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Abstract 

The field of legged robotics has been long anticipated in the popular media to 

herald a revolution in both civilian and military life.  From mechanical fire fighters 

barreling through burning apartments with minimal regard for self-preservation to nimble 

explorers bounding up Martian ridges who never complain about the cold, finding 

applications for bipedal machines requires little imagination.  Despite their promised 

dexterity and overall popular appeal, in the early 21
st
 century, bipedal robots are seldom 

sighted outside of university research labs or cutting-edge technology firms.  

The absence of these legged machines in our daily lives can be attributed to 

significant technical barriers in performance.  The largely untold flaw of Honda’s 

flagship robotic humanoid, ASIMO, is that its exorbitant energy consumption drains its 

generously sized battery pack in roughly 30 minutes, nullifying its utility outside of 

relatively short public demonstrations.  Recognizing that this energy limitation is not 

unique to ASIMO but common among current-generation walking robots, academic 

researchers have recently pushed to develop highly energy-economical bipeds.  The 

consequence has been a series of prototypes which trade an abundance of actuation and 

control authority for an underactuated approach dubbed Dynamic Walking.  Specifically, 

Cornell University developed two internationally publicized walking machines; one 

which boasted energy economy on par with human walking (for short distances) and the 

Cornell Ranger which set a world record for walking 5.6 miles on a single battery charge. 

While delivering such significant advances in energy economy, dynamic walking 

robots have still largely fallen short in applications with high speed requirements or 
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rough terrain.   This investigation uses simulation to explore the inherent tradeoffs of 

controlling high-speed and highly robust walking robots while minimizing energy 

consumption.   Using a novel controller which optimizes robustness, energy economy, 

and speed of a simulated robot on rough terrain, the user can adjust their priorities 

between these three outcome measures and systematically generate a performance curve 

assessing the tradeoffs associated with these metrics. 

The novel robot controller is a two-tiered hierarchical system consisting of a 

tradeoff-conducive control heuristic used for individual steps and an overseeing Artificial 

Intelligence algorithm to decide which step to take.  The tradeoff-conducive control 

heuristic is shown to have marked advantage over traditional proportional-derivative 

controllers.  This control heuristic rapidly generates controllers which span a wide range 

of step speed and energy economy for the simulated biped.  Generated controllers are 

also shown to produce the same step speed while using smaller energy budgets than their 

traditional counterparts.  The overseeing algorithm (a value-iteration reinforcement 

learning algorithm) is demonstrated to be capable of selecting these single-step 

controllers in a manner resulting in sustained walks over a kilometer in length while 

producing the desired energy-speed tradeoffs. 
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Chapter 1: Introduction 

Ever since 1959, robots have been built to assist humans in a variety of dull, dirty, 

and dangerous jobs (Kurfess 2005).  From the earliest industrial robots which were used 

in such applications as painting wheelbarrows, applications for robots have ballooned 

into countless sectors of research, industrial, and military enterprises.  Robots assemble 

our cars, inspect for bombs, perform surgery, explore Mars, and sweep our floors.  

Despite all these advances in technology, robots still struggle to do what many people 

consider to be trivial.  Robots cannot yet walk like humans.   

While many robots have been built which can repeatedly place one foot in front of 

the other, none can do so on the same energy budget as humans without sacrificing the 

stability and agility of which humans are capable.  To emphasize the point, arguably the 

world’s most famous bipedal robot, ASIMO, consumes an estimated 16 times the amount 

of energy that a human requires to walk (Collins 2005).  The problem is profound and 

high-profile enough that a $200,000 “W-Prize” has been offered for a robot capable of 

traversing a ten-kilometer obstacle course with limited time and a strict energy budget.  

This prize remains unclaimed as it is simply very difficult to make a robot so robust to 

avoid falling, economical in energy consumption, and sufficiently speedy to meet the 

requirements on an obstacle course. 

This problem for walking robots is disappointing as human-like locomotion is a 

critical means of navigating urban environments.  Humans can bound up stairs, step over 

obstacles, squeeze into elevators, and dart around other humans.  Humans are also 

capable of handling extreme natural terrains like cliff walls, thick forests, mountains, and 
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sandy deserts.  Before even beginning to address these extreme conditions, solutions must 

be found for designing robots which can walk with performance on par with humans.  

Much of this room for improvement may be filled by advances in robot control. 

 

Controlling Walking Robots 

Walking robots are plagued with some significant technical barriers for entry into 

military, industrial, and consumer markets.  With exception to some recently-developed 

robust prototypes such as the M2V2 (Pratt 2008), bipedal robots simply fall too easily to 

be left unattended even in the absence of significantly challenging terrain or antagonistic 

agents.   Compensating for this lack of robustness, many prototypes have traditionally 

employed fully-actuated control systems to dominate the dynamics and eliminate falls.  

By using such heavy actuation, these control strategies inherently constrain the overall 

robot agility and require extravagant energy budgets to implement (Collins 2005). 

 

Zero-Moment Point Control 

The origins of modern, formalized bipedal robot control date back as far as 1968.  

Miomir Vukobratovic produced a number of papers which acted as the foundation for 

Zero-Moment Point (ZMP) Control (Vukobratovic 2004).  In effect, the ZMP approach to 

locomotive control preserves the dynamic balance of the biped for the entirety of each 

stride.  This approach regulates the motion of the biped’s mechanical linkages such that 

the biped’s weight and reaction forces can be counteracted by a single point load applied 

at a point (the zero-moment point) by the foot.  If this force is applied within the foot 
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area, it ensures that the sole of the robotic foot is in full, flat contact with the surface.  

This balanced gait and “stable” ground-foot contact eliminates many of the dynamic 

challenges associated with bipedal gait control.  The ZMP is a concept utilized 

pervasively in the field of bipedal robotic control.  Perhaps the most notable instance of 

ZMP implementation is the Honda Motor Company’s flagship humanoid robot, ASIMO, 

which is pictured in Figure 1.1. 

 
Figure 1.1: Honda Motor Company’s prototype humanoid robot, ASIMO, which is likely 

the most well-known example of bipedal robot control using zero-moment point methods 

 

Passive-Dynamic Walking 

Since 1990 (McGeer 1990), there has been a push by researchers to use the 

inherent dynamics of legged systems, not an abundance of actuation, to facilitate forward 

motion and stability.  Sacrificing the luxury of complete control authority over the 

physical state of the robot resulted in a considerable alleviation of its energy burden.  

This finding gave rise to the field of passive-dynamic walking, an approach which 

inspired walking machines capable of achieving stable gaits using a shallow downward 
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slope as its solitary energy source, as shown for example on the left in Figure 1.2.  

Requiring such meager resources, these bipeds became the mold for so-called dynamic 

walking robots, which seek to minimize actuation costs of level-terrain walkers (Collins 

2005).  Such robots include Cornell’s “Ranger”, shown on the right in Figure 1.2, which 

currently holds the record for walking 5.6 miles, the longest distance walked by a 

machine without being touched or refueled (Karssen 2007). 

 

Figure 1.2: Dynamic bipedal robots built by Collins and Ruina at Cornell University; 

Collins robot (left) and Cornell Ranger (right). 

 

Underactuated Systems 

While the energetic performance of dynamic walking robots is promising and 

their gaits are technically stable, relatively small disturbances can force the robot into an 

irrecoverable state.  Furthermore, the relinquishing of control authority that allowed for 

the development of such economical machines has moved these bipeds firmly into the 

category of underactuated mechanical systems (Spong 1998).  An underactuated system 
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is one that lacks the proper number of actuators to control the number of degrees of 

freedom in the system. 

A classic and relevant example of underactuation is the gymnastic “acrobot”.  

Figure 1.3 (left) depicts the acrobot as a double pendulum with a single actuator 

providing a torque at the distal joint.  The challenge of this system is to design a 

controller to balance the acrobot upright in a “headstand” as shown in a stroboscopic 

representation in Figure 1.3.  Despite having a mere two degrees of freedom, controlling 

this system proves to be deceptively complex and has been approached using techniques 

as sophisticated as spiked neural networks and genetic algorithms (Wiklendt 2008). 

 

Figure 1.3: A visualization of the “Acrobot” (left) and a stroboscopic sequence of various 

attempts to balance it (Wiklendt 2008) using a spiked neural network approach (right). 

 

The acrobot provides a particularly apt example for not only under-actuated 

systems, but also a simple model for walking machines called the compass gait.  The 

original compass gait walking model (Espiau 1994) as shown in Figure 1.4 (left), like the 

acrobot, is a double pendulum actuated only through a torque applied at the revolute-

jointed hip.  It is casually noted in recent papers (Byl 2008) that the compass gait model 

is dynamically equivalent to the acrobot, a comparison which is more obvious when 
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viewing the compass gait visualized in Figure 1.4 (right).  While the goals of compass 

gait control are dissimilar to the common acrobot balancing challenge, the comparison 

reveals the need for implementation of complex control systems for even a single leg 

swing, let alone a series of steps.  This underscores the nonlinear nature of the compass 

gait model and the consequent challenges associated with its control. 

 

Figure 1.4: Visuals of the first reference (Espiau 1994) to the compass gait walking 

model (left) and its current implementation (Byl 2008) with a more obvious resemblance 

to the Acrobot (right). 

 

Limit-Cycle Stability and Robustness 

A number of investigations have been published studying the compass gait in the 

purely passive case, i.e. zero hip torque.  The literature regarding the stability analysis of 

the two-dimensional passive walker has been numerously replicated and the methods are 

well-established within the dynamic walking community.  In such a system where there is 

no active controller, the most common means of achieving a self-perpetuating gait is 

through limit-cycle walking (Hobbelen 2007).  Limit-cycle walking is achieved when 

each step is dynamically identical to the previous step, resulting in a sustained (but not 
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necessarily stable) gait.  The gait is deemed “stable” if, when given a small perturbation, 

the system converges back to a limit cycle gait. 

Furthermore, the ability of the machine to reject larger disturbances reflects the 

system’s robustness.  The region of the walker’s state-space over which the system 

converges to a sustained gait is dubbed the basin of attraction.  The size of this basin acts 

as an indicator of system robustness, as shown in Figure 1.5 (left) for a passive compass-

gait walker.  Figure 1.5 (right) defines the state variables for the compass gait used on the 

axes for the plotted basin of attraction.  It has been an ongoing goal for dynamic walking 

researchers to increase the size of the attractive basin as currently-sized basins often 

result in generally poor disturbance rejection in practice (Byl 2009). 

 

Figure 1.5: Basin of attraction depicted by shaded region (left) for pictured compass gait 

model (right) (Byl 2009) 

 

Robust Biped Control 

Various approaches are under investigation to satisfy the demand for more robust 

walking bipeds.  One such method approaches robustness as a push recovery problem 
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(Pratt 2006).  Balancing a biped on one foot is the archetypal problem for push recovery.  

If push recovery were implemented on a ZMP controlled robot such as ASIMO, small 

pushes require only an adjustment of the standing foot’s center of pressure (CoP) to 

sufficiently maintain balance.  However, for larger disturbances, it may be necessary to 

take additional steps to avoid falling.  To assess whether such a step needs to be taken to 

regain balance after a push, a capture region is computed.  A capture region is an area on 

the ground a foot’s CoP must occupy to avoid a fall.  If the capture region does not 

intersect the standing foot, a step must be taken by the raised foot which lands in the 

capture region as illustrated in Figure 1.6.  

 

 

Figure 1.6: Illustration of the concept of “capture regions” (Pratt 2006), which are regions 

in which to place the foot center of pressure to recover from a push 

 

Furthermore, capture regions have been expanded upon to solve more problems 

than simple push recovery.  Capture regions have been used as a means of solving 
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intermittent terrain problems (i.e., stepping stones) via multiple capture regions.  If a 

capture region is not reachable in one step, perhaps it is possible to reach by taking more 

steps.  Intermediate capture regions are then defined to reach the next capture region.  

Capture regions can even be used as a generalized walking approach, treating a sequence 

of steps as a series of forward falls, as utilized for the control of the IHMC M2V2 (Pratt 

2008) shown in Figure 1.7.  Using capture points has shown superior robustness to 

traditional ZMP approaches, which makes for an excellent safe-guard against falling 

when large disturbances are detected.  However, the method lacks the utilization of 

inherent dynamics that make dynamic walkers energetically economical. 

 

Figure 1.7: The M2V2 humanoid robot developed by the Institute for Human and 

Machine Cognition (Pratt 2008) 

 

Metastability 

An alternative approach to robust walking has been recently developed for 

dynamic walkers using the concept of “metastability” (Tedrake 2006).  While dynamic 
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walkers have been traditionally controlled with a limit cycle gait in mind, taking a 

metastability-based approach allows for the robot states to “wander” around a much 

larger region in state-space, so long as the transitory states do not lead to walking failure.  

Furthermore, a metastable approach does not require a deterministic model of reality.  

The dynamics can be modeled probabilistically which allows for the addition of 

stochastic disturbances.  As such, stochastic terrain can be incorporated in the walking 

model (as depicted in Figure 1.8) and can be approached using metastability methods. 

 
Figure 1.8: Visualization of stochastic terrain for the compass gait model 

 

In essence, if the system is controlled in a manner that is highly metastable (walks 

for many steps without falling) on rough terrain, then such an approach would be 

considered highly robust.  By using an artificially intelligent algorithm, “approximate 

optimal control” (Byl 2008) of the compass gait on rough terrain was developed to 

maximize the number of steps to failure.  The results of research by Byl and Tedrake at 

MIT for controlling of the compass gait model on rough terrain using this method are 



11 
 

shown in Figure 1.9.  This approach has resulted in simulated walkers which take as 

many as an estimated 10
14

 steps (denoted by a metastability metric called mean first-

passage time or MFPT) before falling on rough terrain. 

 
Figure 1.9: The results of control of the compass gait model on rough terrain using a 

Value-Iteration Reinforcement Learning Algorithm (Byl 2009) 

 

Performance Tradeoffs 

It is clear that the metastability approach to handling rough terrain walking is 

quite powerful in developing highly-robust controllers.  While an impressive result for 

robustness, the actuation utilized in these highly robust simulations are far from 

economical in regard to energy consumption.  Energy economy is a significant motivator 

for the development of dynamic walking methods and should be kept in focus. 

Furthermore, decreases in energy consumption are likely to result in a loss in 

walking speed.  It also remains unknown how changing walking speed will impact 

walker’s robustness and vice versa.  The result of these possibly synergistic or 
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antagonistic relationships may result in an interesting tradeoff problem.  To investigate 

any such relationship, a means must be developed to synthesize controllers which can 

optimally meet demands of robustness, energy economy, and speed to the desires of a 

user. 

 

Goal Statement 

The goal of this thesis is to produce a method of synthesizing controllers capable 

of controlling a simulated walking robot on rough terrain.  Furthermore, the aim is to 

traverse such terrain while being able to produce a wide range of performance over three 

key parameters: robustness, energy economy, and speed.  Using the techniques employed 

for metastable walking as a starting point, supplemental methods for controlling single 

steps with high speed or low energy cost must be developed via optimization techniques.  

In turn the metastability methods must be modified to accommodate more than the single 

robustness metric.  Accomplishing such a feat would be a novel contribution to the field 

of dynamic walking. 
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Chapter 2: Simulation Model 

Central to any simulation-based investigation is the definition of the system 

model.  In dynamic walking, a number of models have been used in the study of gait 

control.  Some models have complex kinematic layouts incorporating feet, knees, an 

upper body, and sometimes arms (Yin 2007).  Models have more recently begun to 

incorporate springs which may produce dynamics more advantageous to walking (Hurst 

2008).  Some models are so rudimentary that their relationship to walking is less 

intuitive, as is the case in the example of the rimless wheel (McGeer 1990). 

Among the simpler of the proposed frameworks is the compass gait model.  

Ignoring effects such as three-dimensional dynamics, foot-slipping, and collision 

elasticity, the compass gait model provides a platform upon which the most fundamental 

principles of bipedal walking can be isolated and probed.  Variations upon the compass 

gait have been used as the basis for foundational research on the stability (Espiau 1994), 

energy economy (Kuo 2002), and terrain robustness (Byl 2009) of dynamic bipedal 

locomotion.  Its relative simplicity and considerable precedence render the compass gait 

most conducive to investigation into the control of performance tradeoffs in dynamic 

bipedal robots. 

 

Hybrid Continuous/Discrete Dynamics 

On the most basic level, this simulation uses a hybrid system of continuous and 

discrete dynamics: the compass gait walking model being modeled as a discrete series of 

dynamically continuous steps.  Governed by Newtonian mechanics for the swing of each 
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leg, the continuity is punctuated by a series of impact events resulting from the swing leg 

colliding with the terrain.  This discretization, in addition to being necessary in the 

modeling of ground impacts, has advantages in the analysis of the long-term gait.  

Instantaneously prior to these impacts, a conceptual snapshot is taken called a Poincare 

section.  This concept is vital to the analysis of dynamic walking. 

 

Poincare Section 

A critical tool for analyzing continuous systems on a discrete level, a Poincare 

section is a representative snapshot of the system states.  If the system state variables are 

an accurate and sufficient representation of the dynamics, these recorded state variables 

taken at this instant can be used as indicators of performance on a greater time scale.  In 

application to dynamic walking, a Poincare section can be taken immediately preceding 

the swing leg’s collision with the ground, capturing the state variables at that instant.  

Subsequently, a Poincare section is taken in the same situation for each of the following 

steps, generating a discrete series of representative states in a sequence of steps.  If these 

states are identical over the series of sections, the walker is considered to be in a limit-

cycle condition, indicating each step is dynamically equivalent to the last.  In 

visualization, the walkers gait would appear perfectly steady.  More complex linear-

algebra-based analysis has been used to characterize the stability of such gaits using this 

discrete framework (Goswami 1996).  This framework will serve here as a basis for a 

form of robustness analysis contingent upon a discrete system formulation. 
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In this study, as per the aforementioned example, a Poincare section is defined at 

the instant immediately prior to the swing leg collision.  This situation is defined as the 

first time-step in which the swing leg has met terrain-crossing conditions.  Figure 2.1 

depicts the sequence of events which occur between hypothetical Poincare section i and 

its subsequent counterpart Poincare section i+1.  The transition from one Poincare 

section to the following section is defined as the Step-to-Step transfer function.  The step-

to-step transfer function comprises five stages: terrain cross detection, pre-collision 

impulse actuation, swing leg collision, swing/stance leg switch, applied hip torque and 

continuous dynamics. 

 

Terrain-Crossing Conditions 

Terrain-crossing conditions, the criteria at which a Poincare section is defined, are 

only met when the swing leg crosses the current terrain boundary and vertical velocity of 

the end point of the leg with respect to ground is negative, which precedes any collision 

computations or applied impulses.  This criterion prevents the inevitable “scuffing” that 

occurs with straight-legged walkers that cannot reduce their leg length mid-step.  Both 

legs being the same length, as the swing leg approaches the stance leg, the swing leg must 

cross the terrain boundary to which the stance leg is connected.  In effect, this would 

cause the swing leg to “scuff” the ground.  A common assumption to avoid scuffing is to 

simply turn off collision detection until the legs cross each other after some arbitrary 

small separation distance.  To meet this anti-scuffing requirement, terrain crossing 
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detection is only active once the swing leg is 5 cm in front of the stance leg ground pivot, 

which approximates the act of retracting the swing leg to avoid premature collisions. 

The leg retraction that would be necessary in an actuated device is modeled as 

have zero dynamical significance outside of collision detection, which is mirrored in the 

design of prototypes (Iida 2009) which seek to minimize the impact of this retraction in 

the design.  A step is considered a failure if the simulation fails to terminate after five 

simulation seconds or the main body crosses the terrain boundary, as this indicates that 

the walker has fallen backward or tripped forward prior to activating the collision 

detection.  If a step failure occurs, a Poincare section is taken but is tagged with a flag 

indicating the occurrence of a failure. 
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Figure 2.1: Five stages of the single-step transfer function beginning at Poincare section i 

and terminating at section i+1: detect terrain crossing of lead leg, apply instantaneous 

impulse in line with trailing leg, compute plastic collision at leading leg, swap ground 

revolute joint and state variables, compute continuous dynamics with hip-torque 

actuation until terrain cross is detected 

 

 

Compass Gait Continuous Dynamics 

Disregarding the discrete impact events, the compass gait model is essentially a 

double pendulum.  The planted (stance) leg is connected to ground via a revolute joint.  
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In turn, the swing leg is revolute-jointed to the free-swinging end of the stance leg.  Each 

leg is modeled as a massless rod with a lumped point mass at the center.  At the 

connection of these two legs, the hip joint is the main body which is similarly modeled as 

a point mass.  This continuous model includes one mode of actuation, a torque (τ) applied 

at the hip joint (the second mode of actuation, the pre-collision impulse, is discrete and is 

not included in the continuous model).  The hip actuator exerts an ideal torque at the hip 

joint between both legs which serves to control the angle between the two legs (the 

“interleg” angle).  The control law for this hip torque is described in the following 

chapter.  The terrain boundary distance (δ), the vertical displacement with respect to the 

ground pivot, is recalculated for each step in accordance with a stochastic terrain model.  

A diagram of the utilized compass gait model is shown in Figure 2.2 which illustrates the 

kinematic layout, relevant masses and dimensions, key variables, coordinate system and 

the directionality of the actuating torque.  These model parameters were chosen to 

replicate the parameters of similar research (Byl 2009). 
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Figure 2.2: A diagram of the utilized compass gait model 

The Compass Gait model yields four state variables, corresponding to the angles 

and angular velocities of each leg:   ,   , and their respective time derivatives  ̇ , and  ̇ . 

These state variables, in conjunction with the hip actuator, are governed by the 

continuous acrobot dynamics (Spong 1994) between discrete impact events.  The 

equations of motion and prerequisite variable assignments are given in Eq. 2.1-2.13.  A 

Newton-Euler numerical solution is computed in MATLAB using a fixed time-step of 

0.001 seconds.  This time-step allowed the simulation to compute approximately twelve 

steps per second and resulted in numerical errors of less than 0.01 radians, which was 

deemed acceptable accuracy given that the controller will be subjected to stochastic 

terrain which will be a far more dominant effect over many steps. 
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Collisions 

The process of walking, while otherwise modeled using continuous dynamics, is 

punctuated by a discrete series of impacts.  In the utilized model, all collisions are 

assumed to be perfectly inelastic, which facilitates key features of the compass gait 

model.  For the compass gait model to be valid, the stance leg must remain planted 

throughout the continuous leg swing.  Any elasticity in the collision would inherently 

result in a momentary separation of the colliding leg and the ground.  While the dynamics 

of an airborne biped can be calculated, the lack of a ground-reaction force to constrain the 

stance leg motion would likely result in highly aberrant limb behavior.  Furthermore, 

subsequent re-collisions would ensue as a direct result of an airborne stance leg which 

would complicate a meaningful definition of a successful step.  Collisions are one of the 

primary means of energy loss for the compass gait walker. 

Collisions are modeled as occurring instantaneously with perfect plasticity, an 

event which exchanges the ground and free joints at the legs’ distal points from the main 

body.  Originally developed for a model more complicated than the compass gait model, 

the collision is computed using the visual model in Figure 2.3.  Figure 2.3 details the 

three rigid bodies which are simplified to point masses in the compass gait model.  The 

arrowed distances indicate the separation of the centers of mass of the rigid bodies (in 

this case, the masses are concentrated in the centers of the legs and at the hip) and the two 

revolute joints.  Using angular momentum conservation equations, post-collision 

velocities are computed using the formulations in Eq. 2.15-2.18.  The components of the 

distances in the x and y directions are used for the variables r2ax, r2ay, r2bx, r2by, r3ax, r3ay, 
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r3bx, and r3by.  The rotational inertias of the links about the center of mass (J1, J2 and J3), 

because they are point masses, are zero (set to 10
-6

 kg-m
2
 to avoid divide-by-zero errors).  

The leg angles are transformed, post-collision, in a manner which effectively swaps the 

swing and stance legs, allowing for a self-perpetuating walking sequence. 

 
Figure 2.3: Rigid body representation of the compass gait for collision computations 
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Impulse 

One of the primary modes of actuation for the compass gait (and rigid-linked 

walkers in general) is the pre-collision impulse.  Modeled as an instantaneous push-off of 

the back-foot, the pre-collision impulse has been demonstrated to be an efficient means of 

imparting energy for forward motion of the biped (Kuo 2002).  When tested on rough 

terrain (Byl 2009), impulse actuation was necessary to successfully traverse terrain with 

significant roughness.  This finding was replicated with this model, showing that a pre-

collision impulse was important in rough terrain walking.  The effect of the impulse is 

calculated in a very similar method to the collision computation, and is in effect, an 

intentional collision.  The equations for the impulse calculation are shown in Eq. 2.19-

2.22. 
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Eq. 2.20  

 

     Eq. 2.21  

 

Stochastic Terrain Model 

At their core, many examples of walker-challenging terrain can be represented as 

a series of changes in terrain height, and as such, are modeled thusly in the stochastically 

varying terrain biped model.  To provide proper application to later-described control 

methods, a discretized probability function of changes in ground-height-per-step is used 

to stochastically model terrain.  The current terrain height is regenerated at the beginning 
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of each new step which means, in effect, the terrain height is constant for the duration of 

the stride, regardless of step size.  The stochastic terrain model is visualized in Figure 2.4, 

illustrating that the terrain height changes are generated by a characteristic (Gaussian) 

probability function. 

 

Figure 2.4: Illustration of the core concept of the stochastic terrain model: a ground 

height which varies in accordance to a given probability distribution 

 

  In the numerical experiments presented, a Gaussian distribution is selected to 

approximate a generically coarse surface with a “roughness” characterized by its standard 

deviation, as done in prior work by Byl (2009).  It should be noted that the proposed 

methods in no way obligate a Gaussian probability distribution for terrain height as 

depicted in Figure 2.4.  On the contrary, the versatility of this approach allows for 

discrete distribution functions which can be tailored to accommodate more specialized 

and exotic features (i.e., stairs, hurdles, or blocks). 
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This model is not designed to approximate any specific terrain instance in the 

manner of a predefined obstacle course, but instead, acts as a statistical representation of 

a given type of terrain.  A representative approximation of stochastically generated 

terrain is pictured in Figure 2.5, which interpolates the terrain linearly between the 

resulting footholds. 

Additionally, the stochastic terrain biped model has no memory of the absolute 

position of the walker, and hence cannot account for position-dependent terrain features.  

Efforts have been successful in characterizing terrain attributes in a manner which 

remains amenable to reinforcement-learning techniques yet are ill-approximated by a 

single probability distribution function (i.e., pits and chasms).  While pits and chasms can 

be superficially modeled as a sizeable drop in height, attempts to navigate this feature 

would result in the inevitable failure of the walker. This inherent limitation is the product 

of the model’s inability to represent position-dependent features, which renders the act of 

spanning the gap impossible.  Byl (2009) has demonstrated the usefulness of a 

deterministic wrapping terrain model in its ability to represent intermittent terrain, which 

accommodates “no-go” regions that add further constraints to the walking controller.  

The addition of such a repeating terrain sample can extend terrain models in their 

applicability to practical scenarios, and consequently, their navigability via 

reinforcement-learning techniques. 
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Figure 2.5: Frame of animation of walking sequence picturing a representative terrain 

roughness (Note: smoothness of terrain in animation is purely aesthetic) 

 

Validation 

The continuous dynamics were validated by comparison with similar models 

constructed in SimMechanics and ADAMS.  With a sufficiently small simulation time 

step (10
-6

 seconds), the output variables for the continuous dynamics were identical to 

other simulations within 10
-5

 radians.  Furthermore, the energy levels were continuously 

measured to ensure that energy remained conserved during unactuated motions.  The full 

model (with collisions) was tested and shown that the model with no actuation would 

produce stable passive-dynamic walking on a downward slope.  When equilibrium 

passive-dynamic walking was achieved, it was verified that the work done by gravity was 

equivalent to the energy lost in each plastic collision. 

 

Actuation and Control 

The two modes of actuation in the model are the pre-collision impulse (push-off) 

and the applied hip torque (forward kick).  There are several established means of using 

these inputs to effectively control the compass gait which vary in complexity.  The goal 
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of this thesis being to synthesize controllers with a wide performance range, it is 

necessary to utilize these actuation methods for their respective strengths in regard to 

energy economy, speed, and robustness.  The following chapter outlines some traditional 

approaches for control in dynamic walking as well as a novel method proposed by this 

investigation. 
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Chapter 3: Genetically Optimized Gain-Scheduled Control 

By nature, walking models have a number of features which render their control 

difficult for traditional methods.  The continuous dynamics of the system are nonlinear, 

limiting their tractability with linear techniques.  Linearization methods, while common 

tools for solving nonlinear control problems, require approximations (e.g., small angle 

assumptions) to be useful.  Most problematically, the compass gait model is 

underactuated for the duration of the swing.  The lack of direct actuation at the ankle joint 

surrenders all authority over the stance leg behavior to the momentum transfer of the 

swing leg controller and Newtonian dynamics.  Despite these inherent complexities, 

relatively simple controllers have been shown to be effective in various experimental 

prototypes that are well-modeled by simple representations like the compass gait (Karssen 

2007, Iida 2009) 

 

Proportional-Derivative (PD) Control 

Among the most basic of controllers, the proportional controller, also known as P 

control, commands a control effort proportional to the control “error”.   The control effort 

for mechanical systems is often a torque or force, but is always some form of variable 

input.  The error (e) is defined as the numerical difference between a quantifiable system 

state, or system output, and the desired system state.  The coefficient by which the control 

effort is proportional to the controller error is dubbed the controller gain (KP).  The 

commanded control effort, a hip torque (τ) in this application, forces the interleg angle (α) 
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to converge upon the desired interleg angle (αdes) using the control law shown in equation 

3.1. 

 

 
)(   desPP KeK  Eq. 3.1  

 

The standard proportional controller is often supplemented by adding further 

terms to the control law.  One such addition is a derivative term which regulates the rate 

of change of the system output with respect to time.  This requires the inclusion of an 

additional gain (KD), dubbed the derivative gain.  The control law for the Proportional-

Derivative (PD) Controller is given in equation 3.2.  The derivative term often serves to 

diminish oscillations and is often necessary to expedite convergence to the desired 

output.  For this application, the desired time derivative of the interleg angle is always set 

to zero. This creates the functional equivalent of a mechanical damper which retards 

velocity.  Also of note, the derivative controller can serve as a significant energy 

dissipater in a mechanical system. 

 
)()(    desDdesP KK  Eq. 3.2  

The values for the proportional and derivative gains are paramount in tuning the 

behavior of the system.  Generally speaking, heightened proportional gains can be 

implemented to tighten control of the system and decrease convergence time, but tend to 

require more energy consumption on the part of the actuators.  Conversely, lower 

proportional gains tend to increase convergence time and alleviate the energy burden.  
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Tradeoffs emerge in selecting the derivative gain as well.  Derivative gains are critical in 

minimizing “overshoot” and damping the system behavior.  Serving as a dissipater, these 

values also have significant effect on energy consumption. 

In application to dynamic walking, either high or low proportional or derivative 

gains could be advantageous depending upon the scenario.  For a simplistic example, 

high proportional gains for the interleg controller could be desirable for comparatively 

rough terrain, which would assure each step has converged to the desired interleg angle 

before landing on an aberrantly tall surface (provided the derivative gain is sufficiently 

large to prevent grossly overshooting the desired leg angle).  Applications demanding 

greater energy economy could sacrifice such high-fidelity stepping, using lowered 

proportional gains and reduced dissipative derivative gains to save on power 

consumption. 

Advantageously, this control method has sufficient algorithmic simplicity that 

equivalent control can be achieved using mechanical springs and dampers (Wisse 2007).  

However, what this research seeks to find is a tradeoff-conducive controller.  The 

generous computational resources available both on and off-board with current 

technology allow for a more thorough exploration of potential controllers which feature 

superior tradeoffs in robustness, energy economy, and speed. 

 

Gain-Scheduled Control 

A common approach to controlling nonlinear systems is gain-scheduling.  In the 

aforementioned section, a PD controller was described as having a set of gains, one each 
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for the proportional and derivative terms respectively, which fully describe the behavior 

of the controller.  In systems where different points in the system state space may have 

different responses to the control effort, it can become advantageous to apply different 

sets of gains.  This approach is called gain scheduling.  For the application at hand, the 

interleg angle is chosen as the key variable to be discretized for the purposes of gain 

scheduling, as illustrated in Figure 3.1.   

