

terrain_height_max = test_conditions(7,2);

% assignin('base','angle_ratio_vec',angle_ratio_vec);

% assignin('base','gain_schedule',gain_schedule);

% assignin('base','ratio_schedule',ratio_schedule);

temp_size = size(test_schedule);

num_tests = temp_size(2);

210

fitness = 0;

for m = 1:num_tests

 X1 = test_schedule(1,m);

 X2 = test_schedule(2,m);

 X3 = test_schedule(3,m);

 X4 = test_schedule(4,m);

 angle_des = rand*(alpha_des_max-alpha_des_min)+alpha_des_min;

 impulse_magnitude = applied_impulse;

 PGain = 0;

 DGain = 0;

 ACTIVATE_AT_LEG_CROSS = 0;

 terrain_height_vec = test_schedule(5,m);

 states_in = [X1; X2; X3; X4];

 action = [angle_des, impulse_magnitude, PGain, DGain,

ACTIVATE_AT_LEG_CROSS];

 [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed, y_converged, min_stance_angvel] =

StepToStepGOA(states_in, action, terrain_height_vec, threshold_values);

 scaling_factor = 1;

 yDiff = y_converged - set_height;

 % is_fallen

 % energy_consumed

 % y_converged

 % min_stance_angvel

 tripping_gradient_cost = 5*exp(-25*(y_converged-

terrain_height_vec));

 slipping_gradient_cost = 10*exp(-.25*min_stance_angvel);

% min_stance_angvel

 if(is_fallen || y_converged < terrain_height_vec)

 fitness = fitness + weighting(1);

 disp('fell')

 else

 % yCost = (exp(-6*(0-yDiff))).*(yDiff>0) + (-

100*yDiff+1).*(yDiff<=0) - 1;

 forward_step_distance = distance_traversed;

 biped_speed = forward_step_distance/time_elapsed;

 speed_cost = 1/biped_speed;

% energy_consumed

 % fitness = fitness + yCost + 2*energy_consumed +

speed_cost;

211

 fitness = fitness + weighting(2)*energy_consumed +

weighting(3)*speed_cost;

 end

 fitness = fitness + tripping_gradient_cost +

slipping_gradient_cost;

end

% pause

212

ImpulseComputationEOM.m

See page 136

InitialConditionTransformation.m

See page 142

InitStepToStepParams.m

See page 143

StepToStepGOA.m

function [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed, y_converged, min_stance_angvel] =

StepToStepGOA(state_in, action, delta_terrain_vec, threshold_values)

% Initialize Parameters

angle_des = action(1);

PGain = action(3);

DGain = action(4);

ACTIVATE_AT_LEG_CROSS = action(5);

% threshold_values format

% threshold_values = [minimum acceptable angle error (deg), minimum

% acceptable angular velocity error (deg/sec)]

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

assignin('base','terrain_height_vector',0);

InitStepToStepParams(state_in)

applied_impulse = action(2);

assignin('base','t_max',0);

evalin('base','BipedOneStepEOM');

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

213

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

final_index = 1;

EnergyComputationOneStep

SwitchStanceOneStepEOM

assignin('base','IC_StLeg_position',IC_StLeg_position);

assignin('base','IC_Base_angle',IC_Base_angle);

assignin('base','IC_StLeg_angle',IC_StLeg_angle);

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle);

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel);

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel);

assignin('base','KE_vec',KE_vec);

assignin('base','PE_vec',PE_vec);

angle_des = action(1);

PGain = action(3);

DGain = action(4);

assignin('base','terrain_height_vector',delta_terrain_vec);

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

assignin('base','t_max',2.0);

evalin('base','BipedOneStepEOM');

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

214

SwLeg_angvel_joint = evalin('base','SwLeg_angvel_joint');

final_index = evalin('base','final_index');

EnergyComputationOneStep

impulse_work = KE_vec(2) - KE_vec(1);

collision_work = KE_vec(3) - KE_vec(2);

hip_actuator_work = energy_net;

hip_actuator_energy_added = energy_added;

gravity_work = -1*PE_delta;

hip_actuator_work = hip_actuator_work - gravity_work;

total_work = impulse_work + collision_work + hip_actuator_work +

gravity_work;