 

Figure 3.1: Compass gait model discretized by interleg angle for gain-scheduled control 

 

The interleg angle was chosen as a target variable for gain-scheduled control for a 

number of reasons.  The position of the swing leg in relation to the stance leg is an 

excellent indicator of the net torque on the ground pivot as a result of gravity (i.e., a 

swing leg held behind the stance leg will tend to cause a backward fall).  Given the swing 

is largely unidirectional (neglecting small oscillations due to P-control near the desired 
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angle), the interleg angle correlated to the time elapsed during the swing.  In addition, a 

common alternative to a pure PD controller in dynamic walking is the “activate at mid-

stance” approach (Byl 2008), where the controller is turned on only after the swing leg 

passes the vertical.  This is a rudimentary example of gain-scheduling by discretizing the 

leg angle into two regions, which results in greater energy economy and somewhat 

slower controller convergence time.  A gain schedule with a higher resolution 

discretization has the opportunity to further improve upon this increased energy economy 

by refining the gain-schedule. 

Lastly, the gain schedules’ angle discretization is normalized with respect to the 

desired interleg angle (    ) instead of absolute interleg angle.  The normalization is a 

convenience that helps ensure that if the desired interleg angle is changed, the gain 

schedule will have this new target angle as a goal.  In particular, normalization assures 

that gains which were tuned to control the leg when close to the target angle continue to 

apply close to the target even in the event that      is changed (these near-target gains in 

essence serve to hold the leg steady).  Normalized angles are represented as the ratio of 

the interleg angle to     ;  -1.0 would represent an interleg angle of        and 0.0 

would indicate leg cross.  The normalized angle range is divided into ten sectors in order 

to provide a relatively fine resolution.  Eight of these sectors are evenly split between a 

relative angle of -1.0 and 1.0, with the two remaining sectors capturing every value 

outside of that range.  This level of discretization was chosen as it was thought that eight 

intermediate sectors would provide sufficient resolution to examine a general shape of the 

profile. 
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Control Parameter Set 

It is important to recall from the previous chapter that the hip torque is only one of 

two methods of actuating the compass gait model.  The pre-collision impulse is a critical 

component of the walker’s actuation.  The impulse is a significant contributor to the 

system kinetic energy, and consequently, can be a significant drain on the actuator energy 

supply.  As such, important tradeoffs are likely to be found in the variation of this 

impulse magnitude.  This “push-off” control has only one parameter of variation, the 

magnitude of the applied impulse (which is always applied along the stance-leg direction, 

depicted in Figure 2.1).  Given the potential prominence in its role for control, this scalar 

impulse magnitude is appended to the gain schedule as another parameter for adjustment.  

Including values other than simply controller gains, the gain schedule with the additional 

applied impulse magnitude is now more aptly dubbed the control parameter set.   

 

Genetic Optimization 

A genetic algorithm is a stochastically driven global search heuristic which seeks 

an optimal solution to a defined problem.  Inspired by biological evolution, a genetic 

algorithm utilizes random variation, selection, and reproduction to search for an 

approximate, optimal solution by maximizing the desirability or solution fitness.  A 

genetic algorithm requires three key components, a genetic representation of the solution 

domain, a fitness function, and a reproduction algorithm. 
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“Methinks it is like a weasel” 

A classic example for the use of a genetic algorithm is the “weasel” program 

(Dawkins 1986).  The task entails creating a program to generate a target 28 character 

string, starting from a series of 28 random characters.  Using only random variation to 

edit the string, the program must produce the phrase “METHINKS IT IS LIKE A 

WEASEL”, a line from Shakespeare’s Hamlet.  Intuitively, this scenario conjures 

comparisons to the thought experiment of monkeys randomly pounding on typewriters 

writing Shakespeare.  The probability of such monkeys pounding on keyboards (random 

character generation) stumbling upon this particular Shakespeare quotation is vanishingly 

small (≈1:10
40

).  However, by supplementing this random variation with selective and 

reproductive algorithms, this stochastic approach becomes a powerful means of 

navigating enormous design spaces to find a workable solution. 

The sequence of characters serves as a simple genetic representation, which is 

required for a genetic algorithm.  Each character (analogously, a gene) can be randomly 

varied (mutated) independently from its neighboring characters.  When a mutation 

occurs, the character is replaced with another randomly selected character from the 

alphabet.  The string closest to the desired string (a metric of fitness) survives and 

reproduces, creating several offspring which undergo the same process.  A sample output 

of the weasel program which uses a mutation probability (likelihood of any given 

character being replaced by a randomly selected character) of 5% and yields 25 children 

per generation is shown below. 
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Generation 000: ZKVQMKSONOLPKRRAHGWUMNQRMXTI 

Generation 020: ZXVHMKKS DOWISZCFKK M WIMYEM 

Generation 040: ZBTHJTKS DOWIS OFKE M WIZREM 

Generation 060: MGTHYUKS NT IS LIKE A WERREZ 

Generation 080: MOTHZCKS IT IS LIKE A WE MEG 

Generation 100: MOTHITKS IT IS LIKE A WEAKEN 

Generation 120: METHINKS IT IS LIKE A WEAKEY 

Generation 140: METHINKS IT IS LIKE A WEACEL 

Generation 160: METHINKS IT IS LIKE A WEACEL 

Generation 168: METHINKS IT IS LIKE A WEASEL 

 

The result is a fast convergence to the target phrase, which demonstrates the 

ability for algorithms with selection and random variation to rapidly traverse a vast set of 

possible solutions.  While the above example is rather trivial, this approach to solving 

problems can be applied to the control parameter set to optimize the output of the 

controller. 

 

Mutation 

Mutations are the means of random variation in this genetic algorithm.  When 

modifying the control parameter set, mutations are modeled as a random fluctuation of 

the numerical values following a Gaussian probability distribution.  With a Gaussian 

model of variation, the magnitude of the standard deviation controls the rate of “genetic 

drift” due to mutations.  The proportional gain schedule, derivative gain schedule, and 

applied impulse each have their own independent mutation rate (standard deviation of 

Gaussian noise).  Mutations are calculated separately for each entry of the control 

parameter set, allowing each of the individual gains in the schedule (and the impulse 

magnitude) to drift independently. 
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Fitness Function 

Analogous to an organism attempting to survive in its environment, a control 

parameter set attempts to “survive” by successfully controlling a robot step.  As such, 

each child parameter set is tested using the compass gait simulation described in Chapter 

2.  The fitness function is designed to encourage the desired properties of the optimized 

control parameter set.  In this investigation, robustness, energy and speed are of primary 

concern and form the basis of the fitness function.  The fitness function (F), being both 

the conceptual and mathematical negative of undesirable cost (C), is formulated in 

equation 3.3 as a function of consumed energy (E), average speed of the step (S), a cost 

associated with the robustness of the controller (CR), and a weighting factors to generate 

tradeoffs (   and   ). 

 
                             Eq. 3.3  

To retrieve the necessary energy consumption and speed values, the candidate 

control parameter set is tested by controlling a single step of the compass gait model.  

The model is initialized to a specific, narrow range of state space with a single 

preselected      value.  The initial state variables are randomly generated within the 

bounds of this defined range of state space, which allows for a small range of disturbance 

rejection to be developed for the controller. It was found that the use of a larger area of 

the state space resulted in poor convergence of the algorithm.  To elaborate, when the 

initial state variables were allowed to vary significantly each generation, the solution with 

the highest fitness varied too much each generation to determine if an optimal solution 
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was reached.   To mitigate this problem, a very narrow range in state-space was used for 

the optimization. 

The cost function for the energy-economy (  ) is quite trivial and as shown in Eq. 

3.4 is simply the product of the energy consumed (E) and its weighting factor (  ). 

 
              Eq. 3.4  

The incentive for a speed optimizing controller is to increase speed.  As a result, the 

speed cost function (  ) is the product of the inverse of speed (S) and its corresponding 

weighting factor (  ), as Eq. 3.5 illustrates.  The role of weighting factors will be 

explained in greater detail later in the chapter. 

 
          

  

 
 

Eq. 3.5  

 

Robustness Cost Function 

To facilitate robustness, a given control parameter set must “successfully 

complete” a step, or receive a significant penalty to its fitness.  Successful step 

completion is defined, in this case, as the swing leg having reached the set interleg angle 

and zero interleg angular velocity within an assigned tolerance before the swing leg 

collides with the ground.  This ensures not only that the walker remains upright, but 

avoids the premature termination of the step before reaching the desired step size. 

One could easily envision this robustness cost function reducing to a simple 

Boolean operation which assigns a penalty if fallen.  However, while such a binary view 

of success may be satisfactory for an evaluation of the end product, it can be important to 
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the genetic algorithm to be given an indicator of their “proximity” to success or failure.  

Envision trying to shoot a basketball free throw while blindfolded.  When attempting to 

tune such a challenging shot, it would be useful to be told the direction that the shot is 

off-target, and preferably the magnitude of the error.  By adding two more components to 

the cost function which indicate the proximity to a successful step, the genetic algorithm 

can be encouraged to move in the “right direction” when trapped in states of failure with 

otherwise little chance of escape.  These two components are developed from an 

understanding of the two modes of step failure for the compass gait model: tripping 

forward and falling backward. 

 

Failure Modes 

Tripping forward occurs when the swing leg collides with the ground before 

taking an adequately large stride.  This premature collision sends the walker falling head 

over heels.  The indicator used to dissuade this failure mode is the “convergence height” 

(hc), the height at which the leg controller converges on the desired angle (within 

specified tolerance).  This height is calculated even if convergence is reached after 

colliding with the terrain by continuing the dynamics computations assuming the 

collision had never occurred.  As the convergence height decreases, the walker is closer 

to (or perhaps deeper in) failure.  To greatly discourage negative convergence heights, the 

“tripping forward” cost function (   ) is set to an exponential decay described 

mathematically in Eq. 3.6., If the convergence height is lower than the terrain height ( ), 

the step is considered a failure.  Tripping forward often occurs when the hip torque 
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controller gains are too low or the applied impulse is too high.  The values for the 

coefficients and exponents in Eq. 3.6 were selected by increasing their magnitudes until 

they were effective at preventing controllers which “trip” from surviving the algorithm’s 

selection process. 

 
                Eq. 3.6  

Falling backward, as the name implies, occurs when the stance leg forward 

velocity slows to the point where gravity pulls the walker backward.  Insufficient applied 

impulse or excessively large hip controller proportional gains (due to the momentum 

exchange of a quick forward leg swing) will tend to result in falling backward.  The 

indicator utilized for this failure mode is the maximal backward angular velocity of the 

stance leg (vbackward).  By discouraging backward velocities via the exponential growth 

relationship between the “backward falling cost” (   ) and vbackward in Eq. 3.7, the genetic 

algorithm favors controllers which maintain a satisfactory forward velocity.  The 

coefficients and exponents in Eq. 3.7 were increased until they were effective at 

preventing controllers which fall backward from surviving the algorithm’s selection 

process. 

 
                      Eq. 3.7  

 

The “tripping forward” and “falling backward” failure terms are finally 

supplemented by the simplest failure term indicating the presence of a failed step (     ) 

by the simple Boolean relationship shown in Eq. 3.8.  These three failure terms are 
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summed via Eq. 3.9 into the final robustness cost   .  The cost value for falling (500) 

was chosen to ensure that falling controllers would consistently result in inferior fitness 

to controllers with even extraordinarily high energy costs and low speed. 

 
      {

      if fallen

  else
 

Eq. 3.8  

 
                 Eq. 3.9  

 

Energy-Speed Weighting Factor 

When attempting to produce a tradeoff, it is essential to define a numerical factor 

which adds or reduces “weight” to the various metrics being traded off.  In this 

application, the two candidate metrics for trade-off are the energy economy and speed of 

forward progress.  While the goal of this research is to generate meaningful tradeoffs in 

robustness as well as energy and speed, a tradeoff in robustness for a single tested step is 

likely not meaningful in a system designed to take over hundreds or thousands of steps.  

It will be found later that much of long-term failures in walking result from uneven 

terrain forcing the robot into less viable future states.  As such, a constant high penalty is 

assessed by this algorithm to any control parameter set which results in a failed step. 

The energy and speed weighting factors (   and    respectively) are 

incorporated into the cost relationship as per Eq. 3.10 and are constrained such that they 

sum to a constant quantity (a value of 10, which is a magnitude large enough to 

encourage the desired energy speed tradeoff but small enough not to overwhelm the cost 

of falling) as expressed in Eq. 3.11.   
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               Eq. 3.10  

 
         Eq. 3.11  

Constraining the sum of the weighting factors creates an effective sliding scale between a 

cost function demanding energy economy versus high speed.  It is expected that running 

the genetic algorithm with a variety of weighting factor pairs will produce a tradeoff 

curve with solutions sweeping from great energy economy to great speed. 

 

Reproduction 

The ability of favored solutions to pass down their traits through a form of 

heredity is foundational to genetic algorithms.  For this investigation, only a single 

control parameter set survives from each generation to reproduce.  The reproduction is 

“asexual” and does not utilize the genetic crossover sometimes used in genetic 

algorithms, meaning that all offspring of the sole surviving control parameter set are 

mutated copies of their parent.  Each of the many offspring (50, which was chosen for 

computation speed because it resulted in convergence in fewer than 100 generations) is 

originally identical to the parent and then are modified using the mutation algorithm.  As 

described in the previous mutation section, each numerical value is modified by adding 

the results of a scaled Gaussian random number generator.  The Gaussian distribution 

having its peak centered at zero modification allows most of the values do be minimally 

affected by the mutation, but inevitably results in a few values making a large shift each 

generation.  The mutation rates for the algorithm, as well as value bounds and algorithm 
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parameters, are given in table 3.1, indicating the standard deviation of the alteration made 

by the mutation each generation.  The mutation parameters were chosen so the changes 

per generation were both large enough to reach convergence levels within 100 

generations (saving computation time) and small enough so noise from the mutations 

would not obscure convergence. 

Mutation Parameters 

 Pre-collision 

Impulse 

Proportional Gains Derivative Gains 

Mutation Rate 

(standard deviation) 

0.125 0.125 0.05 

Initial Value 4 5 0.5 

Minimum Value 0 0 0 

Maximum Value 7 20 5 

Reproduction Parameters 

Number of 

Surviving Parents 

for each Generation 

1 Number of 

Offspring Produced 

for each Generation 

50 

Table 3.1:  Parameters used in the genetic algorithm for mutating and reproducing the 

control parameter sets 

 

Convergence 

An optimal control parameter set is only reached once the algorithm is deemed 

converged, a state which should be specifically defined.  The convergence is determined 

by observing values of the fitness function over several generations and assessing 

whether the values have become relatively constant.  Numerically, the algorithm is 

deemed converged when the current generation’s fitness value does not differ from any 

of its previous ten generations’ fitness values by more than a given threshold (a numerical 

value of 1.0, a value approximately 1% of the total range of typical fitness values).  
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Figure 3.2 shows a typical pattern of convergence for the fitness values, including the 

point of convergence given the aforementioned criteria.  The genetic algorithm generally 

converged in fewer than 80 generations. 

 

Figure 3.2: The surviving control parameter set’s fitness value plotted over 80 

generations, indicating that the convergence criterion is met at generation 59 

 

Data Collection 

For a given data set (which can be used to plot a single tradeoff curve), the 

genetic algorithm was run for a narrow region in state space (less than 1% of the total 

range), with a particular control action, but over a wide range of energy-speed weighting 

factors.  Each run of the algorithm produced an optimized control parameter set which 

was then tested by simulating a step with 500 randomly generated starting states within 

the defined narrow state space region.  The region in state space from which the initial 

simulation states are selected is outlined in Table 3.2, which lists the upper and lower 

bounds for each of the state variables, as well as the desired interleg angle and terrain 

height.  The initial state variable ranges chosen for this data set were selected because 
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they did not require extraordinarily large impulses or gains in order to avoid falling, 

meaning it is a reasonably viable range of states.   

Genetic Algorithm State Space Range Parameters 

State Variable Units Minimum Value Maximum Value 

X1:  vertical leg separation (m) 0.00 0.00 

X2: horizontal leg separation (m) 0.449 0.451 

X3: stance leg angular velocity (º/sec) -61.0 -59.0 

X4: swing interleg angular 

velocity 

(º/sec) -1.00 1.00 

    : desired interleg angle (º) 25.0 25.0 

δ: terrain height (m) 0.00 0.00 

Table 3.2: The maximum and minimum values denoting the range of state space used to 

generate the reported data with the genetic algorithm 

 

The resulting 500 simulation runs assure that the generated control parameter set 

will not fail to take a step within that state space range.  In addition, the large number of 

test runs (perhaps excessively large given the limited breadth of the state range) provides 

a more solid statistical basis for assessing the energy and speed.  The mean values of the 

speed and energy consumed for the step taken are recorded in addition to the median and 

standard deviation.  The standard deviation was universally found to be two orders of 

magnitude smaller than the mean, so variation in this figure was considered insignificant. 

The energy consumed was further processed into the more generally applicable 

metric of specific cost of transport (SCT) which is the non-dimensional quantity of energy 

consumed per unit weight per unit distance traveled.  This resulting data pair consisting 

of the single-step speed and specific cost of transport of this control parameter set forms a 

single point in energy-speed tradeoff space. 
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A variety of points can be generated in tradeoff space by two means.  A wide 

range is primarily achieved by modifying the energy-speed weighting factors, which is 

intended to influence, if not completely control, the resulting point’s position in tradeoff 

space.  Secondarily, simply running the algorithm repeatedly can yield somewhat 

differing results due to the inherently stochastic nature of the genetic algorithm.   Both 

methods were used in producing the presented data. 

From the outset of data collection, the ratios of weighting factors necessary to 

produce a wide tradeoff curve were not intuitively clear.  The weighting ratio selection 

was continually assessed throughout the data collection process as more was learned 

about the relationship between the weighting factors and the resulting position of the 

points in tradeoff space.  No points were omitted in reporting in order to avoid selection 

bias. 

The basic procedure in selecting weighting factors sought to first find the 

extremes of the tradeoff curve by amplifying the discrepancy between the weighting 

factors.  The weighting of energy economy was increased until the resulting points 

produced no greater advantage in reduced energy consumption (data which essentially 

duplicated the results of less extreme weighting ratios).  Conversely, attempts to find an 

upper boundary on step speed were met with the realization that walker speed was only 

limited by saturation of the actuators.  After arbitrarily deciding that 1.25 m/s was a 

sufficient upper bound on speed for the purposes of this investigation, it was found that 

intermediate results were easily generated by incrementally adjusting the weighting 

factors from one extreme to the other.  The correspondence between increasing weighting 
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factors and the change in position on energy-speed axes indicates that the fitness function 

is appropriate for easily generating tradeoffs. 

 

Genetic Algorithm Results 

For this single slice of state space (as defined in Table 3.2), 55 data points were 

collected using weighting factors ranging from 10:1 to 1:43 ratios of energy economy to 

speed.  All of these data points represent control parameter sets which never failed during 

500 random test runs within the narrow scope of their state-space tuning.  Figure 3.3 

shows each of these points plotted on energy-speed tradeoff space.  The plot shows a 

clear optimal performance frontier which is well fit by a quadratic regression 

(R
2
=0.9924).  As can be seen in Figure 3.3, the minimum energy cost found for this 

commanded step is equal to a value of the specific cost of transport of approximately 0.3, 

which corresponded to a minimum step speed of approximated 0.33 m/s. The opposite 

extreme corresponded to a speed of 1.25 m/s and a specific cost of transport of 

approximately 1.5. 
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Figure 3.3: 55 solutions generated by the genetic algorithm (one data set) plotted in 

energy-speed tradeoff space with a quadratic data fit 

 

Conclusions 

The devised genetic algorithm, when varied in weighting ratios, produced a clear 

optimal performance frontier with a strong quadratic nature.  This quadratic relationship 

between energy consumption and speed is in line with well-established principles of 

mechanics which relate the kinetic energy of a system to the square of its velocity.  The 

actuator work must provide the requisite kinetic energy (which has an inherent quadratic 
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relationship to speed) to propel the system at the resulting speed, an indication of the 

tradeoff curve’s significant quadratic relationship. 

As currently devised, the genetic algorithm is impractical for implementing 

tradeoff-conducive control for a walking robot.  Each of these data points required 

executing the genetic algorithm to convergence, a process which typically needed 20 

minutes of computing time.  Furthermore, each collected point represent only a single 

point on a tradeoff curve within one small slice of the overall robot state space, rendering 

such an approach so exhaustive that it is computationally intractable.  To be sufficiently 

effective as a tradeoff-conducive controller, a more generalized or efficient means of 

producing tradeoffs must be developed. 
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Chapter 4: Heuristic Control 

While the term “heuristic” has many definitions depending on the context of its 

use, in a broad sense, it refers to a process or rule which is generally successful, but has 

not been demonstrated to be universally effective.    Often regarded as guidelines or 

“rules of thumb”, heuristics are typically used when robust, generally applicable solutions 

are inconvenient or unavailable.  In the face of an inconvenience in the form of 

computational intractability, developing a heuristic is an attractive alternative for the 

generation of controllers capable of tradeoffs over a range of performance. 

 

Optimization-Inspired Heuristic 

Despite a genetic algorithm being an unwieldy tool for generating a controller for 

every possible action, the results generated by such an algorithm can be analyzed to find 

patterns or common features in the results.  An obvious route involves looking at the 

control parameter sets produced by the genetic algorithm and plotting trends in the 

parameter values against the controller outcome measures, in this case energy and speed.  

If such a clear trend exists, then the control parameters could be approximated and fitted 

functions could be used to quickly synthesize a controller capable of producing effective 

tradeoffs.  Figure 4.1 plots the impulse magnitude obtained by the genetic algorithm 

against its corresponding resulting speed.  The pre-collision impulse magnitude follows a 

strongly linear trend (R
2
 = 0.9736) over the entire range of possible speeds.  This stands 

in contrast to Figures 4.2 and 4.3 which show the proportional and derivative gain 

schedules respectively plotted against the resulting step speed.   
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Figure 4.1: All impulse magnitude values for 51 genetic optimizations plotted with a 

linear trend line, revealing a strong linear correlation 

  

R² = 0.9736 

0

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

A
p

p
lie

d
 Im

p
u

ls
e

 M
ag

n
it

u
d

e
 (

kg
-m

 s
-1

) 

Step Speed (m/s) 

Applied Impulse Magnitudes vs. Step Speed from 51 
Genetic Optimizations 

Genetically Optimized Solutions

Linear Trendline



52 
 

 

Figure 4.2: All proportional gain schedule values for 51 genetic optimizations, revealing 

no obvious trend 
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Figure 4.3: All derivative gain schedule values for 51 genetic optimizations, revealing no 

obvious trend 

 

There are numerous reasons to suspect that the pre-collision impulse has the 

largest influence on the dynamics of each step.  It has been shown to be a highly effective 

means of imparting kinetic energy to the forward motion of a walker (Kuo 2002) and is 

likely a significant source of energy expenditure in any genetically optimized walker 

controller.  As such, the pre-collision impulse is subject to significant selection pressures 

from the genetic algorithm and dissuades random drift in the applied impulse via the 

selection process.  Such obvious trends not being present in the gain schedules, a more 

quantitative means of detecting the importance of parameters is needed. 
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Selection Pressures 

A selection pressure (sometimes called an evolutionary pressure) is an incentive 

or disincentive induced by the selection procedure of an evolutionary process which acts 

on specific traits.  For example, an organism which relies heavily on its ability to outrun 

predators may have a strong selection pressure on its running speed.  As a result, the 

pressure will tend to produce subsequent generations in which high running speed is 

enhanced or conserved (i.e., protected from degradation).  Traits which are largely 

unrelated to the organism’s survival have low selection pressures, and will tend to “drift” 

due to aggregate variation.  These selection pressures play a tangible role in the 

interpretation of the results of the genetic algorithm.  By examining the variation over 

time (generations) in the control parameters (analogously, the organism traits), the 

qualitative strength of the selection pressures can be hypothesized by inference.  

Identifying parameters which are largely conserved after fitness convergence, meaning 

they experience a lack of drift that would otherwise be associated with random mutations, 

suggests that such parameters could be critical to the success of the controller. 

 

Random Walk 

A series of random changes in a variable as a result of the application of (but not 

limited to) genetic algorithms is called a random walk.  A series of random mutations as 

described in the genetic algorithm (a normalized random variation) can be similarly 

considered a random walk phenomenon.  When observed over time, these random walks 

have a distinct statistical behavior, notably an increasing variance over time.  A simple 
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statistical analysis of 5000 runs of a random walk using a normalized random change is 

shown in Figure 4.4.  It depicts the percentile ranking of the values of the random walks 

over time, demonstrating a “fanning out” of the variation over time.  However, if acted 

upon by an outside force, such as a selection pressure, one would expect the fluctuations 

in parameters to deviate significantly from this random walk distribution. 

 

Figure 4.4: The percentile values of 5000 normal (σ = 0.125) random walks over time 

(50% indicating the median, 75% denoting the third quartile, etc.) 

 

While a rigorous statistical analysis would be able to detect the probability of a 

particular variation being explainable by a random walk, a quicker and more simplistic 

analysis was used to qualitatively assess which parameters have a strong effect on the 

controller fitness.  Two metrics were employed to find deviations from a random walk: 

rapid changes which were too fast to occur by an unguided random walk and values 

which were implausibly stagnant if subjected to random variation. 
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Impulse Selection Pressures 

The progression of the pre-collision impulse magnitude while being optimized is 

displayed for a sample run of the genetic algorithm in Figure 4.5, which shows a fairly 

typical qualitative convergence behavior.  The initial 15 generations appear to plummet 

followed by a slow drift to convergence (note that the convergence threshold “goal-line” 

is determined by controller fitness (defined in Chapter 3) and not convergence of the 

impulse magnitude).  While such a qualitative assessment can be useful, Figure 4.6 helps 

quantify the drastic nature of the drift by overlaying the change in the impulse magnitude 

with the percentile values predicted by chance. 

For the beginning 15 generations, the impulse drifts so fast compared to the result 

of 5000 random walks of equivalent mutation rate that it surpasses the 99
th

 percentile 

values.  This renders the pre-convergence behavior of the impulse magnitude highly 

improbable if attributed entirely to a random walk.  The suggestion of this result is that 

lower pre-collision impulse magnitudes were favored by the selection algorithm, which 

resulted in a rapid reduction of the impulse magnitude. 

 

Figure 4.5: A sample genetic optimization following the change in impulse magnitude 

over 80 generations. 
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Figure 4.6: Plot of impulse magnitude drift due to the genetic algorithm against the 

random walk probability profiles (i.e., at generation 15, over 99% of random walks 

produced drift numbers greater than the impulse magnitude drift at that time, meaning 

that less than 1% of random walks produced such extreme values) 

 

Furthermore, the impulse magnitude was also observed after fitness convergence 

was reached.  Figure 4.5 shows this post-fitness convergence behavior which is 

remarkably stagnant.  Once fitness convergence is reached, the impulse magnitude never 

deviated from the value at convergence by more than 0.08 kg-m/s (out of approximately 

1.0 kg-m/s) for the 21 generations recorded after convergence.  The 5000 random walks 
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of the same mutation rate were assessed to determine the probability of such a stagnant 

parameter value emerging by chance.  After 12 generations, every single random walk 

had deviated from its initial value by more than 0.08 at some point, far short of the 21 

generations for which the impulse magnitude remained within that window.  Figure 4.7 

plots the number of random walks which remain within this threshold over a number of 

generations, showing how quickly this level of preservation becomes an unlikely 

phenomenon for random walks.  This implausible behavior adds further to the body of 

evidence that the magnitude of the pre-collision impulse was subjected to a strong 

selective pressure in the genetic algorithm. 

 

 

Figure 4.7: A statistical analysis of 5000 random walks with σ = 0.125 (identical to 

impulse mutation rate), observing the percentage of random walks which remained within 

0.08 of their starting value over several generations 
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Gain Schedule Selection Pressures 

 In contrast to the pre-collision impulse magnitude, the proportional and derivative 

gains do not change as rapidly or converge as clearly.  Figures 4.8 and 4.9 show the 

change in the proportional and derivative gain schedules (respectively) over the course of 

80 generations.  This sample run of the genetic algorithm is the same sample used in the 

impulse analysis.  While it appears that various gains begin to fan out, it is not clear 

whether the values ever converge after the fitness is achieved convergence (the 

convergence criterion is outlined in Chapter 3).  

 

Figure 4.8:  A sample genetic optimization following the change in the proportional gains 

in the gain schedule over 80 generations 
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Figure 4.9: A sample genetic optimization following the change in the derivative gains in 

the gain schedule over 80 generations 
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hypothesis (variation completely explained by random walk) cannot be rejected for many 

of these gains, the possibility remains that the proportional gains are interdependent or 

are the results of many redundant solutions being found (redundant in the sense that the 

performance is similar despite the gain schedule being different).  For example, two gains 

adjacent in their interleg angle discretization may make similar contributions to the 

forward motion of the swing leg, with the exact order of the gains not being particularly 

significant. 

 

Figure 4.10: Beginning at the generation of convergence, the drift in proportional gain is 

plotted against the percentile ranges of random walks (i.e., the 50% line indicates the 

median value, 75% is the third quartile value).  The dotted lines from bottom to top are 

the following percentages: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99%. 
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Figure 4.11: Beginning at the generation of convergence, the drift in derivative gain is 

plotted against the percentile ranges of random walks (i.e., the 50% line indicates the 

median value, 75% is the third quartile value).  The dotted lines from bottom to top are 

the following percentages: 1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 99%. 
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curve similar to the genetic optimizations, it would be strong evidence of the redundancy 

of solutions for gain profiles. 

Such a representative gain schedule profile (gain profile) was produced by taking 

the mean values for each of the ten individual gains over all of the 51 optimized gain 

schedules.  This mean “ramped” profile is shown in Figure 4.12, which is named for the 

inclined shape of the profile with the proportional and derivative gains increasing and 

decreasing respectively as the interleg angle approaches the target angle (the swing angle 

ratio approaches one).  This ramped profile is used as the basic gain profile, proportional 

(      
) and derivative (      

), for a control heuristic. 

 

Figure 4.12: Mean values for 51 optimized gain schedules produced by the genetic 

algorithm for various weighting factors.  Each point indicates a gain associated with a 

lower-bound swing angle ratio range in the gain schedule. 
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Tradeoff-Conducive Control Heuristic 

Using the strong linear relationship between required speed and applied impulse 

as well the ramped gain profile synthesized from averaging 51 optimization-generated 

profiles, the components are now in place to produce a heuristic capable of generating 

efficient tradeoffs for step control, henceforth called a tradeoff-conducive control 

heuristic.  The highly linear speed-impulse relationship is used as a starting point for 

adjusting the controller to accommodate faster versus energy efficient steps.  As the 

demand for step speed increases, the heuristic controller scales the applied impulse 

linearly to match the increased speed requested. 

Unlike the impulse magnitude, it is less obvious how the heuristic should handle 

any adjustment to the gain profile in response to varying demands for tradeoffs.  Some 

less-definitive insights can be deduced from the genetic optimization data by plotting 

individual gain values against their resulting speed.  Figures 4.13 and 4.14 show some 

representative proportional and derivative gain schedule values respectively plotted 

against the controller’s resulting speed.  The linear trend lines produced are often positive 

in slope for proportional gains, and negative in slope for derivative gains.  However, the 

R
2
 values for some sample proportional and derivative gains are quite low (0.3171 and 

0.4075 respectively) when compared to the impulse trends (0.9736).  Despite the less 

convincing nature of these trends, linear scaling was also used to scale the magnitudes of 

the proportional and derivative gain profiles with respect to speed demand. 
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Figure 4.13: Several genetically optimized values (all 51 genetic optimizations) of a 

single, sample sector (-1.0 to -0.75 normalized interleg angle) of the proportional gain 

schedule plotted against the resulting controller speed (essentially a single gain schedule 

entry from Figure 4.2) 

 

 

Figure 4.14: Several genetically optimized values (all 51 genetic optimizations) of a 

single, sample sector (-1.0 to -0.75 normalized interleg angle) of the derivative gain 

schedule plotted against the resulting controller speed (essentially a single gain schedule 

entry from Figure 4.3) 
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Heuristic Bounding Parameters 

With the heuristic controller dependent upon a linear relationship between the 

tradeoff and the parameters, the bounds for the linear scale are imperative in determining 

the breadth of the tradeoff as well as the slope at which the parameters are scaled.  There 

are two bounds used for scaling each of the applied impulse, the proportional gain 

schedule, and the derivative gain schedule, which yields six bounding parameters.  These 

six heuristic bounding parameters fully describe the tradeoff controller in that they 

produce a controller yielding every performance demand between maximal energy-

efficiency and highest speed via linear interpolation. 

Given the six heuristic bounding parameters, controllers are generated by 

specifying the energy-speed weighting factor (    
).  Similar to the weighting factor 

used for the genetic algorithm, this value sets the desired operating point on the spectrum 

between an energy efficient controller and a fast one.  The value is set between zero and 

one, with zero producing the most energy efficient controller and one producing the 

fastest step.  The equations for the interpolation and scaling of the control parameters 

used in the control parameter set, applied impulse (    ), proportional gain profile (  ), 

and derivative profile (  ), are described in Eq. 4.1-4.3 as functions of the two impulse 

bounds (    and    ), proportional profile scaling bounds (   
 and    

), and derivative 

profile scaling bounds (   
 and    

).  Again, the greater of the two values need not be the 

first, as such an arrangement would indicate a decreasing scaling factor with increasing 

weight to step speed. 



67 
 

 
         

(       )      Eq. 4.1  

 
         

[    
(   

    
)     

] Eq. 4.2  

 
         

[    
(   

    
)     

] Eq. 4.3  

Lingering questions remain regarding how these six heuristic bounding 

parameters are selected.  Superficially, it appears as though this attempt at creating a less 

complex heuristic has simply substituted one parameter optimization problem (the 

genetic algorithm) for another (the tuning of the heuristic bounding parameters).  

However, this heuristic can result in two significant advantages over the genetic 

algorithm.  First, the results of a single run of the genetic algorithm to tune the control 

parameter set produce a single point on the tradeoff curve, while a tuned set of heuristic 

bounding parameters generates the entire energy-speed tradeoff curve and its 

corresponding set of controllers.  Secondly, the heuristic controller is governed by a mere 

six parameters, as opposed to the 21 which define each control parameter set on the 

tradeoff curve.  This marked decrease in the number of parameters benefits the 

computational tractability of the problem. 

 

Heuristic Parameter Tuning 

 To have an efficient and objective means of tuning the heuristic bounding 

parameters, an automatic “heuristic parameter tuner” was developed to find an optimal 

set.  Unlike the genetic algorithm which “tunes” the 21 variable control parameter set, 

this heuristic tuning algorithm needs to find a solution in a search space of only six 
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variables.  As such, the smaller computational burden allows for more deterministic 

algorithms to be used (as opposed to stochastically-driven techniques like the genetic 

algorithm).  This heuristic parameter tuner utilizes a primitive gradient-descent algorithm 

to navigate toward an optimal set of parameters. 

 

Gradient-Descent Algorithm 

Gradient descent algorithms operate by starting with a guessed solution and 

computing the gradient of the performance function at that point.  This gradient, 

essentially being the “slope” of the performance when plotted against the dependent 

variables (the heuristic parameters), indicates the direction in which the performance 

increases to the greatest degree (or decreases undesirable qualities to the greatest degree).  

After determining the direction of the steepest gradient, the guessed solution is updated 

by “moving” in that direction.  Often, the magnitude of this move is adjusted in 

proportion to the slope magnitude, but this feature was omitted to facilitate algorithmic 

simplicity.   Figure 4.15 visualizes the gradient-descent process on a contour plot as a 

navigation from initial guess x0 to the minimum value at the center, following the path of 

greatest descent. 
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Figure 4.15: A visualization of the gradient descent process on a contour plot, 

progressing from initial guess (x0) to the most recent approximate minimum (x4) by 

traversing the maximum gradient. 

 

Tradeoff Curve Metrics 

 The most valuable qualities in an energy-speed tradeoff curve are the 

minimization of energy (mean energy) for any given desired speed and the range of speed 

(speed range) which the tradeoff curves accommodate.  Superior energy performance is 

signified by a curve which is positioned lower on the vertical energy axis, indicating that 

for a given point on the horizontal axis (step speed), the controller has found a more 

energy-efficient solution.  A wider range on the horizontal axis indicates the controller 

can produce a great variety of step speeds, meaning a more versatile tradeoff curve.  

Figure 4.16 uses an illustration to convey visual examples of superior and inferior “mean 

energy” and “speed range”.  The formula for performance ( ) is given in Eq. 4.4 as a 

function of the vector of all controller energy values ( ̅) and upper and lower bounds of 
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the resulting speeds (     and      respectively) with larger resulting negative values 

indicating superior performance.  The coefficient of 2.0 for the speed range term was 

hand-tuned to produce a speed range that is similar to the tradeoff curve generated by the 

genetic optimization (as shown in Figure 3.3).  During the performance evaluation 

process, any points in the tradeoff curve which fail at taking a successful step are 

removed from the curve and do not contribute to the speed range or mean energy 

calculations. 

 
        ̅                 Eq. 4.4  

 

Figure 4.16:  Illustrations of energy-speed tradeoff curves highlighting examples of 

varying performance in mean energy and speed range 

 

 To calculate P, a tradeoff curve must first be generated using the candidate 

heuristic bounding parameters.  This process requires two steps: the generation of the 

control parameter sets and the subsequent testing of the control parameter sets for a single 
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step.  The heuristic bounding parameters indicate an upper and lower bound, but to 

approximate this tradeoff curve, intermediate points must be calculated.  This is achieved 

by generating controllers using various values of the energy-speed weighting factor 

(    
).  Ten values of this weighting factor were spaced between zero and one, 

generating ten separate control parameter sets (the number ten was selected to be large 

enough to discern the quadratic shape of a resulting curve).  Each of these ten control 

parameter sets are tested using the simulated compass gait.  The resulting ten energy-

speed data points are plotted on the same energy-speed “tradeoff space” for which the 

genetic algorithm results were reported.  The state variables and desired step angle used, 

shown in Table 4.1, were the mean values of the genetic algorithm’s state space range 

outlined in Table 3.2.  This similarity makes the results of the genetic algorithm and 

gradient heuristic comparable. 

Gradient-Descent Algorithm State Variables 

State Variable Units Value 

X1:  vertical leg separation (m) 0.00 

X2: horizontal leg separation (m) 0.45 

X3: stance leg angular velocity (º/sec) -60.0 

X4: interleg angular velocity (º/sec) 0 

    : desired interleg angle (º) 25.0 

δ: terrain height (m) 0.00 

Table 4.1: State variables used for testing the gradient-descent algorithm 

 

Approximated Gradient 

 Since no closed-form solution exists from which to take partial derivatives and 

analytically determine the gradient of the tradeoff curve performance, one must be 
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approximated for the purpose of the gradient-descent algorithm.  For a similar problem 

with a single input variable, the gradient, equivalent to the slope in this simplified case, 

can be estimated by taking a finite “step” in one direction and comparing the output of 

the original position.  This will give an estimation of the one-dimensional gradient, 

indicating the best direction for the next iteration of the gradient-descent algorithm.  The 

same general process can be used for multiple variable inputs and exploring multi-

dimensional space.  For this simple estimation of the direction of maximum gradient, a 

small change is made in a diagonal direction (as shown in figure 4.17, checking points 

directly left and right for one dimension and in the four diagonal directions for two 

dimensions), and the change in output (tradeoff curve performance) is observed. 

 

Figure 4.17: An illustration of a hypothetical one-dimensional (left) and two-dimensional 

performance curves.  The one-dimensional case shows how moving in the two possible 

directions (left and right) yields predictions of the gradient.  The two-dimensional case 

indicates the diagonal motion used to explore and approximate a higher dimensional 

gradient. 

 

However, when using six variables (as is the case with the heuristic bounding 

parameters), the problem expands to six dimensions.  In six dimensions, there are 64 (2
6
) 

possible diagonal movements to explore and approximate the gradient by this manner.  

dx1 dx2 

dy1 

dy2 

x 
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The gradient descent algorithm explores each of these 64 possible options and finds the 

path which yields the greatest decrease.  The tested point yielding the greatest decrease in 

the performance curve (performance is a bit of a misnomer as the formula yields larger 

negative values for good performance) becomes the new starting point for the next 

iteration of the algorithm.  The changes in impulse magnitude, proportional and 

derivative gains applied to explore the nearby space are listed in Table 4.1.  These values 

are identical to their corresponding mutation rates in the genetic algorithm described in 

Table 3.1.  These relatively small values were chosen in order to keep the changes 

relatively small, decreasing the likelihood of a downward gradient being “skipped over”.  

The algorithm is run until convergence which occurs when further iterations result in 

repeating previously encountered heuristic bounding parameters. 

 

Gradient-Descent Exploration Values 

Impulse Magnitude Proportional Gains Derivative Gains 

0.125 Nm/s 0.125 Nm/degree 0.05 Nm-s/degree 

Initial Parameter Values 

Impulse Magnitude Proportional Gains Derivative Gains 

Minimum Maximum Minimum Maximum Minimum Maximum 

3.0 Nm/s 3.4 Nm/s 1.0 

Nm/degree 

1.4 

Nm/degree 

0.8 Nm-

s/degree 

1.2 Nm-

s/degree 

Table 4.2: Gradient-descent exploration values by which heuristic bounding parameters 

are changed in order to find the path of greatest descent; the initial bounding parameter 

values for the algorithm are also included in this table 

 

Heuristic Tradeoff Curve Results 

 After tuning the heuristic bounding parameters using the aforementioned 

gradient-descent algorithm, the resulting tradeoff curve was plotted against the previous 

genetic algorithm data.  Figure 4.18 shows the results of running the gradient-descent 
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algorithm to convergence.  The “auto-tuned” heuristic curve closely approximates the 

data generated by the individually genetically optimized controllers.  This result is very 

promising and has a number of potential implications for controlling the compass gait 

over a range of possible speed-energy demands. 

 

Figure 4.18: Tradeoff curves for genetically optimized solutions and the tuned heuristic 

tradeoff controller 

 

It was hypothesized earlier in this chapter that redundant solutions may exist for 
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produced similar results.  This is an encouraging finding as a representative mean profile 

may be useful in other regions of state space and step sizes than this one case.  

Furthermore, the closeness of the two tradeoff curves is worthy of note as the gradient 

descent algorithm had no means of knowing where the genetic algorithm tradeoff data 

was located.  This implies that the gradient descent algorithm, which takes significantly 

less time to run than collecting the genetic algorithm data (at least a factor of ten), can 

predict an optimal performance curve on par with the genetic algorithm. 

To test the notion that a representative gain profile can predict an optimal 

performance curve similar to that generated by the genetic algorithm, a different system 

state and step angle were chosen for a second run of the gradient-descent algorithm and 

the genetic algorithm.  Table 4.3 lists the new system states and desired step angle for this 

new data set.  These new states were selected to have a significant difference in most 

state variables (X4, however, is almost always near zero since the derivative controller 

attenuates the interleg angular velocity) in order gauge versatility of the heuristic 

approach.  In this test, the gradient-descent algorithm was run before generating new 

genetic algorithm data to control for any biases in selecting the gradient-descent initial 

conditions.  All of the parameters, procedures and initial conditions were unchanged from 

the previous data set, with the exception that only 24 genetic optimizations were run in 

order to save computation time. 
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Gradient-Descent Algorithm State Variables 

State Variable Units Value 

X1:  vertical leg separation (m) 0.05 

X2: horizontal leg separation (m) 0.55 

X3: stance leg angular velocity (º/sec) -30.0 

X4: interleg angular velocity (º/sec) 0 

    : desired interleg angle (º) 20.0 

δ: terrain height (m) 0.00 

Table 4.3: State variables used for a second run of the gradient-descent algorithm 

 

 The results for the second run of both the genetic algorithm and gradient-descent 

algorithm are plotted in Figure 4.19.  Using the same mean gain schedule and gradient-

descent algorithm, the tuned heuristic again closely matches the genetically optimized 

controller performance.  This suggests that the tuned tradeoff heuristic (using the same 

mean gain profiles       
 and       

) may be a useful means of quickly (without running 

additional optimizations) generating controllers which produce a wide tradeoff range.  

This property suggests that this control heuristic, a representative “ramped” gain schedule 

coupled with linear scaling, can be called tradeoff-conducive. 
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Figure 4.19: Tradeoff curves for genetically optimized solutions and the tuned heuristic 

tradeoff controller for the second set of state variables and desired step angle 

 

While these results indicate that the mean “ramped” gain profile can be scaled 

effectively for tradeoffs, it is reasonable to question whether this particular profile is 

actually an improvement over other profiles.  An exhaustive assessment of all other 

possible gain profiles is unreasonable, but it is worth investigating whether the ramped 

profile is better suited for tradeoffs than “traditional” profiles.  The most traditional 

profile is a constant proportional and derivative gain, which is the equivalent of a single 

traditional PD controller.  For this investigation, the mean “ramped” profile was further 
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averaged into a “flat” profile with a constant proportional and derivative gain (KP = 4.01 

Nm/degree and KD = 0.85 Nm-s/degree) and tuned with the gradient-descent algorithm 

using the same parameters, initial values, state variables and desired step angle. 

 

Figure 4.20: Comparison of the mean “ramped” and “flat” gain profiles based on their 

performance in energy-speed tradeoffs 

 

 Figure 4.20 compares the tuned performance of the “ramped” and “flat” profiles 

plotted on energy-speed coordinates.  The ramped profile performance yields a range of 

speed approximately quadruple that of the flat profile.  In addition, the energy cost of the 

flat profile is significantly greater (0.4 addition specific cost of transport at minimum) 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sp
e

ci
fi

c 
C

o
st

 o
f 

Tr
an

sp
o

rt
 

Step Speed (m/s) 

Single-Step Energy Speed Trade-off Curve for "Ramped" 
and "Flat" Gain Profiles 

Tuned "Ramped" Profile

Tuned "Flat" Profile



79 
 

than the flat profile.  This suggests that the flat gain profile is not as tradeoff-conducive 

as the genetic optimization-inspired ramped profile.  Put more simply, Figure 4.20 

demonstrates that gain scheduling is superior to no gain scheduling for this application. 

 

Conclusions 

 The endeavor of constructing a representative gain schedule and scaling the 

controller to achieve demands for energy economy and speed has been demonstrated to 

be successful for a single step.  Furthermore, this success comes with the added 

computational benefit that these controllers can be rapidly generated by simple numerical 

scaling and not by optimization techniques.  This tradeoff-conducive approach is critical 

for the final component of the completed walking controller, an overseeing “step 

chooser” or “agent” in the form of an artificially intelligent reinforcement learning 

algorithm.  Controllers synthesized by this tradeoff-conducive control heuristic are 

ultimately used as a toolset at the disposal of the reinforcement learning agent. 
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Chapter 5: Reinforcement Learning 

Inspired by the results of genetic optimization, a control heuristic was devised to 

produce energy-speed tradeoffs for a single step.  If controlled using the initial state and 

terrain height at which the heuristic was tuned, the designed heuristic controller should 

never fail.  However, this investigation seeks to control a simulated walking robot on 

rough terrain over the course of many steps (henceforth dubbed a sustained walk).  In 

such a scenario, the walker is not constrained to a tiny slice of the state space and the 

terrain is modeled as a stochastically-generated series of varying terrain heights.  This is 

important even if the terrain is flat and the heuristic is tuned over a large swath of the 

state space, the output states for an individual step may be unsuitable for continued 

walking.  For example, even if a given single step is successful (in that the walker has not 

fallen), the system state after the step may have values (such as catastrophically slow 

velocities) which make future steps too difficult to achieve. 

While the tradeoff-conducive control heuristic is novel, the controls problem 

posed by stochastic terrain is not.  By intelligently choosing the step size according to the 

current system state, a compass gait walker has been shown to be able to traverse rough 

terrain.  A reinforcement learning algorithm was implemented to develop a policy for 

choosing step sizes for each system state (Byl 2008). Similarly, to fulfill the goals of the 

investigation at hand, a reinforcement learning controller was devised to assess the 

current system state, selects the step size ( ) and energy-speed weighting factor (    
) to 

produce energy-speed tradeoffs for a sustained walk. 
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Artificial Intelligence 

Artificial intelligence (AI), a term coined in 1956 by computer scientist John 

McCarthy, refers to the science and engineering of making intelligent machines 

(McCarthy 2007).  The applications of this broad concept in the decades since its 

inception have included planning (Wilkins 1988), pattern recognition (Bishop 1995), 

machine learning (Michalski 1986), and knowledge representation (Brachman 1985).  

Many of these applications of AI have found a home in the field of robotics.  While 

planning (Latombe 1991) and obstacle recognition (Regensburger 1994) are important 

fields which employ artificial intelligence in robotics, it is machine learning which is 

most relevant to implementing this tradeoff-conducive control heuristic over a long 

sequence of steps or sustained walk. 

 

Machine Learning 

 As has been loosely defined (Nilsson 1998), a machine learns whenever it 

changes its structure, program, or data (based on its inputs or in response to external 

information) in such a manner that its expected future performance improves.  A variety 

of methods have been employed to facilitate this ability for a machine to change its 

structure, program, or data, which span two major categories: supervised and 

unsupervised learning.  Supervised learning methods such as gradient-descent-learning 

neural networks function by observing and reacting to examples provided by a 

knowledgeable, external supervisor (Sutton 1998).  Unsupervised methods lack such an 
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overseer or instructor.  One such unsupervised approach, reinforcement learning, is the 

method of primary interest for this investigation. 

 

Reinforcement Learning 

 Reinforcement learning does not require comparison to known solutions as a 

means of learning, but instead only requires interaction with its environment in order to 

change its program for improved performance.  Central to reinforcement learning is the 

concept of reward, a numerical value awarded to the algorithm as a result of good 

performance.  A reinforcement learning algorithm seeks to maximize a metric of long-

term reward, termed value (Sutton 1998).  By seeking maximum value instead of 

maximum reward, the algorithm is less likely to make short-term “greedy” mistakes 

which hamper long-term performance.  Reinforcement learning algorithms come in many 

flavors such as policy iteration, value iteration, and asynchronous dynamic programming.  

Due to its prior use with the compass gait model (Byl 2008) and its relative 

computational simplicity compared to its counterparts, the value-iteration algorithm was 

employed for learning how to walk economically. 

 

State and Action Value Functions 

 At its most basic level, the value iteration algorithm learns which actions are most 

“valuable” at particular system states.  By identifying states which are valuable, actions 

can be selected which are likely to result in valuable states, a process which tends to 

converge to optimal performance.  Assigning value to states and actions requires the 
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definition of a functional relationship between states, actions and their respective values.  

This need is met in the form of the state value function and the action value function. 

 While it is possible to define these as functions of continuous system states, this 

implementation of value iteration deals entirely with states and actions that have been 

discretized.   A visualization of these discrete functions is shown in Figure 5.1, detailing 

their relationship to discrete states (s) and discrete actions (a).  This manner of 

discretizing states was chosen to closely mirror prior implementation for using a value-

iteration algorithm to control the compass gait (Byl 2009) and is detailed in Table 5.1.  

This provides a base for comparison with previously published data. 

 

State Variable, Action Variable, and Stochastic variable Discretization 

Discretized 

Variables 
Units Elements Discretization (MATLAB Vector Format) 

X1:  vertical leg 

separation 
m 19 

[-0.1, -0.05, -0.04, -0.03:0.005:0.03, 0.04, 0.05, 

0.1] 

X2: horizontal leg 

separation 
m 10 [0.16:0.06:0.7] 

X3: stance leg 

angular velocity 
deg/s 15 [-140:10:0] 

X4: swing interleg 

angular velocity 
deg/s 9 [-20:5:20] 

    : desired 

interleg angle 
deg 9 [15:2.78:40] 

δ: terrain height m 17 [0.05, 0.04, 0.03:-0.005:-0.03, -0.04, -0.05] 

Table 5.1: Discretization of variables for approximating the system states, actions, and 

terrain heights 
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Figure 5.1: Visualization of state-value functions (V) and action-value functions (Q) as 

vectors indexed by   (enumerating distinct states) and   (enumerating distinct actions) 

 

Value Iteration 

 The value-iteration algorithm requires a reward function ( ), a state-value 

function ( ), an action-value function ( ), a Markov Decision Process (   
  ), and a 

discount factor ( ).  It should be noted that the term “vector” in this chapter refers to a 

one-dimensional programming structure (akin to a MATLAB vector).  The Markov 

Decision Process (abbreviated MDP, notated    
  ) is a square matrix containing 

“transition probabilities”, meaning each matrix entry contains the probability that a 

particular state (  ) will result in another particular state (  ) after performing a particular 

control action (  ).  A separate MDP is generated for each possible control action before 

any learning takes place, so the MDP does not update as a result of the reinforcement 
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learning method.  Every single discrete state is simulated with each possible control 

action and every possible terrain height.  The resulting state from each of these tests is 

binned to the nearest state in the discretized state space (described in detail in Table 5.1 

with a single symmetric bin for each discrete state and bin boundaries placed at the 

average value of two adjacent states) and the probability of that terrain instance occurring 

is assigned to the MDP.  Figure 5.2 illustrates the MDP, showing the states    and    on 

the axes and the probability of transition mapped inside. 

 

Figure 5.2: Markov Decision Process (MDP) Matrix  

 

The state-value function (SVF) is a vector representing the “value” of being in a 

particular state (  ) before an action is taken.  Using a discrete function associating a 

value with each discrete state, the state-value function indicates whether a given state is 

likely to yield greater long-term reward, i.e., value.  The SVF is initialized to all zero 

values, which are later updated through the value-iteration algorithm. 

The action-value function (AVF) is a vector assessing the “value” of taking 

different control actions (  ) at a given state,    .  The AVF uses the MDP and state-value 
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function to probabilistically assess the value of each action.  The cost function,          , 

computes the costs of each possible result of this immediate, upcoming step, which are 

then multiplied by their respective probabilities.  This process is detailed mathematically 

in Eq. 5.1. 

  )(),,( 1 jVajigTQ nk

j

a

ijn
k

   Eq. 5.1  

Multiplying the probability of stepping into each possible state (via the MDP) 

with the corresponding value of that post-step state (via the SVF) yields an expected 

value of the future state.  The expected future state value is multiplied by the adjustable 

“discount factor”, (     ), which weights the importance of planning ahead in the 

value computation (higher discount factors favor long-term thinking).  In this 

investigation, a discount factor of 0.9 was chosen to replicate prior published data.  The 

action which yields the most “valuable” result,        , is selected for use by the 

controller.  The AVF is completely recalculated before each step because the SVF, which 

is needed to calculate the AVF, is updated after every step.  Figure 5.3 illustrates the 

aforementioned process by showing how the MDP and current SVF are incorporated into 

Eq. 5.1.  
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Figure 5.3: A visualization of the relationship between the action-value function ( ), 

Markov Decision Process matrix (   
  ), and state-value function ( ) where   represents 

the current step number,   is the current state number,   is the state number potentially 

occupied for the next step, and   is an index enumerating all of the available state actions 

 

The state-value function updates after every step, a process which is visualized in 

block form in Figure 5.4.  The action-value function is calculated using the MDP and 

current state-value function.  The best action is determined by selecting the discrete 

action with the optimal value.  The state-value function is updated by replacing the entry 

for the current state with the optimal value in the action-value function, which is 

cartooned in Figure 5.5.  Due to the AVF’s consideration of future state values, the 

updated SVF now contains a better assessment of future performance when starting from 

a given state (  ).  The optimal step is then taken which interacts with a randomly 

generated terrain height, and results in a new state.   
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Figure 5.4: Block diagram of the value-iteration reinforcement learning process 

 

 

Figure 5.5: Visualization of the updating process for the state-value function using the 

value of the best action (       ) 
 

Mean First-Passage Time 

 For an application such as a robot walking on significantly rough terrain, classic 

definitions of stability regions are not necessarily the ideal standard for measuring the 
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reliability of a walker.  When subjected to large stochastic disturbances, walking robots 

are likely to fail eventually due to some series of drastic events.  As such, it is more apt to 

describe the robustness in terms of the expected duration between failures.  This metric is 

dubbed the mean first-passage time (Tedrake 2006) which is the expected amount of time 

(in this case, the number of steps taken) before the robot first falls. 

 The calculation of the mean first passage time (MFPT) requires a Markov 

Decision Process matrix generated after the learning process is complete.  This MDP is 

computed using the best actions possible (as determined by calculating the action-value 

function for every possible state and selecting the highest valued action, the result of 

which is called a policy) and determining the probability of transitioning to any of the 

given states.  Given this MDP, which is a large square matrix, the eigenvalues are 

calculated and ranked.  The second largest of these eigenvalues (  ) is used in Eq. 5.2 to 

calculate the MFPT.  The details of the derivation of the MFPT formula (Byl 2009) are of 

cursory interest to this investigation, especially as it is used exclusively to compare 

preliminary results with other research. 

 
     

 

    
 Eq. 5.2  

Approximate Optimal Robustness 

 A previously published approach (Byl 2009) used this algorithm to maximize the 

number of steps to failure while walking on rough terrain.  This is accomplished by 

setting the reward function to encourage future steps and punishing failed steps as shown 

in Eq. 5.3. 
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          {

           
       

 
Eq. 5.3  

The stochastic terrain is defined by a Gaussian distribution with a terrain roughness 

defined by the standard deviation (and a mean value of zero).  Once a roughness is 

selected, probabilities are binned into the nearest discrete terrain height listed in Table 

5.1, creating a discrete probability function. 

 

Value-Iteration Robustness Results 

 With each of the components in place for the value-iteration algorithm, it is 

important to compare the results of this algorithm with other data.  Using nearly identical 

parameters, models, and methods (differing only in Poincare section definition and state 

discretization) to those in a paper by Byl and Tedrake (Byl 2009), the results should be 

comparable.  For the single step controller, a standard proportional-derivative controller 

was used (KP = 10 Nm/degree and KD = 1 Nm/degree) and a constant pre-collision 

impulse magnitude (2 kg-m-s
-1

) was used for in both this investigation and the referenced 

paper. 

 Many terrain roughness values were selected between 0.00375 and 0.0125 m, a 

range which is encompassed by previously published data (Byl 2009).  For each of these 

values for terrain roughness, the value-iteration algorithm was run and the MFPT 

calculated every 10,000 steps.  If three successive MFPT computations were found to 

have varied by less than 5%, the algorithm was considered converged and it was assumed 

that more learning would not make an appreciable difference in performance. 
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 The resulting MFPT for many magnitudes of terrain roughness by both this 

investigation and the cited study (Byl 2009) are plotted in Figure 5.6 on semi-log axes.  

The trends of both data sets are largely the same, exhibiting an expected drop in MFPT as 

the terrain gets “rougher”.  The Hubicki-Buffinton data generally yielded an order of 

magnitude larger MFPT, but this may be due to differences in how the Poincare sections 

are defined (Chapter 2) or other differences in the state-space discretization (small 

changes to which the MFPT metric may be relatively sensitive).  Nonetheless, this data 

confirms that the value-iteration algorithm programmed for this thesis produces 

robustness at least on par with published data. 

 

Figure 5.6:  Comparison of resulting mean-first passage times of the value-iteration 

algorithm with published data (Byl 2009) 
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 With the value-iteration algorithm in operation, it can now be coupled with the 

toolset provided by the tradeoff-conducive control heuristic.  While the above value-

iteration algorithm only had the ability to choose the desired step size, this next addition 

will allow the algorithm to choose both the step size and the control parameter set which 

propels the walker that single-step distance.  Essentially, the algorithm will have to 

decide not only how far ahead to put the robot’s foot, but also how quickly and 

economically it gets there.  It is surmised that this added freedom will allow for long 

sustained walks exhibiting similar tradeoffs to those demonstrated in Chapter 4. 
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Chapter 6: Simulated Walking Experiment 

With heuristically synthesized single step controllers and an overseeing algorithm 

to intelligently select step actions, the elements are in place for testing the complete 

hierarchical walking controller on rough terrain.  Lingering questions about the proposed 

hierarchical controller largely concern the transition from single-step controller to “many-

step” controller.  The tradeoff-conducive controller heuristic provides a set of actions 

capable of a wide range of energy economy and speed performance to the value-iteration 

algorithm.  It remains to be seen how effectively the value-iteration algorithm can make 

use of this toolset to produce a sustained walk. 

 

Value-Iteration Cost Function 

 In the previous chapter, the cost function for the value-iteration algorithm 

rewarded each additional step taken, seeking to maximize the number of steps taken 

before falling.  A cost function for the final hierarchical controller must incentivize 

robustness, energy economy, and speed.  The proposed cost function, shown in Eq. 6.1, 

includes the distance taken by the step (D), the energy cost of the step (E), the time taken 

to complete the step (t), and their weighting factors (  ,   , and    respectively). 

               

 

 
   

 

 
 Eq. 6.1  

The robustness term (   ) rewards longer travel distances, as opposed to the 

previous function which rewards an increased number of steps.  The energy economy 

term (  
 

 
) is based on the inverse of the specific cost of transport metric, the energy 
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cost per unit distance traveled per unit weight.  Simply incorporating the energy cost per 

step could result in many small energy-conservative steps instead of good energy 

economy for the sustained walk.  The speed term (  
 

 
) is intuitive as it rewards larger 

distances traversed in less time.  Like so many other cost functions discussed in this 

investigation, the weighting factors are chosen as needed by the user with larger values 

associated with greater incentive to improve robustness, energy economy, or speed.  

While a hypothetical user would select a single set of weighting factors to suit their 

application, this investigation selects a wide range to demonstrate a breadth of 

performance capability.  Aside from a changed cost function, the value-iteration 

algorithm remains unchanged from its description in the previous chapter. 

 

Action Space 

 A well-defined action space capable of producing near-optimal steps is only 

possible due to the tradeoff-conducive control heuristic.  Using the ramped gain schedule 

plotted in Figure 4.12 and the six heuristic bounding parameters, the value-iteration 

algorithm has access to a library of controllers that have been shown to approximate 

optimal performance.  A remaining weakness pertains to the fact that the heuristic 

bounding parameters are tuned to a single point in state space using the gradient-descent 

algorithm in Chapter 4.  The state variables outlined in Table 6.1 were chosen because 

they represent the mean values of the defined discrete state space in Table 5.1.  As such, 

they perhaps have the best chance of being the best point in state space to represent the 

entire state space.  The one variable not chosen by taking the mean value is the terrain 
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height.  The terrain height was set at 1 cm above the starting height, as that will be the 

terrain roughness (standard deviation) used for the final simulated walking experiment. 