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1)

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1);

%% DEBUG

% for(m = 1:length(HitCheck(1,:)))

% index = find(HitCheck(:,m),1);

% if(isempty(index))

% states_out(:,m) = [0;0;0;0];

% is_fallen(1,m) = 1;

%

% distance_traversed(1,m) = 0;

% time_elapsed(1,m) = 0;

%

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% energy_consumed(1,m) = hip_actuator_energy_added;

%

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% else

% X1out = IC_StLeg_position(2) - SwLeg_position(index,2);

% X2out = SwLeg_position(index,1) - IC_StLeg_position(1);

% X3out = Base_angvel(index);

% X4out = SwLeg_angvel_joint(index);

%

% distance_traversed(1,m) = MBCG_position(index,1) -

MBCG_position(1,1);

% time_elapsed(1,m) = sim_time(index) - sim_time(1);

%

% states_out(:,m) = [X1out; X2out; X3out; X4out];

% is_fallen(1,m) = 0;

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

215

% energy_consumed(1,m) = hip_actuator_energy_added;

%

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% end

% end

%

% final_index = length(Base_angle)

final_index = evalin('base','final_index');

X1out = IC_StLeg_position(2) - SwLeg_position(final_index,2);

X2out = SwLeg_position(final_index,1) - IC_StLeg_position(1);

X3out = Base_angvel(final_index);

X4out = SwLeg_angvel_joint(final_index);

states_out = [X1out; X2out; X3out; X4out];

% size_SwLeg_position = evalin('base','size(SwLeg_position)');

% states_out = 0;

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1'));

distance_traversed = evalin('base','SwLeg_position(final_index(1),1) -

IC_StLeg_position(1)');

time_elapsed = evalin('base','final_index(1)*dt');

energy_consumed = energy_added + abs(energy_dissipated) + impulse_work;

meet_threshold_vec = (abs(angle_des +

evalin('base','interleg_angle(1:final_index(1))')) <

threshold_values(1)).*(abs(evalin('base','interleg_velocity(1:final_in

dex(1))')) < threshold_values(2));

index_meet_threshold = find(meet_threshold_vec);

Swing_ypos = evalin('base','SwLeg_position(:,2)');

if(~isempty(index_meet_threshold))

 y_converged = Swing_ypos(index_meet_threshold(1));

else

 is_fallen = 1;

 y_converged = min(Swing_ypos(1:final_index));

end

min_stance_angvel = min(-1*Base_angvel(1:(numel(Base_angvel)-1)));

216

StepToStepTFEOM.m

function [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed, controller_p_error, controller_d_error] =

StepToStepTFEOM(state_in, action, delta_terrain_vec)

% Initialize Parameters

angle_des = action(1);

PGain = action(3);

DGain = action(4);

ACTIVATE_AT_LEG_CROSS = action(5);

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

assignin('base','terrain_height_vector',0);

InitStepToStepParams(state_in)

applied_impulse = action(2);

% sim('BipedSimGainSchedule',0)

assignin('base','t_max',0);

evalin('base','BipedOneStepEOM');

% pause

% assignin('base','StLCG_position',StLCG_position);

% assignin('base','MBCG_position',MBCG_position);

% assignin('base','SwLeg_position',SwLeg_position);

% assignin('base','SwLCG_position',SwLCG_position);

%

% assignin('base','MBCG_velocity',MBCG_velocity);

% assignin('base','StLCG_velocity',StLCG_velocity);

% assignin('base','Base_angvel',Base_angvel);

% assignin('base','SwLCG_velocity',SwLCG_velocity);

% assignin('base','SwLeg_angvel',SwLeg_angvel);

% assignin('base','StLeg_angvel',StLeg_angvel);

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

217

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

% pause

final_index = 1;

EnergyComputationOneStep

SwitchStanceOneStepEOM

assignin('base','IC_StLeg_position',IC_StLeg_position);

assignin('base','IC_Base_angle',IC_Base_angle);

assignin('base','IC_StLeg_angle',IC_StLeg_angle);

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle);

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel);

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel);

assignin('base','KE_vec',KE_vec);

assignin('base','PE_vec',PE_vec);

% KE_vec

% PE_vec

angle_des = action(1);

PGain = action(3);

DGain = action(4);

assignin('base','terrain_height_vector',delta_terrain_vec);

assignin('base','angle_des',angle_des);

assignin('base','PGain',PGain);

assignin('base','DGain',DGain);

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS);

% myopts = simset('MinStep', evalin('base','min_step_size'));

% sim('BipedSimGainSchedule', 10)

assignin('base','t_max',1.5);

evalin('base','BipedOneStepEOM');

% sim('BipedSimOneStep', 10, myopts)

% assignin('base','StLCG_position',StLCG_position);

% assignin('base','MBCG_position',MBCG_position);

% assignin('base','SwLeg_position',SwLeg_position);

% assignin('base','SwLCG_position',SwLCG_position);

%

% assignin('base','MBCG_velocity',MBCG_velocity);

% assignin('base','StLCG_velocity',StLCG_velocity);

% assignin('base','Base_angvel',Base_angvel);

218

% assignin('base','SwLCG_velocity',SwLCG_velocity);

% assignin('base','SwLeg_angvel',SwLeg_angvel);

% assignin('base','StLeg_angvel',StLeg_angvel);

StLCG_position = evalin('base','StLCG_position');

MBCG_position = evalin('base','MBCG_position');

SwLeg_position = evalin('base','SwLeg_position');

SwLCG_position = evalin('base','SwLCG_position');

MBCG_velocity = evalin('base','MBCG_velocity');

StLCG_velocity = evalin('base','StLCG_velocity');

Base_angvel = evalin('base','Base_angvel');

SwLCG_velocity = evalin('base','SwLCG_velocity');

SwLeg_angvel = evalin('base','SwLeg_angvel');

StLeg_angvel = evalin('base','StLeg_angvel');

MBCG_angvel = evalin('base','MBCG_angvel');

StLCG_angvel = evalin('base','StLCG_angvel');

SwLeg_angle = evalin('base','SwLeg_angle');

Base_angle = evalin('base','Base_angle');

final_index = evalin('base','final_index');

EnergyComputationOneStep

impulse_work = KE_vec(2) - KE_vec(1);

collision_work = KE_vec(3) - KE_vec(2);

hip_actuator_work = energy_net;

hip_actuator_energy_added = energy_added;

gravity_work = -1*PE_delta;

hip_actuator_work = hip_actuator_work - gravity_work;

total_work = impulse_work + collision_work + hip_actuator_work +

gravity_work;

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1)

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1);

%% DEBUG

% for(m = 1:length(HitCheck(1,:)))

% index = find(HitCheck(:,m),1);

% if(isempty(index))

% states_out(:,m) = [0;0;0;0];

% is_fallen(1,m) = 1;

%

% distance_traversed(1,m) = 0;

% time_elapsed(1,m) = 0;

%

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% energy_consumed(1,m) = hip_actuator_energy_added;

219

%

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% else

% X1out = IC_StLeg_position(2) - SwLeg_position(index,2);

% X2out = SwLeg_position(index,1) - IC_StLeg_position(1);

% X3out = Base_angvel(index);

% X4out = SwLeg_angvel_joint(index);

%

% distance_traversed(1,m) = MBCG_position(index,1) -

MBCG_position(1,1);

% time_elapsed(1,m) = sim_time(index) - sim_time(1);

%

% states_out(:,m) = [X1out; X2out; X3out; X4out];

% is_fallen(1,m) = 0;

% % energy_consumed(1,m) = impulse_work +

hip_actuator_energy_added;

% energy_consumed(1,m) = hip_actuator_energy_added;

%

% controller_error(1:2,m) = [angle_error(index);

angle_vel_error(index)];

% end

% end

% final_index = length(Base_angle)

final_index = evalin('base','final_index');

% size_SwLeg_position = evalin('base','size(SwLeg_position)');

states_out = 0;

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1'));

distance_traversed = evalin('base','SwLeg_position(final_index(1),1) -

SwLeg_position(1,1)');

time_elapsed = evalin('base','final_index(1)*dt');

energy_consumed = energy_added + abs(energy_dissipated)+impulse_work;

controller_p_error =

abs(angle_des+evalin('base','interleg_angle(final_index(1))'));

controller_d_error =

abs(evalin('base','interleg_velocity(final_index(1))'));