Gradient-Descent Algorithm State Variables 

State Variable Units Value 

X1:  vertical leg separation (m) 0.00 

X2: horizontal leg separation (m) 0.46 

X3: stance leg angular velocity (º/sec) -70 

X4: interleg angular velocity (º/sec) 0 

    : desired interleg angle (º) 27.5 

δ: terrain height (m) 0.01 

Table 6.1: State variables used for gradient-descent algorithm to obtain the six heuristic 

bounding parameters for the simulated walking experiment 

 

The resulting heuristic bounding parameters are listed in Table 6.2, values which 

fully detail how to scale the pre-collision impulse and gain schedule for varying needs of 

energy economy and speed.  To review, a highly energy economical controller would be 

generated using values closer to the minimum values.  Conversely, a high-speed 

controller would be generated by using values closer to the listed maximum values.  For 

the final walking experiment, six control parameter sets (see Chapter 3 for definition) 

were generated using Eq. 4.1-4.3 in Chapter 4. These six evenly spaced values for 

energy-speed weighting factor (    
) spanned between zero and one (0.0, 0.2, 0.4, 0.6, 

0.8, 1.0).  Six control sets were presumed to provide sufficient resolution on the tradeoff 

curve for the value-iteration algorithm to have sufficient variety from which to select 

appropriate actions. 
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Heuristic Bounding Parameters for Walking Simulation 

Impulse Magnitude Proportional Gains Scaling Derivative Gain Scaling 

Minimum 

(   ) 

Maximum 

(   ) 

Minimum 

(   
) 

Maximum 

(   
) 

Minimum 

(   
) 

Maximum 

(   
) 

1.75 Nm/s 6.27 Nm/s 0.75 2.29 0.90 1.35 

Table 6.2: Heuristic bounding parameters resulting from gradient-descent algorithm for 

the simulated walking experiment 

 

Discrete Dynamics 

 The tradeoff-conducive controller heuristic has been used to create a set of six 

control parameter sets for a range of energy and speed demands.  The discrete dynamics 

are computed using these six discrete control parameter sets, a discrete set of step sizes 

(    ), a discrete state space, and a discretized terrain probability function.  The 

discretizations of step sizes, state space, and terrain are listed in Table 6.3, which was 

kept identical to the values used in Chapter 5 for simplicity.  Every combination of 

control parameter set, step size, state variable, and terrain height are simulated and the 

output state variables, distance traversed, time taken, and energy consumed for each are 

stored in a database.  Energy consumed is computed as the sum of the kinetic energy 

imparted by the pre-collision impulse, the positive work done by the hip actuator, and the 

negative work done by the hip actuator (the hip actuator is not regenerative and consumes 

energy to dissipate the system energy).  This database is a discrete representation of the 

dynamics and outcomes for all possible actions. 
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State Variable, Action Variable, and Stochastic variable Discretization 

Discretized 

Variables 
Units Elements Discretization (MATLAB Vector Format) 

X1:  vertical leg 

separation 
m 19 

[-0.1, -0.05, -0.04, -0.03:0.005:0.03, 0.04, 0.05, 

0.1] 

X2: horizontal leg 

separation 
m 10 [0.16:0.06:0.7] 

X3: stance leg 

angular velocity 
deg/s 15 [-140:10:0] 

X4: swing interleg 

angular velocity 
deg/s 9 [-20:5:20] 

    : desired 

interleg angle 
deg 9 [15:2.78:40] 

δ: terrain height m 17 [0.05, 0.04, 0.03:-0.005:-0.03, -0.04, -0.05] 

Table 6.3: Discretization of variables for approximating the system states, actions, and 

terrain heights for simulated walking experiment 

 

Walking Experiment Results 

 With the dynamics approximated by discretization, the value-iteration algorithm 

is ready to learn how to walk.  A wide variety of combinations of weighting factors (  , 

  , and   ) were used (all with values inclusively bounded by zero and one).  The 

terrain roughness (standard deviation) is set to 1 cm, as this roughness yielded distances 

on the order of a kilometer in Chapter 5, which is a reasonable distance to simulate and 

save computation time 

 The simulation is initialized with a random state within the discretized state space 

and iterates the value-iteration algorithm with each step.  If a fall occurs, the state is re-

initialized to a random state and the iteration continues.  The learning is halted when the 

simulated robot was able to successfully walk one kilometer many consecutive times (ten 

times was deemed to be sufficient given the computational rigor of the simulation) and 
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the average energy economy and speed compared to subsequent one-kilometer walks did 

not deviate by more than 5%.  A change of less than 5% in performance over ten 

kilometers of learning indicates that there is likely little further learning that would 

greatly improve performance. 

 Each set of weighting factors resulted in an average walking speed and specific 

cost of transport (energy consumed per unit distance per unit weight) which was plotted 

on an energy-speed curve. The results of using a variety of weighting factors were 

surprisingly consistent.  Dozens of unique sets of weighting factors ultimately lumped 

their resulting performance very near (within 0.05 m/s and 0.05 transport cost) one of 

three points which are the average values of many closely lumped solutions.  These three 

points are plotted in Figure 6.1 against the corresponding performance of the tuned 

single-step controller (heuristic bounding parameters for which are listed in Table 6.2).  

In addition, the single-step tradeoff curve generated using no gain schedule (a “flat” 

profile optimized using the gradient-descent technique) is provided for comparison to 

traditional PD techniques. 
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Figure 6.1: Energy-Speed Tradeoff Curve for 1 km Walk using Value-Iteration compared 

to the Tuned Single-Step Curve 

 

 The performance of the value-iteration algorithm is somewhat inferior to the 

tuned single-step controller, which is to be expected.  The single-step controller is tuned 

to a single point in state space while the one-kilometer walker likely encounters a much 

larger swath of state space and must contend with changing terrain.  What is important to 

note is that the speed range of the 1 kilometer walk is quite similar to that of the single-

step curve.  Also, the results are staggering when compared with the traditional (no gain 

schedule) single-step controller which was optimized using gradient descent (Chapter 4).  

The one-kilometer-walk tradeoff curve is much wider than the traditional controller, 
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which provides the increased versatility which is the primary motivation for developing a 

tradeoff-conducive controller heuristic.  Additionally, the one-kilometer-walk delivers far 

more speed for a given energy cost even without the traditional controller suffering the 

effects of rough terrain over many steps. 

 

Walking Experiment Conclusions 

 Despite the many possible sources of performance degradation in coupling the 

value-iteration algorithm with the single-step controller heuristic for a sustained walk, the 

resulting controller still resulted in a far greater range of performance (speed and energy 

economy) than an optimized version of the traditional non-gain-scheduled proportional 

derivative controller.  The resulting hierarchical controller also made far more 

economical use of its energy budget for the achieved speeds.  This makes a strong 

argument for the use of a “ramped” gain schedule for controlling the leg swing of 

walking robots. 

One surprising result was the lack of resolution exhibited by the one-kilometer 

sustained walk curve, meaning that only three distinct points were found on the 

performance curve.  It is likely caused by relatively few control parameter sets (six) being 

generated for this experiment.  A small number of control parameter sets were generated 

in response to computational limitations.  While it is mathematically and computationally 

simple to generate a control parameter set using a tradeoff-conducive control heuristic, 

calculating the discrete dynamics for expedient execution of the value-iteration algorithm 

is significantly slowed by each additional control option.  
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It is also not clear from these results how significant different system states are to 

the performance of the tuned heuristic bounding parameters.  In this experiment, it can 

only be inferred that their impact is less than catastrophic for the complete hierarchical 

controller.  The smaller the effect of the system state on performance, the more powerful 

this heuristic approach may be for controlling walking robots. 
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Chapter 7: Conclusions and Future Work 

Summary 

The aim of this investigation has been to develop solutions to some of the major 

problems currently hampering the field of dynamic walking and walking machines in 

general.  In particular, the ability to robustly control a dynamic walking robot on rough 

terrain while optimizing energy consumption and speed has not been adequately 

addressed by research to date.  The hierarchical controller developed in this thesis has 

been demonstrated to outperform more traditional approaches in simulation on a simple 

walking model known as the Compass Gait.   The result is an artificially-intelligent 

algorithm which selects control actions generated by a novel control heuristic. 

The development of this heuristic likely proved to be the most intriguing insight 

in the investigation.  By taking a statistical look at the results of many computation-

intensive genetic optimizations, it was discovered that a wide range of optimized gain 

schedules could be represented by a simple, optimization-inspired “ramped” gain profile.  

Furthermore, this ramped profile and pre-collision impulse (leg push-off) magnitude 

could simply be scaled to meet the energy and speed demands of the control designer, 

yielding a simple control heuristic.  Upon further testing, this heuristic also proved 

capable of closely approximating the results of independent walking optimizations over a 

wide range of performance tradeoffs, and was hence termed a tradeoff-conducive control 

heuristic. 
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Conclusions 

 The tradeoff curves generated by the tradeoff-conducive control heuristic vastly 

outperformed controllers without gain scheduling in regard to the breadth of available 

tradeoffs and energy economy.  The control heuristic also excelled at synthesizing these 

controllers using trivially simple calculations as opposed to the generally lengthy 

computations required by optimization techniques. When coupled with a value-iteration 

reinforcement learning algorithm, the control heuristic still greatly outperformed the 

tradition non-gain-scheduled controller.  As gain schedules are not standard practice in 

controlling walking robots, these results make a compelling case for their use in 

producing a wide performance range. 

The value-iteration algorithm has proved to be a useful technique, which is not 

surprising as reinforcement learning has been in use for decades.  However, the algorithm 

becomes less useful as the number of state variables increases.  Each state variable adds a 

new dimension to the problem which exponentially expands the computational demands.  

This property of reinforcement learning algorithms limits its utility for systems more 

complicated than the compass gait.  

 This novel approach of developing a tradeoff-conducive control heuristic is not 

without its flaws.  The six heuristic bounding parameters must be deduced by some 

means, for which a gradient-descent algorithm was used.  It is has not been determined 

how sensitive the heuristic parameters are to changes in the initial state variables.  

Furthermore, it has not been shown how changing the mass parameters of the robot 

model affects the validity of the ramped profile.  The mass parameters in this study use 
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very heavy legs (each equivalent to the mass of the main body) as it accentuates the 

difficulty of the underactuated controls problem.   Far lighter legs might affect the slopes 

of the ramped profile, but the lightened legs would also diminish their effect on the 

dynamics. 

 

Future Work 

 There are some experiments which could bolster the findings presented here with 

additional evidence.  Given the success of the control heuristic for the particular mass 

properties in this investigation, it would be prudent to replicate these results for robots 

with different mass parameters.  In particular, the effect of different mass ratios between 

the legs and main body may change some aspect of the representative “ramped” gain 

profile.  Quantification of the heuristic parameters’ sensitivity to initial states would also 

be important in assessing the ease with which the heuristic can be generalized across the 

state space. 

 In regard to the value-iteration algorithm, the problem of dimensionality remains.  

It would be useful to run lengthier simulations to reproduce the sustained-walk tradeoff 

curve with more than six control parameter sets.  In the long term, solutions to high-

dimensional problems are needed which would allow for the control of robots with more 

degrees of freedom.  A potential approach may rely on simplifying more articulated 

walkers into a model similar to the compass gait by lumping some links together as an 

approximately rigid leg.  Such an approach may provide a straight-forward extension to 

walking with revolute knees akin to humans.  It is likely that for a significant subset of 
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kneed walking motions, the compass gait model can serve as a close approximation to the 

more complex dynamics of walking with jointed knees.  In such situations of 

approximate equivalence, the tradeoff-conducive control heuristic documented in this 

investigation could retain much of its performance capability with little modification. 

 More possibilities for advancements lie in the terrain modeling which is quite 

flexible in accommodating interesting features.  By modifying the discrete probability 

distribution, the robot can encounter the equivalent of steps, hurdles, or other obstacles.  

The policy generated by the learning algorithm is capable of being analyzed and mined 

for useful stepping strategies, perhaps resulting in control heuristics for common 

obstacles.  Wrapping terrain has also been explored and used to model intermittent terrain 

(pits) or very particularly shaped obstacles (Byl 2008). 

 Ultimately, the techniques developed for generating tradeoffs in control of 

walking robots can be applied to control in other applications.  In the field of mobile 

robotics alone, there are likely tradeoffs in running, climbing, and jumping which may be 

synthesized in a similar manner to this investigation.  In fact, some running models are 

even simpler than the compass gait, such as the spring-loaded inverted pendulum (SLIP) 

model (Schwind 1998).  As robots inevitably become more dynamic, knowing the 

energetic costs and how to execute these inherently dynamic and energetically intensive 

actions will further enable these machines to make informed decisions about how to do 

more with less. 
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Appendix 

 
Note: 

 

For privacy reasons, the body of the code for “EmailSimulationUpdate.m” and 

“RunUpdateRequestSystem.m” was not included in the documentation.  Every instance of these 

functions may be commented out without adversely affecting the code. 

 

Simulated Walking Experiment Code 

Step 1:  Run “GenerateMasterDynamicsTable.m” 

Step 2:  Run  “RunStochasticHeuristicSetup.m” 

 

BipedOneStepEOM.m 

 
%% Inputs: 

% IC_StLeg_position 

% IC_Base_angle 

% IC_StLeg_angvel 

% IC_SwLeg_angle 

% IC_SwLeg_angvel 

% terrain_height_vector 

% ACTIVATE_AT_LEG_CROSS 

% 

% angle_des 

% angle_ratio_vec 

% gain_schedule 

% ratio_schedule 

% 

% StLeg_mass 

% StLeg_inertia 

% StLeg_length 

% StLCG_ratio 

% SwLeg_mass 

% SwLeg_inertia 

% SwLeg_length 

% SwLCG_ratio 

% MBody_mass 

 

%% Outputs: 

% Base_angle 

% Base_angvel 

% StLCG_position 

% StLCG_velocity 

% StLCG_angvel 

% StLeg_angle 

% StLeg_angvel 

% StLeg_angaccel 

% MBCG_position 
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% MBCG_velocity 

% MBCG_angvel 

% MBCG_accel 

% SwLeg_angle 

% SwLeg_angvel_joint 

% SwLeg_angaccel2 

% SwLCG_position 

% SwLCG_velocity 

% SwLCG_angvel 

% SwLeg_angle2 

% SwLCG_accel 

% SwLeg_angaccel 

% interleg_angle 

% interleg_velocity 

% hip_torque 

% SwLeg_position 

% SwLeg_velocity 

% SwLeg_accel 

 

% HitCheck 

% TotalHits 

% FallCheck 

 

%% 

 

% close all 

 

SLOMO = 1; 

FRAMES_PER_SECOND = 30*SLOMO; 

NUM_SAMPLES = 1; 

 

ANIMATION_ON = 0; 

 

theta1_init = 1*(IC_Base_angle*pi/180) + pi/2; 

theta2_init = pi - IC_SwLeg_angle*pi/180 - IC_Base_angle*pi/180; 

theta_dot1_init = IC_StLeg_angvel*pi/180; 

theta_dot2_init = IC_SwLeg_angvel*pi/180; 

 

%t_max = 2; % assigned 

dt = 1e-3; 

if(t_max == 0) 

    num_max = 1; 

else 

    num_max = floor(t_max/dt); 

end 

 

theta1 = theta1_init; 

theta2 = theta2_init; 

theta_dot1 = theta_dot1_init; 

theta_dot2 = theta_dot2_init; 

 

tau = 0; 

m = StLeg_mass; 

mh = MBody_mass; 

L = StLeg_length; 

% g = 9.81; % Assigned elsewhere 
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a = StLCG_ratio*L; 

b = SwLCG_ratio*L; 

 

m1 = m + mh/2; 

m2 = m1; 

l1 = a + b; 

l2 = l1; 

lc1 = L - b*m/m1; 

lc2 = L - lc1; 

I1 = m*(b-lc2)^2 + 0.5*mh*lc2^2; 

I2 = I1; 

 

theta1_vec = zeros(num_max,1); 

theta2_vec = zeros(num_max,1); 

theta_dot1_vec = zeros(num_max,1); 

theta_dot2_vec = zeros(num_max,1); 

hip_torque = zeros(num_max,1); 

 

interleg_angle = zeros(num_max,1); 

interleg_velocity = zeros(num_max,1); 

 

SwLeg_position = zeros(num_max,2); 

SwLeg_velocity = zeros(num_max,2); 

 

MBody_inertia(3,3) = 0.0001; 

StLeg_inertia(3,3) = 0.0001; 

SwLeg_inertia(3,3) = 0.0001; 

 

for index = 2:num_max 

    theta1_vec(index-1) = theta1; 

    theta2_vec(index-1) = theta2; 

     

    theta_dot1_vec(index-1) = theta_dot1; 

    theta_dot2_vec(index-1) = theta_dot2; 

     

    interleg_angle(index-1) = (pi - theta2)*180/pi; 

    interleg_velocity(index-1) = theta_dot2*180/pi; 

     

    SwLeg_position(index-1,1) = L*cos(theta1) + L*cos(theta1+theta2); 

    SwLeg_position(index-1,2) = L*sin(theta1) + L*sin(theta1+theta2); 

     

    SwLeg_velocity(index-1,1) = L*cos(theta_dot1) + 

L*cos(theta_dot1+theta_dot2); 

    SwLeg_velocity(index-1,2) = L*sin(theta_dot1) + 

L*sin(theta_dot1+theta_dot2); 

     

    hip_torque(index-1) = tau; 

     

    d11 = m1*lc1^2 + m2*(l1^2+lc2^2+2*l1*lc2*cos(theta2)) + I1 + I2; 

    d12 = m2*(lc2^2 + l1*lc2*cos(theta2)) + I2; 

    d22 = m2*lc2^2 + I2; 

     

    h1 = -m2*l1*lc2*sin(theta2)*theta_dot2^2 - 

2*m2*l1*lc2*sin(theta2)*theta_dot2*theta_dot1; 

    h2 = m2*l1*lc2*sin(theta2)*theta_dot1^2; 

     

    p1 = (m1*lc1 + m2*l1)*g*cos(theta1) + m2*lc2*g*cos(theta1+theta2); 
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    p2 = m2*lc2*g*cos(theta1+theta2); 

     

    tau = GetControlTorque(interleg_angle(index-1), interleg_velocity(index-

1), -angle_des, angle_ratio_vec, gain_schedule, ratio_schedule); 

     

    theta_dot_dot2 = (d11*(tau - h2 - p2) + d12*(h1 + p1))/(d11*d22 - d12^2); 

    theta_dot_dot1 = (d12*theta_dot_dot2 + h1 + p1)/(-d11); 

     

    theta_dot1 = theta_dot_dot1*dt + theta_dot1; 

    theta_dot2 = theta_dot_dot2*dt + theta_dot2; 

     

    theta1 = theta_dot1*dt + theta1; 

    theta2 = theta_dot2*dt + theta2; 

     

    %% 

    %     interleg_angle(index-1) 

     

end 

 

theta1_vec(num_max) = theta1; 

theta2_vec(num_max) = theta2; 

 

if(num_max > 1) 

    theta_dot1_vec(index-1) = theta_dot1; 

    theta_dot2_vec(index-1) = theta_dot2; 

     

    hip_torque(index-1) = tau; 

else 

    theta_dot1_vec(1) = theta_dot1; 

    theta_dot2_vec(1) = theta_dot2; 

     

    hip_torque(1) = tau; 

     

    HitCheck = 1; 

end 

 

interleg_angle(num_max) = (pi + theta2)*180/pi; 

interleg_velocity(num_max) = theta_dot2*180/pi; 

 

clear MBCG_position 

clear MBCG_velocity 

clear StLCG_position 

clear StLCG_velocity 

clear SwLeg_position 

clear SwLCG_position 

clear SwLCG_velocity 

clear Base_angvel 

clear StLeg_angvel 

clear StLCG_angvel 

clear SwLeg_angvel 

 

MBCG_position(:,1) = L*cos(theta1_vec)'; 

MBCG_position(:,2) = L*sin(theta1_vec)'; 

 

MBCG_velocity(:,1) = (-L*theta_dot1_vec.*sin(theta1_vec))'; 

MBCG_velocity(:,2) = (L*theta_dot1_vec.*cos(theta1_vec))'; 
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StLCG_position(:,1) = StLCG_ratio*L*cos(theta1_vec)'; 

StLCG_position(:,2) = StLCG_ratio*L*sin(theta1_vec)'; 

 

StLCG_velocity(:,1) = (-L*StLCG_ratio.*sin(theta1_vec).*theta_dot1_vec)'; 

StLCG_velocity(:,2) = (L*StLCG_ratio.*cos(theta1_vec).*theta_dot1_vec)'; 

 

SwLeg_position(:,1) = L*cos(theta1_vec)' + L*cos(theta1_vec+theta2_vec)'; 

SwLeg_position(:,2) = L*sin(theta1_vec)' + L*sin(theta1_vec+theta2_vec)'; 

 

SwLCG_position(:,1) = L*cos(theta1_vec)' + 

SwLCG_ratio*L*cos(theta1_vec+theta2_vec)'; 

SwLCG_position(:,2) = L*sin(theta1_vec)' + 

SwLCG_ratio*L*sin(theta1_vec+theta2_vec)'; 

 

SwLCG_velocity(:,1) = (-L.*sin(theta1_vec).*theta_dot1_vec)' + (-

SwLCG_ratio*L*sin(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_vec))'; 

SwLCG_velocity(:,2) = (L.*cos(theta1_vec).*theta_dot1_vec)' + 

(SwLCG_ratio*L*cos(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_vec))'; 

 

Base_angle = (theta1_vec-pi/2)*180/pi; 

SwLeg_angle = -theta2_vec*180/pi + 180 - Base_angle; 

 

Base_angvel(:,1) = theta_dot1_vec*180/pi; 

StLeg_angvel(:,1) = Base_angvel.*0; 

StLCG_angvel(:,3) = theta_dot1_vec; 

SwLeg_angvel(:,3) = (theta_dot1_vec+theta_dot2_vec); 

MBCG_angvel = zeros(num_max,3); 

SwLeg_angvel_joint = theta_dot2_vec*180/pi; 

 

if(num_max > 1) 

    left_height_vec = meshgrid([SwLeg_position(:,2);L], 

terrain_height_vector); 

    right_height_vec = meshgrid([-L;SwLeg_position(:,2)], 

terrain_height_vector); 

     

    terrain_mat = meshgrid(terrain_height_vector, ones(1,num_max+1))'; 

    position_mat = meshgrid([SwLeg_position(:,1)',-L], 

zeros(1,length(terrain_height_vector))); 

     

    %     HitCheck_raw = (left_height_vec <= terrain_mat).*(right_height_vec > 

    %     terrain_mat).*([SwLeg_position(:,1)',-L] > 0.05); 

     

    HitCheck_raw = (left_height_vec <= terrain_mat).*(right_height_vec > 

terrain_mat).*(position_mat > 0.05); 

     

    HitCheck_raw(:,length([SwLeg_position(:,1)',-L])) = (1-

sum(HitCheck_raw,2)); 

     

    %Assumes only one terrain height 

    %     HitCheck_raw(length(HitCheck_raw)) = 1; 

     

    final_index = find(HitCheck_raw); 

    if(isempty(final_index)) 

        final_index = length(HitCheck_raw)-1; 

    end 

     

    HitCheck = zeros(1,final_index(1)); 
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    HitCheck(final_index) = 1; 

else 

    HitCheck = 1; 

    final_index = 1; 

end 

 

% length(HitCheck) 

 

if(ANIMATION_ON) 

    %     hold on 

     

    if(t_max == 0) 

        time_interp = t_max; 

        theta1_interp = theta1_vec; 

        theta2_interp = theta2_vec; 

    else 

        time_interp = [0:1/FRAMES_PER_SECOND:t_max]; 

        theta1_interp = interp1(dt*[1:num_max], theta1_vec, time_interp); 

        theta2_interp = interp1(dt*[1:num_max], theta2_vec, time_interp); 

    end 

     

    for index = [1:length(time_interp)] 

        x1 = L*cos(theta1_interp(index)); 

        y1 = L*sin(theta1_interp(index)); 

        x2 = x1 + L*cos(theta1_interp(index)+theta2_interp(index)); 

        y2 = y1 + L*sin(theta1_interp(index)+theta2_interp(index)); 

        CMx1 = a*cos(theta1_interp(index)); 

        CMy1 = a*sin(theta1_interp(index)); 

        CMx2 = x1 + b*cos(theta1_interp(index)+theta2_interp(index)); 

        CMy2 = y1 + b*sin(theta1_interp(index)+theta2_interp(index)); 

        plot([0,x1], [0,y1], 'bo-', [x1,x2], [y1,y2], 'ro-', CMx1, CMy1, 'bx', 

CMx2, CMy2, 'rx') 

        axis equal 

        axis([-2,2,-2,2]) 

        pause(1/FRAMES_PER_SECOND*SLOMO) 

    end 

end 

 

% figure(4) 

% plot(interleg_velocity) 

 

% debug_BA = Base_angle(1) 

% debug_SwA = SwLeg_angle(1) 

% 

% SwLeg_position 
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ComputeBestActionTransitions.m 

 
%% Inputs: 

% IC_StLeg_position 

% IC_Base_angle 

% IC_StLeg_angvel 

% IC_SwLeg_angle 

% IC_SwLeg_angvel 

% terrain_height_vector 

% ACTIVATE_AT_LEG_CROSS 

% 

% angle_des 

% angle_ratio_vec 

% gain_schedule 

% ratio_schedule 

% 

% StLeg_mass 

% StLeg_inertia 

% StLeg_length 

% StLCG_ratio 

% SwLeg_mass 

% SwLeg_inertia 

% SwLeg_length 

% SwLCG_ratio 

% MBody_mass 

 

%% Outputs: 

% Base_angle 

% Base_angvel 

% StLCG_position 

% StLCG_velocity 

% StLCG_angvel 

% StLeg_angle 

% StLeg_angvel 

% StLeg_angaccel 

% MBCG_position 

% MBCG_velocity 

% MBCG_angvel 

% MBCG_accel 

% SwLeg_angle 

% SwLeg_angvel_joint 

% SwLeg_angaccel2 

% SwLCG_position 

% SwLCG_velocity 

% SwLCG_angvel 

% SwLeg_angle2 

% SwLCG_accel 

% SwLeg_angaccel 

% interleg_angle 

% interleg_velocity 

% hip_torque 

% SwLeg_position 

% SwLeg_velocity 

% SwLeg_accel 

 

% HitCheck 

% TotalHits 
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% FallCheck 

 

%% 

 

% close all 

 

SLOMO = 1; 

FRAMES_PER_SECOND = 30*SLOMO; 

NUM_SAMPLES = 1; 

 

ANIMATION_ON = 0; 

 

theta1_init = 1*(IC_Base_angle*pi/180) + pi/2; 

theta2_init = pi - IC_SwLeg_angle*pi/180 - IC_Base_angle*pi/180; 

theta_dot1_init = IC_StLeg_angvel*pi/180; 

theta_dot2_init = IC_SwLeg_angvel*pi/180; 

 

%t_max = 2; % assigned 

dt = 1e-3; 

if(t_max == 0) 

    num_max = 1; 

else 

    num_max = floor(t_max/dt); 

end 

 

theta1 = theta1_init; 

theta2 = theta2_init; 

theta_dot1 = theta_dot1_init; 

theta_dot2 = theta_dot2_init; 

 

tau = 0; 

m = StLeg_mass; 

mh = MBody_mass; 

L = StLeg_length; 

% g = 9.81; % Assigned elsewhere 

 

a = StLCG_ratio*L; 

b = SwLCG_ratio*L; 

 

m1 = m + mh/2; 

m2 = m1; 

l1 = a + b; 

l2 = l1; 

lc1 = L - b*m/m1; 

lc2 = L - lc1; 

I1 = m*(b-lc2)^2 + 0.5*mh*lc2^2; 

I2 = I1; 

 

theta1_vec = zeros(num_max,1); 

theta2_vec = zeros(num_max,1); 

theta_dot1_vec = zeros(num_max,1); 

theta_dot2_vec = zeros(num_max,1); 

hip_torque = zeros(num_max,1); 

 

interleg_angle = zeros(num_max,1); 

interleg_velocity = zeros(num_max,1); 
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SwLeg_position = zeros(num_max,2); 

SwLeg_velocity = zeros(num_max,2); 

 

MBody_inertia(3,3) = 0.0001; 

StLeg_inertia(3,3) = 0.0001; 

SwLeg_inertia(3,3) = 0.0001; 

 

for index = 2:num_max 

    theta1_vec(index-1) = theta1; 

    theta2_vec(index-1) = theta2; 

     

    theta_dot1_vec(index-1) = theta_dot1; 

    theta_dot2_vec(index-1) = theta_dot2; 

     

    interleg_angle(index-1) = (pi - theta2)*180/pi; 

    interleg_velocity(index-1) = theta_dot2*180/pi; 

     

    SwLeg_position(index-1,1) = L*cos(theta1) + L*cos(theta1+theta2); 

    SwLeg_position(index-1,2) = L*sin(theta1) + L*sin(theta1+theta2); 

     

    SwLeg_velocity(index-1,1) = L*cos(theta_dot1) + 

L*cos(theta_dot1+theta_dot2); 

    SwLeg_velocity(index-1,2) = L*sin(theta_dot1) + 

L*sin(theta_dot1+theta_dot2); 

     

    hip_torque(index-1) = tau; 

     

    d11 = m1*lc1^2 + m2*(l1^2+lc2^2+2*l1*lc2*cos(theta2)) + I1 + I2; 

    d12 = m2*(lc2^2 + l1*lc2*cos(theta2)) + I2; 

    d22 = m2*lc2^2 + I2; 

     

    h1 = -m2*l1*lc2*sin(theta2)*theta_dot2^2 - 

2*m2*l1*lc2*sin(theta2)*theta_dot2*theta_dot1; 

    h2 = m2*l1*lc2*sin(theta2)*theta_dot1^2; 

     

    p1 = (m1*lc1 + m2*l1)*g*cos(theta1) + m2*lc2*g*cos(theta1+theta2); 

    p2 = m2*lc2*g*cos(theta1+theta2); 

     

    tau = GetControlTorque(interleg_angle(index-1), interleg_velocity(index-

1), -angle_des, angle_ratio_vec, gain_schedule, ratio_schedule); 

     

    theta_dot_dot2 = (d11*(tau - h2 - p2) + d12*(h1 + p1))/(d11*d22 - d12^2); 

    theta_dot_dot1 = (d12*theta_dot_dot2 + h1 + p1)/(-d11); 

     

    theta_dot1 = theta_dot_dot1*dt + theta_dot1; 

    theta_dot2 = theta_dot_dot2*dt + theta_dot2; 

     

    theta1 = theta_dot1*dt + theta1; 

    theta2 = theta_dot2*dt + theta2; 

     

    %% 

    %     interleg_angle(index-1) 

     

end 

 

theta1_vec(num_max) = theta1; 

theta2_vec(num_max) = theta2; 
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if(num_max > 1) 

    theta_dot1_vec(index-1) = theta_dot1; 

    theta_dot2_vec(index-1) = theta_dot2; 

     

    hip_torque(index-1) = tau; 

else 

    theta_dot1_vec(1) = theta_dot1; 

    theta_dot2_vec(1) = theta_dot2; 

     

    hip_torque(1) = tau; 

     

    HitCheck = 1; 

end 

 

interleg_angle(num_max) = (pi + theta2)*180/pi; 

interleg_velocity(num_max) = theta_dot2*180/pi; 

 

clear MBCG_position 

clear MBCG_velocity 

clear StLCG_position 

clear StLCG_velocity 

clear SwLeg_position 

clear SwLCG_position 

clear SwLCG_velocity 

clear Base_angvel 

clear StLeg_angvel 

clear StLCG_angvel 

clear SwLeg_angvel 

 

MBCG_position(:,1) = L*cos(theta1_vec)'; 

MBCG_position(:,2) = L*sin(theta1_vec)'; 

 

MBCG_velocity(:,1) = (-L*theta_dot1_vec.*sin(theta1_vec))'; 

MBCG_velocity(:,2) = (L*theta_dot1_vec.*cos(theta1_vec))'; 

 

StLCG_position(:,1) = StLCG_ratio*L*cos(theta1_vec)'; 

StLCG_position(:,2) = StLCG_ratio*L*sin(theta1_vec)'; 

 

StLCG_velocity(:,1) = (-L*StLCG_ratio.*sin(theta1_vec).*theta_dot1_vec)'; 

StLCG_velocity(:,2) = (L*StLCG_ratio.*cos(theta1_vec).*theta_dot1_vec)'; 

 

SwLeg_position(:,1) = L*cos(theta1_vec)' + L*cos(theta1_vec+theta2_vec)'; 

SwLeg_position(:,2) = L*sin(theta1_vec)' + L*sin(theta1_vec+theta2_vec)'; 

 

SwLCG_position(:,1) = L*cos(theta1_vec)' + 

SwLCG_ratio*L*cos(theta1_vec+theta2_vec)'; 

SwLCG_position(:,2) = L*sin(theta1_vec)' + 

SwLCG_ratio*L*sin(theta1_vec+theta2_vec)'; 

 

SwLCG_velocity(:,1) = (-L.*sin(theta1_vec).*theta_dot1_vec)' + (-

SwLCG_ratio*L*sin(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_vec))'; 

SwLCG_velocity(:,2) = (L.*cos(theta1_vec).*theta_dot1_vec)' + 

(SwLCG_ratio*L*cos(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_vec))'; 

 

Base_angle = (theta1_vec-pi/2)*180/pi; 

SwLeg_angle = -theta2_vec*180/pi + 180 - Base_angle; 
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Base_angvel(:,1) = theta_dot1_vec*180/pi; 

StLeg_angvel(:,1) = Base_angvel.*0; 

StLCG_angvel(:,3) = theta_dot1_vec; 

SwLeg_angvel(:,3) = (theta_dot1_vec+theta_dot2_vec); 

MBCG_angvel = zeros(num_max,3); 

SwLeg_angvel_joint = theta_dot2_vec*180/pi; 

 

if(num_max > 1) 

    left_height_vec = meshgrid([SwLeg_position(:,2);L], 

terrain_height_vector); 

    right_height_vec = meshgrid([-L;SwLeg_position(:,2)], 

terrain_height_vector); 

     

    terrain_mat = meshgrid(terrain_height_vector, ones(1,num_max+1))'; 

    position_mat = meshgrid([SwLeg_position(:,1)',-L], 

zeros(1,length(terrain_height_vector))); 

     

    %     HitCheck_raw = (left_height_vec <= terrain_mat).*(right_height_vec > 

    %     terrain_mat).*([SwLeg_position(:,1)',-L] > 0.05); 

     

    HitCheck_raw = (left_height_vec <= terrain_mat).*(right_height_vec > 

terrain_mat).*(position_mat > 0.05); 

     

    HitCheck_raw(:,length([SwLeg_position(:,1)',-L])) = (1-

sum(HitCheck_raw,2)); 

     

    %Assumes only one terrain height 

    %     HitCheck_raw(length(HitCheck_raw)) = 1; 

     

    final_index = find(HitCheck_raw); 

    if(isempty(final_index)) 

        final_index = length(HitCheck_raw)-1; 

    end 

     

    HitCheck = zeros(1,final_index(1)); 

    HitCheck(final_index) = 1; 

else 

    HitCheck = 1; 

    final_index = 1; 

end 

 

% length(HitCheck) 

 

if(ANIMATION_ON) 

    %     hold on 

     

    if(t_max == 0) 

        time_interp = t_max; 

        theta1_interp = theta1_vec; 

        theta2_interp = theta2_vec; 

    else 

        time_interp = [0:1/FRAMES_PER_SECOND:t_max]; 

        theta1_interp = interp1(dt*[1:num_max], theta1_vec, time_interp); 

        theta2_interp = interp1(dt*[1:num_max], theta2_vec, time_interp); 

    end 

     



121 
 

    for index = [1:length(time_interp)] 

        x1 = L*cos(theta1_interp(index)); 

        y1 = L*sin(theta1_interp(index)); 

        x2 = x1 + L*cos(theta1_interp(index)+theta2_interp(index)); 

        y2 = y1 + L*sin(theta1_interp(index)+theta2_interp(index)); 

        CMx1 = a*cos(theta1_interp(index)); 

        CMy1 = a*sin(theta1_interp(index)); 

        CMx2 = x1 + b*cos(theta1_interp(index)+theta2_interp(index)); 

        CMy2 = y1 + b*sin(theta1_interp(index)+theta2_interp(index)); 

        plot([0,x1], [0,y1], 'bo-', [x1,x2], [y1,y2], 'ro-', CMx1, CMy1, 'bx', 

CMx2, CMy2, 'rx') 

        axis equal 

        axis([-2,2,-2,2]) 

        pause(1/FRAMES_PER_SECOND*SLOMO) 

    end 

end 

 

% figure(4) 

% plot(interleg_velocity) 

 

% debug_BA = Base_angle(1) 

% debug_SwA = SwLeg_angle(1) 

% 

% SwLeg_position 
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ComputeMDP.m 

 
% COMPUTE_MDP 

 

% state_value_vector 

 

MDP = sparse(max_state_num, max_state_num); 

policy = zeros(max_state_num,1); 

 

clock 

for s = 1:max_state_num 

    [action_index, action_transitions] = 

ComputeBestActionTransitions(s, state_value_vector, 

stochastic_transition_database, num_actions); 

     

    policy(s) = action_index; 

    MDP(s,:) = action_transitions; 

     

%     if(sum(MDP(s,:) ~= stochastic_transition_database{9}(s,:)) > 0) 

%         s 

%         MDP(s,:) 

%         pause 

%     end 

     

end 

clock 

 

% eigs(MDP) 

 

save AI_allvars 
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ComputeProbDistribution.m 

 
function prob_distribution = ComputeProbDistribution(terrain_sigma, 

mean_value, bin_vector) 

 

%NOTE: bin vector must be NON-INCREASING!!! 