220

SwitchStanceOneStepEOM.m

See page 166

TestGS1.m

min_step_size = 0;

NUM_SAMPLES = 500;

current_time = clock;

str_store = [num2str(current_time(1)) '_' num2str(current_time(2)) '_'

num2str(current_time(3)) '_' num2str(current_time(4)) '_'

num2str(current_time(5)) '_' num2str(floor(current_time(6)))];

savefile = ['TestGS_' str_store '.txt'];

result_vector = zeros(NUM_SAMPLES, 6);

test_schedule = GenerateTestSchedule(test_conditions, NUM_SAMPLES);

Impulse_min = test_conditions(5,1);

Impulse_max = test_conditions(5,2);

alpha_des_min = test_conditions(6,1);

alpha_des_max = test_conditions(6,2);

terrain_height_min = test_conditions(7,1);

terrain_height_max = test_conditions(7,2);

for r = 1:NUM_SAMPLES

 X1 = test_schedule(1,r);

 X2 = test_schedule(2,r);

 X3 = test_schedule(3,r);

 X4 = test_schedule(4,r);

% gain_schedule = parent_gain_schedule;

% ratio_schedule = parent_ratio_schedule;

 angle_des = rand*(alpha_des_max-alpha_des_min)+alpha_des_min;

 impulse_magnitude = parent_impulse; %rand*(Impulse_max-

Impulse_min)+Impulse_min;

 PGain = 0;

 DGain = 0;

 ACTIVATE_AT_LEG_CROSS = 0;

 terrain_height_vec = test_schedule(5,r);

 states_in = [X1; X2; X3; X4];

 action = [angle_des, impulse_magnitude, PGain, DGain,

ACTIVATE_AT_LEG_CROSS];

221

 [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed, y_converged] = StepToStepGOA(states_in, action,

terrain_height_vec, [1, 5]);

 sct = energy_consumed/(distance_traversed*3*9.81);

 result_vector(r,:) = [is_fallen energy_consumed time_elapsed

distance_traversed y_converged sct];

end

save(savefile,'WEIGHTING','NUM_DISCRETE_POINTS','NUM_OFFSPRING','NUM_T

ESTS','MUTATION_SIGMA_GAIN','MUTATION_SIGMA_RATIO','test_conditions','

angle_ratio_vec','gain_schedule','ratio_schedule','test_conditions','r

esult_vector','save_mat','-ascii');

222

Gradient-Descent Heuristic Parameter Tuning Code

Step 1: Run “GradientDescentHeuristic.m”

BipedOneStepEOM.m

See page 195

EnergyComputationOneStep.m

See page 123

GetHeuristicFitness.m

function [cost, new_heuristic_parameters, step_speed_vec, sct_vec,

fallen_vec] = GetHeuristicFitness(heuristic_parameters, num_points,

initial_states, angle_des, weights, angle_ratio_vec, gain_schedule,

ratio_schedule)

NUM_POINTS = num_points;

current_time = clock;

str_store = [num2str(current_time(1)) '_' num2str(current_time(2)) '_'

num2str(current_time(3)) '_' num2str(current_time(4)) '_'

num2str(current_time(5)) '_' num2str(floor(current_time(6)))];

savefile = ['HeuristicTest_' str_store '.txt'];

threshold_values(1) = 1;

threshold_values(2) = 5;

X1 = initial_states(1);

X2 = initial_states(2);

X3 = initial_states(3);

X4 = initial_states(4);

% angle_des = 20;

impulse_magnitude = 1.9;

PGain = -100*pi/180;

DGain = PGain/10;

ACTIVATE_AT_LEG_CROSS = 0;

% angle_ratio_vec = [-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1];

% gain_schedule = 1.0.*[3.217524076 2.854678338 3.476241818

 3.823100867 3.871491193 4.046413024 4.290005978

 4.634429007 4.844104976 5.049151904];