 

%ComputeProbDistribution 

log_probability_cutoff = 4; % if 4, probabilities lower than 1:10^4 

are ignored 

 

NUM_SAMPLES = 1e6; 

 

rand_samples = randn(1,NUM_SAMPLES)*terrain_sigma; 

 

bin_bound = 0.5*diff(bin_vector)+bin_vector(1:(length(bin_vector)-1)); 

 

bin_sum = zeros(1,length(bin_vector)); 

 

for m = 1:NUM_SAMPLES 

    bin_num = length(find(rand_samples(m) <= bin_bound))+1; 

     

    bin_sum(bin_num) = bin_sum(bin_num) + 1; 

end 

 

prob_distribution = bin_sum/sum(bin_sum); 

 

% Cuts off small probabilities (more remote than 

10^log_probability_cutoff) 

prob_distribution = 

round(prob_distribution*10^log_probability_cutoff)/sum(round(prob_dist

ribution*10^log_probability_cutoff)); 

 

% plot(bin_vector, prob_distribution, 'kx-') 
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EnergyComputationOneStep.m 

 
% EnergyComputationOneStep 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

 

s1 = size(MBCG_position); 

 

if(final_index(1) > s1(1)) 

    final_index(1) = s1(1); 

end 

 

PE = g*(MBody_mass.*MBCG_position(1:final_index(1),2) + 

StLeg_mass.*StLCG_position(1:final_index(1),2) + 

SwLeg_mass.*SwLCG_position(1:final_index(1),2)); 

 

KE_MBody = 0.5*MBody_mass*(MBCG_velocity(1:final_index(1),1).^2 + 

MBCG_velocity(1:final_index(1),2).^2) + 

0.5*MBody_inertia(3,3).*(MBCG_angvel(1:final_index(1),3)*pi/180).^2; 

KE_StLeg = 0.5*StLeg_mass*(StLCG_velocity(1:final_index(1),1).^2 + 

StLCG_velocity(1:final_index(1),2).^2) + 

0.5*StLeg_inertia(3,3).*(StLCG_angvel(1:final_index(1),3)*pi/180).^2; 

KE_SwLeg = 0.5*SwLeg_mass*(SwLCG_velocity(1:final_index(1),1).^2 + 

SwLCG_velocity(1:final_index(1),2).^2) + 

0.5*SwLeg_inertia(3,3).*(SwLeg_angvel(1:final_index(1),3)*pi/180).^2; 

 

% final_index 

KE = KE_MBody + KE_StLeg + KE_SwLeg; 

% PE 

 

total_energy = PE-PE(1)+KE; 

energy_delta = -1*total_energy + 

[total_energy(2:length(total_energy));0]; 

energy_delta = energy_delta(1:(length(energy_delta)-1)); 

 

% max_energy = max(total_energy) 

% min_energy = min(total_energy) 

 

% figure(5) 

% s_ed = size(energy_delta) 

% plot(energy_delta) 

% plot(total_energy) 
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% pause 

% figure(1) 

 

energy_added = sum((energy_delta>=0).*energy_delta); 

energy_dissipated = sum((energy_delta<=0).*energy_delta); 

energy_net = energy_added + energy_dissipated; 

 

PE_delta = PE(length(PE)) - PE(1); 
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GenerateMasterDynamicsTable.m 

 
%GenerateMasterDynamicsTable 

 

%SAVE: 

% [numX1, [X1vec]] 

% [numX2, [X2vec]] 

% [numX3, [X3vec]] 

% [numX4, [X4vec]] 

% [numDelta, [delta_vec]] 

% [numAlpha, [alpha_vec]] 

% [masterDynamicsTable (alpha slice 1)] 

% [masterDynamicsTable (alpha slice 2)] 

% ... 

% [masterDynamicsTable (alpha slice numAlpha)] 

 

% clc 

clear 

close all 

 

try 

     

     

    EMAIL_ALERT = 1; 

    %     [last_update_time, last_update_text] = CheckUpdateRequests; 

     

    addpath P:\UrbanRobots\private\Hubicki\Simulation\2009-12\Tools 

     

    initial_time = clock; 

    if(initial_time(5) < 10) 

        initial_minutes = ['0' num2str(initial_time(5))]; 

    else 

        initial_minutes = [num2str(initial_time(5))]; 

    end 

    initial_hours = num2str(initial_time(4)); 

    initial_time_readout = [initial_hours ':' initial_minutes]; 

     

    text_body = ['Greetings,' 10 'Your simulation has commenced, 

beginning at ' initial_time_readout ' local machine time.' 10 

'Regards,' 10 '- CodeBot']; 

    if(EMAIL_ALERT) 

        EmailSimulationUpdate(['Simulation Commenced at ', 

initial_time_readout], text_body) 

    end 

    

 

     

    % Hubicki state space discretization 

    X1_vec = [-0.1, -0.05, -0.04, -0.03:0.005:0.03, 0.04, 0.05, 0.1]; 

    X2_vec = [0.16:0.06:0.7]; 

    X3_vec = [-140:10:0]; 

    X4_vec = [-20:5:20]; 
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    % delta_terrain_vec = [0.029 0.02 0.01 0.0 -0.01 -0.02 -0.029]; 

    delta_terrain_vec = [0.05 0.04 0.03:-0.005:-0.03 -0.04 -0.05]; 

    %     alpha_vec = linspace(15, 40, 5); 

    alpha_vec = linspace(27.5, 40, 3); 

    impulse_value = 2; 

     

    tradeoff_weighting_vec = linspace(0, 1, 6); 

     

    % X3_vec = [-2.1:0.1:-1.4, -1.25, -1.1]; 

    % X4_vec = [-1, -0.7, -0.5:0.25:0.75, 1.1, 1.5]; 

     

    heuristic_parameters = [1.75 6.27 0.75 2.29 0.9 1.35]; 

%     heuristic_parameters = [1.75 6.27 0.75 2.29 0.9 0.135]; 

     

    numX1 = length(X1_vec); 

    numX2 = length(X2_vec); 

    numX3 = length(X3_vec); 

    numX4 = length(X4_vec); 

     

    state_dimensions = [numX1, numX2, numX3, numX4]; 

     

    [X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, 

max_state_num] = GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec, 

X4_vec); 

     

    % state_in = [-0.02, 0.3, -50, -0]; 

     

    root_angle_ratio_vec = [-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75

 1]; 

    root_gain_schedule = 1.0.*[3.217524076 2.854678338

 3.476241818 3.823100867 3.871491193 4.046413024

 4.290005978 4.634429007 4.844104976 5.049151904]; 

    root_ratio_schedule = [1.486095457 1.045793855 1.085561499

 0.993975082 0.903970409 0.804858655 0.695194153

 0.460624279 0.228208339 0.752267483]; 

     

    %     angle_ratio_vec = [-1,1]; 

    %     gain_schedule = [10, 10, 10]; 

    %     ratio_schedule = [1 1 1]; 

    action = [25 2 1 1 1]; 

     

    angle_ratio_vec = root_angle_ratio_vec; 

    gain_schedule = root_gain_schedule; 

    ratio_schedule = root_ratio_schedule; 

     

    % time1 = clock; 

    % [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed] = StepToStepTFarchive(state_in, action, 

delta_terrain_vec); 

    time2 = clock; 
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    state_num = zeros(1,length(delta_terrain_vec)); 

     

    % for m = 1:length(delta_terrain_vec) 

    %     state_num(m) = GetStateNumber(states_out(m,:), is_fallen(m), 

X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, 

state_dimensions); 

    % end 

     

    time1 = clock; 

     

    blank_trans_matrix = zeros(max_state_num, 

length(delta_terrain_vec)); 

    blank_trans_matrix(1,:) = ones(1, length(delta_terrain_vec)); 

     

    master_dynamics_database = 

cell(length(tradeoff_weighting_vec),length(alpha_vec)); 

    master_distance_database = 

cell(length(tradeoff_weighting_vec),length(alpha_vec)); 

    master_time_database = 

cell(length(tradeoff_weighting_vec),length(alpha_vec)); 

    master_energy_database = 

cell(length(tradeoff_weighting_vec),length(alpha_vec)); 

     

    clock 

     

    for tradeoff_index = 1:length(tradeoff_weighting_vec) 

         

        tradeoff_weight = tradeoff_weighting_vec(tradeoff_index); 

         

        impulse_value = tradeoff_weight*(heuristic_parameters(2) - 

heuristic_parameters(1)) + heuristic_parameters(1); 

        gain_schedule = 

root_gain_schedule.*(tradeoff_weight*(heuristic_parameters(4) - 

heuristic_parameters(3)) + heuristic_parameters(3)); 

        ratio_schedule = 

root_ratio_schedule.*(tradeoff_weight*(heuristic_parameters(6) - 

heuristic_parameters(5)) + heuristic_parameters(5)); 

         

        for p = 1:length(alpha_vec) 

             

             

             

            action = [alpha_vec(p) impulse_value 1 1 1]; 

            new_trans_matrix = blank_trans_matrix; 

             

            new_distance_matrix = zeros(max_state_num,1); 

            new_time_matrix = blank_trans_matrix; 

            new_energy_matrix = zeros(max_state_num,1); 

             

             

            for q = 2:max_state_num 
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                index_vector = GetStateIndices(q, state_dimensions); 

                state_in = [X1_vec(index_vector(1)) 

X2_vec(index_vector(2)) X3_vec(index_vector(3)) 

X4_vec(index_vector(4))]; 

                 

                [states_out, is_fallen, distance_traversed, 

time_elapsed, energy_consumed] = StepToStepTFarchive(state_in, action, 

delta_terrain_vec); 

                 

%                 energy_consumed1 = energy_consumed 

                 

                [dummy1, dummy1, dummy1, dummy1, energy_consumed, 

dummy1, dummy1] = StepToStepGetEnergy(state_in, action, 

delta_terrain_vec, [1,5]); 

                 

%                 energy_consumed 

                 

                %                 distance_traversed 

                %                 time_elapsed 

                %                 energy_consumed 

                %                 pause 

                 

                state_num = zeros(1,length(delta_terrain_vec)); 

                 

                for n = 1:length(delta_terrain_vec) 

                    state_num(n) = GetStateNumber(states_out(n,:), 

is_fallen(n), X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, 

state_dimensions); 

                end 

                 

                if(sum(state_num ~= 1) > 0) 

%                     state_in 

%                      

%                     state_num 

                    distance_traversed = max(states_out(:,2)); 

%                     time_elapsed 

%                     energy_consumed 

%                     pause 

                end 

                 

                new_trans_matrix(q,:) = state_num; 

                 

                new_distance_matrix(q,1) = distance_traversed; 

                new_time_matrix(q,:) = time_elapsed; 

                new_energy_matrix(q,1) = energy_consumed; 

                 

            end 

             

            master_dynamics_database{tradeoff_index, p} = 

new_trans_matrix; 

             



130 
 

            master_distance_database{tradeoff_index, p} = 

new_distance_matrix; 

            master_time_database{tradeoff_index, p} = new_time_matrix; 

            master_energy_database{tradeoff_index, p} = 

new_energy_matrix; 

             

            %             disp('cycle done') 

            %             pause 

             

        end 

    end 

     

    time2 = clock; 

     

    time1 

    time2 

     

    %     cellplot(master_dynamics_database) 

     

     

    final_time = clock; 

    if(final_time(5) < 10) 

        final_minutes = ['0' num2str(final_time(5))]; 

    else 

        final_minutes = [num2str(final_time(5))]; 

    end 

    final_hours = num2str(final_time(4)); 

    final_time_readout = [final_hours ':' final_minutes]; 

     

    elapsed_time = final_time - initial_time; 

    elapsed_hours = num2str(elapsed_time*[0 0 24 1 0 0]'); 

    elapsed_minutes = num2str(elapsed_time(5)); 

     

    text_body = ['Greetings,' 10 'Your simulation beginning at ' 

initial_time_readout ' has executed without error.' 10 'Total run time: 

' elapsed_hours ' hours and ' elapsed_minutes ' minutes.' ... 

        10 'Regards,' 10 '- CodeBot']; 

    if(EMAIL_ALERT) 

        EmailSimulationUpdate(['Simulation Complete at ' 

final_time_readout '!'], text_body) 

    end 

     

         

    save 'dynamics_database.mat' master_dynamics_database 

master_distance_database master_time_database master_energy_database 

X1_vec X2_vec X3_vec X4_vec delta_terrain_vec alpha_vec 

tradeoff_weighting_vec root_angle_ratio_vec root_gain_schedule 

root_ratio_schedule heuristic_parameters 

    save generated_dynamics_data_all 

     

catch ME 

    rep = getReport(ME) 
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    rep_email = getReport(ME, 'extended', 'hyperlinks', 'off'); 

    text_body = ['The error report was recorded as follows:' 10 ' ' 10 

rep_email 10 ' ' 10 'Regards,' 10 '- CodeBot']; 

    if(EMAIL_ALERT) 

        EmailSimulationUpdate('Simulation Update: Untimely 

Termination', text_body) 

    end 

end 
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GenerateStochasticHeuristicTable.m 

 
function [stochastic_transition_database] = 

GenerateStochasticTransitionHeuristicTable(master_dynamics_database, 

prob_distribution, max_state_num, num_actions, num_weights) 

 

blank_transition_table = sparse(max_state_num, max_state_num); 

 

num_delta = length(prob_distribution); 

 

stochastic_transition_database = cell(num_weights,num_actions); 

 

for tradeoff_index = 1:num_weights 

    for p = 1:num_actions 

         

        %     clock 

         

        current_transition_table = blank_transition_table; 

         

        for q = 1:max_state_num 

            for r = 1:num_delta 

                

current_transition_table(q,master_dynamics_database{tradeoff_index,p}(

q,r)) = 

current_transition_table(q,master_dynamics_database{tradeoff_index,p}(

q,r)) + prob_distribution(r); 

                 

                %             

current_transition_table(q,master_dynamics_database{p}(q,r)) 

                %             pause(0.1) 

                 

            end 

            %         if(sum(current_transition_table(q,:) > 0.999) == 

0) 

            %             q 

            %             current_transition_table(q,:) 

            %             pause(0.1) 

            %         end 

             

             

        end 

         

        stochastic_transition_database{tradeoff_index,p} = 

current_transition_table; 

    end 

end 
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GetControlTorque.m 

 
function tau = GetControlTorque(interleg_angle, interleg_velocity, 

angle_des, angle_ratio_vec, gain_schedule, ratio_schedule) 

 

% angle_ratio_vec = -angle_ratio_vec; 

 

% angle_des 

% angle_ratio_vec.*abs(angle_des) 

% interleg_angle 

% gain_schedule 

% ratio_schedule 

index = find(-interleg_angle > angle_ratio_vec.*abs(angle_des)); 

 

% if(-interleg_angle >= 

angle_ratio_vec(length(angle_ratio_vec))*abs(angle_des)) 

%     KP = gain_schedule(length(angle_ratio_vec)); 

%     KD = KP*ratio_schedule(length(angle_ratio_vec)); 

%     disp('highest') 

% elseif(-interleg_angle <= angle_ratio_vec(1)*angle_des) 

%     KP = gain_schedule(1); 

%     KD = KP*ratio_schedule(1); 

%     disp('lowest') 

% else 

%     index = find(interleg_angle > angle_ratio_vec.*abs(angle_des)); 

%     KP = gain_schedule(index(length(index))); 

%     KD = ratio_schedule(index(length(index)))*KP; 

%     index(length(index)) 

% end 

 

if(isempty(index)) 

    used_index = 1; 

    KP = gain_schedule(used_index); 

%     KD = KP*ratio_schedule(used_index); 

    KD = ratio_schedule(used_index); 

else 

    used_index = max(index)+1; 

    KP = gain_schedule(used_index); 

%     KD = KP*ratio_schedule(used_index); 

    KD = ratio_schedule(used_index); 

end 

 

% disp(['index: ',num2str(used_index)]) 

 

tau = -KP*(angle_des-interleg_angle) - KD*interleg_velocity; 
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GetStateBoundaryVectors.m 

 
function [X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, 

max_state_num] = GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec, 

X4_vec) 

 

X1_bound_vec = [X1_vec(1) 0.5*diff(X1_vec)+X1_vec(1:(length(X1_vec)-1)) 

X1_vec(length(X1_vec))]; 

X2_bound_vec = [X2_vec(1) 0.5*diff(X2_vec)+X2_vec(1:(length(X2_vec)-1)) 

X2_vec(length(X2_vec))]; 

X3_bound_vec = [X3_vec(1) 0.5*diff(X3_vec)+X3_vec(1:(length(X3_vec)-1)) 

X3_vec(length(X3_vec))]; 

X4_bound_vec = [X4_vec(1) 0.5*diff(X4_vec)+X4_vec(1:(length(X4_vec)-1)) 

X4_vec(length(X4_vec))]; 

 

max_state_num = 1 + 

length(X1_vec)*length(X2_vec)*length(X3_vec)*length(X4_vec); 
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GetStateIndices.m 

 
function index_vector = GetStateIndices(state_num, state_dimensions) 

 

state_num = state_num - 1; 

 

state1_index = floor((state_num-1)/prod(state_dimensions(2:4)))+1; 

state_num = state_num - (state1_index-1)*prod(state_dimensions(2:4)); 

 

state2_index = floor((state_num-1)/prod(state_dimensions(3:4)))+1; 

state_num = state_num - (state2_index-1)*prod(state_dimensions(3:4)); 

 

state3_index = floor((state_num-1)/prod(state_dimensions(4:4)))+1; 

state_num = state_num - (state3_index-1)*prod(state_dimensions(4:4)); 

 

state4_index = state_num; 

 

index_vector = [state1_index state2_index state3_index state4_index]; 
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GetStateNumber.m 

 
 

function state_num = GetStateNumber(state_in, is_fallen, X1_bound_vec, 

X2_bound_vec, X3_bound_vec, X4_bound_vec, state_dimensions) 

 

 

 

X1_bin = length(find(state_in(1) >= X1_bound_vec)); 

X2_bin = length(find(state_in(2) >= X2_bound_vec)); 

X3_bin = length(find(state_in(3) >= X3_bound_vec)); 

X4_bin = length(find(state_in(4) >= X4_bound_vec)); 

 

if(is_fallen || X1_bin == 0 || X1_bin > state_dimensions(1) || X2_bin 

== 0 || X2_bin > state_dimensions(2) || X3_bin == 0 || X3_bin > 

state_dimensions(3) || X4_bin == 0 || X4_bin > state_dimensions(4)) 

    state_num = 1; % Outside of discrete states so assigned to 

absorbing state (state 1) 

else 

    state_num = 1 + (X1_bin-

1)*state_dimensions(2)*state_dimensions(3)*state_dimensions(4) + 

(X2_bin-1)*state_dimensions(3)*state_dimensions(4) + (X3_bin-

1)*state_dimensions(4) + X4_bin; 

end 
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ImpulseComputationEOM.m 

 
function [omega2, omega3, KE_vec, PE_vec] = 

ImpulseComputationEOM(impulse_mag) 

 

%% Get vector information 

 

% disp(['Impulse: ',num2str(impulse_mag)]) 

 

final_index = evalin('base','final_index(1)'); 

 

assignin('caller','final_index',final_index); 

assignin('base','final_index',final_index); 

 

%% Get Inertial Values 

 

m1 = evalin('base','MBody_mass'); 

m2 = evalin('base','StLeg_mass'); 

m3 = evalin('base','SwLeg_mass'); 

 

J1 = evalin('base','MBody_inertia(3,3)'); 

J2 = evalin('base','StLeg_inertia(3,3)'); 

J3 = evalin('base','SwLeg_inertia(3,3)'); 

 

% Get incline measurement and gravity (for potential energy 

calculation only) 

incline = evalin('base','incline'); 

g = evalin('base','g'); 

 

%% Get CG Geometries 

 

r1x = 0; 

r1y = 0; 

 

r2ax = evalin('base','StLCG_position(final_index, 1) - 

IC_StLeg_position(1)'); 

r2ay = evalin('base','StLCG_position(final_index, 2) - 

IC_StLeg_position(2)'); 

r2bx = evalin('base','StLCG_position(final_index, 1) - 

MBCG_position(final_index, 1)'); 

r2by = evalin('base','StLCG_position(final_index, 2) - 

MBCG_position(final_index, 2)'); 

 

r3ax = evalin('base','SwLCG_position(final_index, 1) - 

SwLeg_position(final_index, 1)'); 

r3ay = evalin('base','SwLCG_position(final_index, 2) - 

SwLeg_position(final_index, 2)'); 

r3bx = evalin('base','SwLCG_position(final_index, 1) - 

MBCG_position(final_index, 1)'); 

r3by = evalin('base','SwLCG_position(final_index, 2) - 

MBCG_position(final_index, 2)'); 
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%% Get Position and Velocity Values 

 

% Set Position Variables 

 

MB_CGpos_x = evalin('base','MBCG_position(final_index, 1)'); 

MB_CGpos_y = evalin('base','MBCG_position(final_index, 2)'); 

StLeg_CGpos_x = evalin('base','StLCG_position(final_index, 1)'); 

StLeg_CGpos_y = evalin('base','StLCG_position(final_index, 2)'); 

SwLeg_CGpos_x = evalin('base','SwLCG_position(final_index, 1)'); 

SwLeg_CGpos_y = evalin('base','SwLCG_position(final_index, 2)'); 

 

% Set velocity variables 

x1dot_pre = evalin('base','MBCG_velocity(final_index, 1)'); 

y1dot_pre = evalin('base','MBCG_velocity(final_index, 2)'); 

omega1_pre = 0; 

x2dot_pre = evalin('base','StLCG_velocity(final_index, 1)'); 

y2dot_pre = evalin('base','StLCG_velocity(final_index, 2)'); 

omega2_pre = evalin('base','Base_angvel(final_index)'); 

x3dot_pre = evalin('base','SwLCG_velocity(final_index, 1)'); 

y3dot_pre = evalin('base','SwLCG_velocity(final_index, 2)'); 

omega3_pre = evalin('base','SwLeg_angvel(final_index, 3)'); 

 

%% Pre-Impulse Energy Computation 

 

Body_Vars = [MB_CGpos_x, MB_CGpos_y, x1dot_pre, y1dot_pre, 

omega1_pre*pi/180, m1, J1]; 

StLeg_Vars = [StLeg_CGpos_x, StLeg_CGpos_y, x2dot_pre, y2dot_pre, 

omega2_pre*pi/180, m2, J2]; 

SwLeg_Vars = [SwLeg_CGpos_x, SwLeg_CGpos_y, x3dot_pre, y3dot_pre, 

omega3_pre*pi/180, m3, J3]; 

 

[KE1, PE1] = EnergyComputation(Body_Vars, StLeg_Vars, SwLeg_Vars, 

incline, g); 

 

% disp('Pre-Impulse Energy') 

% disp(['KE: ',num2str(KE1,10)]) 

% disp(['PE: ',num2str(PE1,10)]) 

% disp(['Total: ',num2str(KE1+PE1,10)]) 

 

%% Impulse Transformation Matrix 

A = zeros(19); 

 

A(01,01) = 1; A(01,10) = 1/m1; 

A(02,02) = 1; A(02,11) = 1/m1; 

A(03,03) = 1; A(03,10) = r1y/J1; A(03,11) = -r1x/J1; 

A(04,04) = 1; A(04,12) = 1/m2; A(04,14) = 1/m2; 

A(05,05) = 1; A(05,13) = 1/m2; A(05,15) = 1/m2; 

A(06,06) = 1; A(06,12) = r2ay/J2; A(06,13) = -r2ax/J2; A(06,14) = 

r2by/J2; A(06,15) = -r2bx/J2; 

A(07,07) = 1; A(07,16) = 1/m3; A(07,18) = 1/m3; 

A(08,08) = 1; A(08,17) = 1/m3; A(08,19) = 1/m3; 
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A(09,09) = 1; A(09,16) = r3ay/J3; A(09,17) = -r3ax/J3; A(09,18) = 

r3by/J3; A(09,19) = -r3bx/J3; 

 

A(10,10) = 1; A(10,14) = 1; A(10,18) = 1; 

A(11,11) = 1; A(11,15) = 1; A(11,19) = 1; 

 

A(12,12) = 1; 

A(13,13) = 1; 

 

 

% Changed for introducing pre-collision impulse 

A(14,16) = 1; 

A(15,17) = 1; 

 

% A(14,07) = 1; A(14,09) = r3ay; 

% A(15,08) = 1; A(15,09) = -r3ax; 

% END change for impulse 

 

A(16,01) = -1; A(16,04) = 1; A(16,06) = r2by; 

A(17,02) = -1; A(17,05) = 1; A(17,06) = -r2bx; 

A(18,01) = -1; A(18,07) = 1; A(18,09) = r3by; 

A(19,02) = -1; A(19,08) = 1; A(19,09) = -r3bx; 

 

%% 

b = zeros(19,1); 

b(01) = x1dot_pre; 

b(02) = y1dot_pre; 

b(03) = omega1_pre*pi/180; 

b(04) = x2dot_pre; 

b(05) = y2dot_pre; 

b(06) = omega2_pre*pi/180; 

b(07) = x3dot_pre; 

b(08) = y3dot_pre; 

b(09) = omega3_pre*pi/180; 

 

%% 

% Add Applied Impulse (as per Kuo 2005) 

 

r_stance_x = r2ax - r2bx; 

r_stance_y = r2ay - r2by; 

r_stance_mag = sqrt(r_stance_x^2 + r_stance_y^2); 

 

imp_comp_x = impulse_mag*r_stance_x/r_stance_mag; 

imp_comp_y = impulse_mag*r_stance_y/r_stance_mag; 

 

b(12) = -imp_comp_x; 

b(13) = -imp_comp_y; 

 

% b 

 

 

%% 
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x = A\b; 

 

% omega2 = x(6)*180/pi; 

% omega3 = x(9)*180/pi; 

%  

 

% disp('Impulse Applied...') 

 

 

%% Pre-Collision Impulse Applied 

%*********************************************************************

*% 

% Now calculating collision with ground 

%*********************************************************************

*% 

 

%% Ground Collision Computation 

% Setting pre-collision variables equal to post-impulse variables 

 

x1dot_pre = x(1); 

y1dot_pre = x(2); 

omega1_pre = x(3); 

x2dot_pre = x(4); 

y2dot_pre = x(5); 

omega2_pre = x(6); 

x3dot_pre = x(7); 

y3dot_pre = x(8); 

omega3_pre = x(9); 

 

%% Post-Impulse/Pre-Collision Energy Computation 

 

Body_Vars = [MB_CGpos_x, MB_CGpos_y, x1dot_pre, y1dot_pre, omega1_pre, 

m1, J1]; 

StLeg_Vars = [StLeg_CGpos_x, StLeg_CGpos_y, x2dot_pre, y2dot_pre, 

omega2_pre, m2, J2]; 

SwLeg_Vars = [SwLeg_CGpos_x, SwLeg_CGpos_y, x3dot_pre, y3dot_pre, 

omega3_pre, m3, J3]; 

 

[KE2, PE2] = EnergyComputation(Body_Vars, StLeg_Vars, SwLeg_Vars, 

incline, g); 

 

% disp('Post-Impulse Energy') 

% disp(['KE: ',num2str(KE2)]) 

% disp(['PE: ',num2str(PE2)]) 

% disp(['Total: ',num2str(KE2+PE2)]) 

 

% x 

 

%% Collision Transformation Matrix 

 

A = zeros(19); 
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A(01,01) = 1; A(01,10) = 1/m1; 

A(02,02) = 1; A(02,11) = 1/m1; 

A(03,03) = 1; A(03,10) = r1y/J1; A(03,11) = -r1x/J1; 

A(04,04) = 1; A(04,12) = 1/m2; A(04,14) = 1/m2; 

A(05,05) = 1; A(05,13) = 1/m2; A(05,15) = 1/m2; 

A(06,06) = 1; A(06,12) = r2ay/J2; A(06,13) = -r2ax/J2; A(06,14) = 

r2by/J2; A(06,15) = -r2bx/J2; 

A(07,07) = 1; A(07,16) = 1/m3; A(07,18) = 1/m3; 

A(08,08) = 1; A(08,17) = 1/m3; A(08,19) = 1/m3; 

A(09,09) = 1; A(09,16) = r3ay/J3; A(09,17) = -r3ax/J3; A(09,18) = 

r3by/J3; A(09,19) = -r3bx/J3; 

 

A(10,10) = 1; A(10,14) = 1; A(10,18) = 1; 

A(11,11) = 1; A(11,15) = 1; A(11,19) = 1; 

 

A(12,12) = 1; 

A(13,13) = 1; 

A(14,07) = 1; A(14,09) = r3ay; 

A(15,08) = 1; A(15,09) = -r3ax; 

A(16,01) = -1; A(16,04) = 1; A(16,06) = r2by; 

A(17,02) = -1; A(17,05) = 1; A(17,06) = -r2bx; 

A(18,01) = -1; A(18,07) = 1; A(18,09) = r3by; 

A(19,02) = -1; A(19,08) = 1; A(19,09) = -r3bx; 

 

%% 

b = zeros(19,1); 

b(01) = x1dot_pre; 

b(02) = y1dot_pre; 

b(03) = omega1_pre*pi/180; 

b(04) = x2dot_pre; 

b(05) = y2dot_pre; 

b(06) = omega2_pre*pi/180; 

b(07) = x3dot_pre; 

b(08) = y3dot_pre; 

b(09) = omega3_pre*pi/180; 

 

%% 

x = A\b; 

 

% Get post-collision states 

x1dot_pre = x(1); 

y1dot_pre = x(2); 

omega1_pre = x(3); 

x2dot_pre = x(4); 

y2dot_pre = x(5); 

omega2_pre = x(6); 

x3dot_pre = x(7); 

y3dot_pre = x(8); 

omega3_pre = x(9); 

 

%% Post-Collision Energy Computation 
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Body_Vars = [MB_CGpos_x, MB_CGpos_y, x1dot_pre, y1dot_pre, omega1_pre, 

m1, J1]; 

StLeg_Vars = [StLeg_CGpos_x, StLeg_CGpos_y, x2dot_pre, y2dot_pre, 

omega2_pre, m2, J2]; 

SwLeg_Vars = [SwLeg_CGpos_x, SwLeg_CGpos_y, x3dot_pre, y3dot_pre, 

omega3_pre, m3, J3]; 

 

[KE3, PE3] = EnergyComputation(Body_Vars, StLeg_Vars, SwLeg_Vars, 

incline, g); 

 

% disp('Post-Collision Energy') 

% disp(['KE: ',num2str(KE3,10)]) 

% disp(['PE: ',num2str(PE3,10)]) 

% disp(['Total: ',num2str(KE3+PE3,10)]) 

%  

% % x 

%  

% disp([' ']) 

 

% pause 

 

omega2 = x(6)*180/pi; 

omega3 = x(9)*180/pi; 

 

KE_vec = [KE1, KE2, KE3]; 

PE_vec = [PE1, PE2, PE3]; 
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InitialConditionTransformation.m 

 
function [theta_stance, theta_swing] = 

InitialConditionTransformation(X1, X2, L) 

 

x1 = X1/L; 

x2 = X2/L; 

 

theta1 = acos((-x1^2 - x2^2 + x1^4/(x1^2 + x2^2) + (x1^2*x2^2)/ ... 

    (x1^2 + x2^2) - (x1*sqrt(4*x1^2*x2^2 - x1^4*x2^2 + 4*x2^4 - 

2*x1^2*x2^4 - ... 

    x2^6))/(x1^2 + x2^2))/(2*x2)); 

 

theta2 = -acos(x1^2/(2*x2) - x2/2 - x1^4/(2*x2*(x1^2 + x2^2)) - 

(x1^2*x2)/ ... 

    (2*(x1^2 + x2^2)) + (x1*sqrt(4*x1^2*x2^2 - x1^4*x2^2 + 4*x2^4 - ... 

    2*x1^2*x2^4 - x2^6))/(2*x2*(x1^2 + x2^2))); 

 

theta1 = pi - theta1; 

theta2 = pi - theta2; 

 

% plot([0,L*cos(theta1)],[0,L*sin(theta1)],'b-

',[L*cos(theta1),L*cos(theta1)+L*cos(theta2)],[L*sin(theta1),L*sin(the

ta1)+L*sin(theta2)],'r-') 

% axis equal 

% grid on 

 

theta1b = theta1-pi/2; 

theta2b = -1*(theta2+pi/2-2*pi); 

 

% plot([0,-L*sin(theta1b)],[0,L*cos(theta1b)],'b-',[-L*sin(theta1b),-

L*sin(theta1b)-L*sin(theta2b)],[L*cos(theta1b),L*cos(theta1b)-

L*cos(theta2b)],'r-') 

% axis equal 

% grid on 

 

theta_stance = theta1b*180/pi; 

theta_swing = theta2b*180/pi; 
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InitStepToStepParams.m 

 
function InitStepToStepParams(States_X) 

 

% Currently starts simulation with Swing Leg just as it lands (before 

% impulse and collision) 

X1 = States_X(1); % Change in Height (Height_back_leg - 

Height_front_leg) 

X2 = States_X(2); % Horizontal Coordinate Change (Horz_coord_front_leg 

- Horz_coord_back_leg) 

X3 = States_X(3); % Stance Leg Angular Velocity  

X4 = States_X(4); % Swing Leg Angular Velocity  

 

Leg_length = 1.0; 

 

[theta_stance, theta_swing] = InitialConditionTransformation(X1, X2, 

Leg_length); 

 

StOmega = X3; 

SwOmega = X4; 

 

%% 

% Simulation Parameters 

assignin('base','g', 9.81); %m/s^2 

assignin('caller','g', 9.81); 

% assignin('base','incline',0.5); %degrees 

 

%% 

% Component Parameters 

assignin('base','k_spring',0); %Hip spring constant 

 

%% 

% Initial Conditions 

 

%Body Parameters 

% IC_MBody_position 

assignin('base','IC_MBody_velocity',0); 

 

%Stance Leg Parameters 

assignin('base','IC_StLeg_position',[-X2, X1, 0]); 

assignin('base','IC_Base_angle',theta_stance); 

assignin('base','IC_StLeg_angvel',StOmega); %negative value indicates 

"forward" swing 

 

assignin('base','Stance_position',0); 

 

%Swing Leg Parameters 

assignin('base','IC_SwLeg_angle',theta_swing); 

assignin('base','IC_SwLeg_angvel',SwOmega); %negative value indicates 

"forward" fall 

assignin('base','IC_StLeg_angle',0); 
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assignin('base','incline',0); 

assignin('caller','incline',0); 

 

assignin('caller','IC_StLeg_position',[-X2, X1, 0]); 

assignin('caller','IC_Base_angle',theta_stance); 

assignin('caller','IC_StLeg_angvel',StOmega); %negative value 

indicates "forward" swing 

assignin('caller','Stance_position',0); 

assignin('caller','IC_SwLeg_angle',theta_swing); 

assignin('caller','IC_SwLeg_angvel',SwOmega); %negative value 

indicates "forward" fall 

assignin('caller','IC_StLeg_angle',0); 

 

%% 

% Main Body Parameters 

MBody_mass = 2; 

assignin('base','MBody_mass',MBody_mass); %kg 

assignin('base','MBody_inertia',diag([0.0001,0.0001,0.0001])); 

 

assignin('caller','MBody_mass',MBody_mass); %kg 

assignin('caller','MBody_inertia',diag([0.0001,0.0001,0.0001])); 

%% 

% Stance Leg Parameters 

StLeg_mass = 2; 

StLeg_length = Leg_length; 

assignin('base','StLeg_mass',StLeg_mass); 

assignin('base','StLeg_inertia',diag([0.0001,0.0001,0.0001])); 

assignin('base','StLeg_length',StLeg_length); 

assignin('base','StLCG_ratio',0.5); %ratio of distance from hip joint 

to leg CG to length of leg (0.1 = CG is 10% down length of leg) 

 

assignin('caller','StLeg_mass',StLeg_mass); 

assignin('caller','StLeg_inertia',diag([0.0001,0.0001,0.0001])); 

assignin('caller','StLeg_length',StLeg_length); 

assignin('caller','StLCG_ratio',0.5); 

 

%% 

% Swing Leg Parameters 

SwLeg_mass = 2; 

SwLeg_length = Leg_length; 

assignin('base','SwLeg_mass',SwLeg_mass); 

assignin('base','SwLeg_inertia',diag([0.0001,0.0001,0.0001])); 

assignin('base','SwLeg_length',SwLeg_length); 

assignin('base','SwLCG_ratio',1-0.5); %ratio of distance from hip 

joint to leg CG to length of leg (0.1 = CG is 10% down length of leg) 

 

assignin('caller','SwLeg_mass',SwLeg_mass); 

assignin('caller','SwLeg_inertia',diag([0.0001,0.0001,0.0001])); 

assignin('caller','SwLeg_length',SwLeg_length); 

assignin('caller','SwLCG_ratio',1-0.5); 

%% 

%Calculation of Initial Variables 
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% assignin('base','StLeg_angle',0); 

% assignin('base','SwLeg_angle',2*angle1); 
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RunStochasticHeuristicSetup 

 
% RunStochasticSetup 

 

clc 

% clear 

close all 

 

load dynamics_database 

 

NUM_EPISODES = 1e5; 

 

STATE_INITIALIZATION_ON = 0; 

DETERMINED_START_STATE = 1; 

 

USE_RANDOM_RESTART = 1; 

RANDOM_RESTART_EVERY = 1000; %meters of travel 

 

num_actions = length(alpha_vec); 

num_weights = length(tradeoff_weighting_vec); 

 

terrain_sigma = 0.01; 

 

SUSTAINED_WALK_TRADEOFF_WEIGHTS = [1 1.25 0.0325]; %RES 

 

 

starting_state = [0; 0.46; -70; -0]; 

 

[X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, max_state_num] 

= GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec, X4_vec); 

 

state_dimensions = [length(X1_vec), length(X2_vec), length(X3_vec), 

length(X4_vec)]; 

 

% prob_distribution = [0 0 0 0 0 0.0060 0.0605 0.2420 0.3830 0.2420 

0.0605 0.0060 0 0 0 0 0]; 

prob_distribution = ComputeProbDistribution(terrain_sigma, 0, 

delta_terrain_vec); 

 

cum_probs = cumsum(prob_distribution); 

 

clock 

 

stochastic_transition_database = 

GenerateStochasticTransitionHeuristicTable(master_dynamics_database, 

prob_distribution, max_state_num, num_actions, num_weights); 

 

 

disp('Stochastic Generation Complete!  Learning Commencing...') 

 

state_value_vector = -1*zeros(max_state_num, 1); 

state_value_vector(1) = 0; 
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states_in = [-0.02, 0.3, -50, -0]; 

 

if(DETERMINED_START_STATE) 

    current_state_num = GetStateNumber(starting_state, 0, X1_bound_vec, 

X2_bound_vec, X3_bound_vec, X4_bound_vec, state_dimensions); 

else 

    current_state_num = GetStateNumber(states_in, 0, X1_bound_vec, 

X2_bound_vec, X3_bound_vec, X4_bound_vec, state_dimensions); 

end 

 

 

step_count = 0; 

step_num_tracker = -1*zeros(1, NUM_EPISODES); 

walk_num = 1; 

 

clock 

 

total_distance_traveled = 0; 

total_energy_consumed = 0; 

total_time_taken = 0; 

 

 

counter = 1; 

for ep_num = 1:NUM_EPISODES 

    [action_index, tradeoff_index, action_value] = 

SelectHeuristicAction(current_state_num, state_value_vector, 

stochastic_transition_database, prob_distribution, 

master_dynamics_database, master_energy_database, 

master_distance_database, master_time_database, num_actions, 

num_weights); 

     

    %     current_state_num 

     

    state_value_vector(current_state_num) = action_value; 

    %     action_index 

     

    [current_state_num, possible_state_transitions, energy_expended, 

distance_stepped, time_taken] = TakeHeuristicAction(action_index, 

tradeoff_index, current_state_num, master_dynamics_database, 

master_energy_database, master_distance_database, master_time_database, 

cum_probs); 

     

    total_distance_traveled = total_distance_traveled + 

distance_stepped; 

    total_energy_consumed = total_energy_consumed + energy_expended; 

    total_time_taken = total_time_taken + time_taken; 

     

    %     current_state_num 

    %     possible_state_transitions 

    %     pause(0.1) 
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    %     current_state_num 

    %     pause(1) 

     

    if(current_state_num == 1 || (USE_RANDOM_RESTART && 

(RANDOM_RESTART_EVERY < total_distance_traveled))) 

        step_num_tracker(walk_num) = step_count; 

        %         disp([num2str(step_count), ' step walk']) 

        %         current_state_num = GetStateNumber(states_in, 0, 

X1_bound_vec, 

        %         X2_bound_vec, X3_bound_vec, X4_bound_vec, 

state_dimensions); 

         

         

         

        if(total_distance_traveled == 0 || total_energy_consumed == 0 

|| total_time_taken == 0) 

            disp('No steps taken this walk') 

        else 

            step_count 

            total_distance_traveled 

            specific_cost_of_transport = 

total_energy_consumed/total_distance_traveled/3/9.81 

            average_walk_speed = 

total_distance_traveled/total_time_taken 

        end 

         

        if(counter <= max_state_num && STATE_INITIALIZATION_ON) 

            current_state_num = counter; 

            counter = counter + 1; 

             

        elseif(DETERMINED_START_STATE) 

            current_state_num = GetStateNumber(starting_state, 0, 

X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, 

state_dimensions); 

        else 

            current_state_num = ceil(rand*max_state_num); 

        end 

         

        %         current_state_num 

         

        %         current_state_num = find(min(state_value_vector),1) 

        walk_num = walk_num + 1; 

        step_count = 0; 

        total_distance_traveled = 0; 

        total_energy_consumed = 0; 

        total_time_taken = 0; 

         

    else 

        step_count = step_count+1; 

    end 

     

    if(mod(ep_num,100000) == 0) 
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        disp(num2str(ep_num)) 

        min_value = min(state_value_vector) 

        find(min(state_value_vector) == state_value_vector,5) 

         

        if(total_distance_traveled == 0 || total_energy_consumed == 0 

|| total_time_taken == 0) 

            disp('No steps taken this walk') 

        else 

%             step_count 

%             total_distance_traveled 

            specific_cost_of_transport = 

total_energy_consumed/total_distance_traveled/3/9.81 

            average_walk_speed = 

total_distance_traveled/total_time_taken 

        end 

         

        hist(state_value_vector, linspace(-10,0,11)) 

        axis([-11 1 0 30000]) 

        pause(0.05) 

    end 

     

end 

 

clock 

 

save run_all_vars 

 

plot(step_num_tracker) 

 

pause(0.1) 

 

disp('Computing Markov Decision Process Matrix') 

ComputeMDP 

 

 

  



151 
 

SelectHeuristicAction.m 

 
 

function [action_index, tradeoff_index, action_value] = 

SelectHeuristicAction(current_state_num, state_value_vector, 

stochastic_transition_database, prob_distribution, 

master_dynamics_database, master_energy_database, 

master_distance_database, master_time_database, num_actions, 

num_weights) 

 

gamma = 0.9; 

 

SUSTAINED_WALK_TRADEOFF_WEIGHTS = 

evalin('base','SUSTAINED_WALK_TRADEOFF_WEIGHTS'); 

 

action_value_vector = zeros(num_weights, num_actions); 

 

% min_action_value = 

gamma*stochastic_transition_database{1}(current_state_num,:)*state_val

ue_vector + -1*(current_state_num > 1); 

 

min_action_value = 0; 

min_action_index = 1; 

min_tradeoff_index = 1; 

 

for tradeoff_index = 1:num_weights 

    for m = 1:num_actions 

         

        %         current_action_value = 

gamma*stochastic_transition_database{tradeoff_index,m}(current_state_n

um,:)*state_value_vector + 

(stochastic_transition_database{tradeoff_index,m}(current_state_num,1) 

- 1); 

         

        %  Robustness contribution 

        future_value = 

gamma*stochastic_transition_database{tradeoff_index,m}(current_state_n

um,:)*state_value_vector; 

         

        robustness_action_value =  

(stochastic_transition_database{tradeoff_index,m}(current_state_num,1) 

- 1)*master_distance_database{tradeoff_index,m}(current_state_num); 

         

        %  Energy contribution 

        if(master_energy_database{tradeoff_index,m}(current_state_num) 

~= 0) 

            energy_action_value = 

(stochastic_transition_database{tradeoff_index,m}(current_state_num,1) 

- 

1)*master_distance_database{tradeoff_index,m}(current_state_num)/maste

r_energy_database{tradeoff_index,m}(current_state_num); 

        else 
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            energy_action_value = 0; 

        end 

         

         

        %  Speed contribution 

        if(master_time_database{tradeoff_index,m}(current_state_num) 

~= 0) 

             

            %0.0001 added to avoid divide by zero error 

             

%             

size((master_dynamics_database{tradeoff_index,m}(current_state_num,:) 

~= 1)) 

%             

size((master_time_database{tradeoff_index,m}(current_state_num,:)+0.00

01)) 

%             

size(master_distance_database{tradeoff_index,m}(current_state_num)) 

%             

size(stochastic_transition_database{tradeoff_index,m}(current_state_nu

m,:)) 

             

            speed_action_value = sum(-

1*(master_dynamics_database{tradeoff_index,m}(current_state_num,:) ~= 

1)./(master_time_database{tradeoff_index,m}(current_state_num,:)+0.000

1).*master_distance_database{tradeoff_index,m}(current_state_num).*(pr

ob_distribution)); 

             

        else 

            speed_action_value = 0; 

        end 

         

        current_action_value = future_value + 

SUSTAINED_WALK_TRADEOFF_WEIGHTS(1)*robustness_action_value + 

SUSTAINED_WALK_TRADEOFF_WEIGHTS(2)*energy_action_value + 

SUSTAINED_WALK_TRADEOFF_WEIGHTS(3)*speed_action_value; 

         

        action_value_vector(tradeoff_index, m) = current_action_value; 

         

        if(current_action_value <= min(min(action_value_vector))) 

            min_action_value = current_action_value; 

             

            min_action_index = m; 

            min_tradeoff_index = tradeoff_index; 

        end 

    end 

end 

 

% current_state_num 

% action_value_vector 

action_index = min_action_index; 

tradeoff_index = min_tradeoff_index; 
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action_value = min_action_value; 

 

 

% pause 
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StepToStepGetEnergy.m 

 
function [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed, y_converged, min_stance_angvel] = 

StepToStepGetEnergy(state_in, action, delta_terrain_vec, 

threshold_values) 

 

% Initialize Parameters 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

ACTIVATE_AT_LEG_CROSS = action(5); 

 

% threshold_values format 

% threshold_values = [minimum acceptable angle error (deg), minimum 

% acceptable angular velocity error (deg/sec)] 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

assignin('base','terrain_height_vector',0); 

 

InitStepToStepParams(state_in) 

 

applied_impulse = action(2); 

 

assignin('base','t_max',0); 

evalin('base','BipedOneStepEOM'); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

final_index = 1; 

 

EnergyComputationOneStep 

 

SwitchStanceOneStepEOM 
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assignin('base','IC_StLeg_position',IC_StLeg_position); 

assignin('base','IC_Base_angle',IC_Base_angle); 

assignin('base','IC_StLeg_angle',IC_StLeg_angle); 

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle); 

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel); 

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel); 

assignin('base','KE_vec',KE_vec); 

assignin('base','PE_vec',PE_vec); 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

 

assignin('base','terrain_height_vector',delta_terrain_vec); 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

 

assignin('base','t_max',0.75); 

evalin('base','BipedOneStepEOM'); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

SwLeg_angvel_joint = evalin('base','SwLeg_angvel_joint'); 

 

final_index = evalin('base','final_index'); 

 

assignin('base','final_index',final_index - 1); 

 

EnergyComputationOneStep 

 

impulse_work = KE_vec(2) - KE_vec(1); 

collision_work = KE_vec(3) - KE_vec(2); 

hip_actuator_work = energy_net; 

hip_actuator_energy_added = energy_added; 

gravity_work = -1*PE_delta; 

hip_actuator_work = hip_actuator_work - gravity_work; 
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total_work = impulse_work + collision_work + hip_actuator_work + 

gravity_work; 

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1) 

 

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1); 

 

 

%% DEBUG 

 

% for(m = 1:length(HitCheck(1,:))) 

%     index = find(HitCheck(:,m),1); 

%     if(isempty(index)) 

%         states_out(:,m) = [0;0;0;0]; 

%         is_fallen(1,m) = 1; 

% 

%         distance_traversed(1,m) = 0; 

%         time_elapsed(1,m) = 0; 

% 

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%         energy_consumed(1,m) = hip_actuator_energy_added; 

% 

%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     else 

%         X1out = IC_StLeg_position(2) - SwLeg_position(index,2); 

%         X2out = SwLeg_position(index,1) - IC_StLeg_position(1); 

%         X3out = Base_angvel(index); 

%         X4out = SwLeg_angvel_joint(index); 

% 

%         distance_traversed(1,m) = MBCG_position(index,1) - 

MBCG_position(1,1); 

%         time_elapsed(1,m) = sim_time(index) - sim_time(1); 

% 

%         states_out(:,m) = [X1out; X2out; X3out; X4out]; 

%         is_fallen(1,m) = 0; 

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%         energy_consumed(1,m) = hip_actuator_energy_added; 

% 

%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     end 

% end 

% 

% final_index = length(Base_angle) 

 

final_index = evalin('base','final_index'); 
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X1out = 0; 

X2out = 0; 

X3out = 0; 

X4out = 0; 

 

% X1out = IC_StLeg_position(2) - SwLeg_position(final_index,2); 

% X2out = SwLeg_position(final_index,1) - IC_StLeg_position(1); 

% X3out = Base_angvel(final_index); 

% X4out = SwLeg_angvel_joint(final_index); 

 

states_out = [X1out; X2out; X3out; X4out]; 

 

% size_SwLeg_position = evalin('base','size(SwLeg_position)'); 

 

% states_out = 0; 

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1')); 

% distance_traversed = evalin('base','SwLeg_position(final_index(1),1) 

- IC_StLeg_position(1)'); 

% time_elapsed = evalin('base','final_index(1)*dt'); 

 

 

distance_traversed = 0; 

time_elapsed = 0; 

 

energy_consumed = energy_added + abs(energy_dissipated) + impulse_work; 

 

% energy_added 

% energy_dissipated 

% impulse_work 

 

% meet_threshold_vec = (abs(angle_des + 

evalin('base','interleg_angle(1:final_index(1))')) < 

threshold_values(1)).*(abs(evalin('base','interleg_velocity(1:final_in

dex(1))')) < threshold_values(2)); 

% index_meet_threshold = find(meet_threshold_vec); 

%  

% Swing_ypos = evalin('base','SwLeg_position(:,2)'); 

 

 

% terrain_cross = (evalin('base','SwLeg_position(1:final_index(1))') 

 

% if(~isempty(index_meet_threshold)) 

%     y_converged = Swing_ypos(index_meet_threshold(1)); 

% else 

%     is_fallen = 1; 

%     y_converged = min(Swing_ypos(1:final_index)); 

% end 

%  

% min_stance_angvel = min(-1*Base_angvel(1:(numel(Base_angvel)-1))); 

 

y_converged = 0; 

min_stance_angvel = 0; 
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StepToStepGOA.m 

 
 

function [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed, y_converged, min_stance_angvel] = 

StepToStepGOA(state_in, action, delta_terrain_vec, threshold_values) 

 

% Initialize Parameters 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

ACTIVATE_AT_LEG_CROSS = action(5); 

 

% threshold_values format 

% threshold_values = [minimum acceptable angle error (deg), minimum 

% acceptable angular velocity error (deg/sec)] 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

assignin('base','terrain_height_vector',0); 

 

InitStepToStepParams(state_in) 

 

applied_impulse = action(2); 

 

assignin('base','t_max',0); 

evalin('base','BipedOneStepEOM'); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

final_index = 1; 

 

EnergyComputationOneStep 

 

SwitchStanceOneStepEOM 
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assignin('base','IC_StLeg_position',IC_StLeg_position); 

assignin('base','IC_Base_angle',IC_Base_angle); 

assignin('base','IC_StLeg_angle',IC_StLeg_angle); 

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle); 

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel); 

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel); 

assignin('base','KE_vec',KE_vec); 

assignin('base','PE_vec',PE_vec); 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

 

assignin('base','terrain_height_vector',delta_terrain_vec); 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

 

assignin('base','t_max',0.75); 

evalin('base','BipedOneStepEOM'); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

SwLeg_angvel_joint = evalin('base','SwLeg_angvel_joint'); 

 

final_index = evalin('base','final_index'); 

 

assignin('base','final_index',final_index - 1); 

 

EnergyComputationOneStep 

 

impulse_work = KE_vec(2) - KE_vec(1); 

collision_work = KE_vec(3) - KE_vec(2); 

hip_actuator_work = energy_net; 

hip_actuator_energy_added = energy_added; 

gravity_work = -1*PE_delta; 
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hip_actuator_work = hip_actuator_work - gravity_work; 

 

total_work = impulse_work + collision_work + hip_actuator_work + 

gravity_work; 

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1) 

 

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1); 

 

 

%% DEBUG 

 

% for(m = 1:length(HitCheck(1,:))) 

%     index = find(HitCheck(:,m),1); 

%     if(isempty(index)) 

%         states_out(:,m) = [0;0;0;0]; 

%         is_fallen(1,m) = 1; 

% 

%         distance_traversed(1,m) = 0; 

%         time_elapsed(1,m) = 0; 

% 

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%         energy_consumed(1,m) = hip_actuator_energy_added; 

% 

%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     else 

%         X1out = IC_StLeg_position(2) - SwLeg_position(index,2); 

%         X2out = SwLeg_position(index,1) - IC_StLeg_position(1); 

%         X3out = Base_angvel(index); 

%         X4out = SwLeg_angvel_joint(index); 

% 

%         distance_traversed(1,m) = MBCG_position(index,1) - 

MBCG_position(1,1); 

%         time_elapsed(1,m) = sim_time(index) - sim_time(1); 

% 

%         states_out(:,m) = [X1out; X2out; X3out; X4out]; 

%         is_fallen(1,m) = 0; 

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%         energy_consumed(1,m) = hip_actuator_energy_added; 

% 

%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     end 

% end 

% 

% final_index = length(Base_angle) 

 

final_index = evalin('base','final_index'); 
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X1out = IC_StLeg_position(2) - SwLeg_position(final_index,2); 

X2out = SwLeg_position(final_index,1) - IC_StLeg_position(1); 

X3out = Base_angvel(final_index); 

X4out = SwLeg_angvel_joint(final_index); 

 

states_out = [X1out; X2out; X3out; X4out]; 

 

% size_SwLeg_position = evalin('base','size(SwLeg_position)'); 

 

% states_out = 0; 

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1')); 

distance_traversed = evalin('base','SwLeg_position(final_index(1),1) - 

IC_StLeg_position(1)'); 

time_elapsed = evalin('base','final_index(1)*dt'); 

energy_consumed = energy_added + abs(energy_dissipated) + impulse_work; 

 

% energy_added 

% energy_dissipated 

% impulse_work 

 

meet_threshold_vec = (abs(angle_des + 

evalin('base','interleg_angle(1:final_index(1))')) < 

threshold_values(1)).*(abs(evalin('base','interleg_velocity(1:final_in

dex(1))')) < threshold_values(2)); 

index_meet_threshold = find(meet_threshold_vec); 

 

Swing_ypos = evalin('base','SwLeg_position(:,2)'); 

 

 

% terrain_cross = (evalin('base','SwLeg_position(1:final_index(1))') 

 

if(~isempty(index_meet_threshold)) 

    y_converged = Swing_ypos(index_meet_threshold(1)); 

else 

    is_fallen = 1; 

    y_converged = min(Swing_ypos(1:final_index)); 

end 

 

min_stance_angvel = min(-1*Base_angvel(1:(numel(Base_angvel)-1))); 
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StepToStepTFarchive.m 

 
 

function [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed] = StepToStepTFarchive(state_in, action, 

delta_terrain_vec) 

 

% Initialize Parameters 

 

angle_des = 0; 

PGain = 0; 

DGain = 0; 

ACTIVATE_AT_LEG_CROSS = 1; 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

assignin('base','terrain_height_vector',0); 

 

InitStepToStepParams(state_in) 

 

% pause 

 

applied_impulse = action(2); 

 

% sim('BipedSimOneStep',0) 

assignin('base','t_max',0); 

evalin('base','BipedOneStepEOM'); 

 

% pause 

 

% assignin('base','StLCG_position',StLCG_position); 

% assignin('base','MBCG_position',MBCG_position); 

% assignin('base','SwLeg_position',SwLeg_position); 

% assignin('base','SwLCG_position',SwLCG_position); 

% 

% assignin('base','MBCG_velocity',MBCG_velocity); 

% assignin('base','StLCG_velocity',StLCG_velocity); 

% assignin('base','Base_angvel',Base_angvel); 

% assignin('base','SwLCG_velocity',SwLCG_velocity); 

% assignin('base','SwLeg_angvel',SwLeg_angvel); 

% assignin('base','StLeg_angvel',StLeg_angvel); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 
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SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

final_index = 1; 

 

% pause 

 

EnergyComputationOneStep 

 

% pause 

 

SwitchStanceOneStepEOM 

 

% pause 

 

assignin('base','IC_StLeg_position',IC_StLeg_position); 

assignin('base','IC_Base_angle',IC_Base_angle); 

assignin('base','IC_StLeg_angle',IC_StLeg_angle); 

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle); 

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel); 

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel); 

assignin('base','KE_vec',KE_vec); 

assignin('base','PE_vec',PE_vec); 

 

% angle_des = action(1); 

% PGain = -100; 

% DGain = -10; 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

 

assignin('base','terrain_height_vector',delta_terrain_vec); 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

 

% sim('BipedSimOneStep') 

assignin('base','t_max',1.5); 

evalin('base','BipedOneStepEOM'); 

 

% assignin('base','StLCG_position',StLCG_position); 

% assignin('base','MBCG_position',MBCG_position); 

% assignin('base','SwLeg_position',SwLeg_position); 

% assignin('base','SwLCG_position',SwLCG_position); 

% 

% assignin('base','MBCG_velocity',MBCG_velocity); 
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% assignin('base','StLCG_velocity',StLCG_velocity); 

% assignin('base','Base_angvel',Base_angvel); 

% assignin('base','SwLCG_velocity',SwLCG_velocity); 

% assignin('base','SwLeg_angvel',SwLeg_angvel); 

% assignin('base','StLeg_angvel',StLeg_angvel); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

final_index = evalin('base','final_index'); 

 

%DEBUG 

% EnergyComputationOneStep 

%/DEBUG 

 

impulse_work = KE_vec(2) - KE_vec(1); 

collision_work = KE_vec(3) - KE_vec(2); 

hip_actuator_work = energy_net; 

hip_actuator_energy_added = energy_added; 

gravity_work = -1*PE_delta; 

hip_actuator_work = hip_actuator_work - gravity_work; 

 

total_work = impulse_work + collision_work + hip_actuator_work + 

gravity_work; 

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1) 

 

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1); 

 

 

HitCheck = evalin('base','HitCheck'); 

dt = evalin('base','dt'); 

num_max = evalin('base','num_max'); 

interleg_velocity = evalin('base','interleg_velocity'); 

 

index_hit_list = mod(find(HitCheck),length(delta_terrain_vec)); 

 

HitList(index_hit_list + (index_hit_list == 

0).*length(delta_terrain_vec)) = 

floor(find(HitCheck)/length(delta_terrain_vec)); 
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HitList = num_max*(HitList > num_max) + HitList.*(HitList <= num_max); 

 

X1 = IC_StLeg_position(2) - SwLeg_position(HitList,2); 

X2 = SwLeg_position(HitList,1) - IC_StLeg_position(1); 

X3 = Base_angvel(HitList); 

X4 = interleg_velocity(HitList); 

 

% interleg_velocity 

 

states_out = [X1 X2 X3 X4]; 

is_fallen = (HitList == num_max); 

 

% length(HitCheck(1,:)) 

 

% for m = 1:length(HitCheck(1,:)) 

%     index = find(HitCheck(:,m),1); 

% 

%     if(isempty(index)) 

% 

% %         states_out 

% 

% %         states_out(:,m) = [0;0;0;0]; 

%         is_fallen(1,m) = 1; 

% 

%         distance_traversed(1,m) = 0; 

%         time_elapsed(1,m) = 0; 

% 

%         energy_consumed(1,m) = 0; 

%     else 

% 

%         index 

% 

%         X1out = IC_StLeg_position(2) - SwLeg_position(index,2) 

%         X2out = SwLeg_position(index,1) - IC_StLeg_position(1) 

%         X3out = Base_angvel(index) 

%         X4out = SwLeg_angvel(index) 

% 

%         distance_traversed(1,m) = MBCG_position(index,1) - 

MBCG_position(1,2); 

%         %         time_elapsed(1,m) = sim_time(index) - sim_time(1); 

%         time_elapsed(1,m) = index.*dt; 

% 

%         states_out 

% 

%         states_out(:,m) = [X1out; X2out; X3out; X4out]; 

%         is_fallen(1,m) = 0; 

%         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%     end 

% end 
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% energy_consumed = 0; 

% time_elapsed = 0; 

% distance_traversed = 0; 

 

% MBCG_position 

 

final_index = evalin('base','final_index'); 

 

% is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1')) 

 

if(sum(is_fallen == 0) > 0) 

     

%     distance_traversed = 

evalin('base','SwLeg_position(mod(final_index(1),t_max/dt),1) - 

SwLeg_position(1,1)'); 

     

    distance_traversed = states_out(2); 

     

%     time_elapsed = evalin('base','mod(final_index(1),t_max/dt)*dt'); 

     

    time_elapsed = evalin('base','dt')*HitList.*(1-is_fallen); 

     

    energy_consumed = energy_added + 

abs(energy_dissipated)+impulse_work; 

     

     

%     Energy Computation fails to calculate energy added and 

dissipated: use StepToStepGOA for Energy 

%     impulse_work 

%     energy_added 

%     energy_dissipated 

     

    controller_p_error = 0; 

    controller_d_error = 0; 

     

%     controller_p_error = 

abs(angle_des+evalin('base','interleg_angle(mod(final_index(1),t_max/d

t))')); 

%     controller_d_error = 

abs(evalin('base','interleg_velocity(mod(final_index(1),t_max/dt))')); 

 

 

else 

    energy_consumed = 0; 

    time_elapsed = 0; 

    distance_traversed = 0; 

end 
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SwitchStanceOneStepEOM.m 

 
% SwitchStanceOneStep 

 

% StLCG_position = evalin('base','StLCG_position'); 

% SwLCG_position = evalin('base','SwLCG_position'); 

% MBCG_position = evalin('base','MBCG_position'); 

 

[omega2, omega3, KE_vec, PE_vec] = 

ImpulseComputationEOM(applied_impulse); 

 

%Stance Leg Parameters 

% IC_StLeg_position = [SwLeg_position(final_index, 1), 

SwLeg_position(final_index, 2), 0]; 

IC_StLeg_position = [0, 0, 0]; 

% IC_Base_angle = -SwLeg_angle(final_index) 

% IC_StLeg_angle = 0; 

% IC_SwLeg_angle = -Base_angle(final_index)-90 

 

IC_Base_angle = -SwLeg_angle(final_index); 

IC_StLeg_angle = 0; 

IC_SwLeg_angle = -Base_angle(final_index); 

 

IC_StLeg_angvel = omega3;  %negative value indicates "forward" swing 

IC_SwLeg_angvel = omega2;  %negative value indicates "forward" fall 

Stance_position = SwLeg_position(final_index, 1); 
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TakeHeuristicAction.m 

 
function [new_state_num, possible_state_transitions, energy_expended, 

distance_stepped, time_taken] = TakeHeuristicAction(action_index, 

tradeoff_index, current_state_num, master_dynamics_table, 

master_energy_database, master_distance_database, master_time_database, 

cum_probs) 

 

rand_num = rand; 

 

resulting_states = master_dynamics_table{tradeoff_index, 

action_index}(current_state_num,:); 

resulting_energies = master_energy_database{tradeoff_index, 

action_index}(current_state_num); 

resulting_distances = master_distance_database{tradeoff_index, 

action_index}(current_state_num); 

resulting_times = master_time_database{tradeoff_index, 

action_index}(current_state_num,:); 

 

result_index = find(rand_num < cum_probs, 1); 

 

new_state_num = resulting_states(result_index); 

 

possible_state_transitions = resulting_states; 

 

energy_expended = resulting_energies; %ENERGY is assumed constant over 

various terrain heights 

distance_stepped = resulting_distances; %DISTANCE is assumed constant 

over various terrain heights 

time_taken = resulting_times(result_index); 
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Approximate Optimal Robustness Code 

Step 1:  Run “GenerateMasterDynamicsTable.m” 

Step 2:  Run  “RunStochasticSetup.m” 

 
BipedOneStepEOM.m 

 
See page 109. 