223

% ratio_schedule = [1.486095457 1.045793855 1.085561499

 0.993975082 0.903970409 0.804858655 0.695194153

 0.460624279 0.228208339 0.752267483];

root_gain_schedule = gain_schedule;

root_ratio_schedule = ratio_schedule;

terrain_height_vec = [0];

states_in = [X1; X2; X3; X4];

action = [angle_des, impulse_magnitude, PGain, DGain,

ACTIVATE_AT_LEG_CROSS];

% clock

q = 0;

impulse_magnitude_vec =

linspace(heuristic_parameters(1),heuristic_parameters(2),NUM_POINTS);

gain_scale =

linspace(heuristic_parameters(3),heuristic_parameters(4),NUM_POINTS);

ratio_scale =

linspace(heuristic_parameters(5),heuristic_parameters(6),NUM_POINTS);

% heuristic_parameters

% pause

for impulse_magnitude = impulse_magnitude_vec

 action = [angle_des, impulse_magnitude, PGain, DGain,

ACTIVATE_AT_LEG_CROSS];

 q = q + 1;

 gain_schedule = root_gain_schedule * gain_scale(q);

 ratio_schedule = root_ratio_schedule * ratio_scale(q);

 assignin('base','angle_ratio_vec',angle_ratio_vec);

 assignin('base','gain_schedule',gain_schedule);

 assignin('base','ratio_schedule',ratio_schedule);

 [states_out, is_fallen, distance_traversed, time_elapsed,

energy_consumed, y_converged, min_stance_angvel] =

StepToStepGOA(states_in, action, terrain_height_vec, threshold_values);

 sct = energy_consumed/((distance_traversed)*3*9.81);

 step_speed = (distance_traversed)/time_elapsed;

 fallen_vec(q) = is_fallen(1);

 y_converged_vec(q) = y_converged;

 min_stance_angvel_vec(q) = min_stance_angvel;

 sct_vec(q) = sct;

224

 step_speed_vec(q) = step_speed;

 % is_fallen

 % sct

 % step_speed

end

fallen_vec = fallen_vec.*fallen_vec;

x_fitted = linspace(0.3, 1.3, 1000);

y_fitted = 0.9247*x_fitted.^2 - 0.1634*x_fitted + 0.2335;

%

save(savefile,'angle_ratio_vec','gain_schedule','ratio_schedule','impu

lse_magnitude_vec','gain_scale','ratio_scale','fallen_vec','sct_vec','

step_speed_vec','y_converged_vec','min_stance_angvel_vec','X1','X2','X

3','X4','angle_des','-ascii');

hold on

plot(step_speed_vec, sct_vec.*(fallen_vec), 'rx', step_speed_vec,

sct_vec.*(1-fallen_vec), 'b.', x_fitted, y_fitted, 'k--')

axis([0 1.4 0 1.8])

grid on

VEC = [0, 1-fallen_vec, 0];

heur_breadth = max(diff(find(1-VEC)))-1;

heur_index = find(find(max(diff(find(1-VEC))) == diff(find(1-VEC)),1)

== cumsum(1-VEC),1);

min_crop_index = heur_index

max_crop_index = heur_index+heur_breadth-1

cropped_indices = min_crop_index:max_crop_index;

if(min_crop_index == 0 || max_crop_index == 0 || max_crop_index >

length(step_speed_vec))

 speed_range = 0;

 sct_mean = 10;

 min_crop_index = 1;

 max_crop_index = length(step_speed_vec);

else

 min_speed = step_speed_vec(min_crop_index);

 max_speed = step_speed_vec(max_crop_index);

 speed_range = abs(max_speed-min_speed);

 sct_mean = mean(sct_vec(cropped_indices));

end

225

cost = sct_mean - 2*speed_range;

% find(1-fallen_vec)

new_heuristic_parameters = [impulse_magnitude_vec(min_crop_index),

impulse_magnitude_vec(max_crop_index), gain_scale(min_crop_index),

gain_scale(max_crop_index), ratio_scale(min_crop_index),

ratio_scale(max_crop_index)];

226

GradientDescentHeuristic.m

clear

clc

NUM_POINTS = 10;

NUM_GEN = 50;

% X1 = 0.05;

% X2 = 0.55;

% X3 = -30;

% X4 = 0;

X1 = 0.00;

X2 = 0.45;

X3 = -60;

X4 = 0;

drift_magnitude_vec = [0.1, 0.1, 0.1, 0.1, 0.05 0.05];

angle_des = 25;

current_time = clock;

str_store = [num2str(current_time(1)) '_' num2str(current_time(2)) '_'

num2str(current_time(3)) '_' num2str(current_time(4)) '_'

num2str(current_time(5)) '_' num2str(floor(current_time(6)))];

savefile = ['AutoTunerData_' str_store '.txt'];

initial_states = [X1; X2; X3; X4];

% heuristic_parameters = [2.6, 4.8, 0.4, 1.5, 0.6667, 1.0];

% heuristic_parameters = [3.25, 4.8, 0.4, 1.5, 0.6667, 1.0];

heuristic_parameters = [2.9284 5.6000 0.6506 2.3000 0.6560

1.4000];

root_angle_ratio_vec = [-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1];

root_gain_schedule = 1.0.*[3.217524076 2.854678338 3.476241818

 3.823100867 3.871491193 4.046413024 4.290005978

 4.634429007 4.844104976 5.049151904];

root_ratio_schedule = [1.486095457 1.045793855 1.085561499

 0.993975082 0.903970409 0.804858655 0.695194153

 0.460624279 0.228208339 0.752267483];

current_heuristic_parameters = heuristic_parameters;

weighting = 0;

figure(2)

[cost, new_heuristic_parameters, step_speed_vec, sct_vec, fallen_vec]

= GetHeuristicFitness(heuristic_parameters, NUM_POINTS, initial_states,

227

angle_des, weighting, root_angle_ratio_vec, root_gain_schedule,

root_ratio_schedule)

cost

% pause

figure(1)

cost_gen(1) = cost;

nhp_gen(1,:) = new_heuristic_parameters;

ssm_gen(1,:) = step_speed_vec;

sct_gen(1,:) = sct_vec;

fallen_gen(1,:) = fallen_vec;

for gen = 2:NUM_GEN

 cost_vec = zeros(2^6,1);

 nhp_matrix = zeros(2^6,6);

 step_speed_matrix = zeros(2^6,NUM_POINTS);

 sct_matrix = zeros(2^6,NUM_POINTS);

 fallen_matrix = zeros(2^6,NUM_POINTS);

 for s = 1:(2^6)

 adjust_vec = (dec2binvec(s-1,6)*2-1).*drift_magnitude_vec;

 heuristic_parameters = current_heuristic_parameters +

adjust_vec;

 %

 figure(1)

 [cost, new_heuristic_parameters, step_speed_vec, sct_vec,

fallen_vec] = GetHeuristicFitness(heuristic_parameters, NUM_POINTS,

initial_states, angle_des, weighting, root_angle_ratio_vec,

root_gain_schedule, root_ratio_schedule);

 cost_vec(s) = cost;

 nhp_matrix(s,:) = new_heuristic_parameters;

 step_speed_matrix(s,:) = step_speed_vec;

 sct_matrix(s,:) = sct_vec;

 fallen_matrix(s,:) = fallen_vec;

 pause(0.05)

 end

 clf

 figure(2)

 if(gen > 2)

 plot(best_ssm, best_sct, 'b.')

 end

 minimum_cost = min(cost_vec);

 min_index = find(minimum_cost == cost_vec,1);

 best_hp = nhp_matrix(min_index,:);

 best_ssm = step_speed_matrix(min_index,:);

 best_sct = sct_matrix(min_index,:);

 best_fallen = fallen_matrix(min_index,:);

 cost_gen(gen) = minimum_cost;

228

 nhp_gen(gen,:) = best_hp;

 ssm_gen(gen,:) = best_ssm;

 sct_gen(gen,:) = best_sct;

 fallen_gen(gen,:) = best_fallen;

 plot(best_ssm, best_sct, 'g.')

 axis([0 1.4 0 1.8])

 title('Tuned Heuristic Progression')

 figure(1)

 current_heuristic_parameters = best_hp;

save(savefile,'cost_gen','nhp_gen','ssm_gen','sct_gen','fallen_gen','-

ascii');

end

229

ImpulseComputationEOM.m

See page 136

End of appendix.