 

ComputeBestActionTransitions.m

See page 115. 

 

ComputeMDP.m

See page 121. 

 

 
ComputeProbDistribution.m 

 
See page 122. 

 

 
ContinueStochastic.m 

 
% ContinueStochastic 

 

% clc 

% clear 

close all 

 

load dynamics_database 

 

NUM_EPISODES = 1e5; 

 

num_actions = length(alpha_vec); 

 

[X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, max_state_num] 

= GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec, X4_vec); 

 

state_dimensions = [length(X1_vec), length(X2_vec), length(X3_vec), 

length(X4_vec)]; 

 

prob_distribution = [0 0 0.0028 0.0092 0.0276 0.0657 0.1212 0.1743 

0.1984 ... 

    0.1743 0.1212 0.0657 0.0276 0.0092 0.0028 0 0]; 

cum_probs = cumsum(prob_distribution); 
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stochastic_transition_database = 

GenerateStochasticTransitionTable(master_dynamics_database, 

prob_distribution, max_state_num, num_actions); 

 

disp('Stochastic Generation Complete!  Learning Commencing...') 

 

% state_value_vector = -1*ones(max_state_num, 1); 

% state_value_vector(1) = 0; 

 

states_in = [-0.02, 0.3, -50, -0]; 

 

current_state_num = GetStateNumber(states_in, 0, X1_bound_vec, 

X2_bound_vec, X3_bound_vec, X4_bound_vec, state_dimensions); 

 

step_count = 0; 

step_num_tracker = -1*zeros(1, NUM_EPISODES); 

walk_num = 1; 

 

clock 

 

counter = 1; 

for ep_num = 1:NUM_EPISODES 

    [action_index, action_value] = SelectAction(current_state_num, 

state_value_vector, stochastic_transition_database, num_actions); 

     

    %     current_state_num 

     

    state_value_vector(current_state_num) = action_value; 

    %     action_index 

     

    [current_state_num, possible_state_transitions] = 

TakeAction(action_index, current_state_num, master_dynamics_database, 

cum_probs); 

     

    %     current_state_num 

    %     possible_state_transitions 

    %     pause(0.1) 

     

    %     current_state_num 

    %     pause(1) 

     

    if(current_state_num == 1) 

        step_num_tracker(walk_num) = step_count; 

        %         disp([num2str(step_count), ' step walk']) 

        %         current_state_num = GetStateNumber(states_in, 0, 

X1_bound_vec, 

        %         X2_bound_vec, X3_bound_vec, X4_bound_vec, 

state_dimensions); 

         

        if(counter <= max_state_num) 

            current_state_num = counter; 
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            counter = counter + 1; 

        else 

            current_state_num = ceil(rand*max_state_num); 

        end 

         

%         current_state_num 

         

        %         current_state_num = find(min(state_value_vector),1) 

        walk_num = walk_num + 1; 

        step_count = 0; 

    else 

        step_count = step_count+1; 

    end 

     

    if(mod(ep_num,1000) == 0) 

        disp(num2str(ep_num)) 

        min_value = min(state_value_vector) 

        find(min(state_value_vector) == state_value_vector,5) 

    end 

     

end 

 

clock 

 

save run_all_vars 

 

plot(step_num_tracker) 

 

pause(0.1) 

 

disp('Computing Markov Decision Process Matrix') 

ComputeMDP 
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EnergyComputatioOneStep.m 

 
See page 123 

 
 

GenerateMasterDynamicsTable.m 

 
%GenerateMasterDynamicsTable 

 

%SAVE: 

% [numX1, [X1vec]] 

% [numX2, [X2vec]] 

% [numX3, [X3vec]] 

% [numX4, [X4vec]] 

% [numDelta, [delta_vec]] 

% [numAlpha, [alpha_vec]] 

% [masterDynamicsTable (alpha slice 1)] 

% [masterDynamicsTable (alpha slice 2)] 

% ... 

% [masterDynamicsTable (alpha slice numAlpha)] 

 

% clc 

clear 

close all 

 

try 

     

     

    EMAIL_ALERT = 1; 

%     [last_update_time, last_update_text] = CheckUpdateRequests; 

     

    addpath P:\UrbanRobots\private\Hubicki\Simulation\2009-12\Tools 

     

    initial_time = clock; 

    if(initial_time(5) < 10) 

        initial_minutes = ['0' num2str(initial_time(5))]; 

    else 

        initial_minutes = [num2str(initial_time(5))]; 

    end 

    initial_hours = num2str(initial_time(4)); 

    initial_time_readout = [initial_hours ':' initial_minutes]; 

     

    text_body = ['Greetings,' 10 'Your simulation has commenced, 

beginning at ' initial_time_readout ' local machine time.' 10 

'Regards,' 10 '- CodeBot']; 

    if(EMAIL_ALERT) 

        EmailSimulationUpdate(['Simulation Commenced at ', 

initial_time_readout], text_body) 

    end 

     

     

    % Hubicki state space discretization 
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    X1_vec = [-0.1, -0.05, -0.04, -0.03:0.005:0.03, 0.04, 0.05, 0.1]; 

    X2_vec = [0.16:0.06:0.7]; 

    X3_vec = [-140:10:0]; 

    X4_vec = [-20:5:20]; 

     

    % delta_terrain_vec = [0.029 0.02 0.01 0.0 -0.01 -0.02 -0.029]; 

    delta_terrain_vec = [0.05 0.04 0.03:-0.005:-0.03 -0.04 -0.05]; 

    alpha_vec = linspace(15, 40, 9); 

    impulse_value = 2; 

     

    % X3_vec = [-2.1:0.1:-1.4, -1.25, -1.1]; 

    % X4_vec = [-1, -0.7, -0.5:0.25:0.75, 1.1, 1.5]; 

     

    numX1 = length(X1_vec); 

    numX2 = length(X2_vec); 

    numX3 = length(X3_vec); 

    numX4 = length(X4_vec); 

     

    state_dimensions = [numX1, numX2, numX3, numX4]; 

     

    [X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, 

max_state_num] = GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec, 

X4_vec); 

     

    % state_in = [-0.02, 0.3, -50, -0]; 

     

    angle_ratio_vec = [-1,1]; 

    gain_schedule = [10, 10, 10]; 

    ratio_schedule = [1 1 1]; 

    action = [25 2 1 1 1]; 

     

    % time1 = clock; 

    % [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed] = StepToStepTFarchive(state_in, action, 

delta_terrain_vec); 

    time2 = clock; 

     

    state_num = zeros(1,length(delta_terrain_vec)); 

     

    % for m = 1:length(delta_terrain_vec) 

    %     state_num(m) = GetStateNumber(states_out(m,:), is_fallen(m), 

X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, 

state_dimensions); 

    % end 

     

    time1 = clock; 

     

    blank_trans_matrix = zeros(max_state_num, 

length(delta_terrain_vec)); 

    blank_trans_matrix(1,:) = ones(1, length(delta_terrain_vec)); 

     

    master_dynamics_database = cell(1,length(alpha_vec)); 
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    for p = 1:length(alpha_vec) 

         

        action = [alpha_vec(p) impulse_value 1 1 1]; 

        new_trans_matrix = blank_trans_matrix; 

         

        for q = 2:max_state_num 

             

            index_vector = GetStateIndices(q, state_dimensions); 

            state_in = [X1_vec(index_vector(1)) X2_vec(index_vector(2)) 

X3_vec(index_vector(3)) X4_vec(index_vector(4))]; 

             

            [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed] = StepToStepTFarchive(state_in, action, 

delta_terrain_vec); 

             

            state_num = zeros(1,length(delta_terrain_vec)); 

             

            for n = 1:length(delta_terrain_vec) 

                state_num(n) = GetStateNumber(states_out(n,:), 

is_fallen(n), X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, 

state_dimensions); 

            end 

             

            new_trans_matrix(q,:) = state_num; 

             

        end 

         

        master_dynamics_database{p} = new_trans_matrix; 

         

    end 

     

    time2 = clock; 

     

    time1 

    time2 

     

%     cellplot(master_dynamics_database) 

     

     

    final_time = clock; 

    if(final_time(5) < 10) 

        final_minutes = ['0' num2str(final_time(5))]; 

    else 

        final_minutes = [num2str(final_time(5))]; 

    end 

    final_hours = num2str(final_time(4)); 

    final_time_readout = [final_hours ':' final_minutes]; 

     

    elapsed_time = final_time - initial_time; 

    elapsed_hours = num2str(elapsed_time*[0 0 24 1 0 0]'); 

    elapsed_minutes = num2str(elapsed_time(5)); 
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    text_body = ['Greetings,' 10 'Your simulation beginning at ' 

initial_time_readout ' has executed without error.' 10 'Total run time: 

' elapsed_hours ' hours and ' elapsed_minutes ' minutes.' ... 

        10 'Regards,' 10 '- CodeBot']; 

    if(EMAIL_ALERT) 

        EmailSimulationUpdate(['Simulation Complete at ' 

final_time_readout '!'], text_body) 

    end 

     

    save 'dynamics_database.mat' master_dynamics_database X1_vec 

X2_vec X3_vec X4_vec delta_terrain_vec alpha_vec impulse_value 

     

catch ME 

    rep = getReport(ME) 

    rep_email = getReport(ME, 'extended', 'hyperlinks', 'off'); 

    text_body = ['The error report was recorded as follows:' 10 ' ' 10 

rep_email 10 ' ' 10 'Regards,' 10 '- CodeBot']; 

    if(EMAIL_ALERT) 

        EmailSimulationUpdate('Simulation Update: Untimely 

Termination', text_body) 

    end 

end 
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GenerateStochasticTransitionTable.m 

 
function [stochastic_transition_database] = 

GenerateStochasticTransitionTable(master_dynamics_database, 

prob_distribution, max_state_num, num_actions) 

 

blank_transition_table = sparse(max_state_num, max_state_num); 

 

num_delta = length(prob_distribution); 

 

stochastic_transition_database = cell(1,num_actions); 

 

for p = 1:num_actions 

     

    %     clock 

     

    current_transition_table = blank_transition_table; 

     

    for q = 1:max_state_num 

        for r = 1:num_delta 

            

current_transition_table(q,master_dynamics_database{p}(q,r)) = 

current_transition_table(q,master_dynamics_database{p}(q,r)) + 

prob_distribution(r); 

             

            %             

current_transition_table(q,master_dynamics_database{p}(q,r)) 

            %             pause(0.1) 

             

        end 

%         if(sum(current_transition_table(q,:) > 0.999) == 0) 

%             q 

%             current_transition_table(q,:) 

%             pause(0.1) 

%         end 

         

         

    end 

     

    stochastic_transition_database{p} = current_transition_table; 

end 
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GetControlTorque.m 

 
See page 132 

 
 

GetStateBoundaryVectors.m 

 
See page 133 

 
 

GetStateIndicies.m 

 
See page 134 

 
 

GetStateNumber.m 

 
See page 135 

 
 

InitialConditionTransformation.m 

 
See page 142 

 
 

InitStepToStepParams.m 

 
See page 143 
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RunStochasticSetup.m 

 
% RunStochasticSetup 

 

clc 

clear 

close all 

 

load dynamics_database 

 

NUM_EPISODES = 1e6; 

 

num_actions = length(alpha_vec); 

 

terrain_sigma = 0.01; 

 

[X1_bound_vec, X2_bound_vec, X3_bound_vec, X4_bound_vec, max_state_num] 

= GetStateBoundaryVectors(X1_vec, X2_vec, X3_vec, X4_vec); 

 

state_dimensions = [length(X1_vec), length(X2_vec), length(X3_vec), 

length(X4_vec)]; 

 

% prob_distribution = [0 0 0 0 0 0.0060 0.0605 0.2420 0.3830 0.2420 

0.0605 0.0060 0 0 0 0 0]; 

prob_distribution = ComputeProbDistribution(terrain_sigma, 0, 

delta_terrain_vec); 

 

cum_probs = cumsum(prob_distribution); 

 

stochastic_transition_database = 

GenerateStochasticTransitionTable(master_dynamics_database, 

prob_distribution, max_state_num, num_actions); 

 

disp('Stochastic Generation Complete!  Learning Commencing...') 

 

state_value_vector = -1*zeros(max_state_num, 1); 

state_value_vector(1) = 0; 

 

states_in = [-0.02, 0.3, -50, -0]; 

 

current_state_num = GetStateNumber(states_in, 0, X1_bound_vec, 

X2_bound_vec, X3_bound_vec, X4_bound_vec, state_dimensions); 

 

step_count = 0; 

step_num_tracker = -1*zeros(1, NUM_EPISODES); 

walk_num = 1; 

 

clock 

 

counter = 1; 

for ep_num = 1:NUM_EPISODES 
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    [action_index, action_value] = SelectAction(current_state_num, 

state_value_vector, stochastic_transition_database, num_actions); 

     

    %     current_state_num 

     

    state_value_vector(current_state_num) = action_value; 

    %     action_index 

     

    [current_state_num, possible_state_transitions] = 

TakeAction(action_index, current_state_num, master_dynamics_database, 

cum_probs); 

     

    %     current_state_num 

    %     possible_state_transitions 

    %     pause(0.1) 

     

    %     current_state_num 

    %     pause(1) 

     

    if(current_state_num == 1) 

        step_num_tracker(walk_num) = step_count; 

        %         disp([num2str(step_count), ' step walk']) 

        %         current_state_num = GetStateNumber(states_in, 0, 

X1_bound_vec, 

        %         X2_bound_vec, X3_bound_vec, X4_bound_vec, 

state_dimensions); 

         

        if(counter <= max_state_num) 

            current_state_num = counter; 

            counter = counter + 1; 

        else 

            current_state_num = ceil(rand*max_state_num); 

        end 

         

%         current_state_num 

         

        %         current_state_num = find(min(state_value_vector),1) 

        walk_num = walk_num + 1; 

        step_count = 0; 

    else 

        step_count = step_count+1; 

    end 

     

    if(mod(ep_num,1000) == 0) 

        disp(num2str(ep_num)) 

        min_value = min(state_value_vector) 

        find(min(state_value_vector) == state_value_vector,5) 

         

        hist(state_value_vector, linspace(-10,0,11)) 

        axis([-11 1 0 10000]) 

        pause(0.05) 

    end 
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end 

 

clock 

 

save run_all_vars 

 

plot(step_num_tracker) 

 

pause(0.1) 

 

disp('Computing Markov Decision Process Matrix') 

ComputeMDP 
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SelectAction.m 

 
function [action_index, action_value] = SelectAction(current_state_num, 

state_value_vector, stochastic_transition_database, num_actions) 

 

gamma = 0.9; 

 

action_value_vector = zeros(1, num_actions); 

 

min_action_value = 

gamma*stochastic_transition_database{1}(current_state_num,:)*state_val

ue_vector + -1*(current_state_num > 1); 

min_action_index = 1; 

 

for m = 1:num_actions 

    %     current_action_value = 

gamma*stochastic_transition_database{m}(current_state_num,:)*state_val

ue_vector + -1*(current_state_num > 1); 

    current_action_value = 

gamma*stochastic_transition_database{m}(current_state_num,:)*state_val

ue_vector + (stochastic_transition_database{m}(current_state_num,1) - 

1); 

    action_value_vector(m) = current_action_value; 

     

    if(current_action_value <= min(action_value_vector)) 

        min_action_value = current_action_value; 

        min_action_index = m; 

    end 

end 

 

% current_state_num 

% action_value_vector 

action_index = min_action_index; 

action_value = min_action_value; 

 

% pause 
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StepToStepStochastic.m 

 
function [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed, controller_p_error, controller_d_error] = 

StepToStepStochastic(state_in, action, delta_terrain_vec) 

 

% Initialize Parameters 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

ACTIVATE_AT_LEG_CROSS = action(5); 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

assignin('base','terrain_height_vector',0); 

 

InitStepToStepParams(state_in) 

 

applied_impulse = action(2); 

 

% sim('BipedSimGainSchedule',0) 

assignin('base','t_max',0); 

evalin('base','BipedOneStepEOM'); 

 

% pause 

 

% assignin('base','StLCG_position',StLCG_position); 

% assignin('base','MBCG_position',MBCG_position); 

% assignin('base','SwLeg_position',SwLeg_position); 

% assignin('base','SwLCG_position',SwLCG_position); 

%  

% assignin('base','MBCG_velocity',MBCG_velocity); 

% assignin('base','StLCG_velocity',StLCG_velocity); 

% assignin('base','Base_angvel',Base_angvel); 

% assignin('base','SwLCG_velocity',SwLCG_velocity); 

% assignin('base','SwLeg_angvel',SwLeg_angvel); 

% assignin('base','StLeg_angvel',StLeg_angvel); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 
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StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

 

% pause 

final_index = 1; 

 

EnergyComputationOneStep 

 

SwitchStanceOneStepEOM 

 

assignin('base','IC_StLeg_position',IC_StLeg_position); 

assignin('base','IC_Base_angle',IC_Base_angle); 

assignin('base','IC_StLeg_angle',IC_StLeg_angle); 

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle); 

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel); 

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel); 

assignin('base','KE_vec',KE_vec); 

assignin('base','PE_vec',PE_vec); 

 

% KE_vec 

% PE_vec 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

 

assignin('base','terrain_height_vector',delta_terrain_vec); 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

 

 

% myopts = simset('MinStep', evalin('base','min_step_size')); 

 

% sim('BipedSimGainSchedule', 10) 

assignin('base','t_max',1.5); 

evalin('base','BipedOneStepEOM'); 

% sim('BipedSimOneStep', 10, myopts) 

 

% assignin('base','StLCG_position',StLCG_position); 

% assignin('base','MBCG_position',MBCG_position); 

% assignin('base','SwLeg_position',SwLeg_position); 

% assignin('base','SwLCG_position',SwLCG_position); 

%  

% assignin('base','MBCG_velocity',MBCG_velocity); 

% assignin('base','StLCG_velocity',StLCG_velocity); 

% assignin('base','Base_angvel',Base_angvel); 

% assignin('base','SwLCG_velocity',SwLCG_velocity); 
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% assignin('base','SwLeg_angvel',SwLeg_angvel); 

% assignin('base','StLeg_angvel',StLeg_angvel); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

final_index = evalin('base','final_index'); 

 

EnergyComputationOneStep 

 

impulse_work = KE_vec(2) - KE_vec(1); 

collision_work = KE_vec(3) - KE_vec(2); 

hip_actuator_work = energy_net; 

hip_actuator_energy_added = energy_added; 

gravity_work = -1*PE_delta; 

hip_actuator_work = hip_actuator_work - gravity_work; 

 

total_work = impulse_work + collision_work + hip_actuator_work + 

gravity_work; 

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1) 

 

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1); 

 

 

%% DEBUG 

 

% for(m = 1:length(HitCheck(1,:))) 

%     index = find(HitCheck(:,m),1); 

%     if(isempty(index)) 

%         states_out(:,m) = [0;0;0;0]; 

%         is_fallen(1,m) = 1; 

%          

%         distance_traversed(1,m) = 0; 

%         time_elapsed(1,m) = 0; 

%          

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%         energy_consumed(1,m) = hip_actuator_energy_added; 

%          
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%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     else 

%         X1out = IC_StLeg_position(2) - SwLeg_position(index,2); 

%         X2out = SwLeg_position(index,1) - IC_StLeg_position(1); 

%         X3out = Base_angvel(index); 

%         X4out = SwLeg_angvel_joint(index); 

%          

%         distance_traversed(1,m) = MBCG_position(index,1) - 

MBCG_position(1,1); 

%         time_elapsed(1,m) = sim_time(index) - sim_time(1); 

%          

%         states_out(:,m) = [X1out; X2out; X3out; X4out]; 

%         is_fallen(1,m) = 0; 

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%         energy_consumed(1,m) = hip_actuator_energy_added; 

%          

%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     end 

% end 

 

% final_index = length(Base_angle) 

 

final_index = evalin('base','final_index'); 

% size_SwLeg_position = evalin('base','size(SwLeg_position)'); 

 

states_out = 0; 

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1')); 

distance_traversed = evalin('base','SwLeg_position(final_index(1),1) - 

SwLeg_position(1,1)'); 

time_elapsed = evalin('base','final_index(1)*dt'); 

energy_consumed = energy_added + abs(energy_dissipated)+impulse_work; 

controller_p_error = 

abs(angle_des+evalin('base','interleg_angle(final_index(1))')); 

controller_d_error = 

abs(evalin('base','interleg_velocity(final_index(1))')); 
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StepToStepTFarchive.m 

 
function [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed] = StepToStepTFarchive(state_in, action, 

delta_terrain_vec) 

 

% Initialize Parameters 

 

angle_des = 0; 

PGain = 0; 

DGain = 0; 

ACTIVATE_AT_LEG_CROSS = 1; 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

assignin('base','terrain_height_vector',0); 

 

InitStepToStepParams(state_in) 

 

% pause 

 

applied_impulse = action(2); 

 

% sim('BipedSimOneStep',0) 

assignin('base','t_max',0); 

evalin('base','BipedOneStepEOM'); 

 

% pause 

 

% assignin('base','StLCG_position',StLCG_position); 

% assignin('base','MBCG_position',MBCG_position); 

% assignin('base','SwLeg_position',SwLeg_position); 

% assignin('base','SwLCG_position',SwLCG_position); 

% 

% assignin('base','MBCG_velocity',MBCG_velocity); 

% assignin('base','StLCG_velocity',StLCG_velocity); 

% assignin('base','Base_angvel',Base_angvel); 

% assignin('base','SwLCG_velocity',SwLCG_velocity); 

% assignin('base','SwLeg_angvel',SwLeg_angvel); 

% assignin('base','StLeg_angvel',StLeg_angvel); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 
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StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

final_index = 1; 

 

% pause 

 

EnergyComputationOneStep 

 

% pause 

 

SwitchStanceOneStepEOM 

 

% pause 

 

assignin('base','IC_StLeg_position',IC_StLeg_position); 

assignin('base','IC_Base_angle',IC_Base_angle); 

assignin('base','IC_StLeg_angle',IC_StLeg_angle); 

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle); 

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel); 

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel); 

assignin('base','KE_vec',KE_vec); 

assignin('base','PE_vec',PE_vec); 

 

% angle_des = action(1); 

% PGain = -100; 

% DGain = -10; 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

 

assignin('base','terrain_height_vector',delta_terrain_vec); 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

 

% sim('BipedSimOneStep') 

assignin('base','t_max',1.5); 

evalin('base','BipedOneStepEOM'); 

 

% assignin('base','StLCG_position',StLCG_position); 

% assignin('base','MBCG_position',MBCG_position); 

% assignin('base','SwLeg_position',SwLeg_position); 

% assignin('base','SwLCG_position',SwLCG_position); 

% 

% assignin('base','MBCG_velocity',MBCG_velocity); 

% assignin('base','StLCG_velocity',StLCG_velocity); 
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% assignin('base','Base_angvel',Base_angvel); 

% assignin('base','SwLCG_velocity',SwLCG_velocity); 

% assignin('base','SwLeg_angvel',SwLeg_angvel); 

% assignin('base','StLeg_angvel',StLeg_angvel); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

final_index = evalin('base','final_index'); 

 

%DEBUG 

% EnergyComputationOneStep 

%/DEBUG 

 

impulse_work = KE_vec(2) - KE_vec(1); 

collision_work = KE_vec(3) - KE_vec(2); 

hip_actuator_work = energy_net; 

hip_actuator_energy_added = energy_added; 

gravity_work = -1*PE_delta; 

hip_actuator_work = hip_actuator_work - gravity_work; 

 

total_work = impulse_work + collision_work + hip_actuator_work + 

gravity_work; 

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1) 

 

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1); 

 

 

HitCheck = evalin('base','HitCheck'); 

dt = evalin('base','dt'); 

num_max = evalin('base','num_max'); 

interleg_velocity = evalin('base','interleg_velocity'); 

 

index_hit_list = mod(find(HitCheck),length(delta_terrain_vec)); 

 

HitList(index_hit_list + (index_hit_list == 

0).*length(delta_terrain_vec)) = 

floor(find(HitCheck)/length(delta_terrain_vec)); 
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HitList = num_max*(HitList > num_max) + HitList.*(HitList <= num_max); 

 

X1 = IC_StLeg_position(2) - SwLeg_position(HitList,2); 

X2 = SwLeg_position(HitList,1) - IC_StLeg_position(1); 

X3 = Base_angvel(HitList); 

X4 = interleg_velocity(HitList); 

 

% interleg_velocity 

 

states_out = [X1 X2 X3 X4]; 

is_fallen = (HitList == num_max); 

 

% for(m = 1:length(HitCheck(1,:))) 

%     index = find(HitCheck(:,m),1); 

%     if(isempty(index)) 

%         states_out(:,m) = [0;0;0;0]; 

%         is_fallen(1,m) = 1; 

% 

%         distance_traversed(1,m) = 0; 

%         time_elapsed(1,m) = 0; 

% 

%         energy_consumed(1,m) = 0; 

%     else 

%         X1out = IC_StLeg_position(2) - SwLeg_position(index,2); 

%         X2out = SwLeg_position(index,1) - IC_StLeg_position(1); 

%         X3out = Base_angvel(index); 

%         X4out = SwLeg_angvel(index); 

% 

%         distance_traversed(1,m) = MBCG_position(index,1) - 

MBCG_position(1,2); 

%         %         time_elapsed(1,m) = sim_time(index) - sim_time(1); 

%         time_elapsed(1,m) = index.*dt; 

% 

%         states_out(:,m) = [X1out; X2out; X3out; X4out]; 

%         is_fallen(1,m) = 0; 

%         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%     end 

% end 

 

energy_consumed = 0; 

time_elapsed = 0; 

distance_traversed = 0; 

 

% MBCG_position 

 

% final_index = evalin('base','final_index'); 

% 

% is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1')); 

% distance_traversed = evalin('base','SwLeg_position(final_index(1),1) 

- SwLeg_position(1,1)'); 
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% time_elapsed = evalin('base','final_index(1)*dt'); 

% energy_consumed = energy_added + abs(energy_dissipated)+impulse_work; 

% controller_p_error = 

abs(angle_des+evalin('base','interleg_angle(final_index(1))')); 

% controller_d_error = 

abs(evalin('base','interleg_velocity(final_index(1))')); 
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StepToStepTFEOM.m 

 
 

function [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed, controller_p_error, controller_d_error] = 

StepToStepTFEOM(state_in, action, delta_terrain_vec) 

 

% Initialize Parameters 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

ACTIVATE_AT_LEG_CROSS = action(5); 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

assignin('base','terrain_height_vector',0); 

 

InitStepToStepParams(state_in) 

 

applied_impulse = action(2); 

 

% sim('BipedSimGainSchedule',0) 

assignin('base','t_max',0); 

evalin('base','BipedOneStepEOM'); 

 

% pause 

 

% assignin('base','StLCG_position',StLCG_position); 

% assignin('base','MBCG_position',MBCG_position); 

% assignin('base','SwLeg_position',SwLeg_position); 

% assignin('base','SwLCG_position',SwLCG_position); 

%  

% assignin('base','MBCG_velocity',MBCG_velocity); 

% assignin('base','StLCG_velocity',StLCG_velocity); 

% assignin('base','Base_angvel',Base_angvel); 

% assignin('base','SwLCG_velocity',SwLCG_velocity); 

% assignin('base','SwLeg_angvel',SwLeg_angvel); 

% assignin('base','StLeg_angvel',StLeg_angvel); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 
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MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

 

% pause 

final_index = 1; 

 

EnergyComputationOneStep 

 

SwitchStanceOneStepEOM 

 

assignin('base','IC_StLeg_position',IC_StLeg_position); 

assignin('base','IC_Base_angle',IC_Base_angle); 

assignin('base','IC_StLeg_angle',IC_StLeg_angle); 

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle); 

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel); 

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel); 

assignin('base','KE_vec',KE_vec); 

assignin('base','PE_vec',PE_vec); 

 

% KE_vec 

% PE_vec 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

 

assignin('base','terrain_height_vector',delta_terrain_vec); 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

 

 

% myopts = simset('MinStep', evalin('base','min_step_size')); 

 

% sim('BipedSimGainSchedule', 10) 

assignin('base','t_max',1.5); 

evalin('base','BipedOneStepEOM'); 

% sim('BipedSimOneStep', 10, myopts) 

 

% assignin('base','StLCG_position',StLCG_position); 

% assignin('base','MBCG_position',MBCG_position); 

% assignin('base','SwLeg_position',SwLeg_position); 

% assignin('base','SwLCG_position',SwLCG_position); 

%  

% assignin('base','MBCG_velocity',MBCG_velocity); 

% assignin('base','StLCG_velocity',StLCG_velocity); 

% assignin('base','Base_angvel',Base_angvel); 
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% assignin('base','SwLCG_velocity',SwLCG_velocity); 

% assignin('base','SwLeg_angvel',SwLeg_angvel); 

% assignin('base','StLeg_angvel',StLeg_angvel); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

final_index = evalin('base','final_index'); 

 

EnergyComputationOneStep 

 

impulse_work = KE_vec(2) - KE_vec(1); 

collision_work = KE_vec(3) - KE_vec(2); 

hip_actuator_work = energy_net; 

hip_actuator_energy_added = energy_added; 

gravity_work = -1*PE_delta; 

hip_actuator_work = hip_actuator_work - gravity_work; 

 

total_work = impulse_work + collision_work + hip_actuator_work + 

gravity_work; 

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1) 

 

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1); 

 

 

%% DEBUG 

 

% for(m = 1:length(HitCheck(1,:))) 

%     index = find(HitCheck(:,m),1); 

%     if(isempty(index)) 

%         states_out(:,m) = [0;0;0;0]; 

%         is_fallen(1,m) = 1; 

%          

%         distance_traversed(1,m) = 0; 

%         time_elapsed(1,m) = 0; 

%          

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%         energy_consumed(1,m) = hip_actuator_energy_added; 
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%          

%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     else 

%         X1out = IC_StLeg_position(2) - SwLeg_position(index,2); 

%         X2out = SwLeg_position(index,1) - IC_StLeg_position(1); 

%         X3out = Base_angvel(index); 

%         X4out = SwLeg_angvel_joint(index); 

%          

%         distance_traversed(1,m) = MBCG_position(index,1) - 

MBCG_position(1,1); 

%         time_elapsed(1,m) = sim_time(index) - sim_time(1); 

%          

%         states_out(:,m) = [X1out; X2out; X3out; X4out]; 

%         is_fallen(1,m) = 0; 

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%         energy_consumed(1,m) = hip_actuator_energy_added; 

%          

%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     end 

% end 

 

% final_index = length(Base_angle) 

 

final_index = evalin('base','final_index'); 

% size_SwLeg_position = evalin('base','size(SwLeg_position)'); 

 

states_out = 0; 

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1')); 

distance_traversed = evalin('base','SwLeg_position(final_index(1),1) - 

SwLeg_position(1,1)'); 

time_elapsed = evalin('base','final_index(1)*dt'); 

energy_consumed = energy_added + abs(energy_dissipated)+impulse_work; 

controller_p_error = 

abs(angle_des+evalin('base','interleg_angle(final_index(1))')); 

controller_d_error = 

abs(evalin('base','interleg_velocity(final_index(1))')); 
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SwitchStanceOneStep.m 

 
See page 168 

 
 

TakeAction.m 

 
 

function [new_state_num, possible_state_transitions] = 

TakeAction(action_index, current_state_num, master_dynamics_table, 

cum_probs) 

 

rand_num = rand; 

 

resulting_states = 

master_dynamics_table{action_index}(current_state_num,:); 

 

result_index = find(rand_num < cum_probs, 1); 

 

new_state_num = resulting_states(result_index); 

 

possible_state_transitions = resulting_states; 
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Genetic Optimization Algorithm Code 

Step 1:  Run “genopt3m1.m” 

 
 

BipedOneStepEOM.m 

 
 

%% Inputs: 

% IC_StLeg_position 

% IC_Base_angle 

% IC_StLeg_angvel 

% IC_SwLeg_angle 

% IC_SwLeg_angvel 

% terrain_height_vector 

% ACTIVATE_AT_LEG_CROSS 

% 

% angle_des 

% angle_ratio_vec 

% gain_schedule 

% ratio_schedule 

% 

% StLeg_mass 

% StLeg_inertia 

% StLeg_length 

% StLCG_ratio 

% SwLeg_mass 

% SwLeg_inertia 

% SwLeg_length 

% SwLCG_ratio 

% MBody_mass 

 

%% Outputs: 

% Base_angle 

% Base_angvel 

% StLCG_position 

% StLCG_velocity 

% StLCG_angvel 

% StLeg_angle 

% StLeg_angvel 

% StLeg_angaccel 

% MBCG_position 

% MBCG_velocity 

% MBCG_angvel 

% MBCG_accel 

% SwLeg_angle 

% SwLeg_angvel_joint 

% SwLeg_angaccel2 

% SwLCG_position 
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% SwLCG_velocity 

% SwLCG_angvel 

% SwLeg_angle2 

% SwLCG_accel 

% SwLeg_angaccel 

% interleg_angle 

% interleg_velocity 

% hip_torque 

% SwLeg_position 

% SwLeg_velocity 

% SwLeg_accel 

 

% HitCheck 

% TotalHits 

% FallCheck 

 

%% 

 

% close all 

 

SLOMO = 1; 

FRAMES_PER_SECOND = 30*SLOMO; 

NUM_SAMPLES = 1; 

 

ANIMATION_ON = 0; 

 

theta1_init = 1*(IC_Base_angle*pi/180) + pi/2; 

theta2_init = pi - IC_SwLeg_angle*pi/180 - IC_Base_angle*pi/180; 

theta_dot1_init = IC_StLeg_angvel*pi/180; 

theta_dot2_init = IC_SwLeg_angvel*pi/180; 

 

%t_max = 2; % assigned 

dt = 1e-3; 

if(t_max == 0) 

    num_max = 1; 

else 

    num_max = floor(t_max/dt); 

end 

 

theta1 = theta1_init; 

theta2 = theta2_init; 

theta_dot1 = theta_dot1_init; 

theta_dot2 = theta_dot2_init; 

 

tau = 0; 

m = StLeg_mass; 

mh = MBody_mass; 

L = StLeg_length; 

% g = 9.81; % Assigned elsewhere 

 

a = StLCG_ratio*L; 

b = SwLCG_ratio*L; 
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m1 = m + mh/2; 

m2 = m1; 

l1 = a + b; 

l2 = l1; 

lc1 = L - b*m/m1; 

lc2 = L - lc1; 

I1 = m*(b-lc2)^2 + 0.5*mh*lc2^2; 

I2 = I1; 

 

theta1_vec = zeros(num_max,1); 

theta2_vec = zeros(num_max,1); 

theta_dot1_vec = zeros(num_max,1); 

theta_dot2_vec = zeros(num_max,1); 

hip_torque = zeros(num_max,1); 

 

interleg_angle = zeros(num_max,1); 

interleg_velocity = zeros(num_max,1); 

 

SwLeg_position = zeros(num_max,2); 

SwLeg_velocity = zeros(num_max,2); 

 

MBody_inertia(3,3) = 0.0001; 

StLeg_inertia(3,3) = 0.0001; 

SwLeg_inertia(3,3) = 0.0001; 

 

for index = 2:num_max 

    theta1_vec(index-1) = theta1; 

    theta2_vec(index-1) = theta2; 

     

    theta_dot1_vec(index-1) = theta_dot1; 

    theta_dot2_vec(index-1) = theta_dot2; 

     

    interleg_angle(index-1) = (pi - theta2)*180/pi; 

    interleg_velocity(index-1) = theta_dot2*180/pi; 

     

    SwLeg_position(index-1,1) = L*cos(theta1) + L*cos(theta1+theta2); 

    SwLeg_position(index-1,2) = L*sin(theta1) + L*sin(theta1+theta2); 

     

    SwLeg_velocity(index-1,1) = L*cos(theta_dot1) + 

L*cos(theta_dot1+theta_dot2); 

    SwLeg_velocity(index-1,2) = L*sin(theta_dot1) + 

L*sin(theta_dot1+theta_dot2); 

     

    hip_torque(index-1) = tau; 

     

    d11 = m1*lc1^2 + m2*(l1^2+lc2^2+2*l1*lc2*cos(theta2)) + I1 + I2; 

    d12 = m2*(lc2^2 + l1*lc2*cos(theta2)) + I2; 

    d22 = m2*lc2^2 + I2; 

     

    h1 = -m2*l1*lc2*sin(theta2)*theta_dot2^2 - 

2*m2*l1*lc2*sin(theta2)*theta_dot2*theta_dot1; 
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    h2 = m2*l1*lc2*sin(theta2)*theta_dot1^2; 

     

    p1 = (m1*lc1 + m2*l1)*g*cos(theta1) + m2*lc2*g*cos(theta1+theta2); 

    p2 = m2*lc2*g*cos(theta1+theta2); 

     

    tau = GetControlTorque(interleg_angle(index-1), 

interleg_velocity(index-1), -angle_des, angle_ratio_vec, gain_schedule, 

ratio_schedule); 

     

    theta_dot_dot2 = (d11*(tau - h2 - p2) + d12*(h1 + p1))/(d11*d22 - 

d12^2); 

    theta_dot_dot1 = (d12*theta_dot_dot2 + h1 + p1)/(-d11); 

     

    theta_dot1 = theta_dot_dot1*dt + theta_dot1; 

    theta_dot2 = theta_dot_dot2*dt + theta_dot2; 

     

    theta1 = theta_dot1*dt + theta1; 

    theta2 = theta_dot2*dt + theta2; 

     

    %% 

%     interleg_angle(index-1) 

     

end 

 

theta1_vec(num_max) = theta1; 

theta2_vec(num_max) = theta2; 

 

if(num_max > 1) 

    theta_dot1_vec(index-1) = theta_dot1; 

    theta_dot2_vec(index-1) = theta_dot2; 

     

    hip_torque(index-1) = tau; 

else 

    theta_dot1_vec(1) = theta_dot1; 

    theta_dot2_vec(1) = theta_dot2; 

     

    hip_torque(1) = tau; 

     

    HitCheck = 1; 

end 

 

interleg_angle(num_max) = (pi + theta2)*180/pi; 

interleg_velocity(num_max) = theta_dot2*180/pi; 

 

clear MBCG_position 

clear MBCG_velocity 

clear StLCG_position 

clear StLCG_velocity 

clear SwLeg_position 

clear SwLCG_position 

clear SwLCG_velocity 

clear Base_angvel 
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clear StLeg_angvel 

clear StLCG_angvel 

clear SwLeg_angvel 

 

MBCG_position(:,1) = L*cos(theta1_vec)'; 

MBCG_position(:,2) = L*sin(theta1_vec)'; 

 

MBCG_velocity(:,1) = (-L*theta_dot1_vec.*sin(theta1_vec))'; 

MBCG_velocity(:,2) = (L*theta_dot1_vec.*cos(theta1_vec))'; 

 

StLCG_position(:,1) = StLCG_ratio*L*cos(theta1_vec)'; 

StLCG_position(:,2) = StLCG_ratio*L*sin(theta1_vec)'; 

 

StLCG_velocity(:,1) = (-

L*StLCG_ratio.*sin(theta1_vec).*theta_dot1_vec)'; 

StLCG_velocity(:,2) = 

(L*StLCG_ratio.*cos(theta1_vec).*theta_dot1_vec)'; 

 

SwLeg_position(:,1) = L*cos(theta1_vec)' + 

L*cos(theta1_vec+theta2_vec)'; 

SwLeg_position(:,2) = L*sin(theta1_vec)' + 

L*sin(theta1_vec+theta2_vec)'; 

 

SwLCG_position(:,1) = L*cos(theta1_vec)' + 

SwLCG_ratio*L*cos(theta1_vec+theta2_vec)'; 

SwLCG_position(:,2) = L*sin(theta1_vec)' + 

SwLCG_ratio*L*sin(theta1_vec+theta2_vec)'; 

 

SwLCG_velocity(:,1) = (-L.*sin(theta1_vec).*theta_dot1_vec)' + (-

SwLCG_ratio*L*sin(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_v

ec))'; 

SwLCG_velocity(:,2) = (L.*cos(theta1_vec).*theta_dot1_vec)' + 

(SwLCG_ratio*L*cos(theta1_vec+theta2_vec).*(theta_dot1_vec+theta_dot2_

vec))'; 

 

Base_angle = (theta1_vec-pi/2)*180/pi; 

SwLeg_angle = -theta2_vec*180/pi + 180 - Base_angle; 

 

Base_angvel(:,1) = theta_dot1_vec*180/pi; 

StLeg_angvel(:,1) = Base_angvel.*0; 

StLCG_angvel(:,3) = theta_dot1_vec; 

SwLeg_angvel(:,3) = (theta_dot1_vec+theta_dot2_vec); 

MBCG_angvel = zeros(num_max,3); 

SwLeg_angvel_joint = theta_dot2_vec*180/pi; 

 

if(num_max > 1) 

    left_height_vec = meshgrid([SwLeg_position(:,2);L], 

terrain_height_vector); 

    right_height_vec = meshgrid([-L;SwLeg_position(:,2)], 

terrain_height_vector); 

     

    terrain_mat = meshgrid(terrain_height_vector, ones(1,num_max+1))'; 
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    HitCheck_raw = (left_height_vec <= 

terrain_mat).*(right_height_vec > 

terrain_mat).*([SwLeg_position(:,1)',-L] > 0.05); 

     

    %Assumes only one terrain height 

%     HitCheck_raw(length(HitCheck_raw)) = 1; 

     

    final_index = find(HitCheck_raw); 

    if(isempty(final_index)) 

        final_index = length(HitCheck_raw)-1; 

    end 

     

    HitCheck = zeros(1,final_index(1)); 

    HitCheck(final_index) = 1; 

else 

    HitCheck = 1; 

    final_index = 1; 

end 

 

if(ANIMATION_ON) 

%     hold on 

     

    if(t_max == 0) 

        time_interp = t_max; 

        theta1_interp = theta1_vec; 

        theta2_interp = theta2_vec; 

    else 

        time_interp = [0:1/FRAMES_PER_SECOND:t_max]; 

        theta1_interp = interp1(dt*[1:num_max], theta1_vec, 

time_interp); 

        theta2_interp = interp1(dt*[1:num_max], theta2_vec, 

time_interp); 

    end 

     

    for index = [1:length(time_interp)] 

        x1 = L*cos(theta1_interp(index)); 

        y1 = L*sin(theta1_interp(index)); 

        x2 = x1 + L*cos(theta1_interp(index)+theta2_interp(index)); 

        y2 = y1 + L*sin(theta1_interp(index)+theta2_interp(index)); 

        CMx1 = a*cos(theta1_interp(index)); 

        CMy1 = a*sin(theta1_interp(index)); 

        CMx2 = x1 + b*cos(theta1_interp(index)+theta2_interp(index)); 

        CMy2 = y1 + b*sin(theta1_interp(index)+theta2_interp(index)); 

        plot([0,x1], [0,y1], 'bo-', [x1,x2], [y1,y2], 'ro-', CMx1, 

CMy1, 'bx', CMx2, CMy2, 'rx') 

        axis equal 

        axis([-2,2,-2,2]) 

        pause(1/FRAMES_PER_SECOND*SLOMO) 

    end 

end 

 

% figure(4) 
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% plot(interleg_velocity) 

 

% debug_BA = Base_angle(1) 

% debug_SwA = SwLeg_angle(1) 

%  

% SwLeg_position 

  



203 
 

EnergyComputationOneStep.m 

 
See page 123 

 
 

GenerateTestSchedule.m 

 
function test_schedule = GenerateTestSchedule(test_conditions, 

num_tests) 

 

% num_tests = 9; 

test_schedule = zeros(5,num_tests); 

 

X1_min = test_conditions(1,1); 

X1_max = test_conditions(1,2); 

X2_min = test_conditions(2,1); 

X2_max = test_conditions(2,2); 

X3_min = test_conditions(3,1); 

X3_max = test_conditions(3,2); 

X4_min = test_conditions(4,1); 

X4_max = test_conditions(4,2); 

terrain_mean = test_conditions(7,2); 

terrain_sigma = test_conditions(7,2); 

 

for m = 1:num_tests 

    X1 = rand*(X1_max-X1_min)+X1_min; 

    X2 = rand*(X2_max-X2_min)+X2_min; 

    X3 = rand*(X3_max-X3_min)+X3_min; 

    X4 = rand*(X4_max-X4_min)+X4_min; 

    terrain_height = randn*terrain_sigma + terrain_mean; 

    if(terrain_height > 3*terrain_sigma+terrain_mean) 

        terrain_height = 0.1; 

    elseif(terrain_height < -3*terrain_sigma+terrain_mean) 

        terrain_height = -0.1; 

    end 

     

    test_schedule(:,m) = [X1; X2; X3; X4; terrain_height]; 

end 
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genopt3m1.m 

 
 

 

% Gain Scheduling Format 

% Ratio of desired interleg angle 

% [-0.5, 0, 0.5]  length: n-1 

% Initial Gain Selection (1st index indicates gain before crossing 

angle 1) 

% [10, 10, 10, 10]  length: n 

% Kd/Kp ratio (1st index indicates ratio before crossing angle 1) 

% [0.1, 0.1, 0.1, 0.1] length: n 

 

try 

    clc 

    clear 

    close all 

     

    EMAIL_ALERT = 0; 

     

    [last_update_time, last_update_text] = CheckUpdateRequests; 

     

    addpath P:\UrbanRobots\private\Hubicki\Simulation\2009-12\Tools 

     

    set_height = 0; 

     

    MUTATION_SIGMA_GAIN = 0.125; 

    MUTATION_SIGMA_RATIO = 0.01*5; 

    MUTATION_SIGMA_IMPULSE = 0.125; 

     

    MAX_GENERATIONS = 80; 

    NUM_OFFSPRING = 50; 

    NUM_DISCRETE_POINTS = 10; 

     

    NUM_TESTS = 1; 

     

    INITIAL_GAIN = 5; 

    INITIAL_RATIO = 0.1*5; 

    INITIAL_IMPULSE = 1; 

     

    MIN_GAIN = 0; 

    MIN_RATIO = 0; 

    MIN_IMPULSE = 0; 

     

    MAX_IMPULSE = 7; 

     

    WEIGHTING = [150 0.375 10.625]; 

     

    SAVE_FILE_ON = 1; 

    SAVE_EVERY = 10; 

     

    current_time = clock; 
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    str_store = [num2str(current_time(1)) '_' num2str(current_time(2)) 

'_' num2str(current_time(3)) '_' num2str(current_time(4)) '_' 

num2str(current_time(5)) '_' num2str(floor(current_time(6)))]; 

    savefile = ['GOAdata_' str_store '.txt']; 

     

    halt_requested = 0; 

     

    angle_ratio_vec = linspace(-1,1,NUM_DISCRETE_POINTS-1); 

    gain_schedule = ones(1,NUM_DISCRETE_POINTS).*INITIAL_GAIN; 

    ratio_schedule = ones(1,NUM_DISCRETE_POINTS).*INITIAL_RATIO; 

    applied_impulse = INITIAL_IMPULSE; 

     

    X1_min = 0; 

    X1_max = 0; 

    X2_min = 0.449; 

    X2_max = 0.451; 

    X3_min = -61; %-30; 

    X3_max = -59; %-40; 

    X4_min = -1; %25; 

    X4_max = 1; %35; 

    Impulse_min = 5; 

    Impulse_max = 5; 

    alpha_des_min = 25; 

    alpha_des_max = 25; 

    terrain_height_mean = 0.000; 

    terrain_height_sigma = 0.00; 

     

    test_conditions = [X1_min, X1_max; 

        X2_min, X2_max; 

        X3_min, X3_max; 

        X4_min, X4_max; 

        Impulse_min, Impulse_max; 

        alpha_des_min, alpha_des_max; 

        terrain_height_mean, terrain_height_sigma]; 

     

    parent_gain_schedule = gain_schedule; 

    parent_ratio = ratio_schedule; 

    parent_impulse = applied_impulse; 

     

    gen = 0; 

    done = 0; 

     

    track_gen = zeros(MAX_GENERATIONS,3+2*NUM_DISCRETE_POINTS); 

     

    while(~done && gen < MAX_GENERATIONS) 

         

        gen = gen + 1; 

         

        num_os = 1; 

         

        [child_gain_matrix, dummy] = meshgrid(parent_gain_schedule, 

ones(1,NUM_OFFSPRING)); 
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        [child_ratio_matrix, dummy] = meshgrid(parent_ratio, 

ones(1,NUM_OFFSPRING)); 

        child_impulse_matrix = ones(NUM_OFFSPRING,1).*parent_impulse; 

         

        mutation_gain_matrix = randn(NUM_OFFSPRING, 

NUM_DISCRETE_POINTS)*MUTATION_SIGMA_GAIN; 

        mutation_ratio_matrix = randn(NUM_OFFSPRING, 

NUM_DISCRETE_POINTS)*MUTATION_SIGMA_RATIO; 

        mutation_impulse_matrix = randn(NUM_OFFSPRING, 

1)*MUTATION_SIGMA_IMPULSE; 

         

        child_gain_matrix = child_gain_matrix + mutation_gain_matrix; 

        child_ratio_matrix = child_ratio_matrix + 

mutation_ratio_matrix; 

        child_impulse_matrix = child_impulse_matrix + 

mutation_impulse_matrix; 

         

        child_gain_matrix = (child_gain_matrix >= 

MIN_GAIN).*child_gain_matrix + (child_gain_matrix < 

MIN_GAIN).*MIN_GAIN; 

        child_ratio_matrix = (child_ratio_matrix >= 

MIN_RATIO).*child_ratio_matrix + (child_ratio_matrix < 

MIN_RATIO).*MIN_RATIO; 

        child_impulse_matrix = (child_impulse_matrix >= 

MIN_IMPULSE).*child_impulse_matrix + (child_impulse_matrix < 

MIN_IMPULSE).*MIN_IMPULSE; 

         

        hold on 

         

        test_schedule = GenerateTestSchedule(test_conditions, 

NUM_TESTS); 

         

        fitness = zeros(NUM_OFFSPRING,2); 

         

        for m = 1:NUM_OFFSPRING 

            %             m 

            current_index = m; 

            gain_schedule = child_gain_matrix(current_index,:); 

            ratio_schedule = child_ratio_matrix(current_index,:); 

            current_fit = GetFitnessTestSchedule(angle_ratio_vec, 

child_gain_matrix(current_index,:), 

child_ratio_matrix(current_index,:), 

child_impulse_matrix(current_index), WEIGHTING, test_conditions, 

test_schedule, set_height) 

            fitness(current_index,:) = [current_fit, current_index]; 

            %             plot([angle_ratio_vec(1)-1,angle_ratio_vec], 

child_gain_matrix(current_index,:), 'bx', [angle_ratio_vec(1)-

1,angle_ratio_vec], 

child_ratio_matrix(current_index,:).*child_gain_matrix(current_index,:

), 'rx', -1.5, child_impulse_matrix(current_index), 'gx') 

            plot([angle_ratio_vec(1)-1,angle_ratio_vec], 

child_gain_matrix(current_index,:), 'bx', [angle_ratio_vec(1)-
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1,angle_ratio_vec], child_ratio_matrix(current_index,:), 'rx', -1.5, 

child_impulse_matrix(current_index), 'gx') 

            pause(0.02) 

            %         fitness(current_index,:) 

            %         fitness 

        end 

         

        hold off 

        %         close all 

        clf 

         

        adjust_mat = zeros(NUM_OFFSPRING,2); 

        adjust_mat(:,1) = [1:NUM_OFFSPRING]'*0.00001; 

         

        sorted_fitness = sortrows(fitness+adjust_mat); 

        offsize = size(sorted_fitness); 

         

        if(sorted_fitness(1,1) == 0) 

            done = 1; 

        end 

         

        parent_gain_schedule = 

child_gain_matrix(sorted_fitness(1,2),:); 

        parent_ratio = child_ratio_matrix(sorted_fitness(1,2),:); 

        parent_impulse = child_impulse_matrix(sorted_fitness(1,2)); 

         

        store_vec = [gen sorted_fitness(1,1) parent_gain_schedule 

parent_ratio parent_impulse]; 

         

        track_gen(gen,:) = store_vec; 

         

        RunUpdateRequestSystem 

         

        if(mod(gen,SAVE_EVERY) == 0 && SAVE_FILE_ON) 

            save_mat = track_gen(1:gen,:); 

            

save(savefile,'WEIGHTING','NUM_DISCRETE_POINTS','NUM_OFFSPRING','NUM_T

ESTS','MUTATION_SIGMA_GAIN','MUTATION_SIGMA_RATIO','test_conditions','

save_mat','-ascii'); 

        end 

         

        if(mod(gen,SAVE_EVERY) == 0 && halt_requested) 

            done = 1; 

        end 

         

    end 

     

    gain_schedule = parent_gain_schedule; 

    ratio_schedule = parent_ratio; 

     

    TestGS1 
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    text_body = ['Greetings,' 10 'Your simulation has executed without 

error.' 10 'Regards,' 10 '- CodeBot']; 

    if(EMAIL_ALERT) 

        EmailSimulationUpdate('Simulation Complete!', text_body) 

    end 

     

catch ME 

    rep = getReport(ME) 

    rep_email = getReport(ME, 'extended', 'hyperlinks', 'off'); 

    text_body = ['The error report was recorded as follows:' 10 ' ' 10 

rep_email 10 ' ' 10 'Regards,' 10 '- CodeBot']; 

    if(EMAIL_ALERT) 

        EmailSimulationUpdate('Simulation Update: Untimely 

Termination', text_body) 

    end 

end 
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GetControlTorque.m 

 
See page 132 

 
 

GetFitnessTestSchedule.m 

 
 

function fitness = GetFitnessTestSchedule(angle_ratio_vec, 

gain_schedule, ratio_schedule, applied_impulse, weighting, 

test_conditions, test_schedule, set_height) 

 

% weighting 

 

weight_time = weighting; 

weight_energy = 1-weighting; 

 

threshold_values(1) = 1; 

threshold_values(2) = 5; 

 

% test_conditions 

% 

% [X1_min, X1_max; 

% [X2_min, X2_max; 

% [X3_min, X3_max; 

% [X4_min, X4_max; 

% [Impulse_min, Impulse_max; 

% [alpha_des_min, alpha_des_max] 

% [terrain_height_min, terrain_height_max] 

 

X1_min = test_conditions(1,1); 

X1_max = test_conditions(1,2); 

X2_min = test_conditions(2,1); 

X2_max = test_conditions(2,2); 

X3_min = test_conditions(3,1); 

X3_max = test_conditions(3,2); 

X4_min = test_conditions(4,1); 

X4_max = test_conditions(4,2); 

Impulse_min = test_conditions(5,1); 

Impulse_max = test_conditions(5,2); 

alpha_des_min = test_conditions(6,1); 

alpha_des_max = test_conditions(6,2); 

terrain_height_min = test_conditions(7,1); 

terrain_height_max = test_conditions(7,2); 

 

% assignin('base','angle_ratio_vec',angle_ratio_vec); 

% assignin('base','gain_schedule',gain_schedule); 

% assignin('base','ratio_schedule',ratio_schedule); 

 

temp_size = size(test_schedule); 

num_tests = temp_size(2); 
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fitness = 0; 

for m = 1:num_tests 

    X1 = test_schedule(1,m); 

    X2 = test_schedule(2,m); 

    X3 = test_schedule(3,m); 

    X4 = test_schedule(4,m); 

     

    angle_des = rand*(alpha_des_max-alpha_des_min)+alpha_des_min; 

    impulse_magnitude = applied_impulse; 

    PGain = 0; 

    DGain = 0; 

    ACTIVATE_AT_LEG_CROSS = 0; 

     

    terrain_height_vec = test_schedule(5,m); 

     

    states_in = [X1; X2; X3; X4]; 

    action = [angle_des, impulse_magnitude, PGain, DGain, 

ACTIVATE_AT_LEG_CROSS]; 

     

    [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed, y_converged, min_stance_angvel] = 

StepToStepGOA(states_in, action, terrain_height_vec, threshold_values); 

     

    scaling_factor = 1; 

     

    yDiff = y_converged - set_height; 

    %     is_fallen 

    %     energy_consumed 

     

    %     y_converged 

    %     min_stance_angvel 

     

    tripping_gradient_cost = 5*exp(-25*(y_converged-

terrain_height_vec)); 

    slipping_gradient_cost = 10*exp(-.25*min_stance_angvel); 

%     min_stance_angvel 

     

    if(is_fallen || y_converged < terrain_height_vec) 

        fitness = fitness + weighting(1); 

        disp('fell') 

    else 

        %         yCost = (exp(-6*(0-yDiff))).*(yDiff>0) + (-

100*yDiff+1).*(yDiff<=0) - 1; 

         

        forward_step_distance = distance_traversed; 

        biped_speed = forward_step_distance/time_elapsed; 

         

        speed_cost = 1/biped_speed; 

%         energy_consumed 

         

        %         fitness = fitness + yCost + 2*energy_consumed + 

speed_cost; 
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        fitness = fitness + weighting(2)*energy_consumed + 

weighting(3)*speed_cost; 

    end 

     

    fitness = fitness + tripping_gradient_cost + 

slipping_gradient_cost; 

end 

 

% pause 
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ImpulseComputationEOM.m 

 
See page 136 

 
 

InitialConditionTransformation.m 

 
See page 142 

 
 

InitStepToStepParams.m 

 
See page 143 

 
 

 

StepToStepGOA.m 

 
function [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed, y_converged, min_stance_angvel] = 

StepToStepGOA(state_in, action, delta_terrain_vec, threshold_values) 

 

% Initialize Parameters 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

ACTIVATE_AT_LEG_CROSS = action(5); 

 

% threshold_values format 

% threshold_values = [minimum acceptable angle error (deg), minimum 

% acceptable angular velocity error (deg/sec)] 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

assignin('base','terrain_height_vector',0); 

 

InitStepToStepParams(state_in) 

 

applied_impulse = action(2); 

 

assignin('base','t_max',0); 

evalin('base','BipedOneStepEOM'); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 
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SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

final_index = 1; 

 

EnergyComputationOneStep 

 

SwitchStanceOneStepEOM 

 

assignin('base','IC_StLeg_position',IC_StLeg_position); 

assignin('base','IC_Base_angle',IC_Base_angle); 

assignin('base','IC_StLeg_angle',IC_StLeg_angle); 

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle); 

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel); 

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel); 

assignin('base','KE_vec',KE_vec); 

assignin('base','PE_vec',PE_vec); 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

 

assignin('base','terrain_height_vector',delta_terrain_vec); 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

 

assignin('base','t_max',2.0); 

evalin('base','BipedOneStepEOM'); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 
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SwLeg_angvel_joint = evalin('base','SwLeg_angvel_joint'); 

 

final_index = evalin('base','final_index'); 

 

EnergyComputationOneStep 

 

impulse_work = KE_vec(2) - KE_vec(1); 

collision_work = KE_vec(3) - KE_vec(2); 

hip_actuator_work = energy_net; 

hip_actuator_energy_added = energy_added; 

gravity_work = -1*PE_delta; 

hip_actuator_work = hip_actuator_work - gravity_work; 

 

total_work = impulse_work + collision_work + hip_actuator_work + 

gravity_work; 

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1) 

 

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1); 

 

 

%% DEBUG 

 

% for(m = 1:length(HitCheck(1,:))) 

%     index = find(HitCheck(:,m),1); 

%     if(isempty(index)) 

%         states_out(:,m) = [0;0;0;0]; 

%         is_fallen(1,m) = 1; 

% 

%         distance_traversed(1,m) = 0; 

%         time_elapsed(1,m) = 0; 

% 

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%         energy_consumed(1,m) = hip_actuator_energy_added; 

% 

%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     else 

%         X1out = IC_StLeg_position(2) - SwLeg_position(index,2); 

%         X2out = SwLeg_position(index,1) - IC_StLeg_position(1); 

%         X3out = Base_angvel(index); 

%         X4out = SwLeg_angvel_joint(index); 

% 

%         distance_traversed(1,m) = MBCG_position(index,1) - 

MBCG_position(1,1); 

%         time_elapsed(1,m) = sim_time(index) - sim_time(1); 

% 

%         states_out(:,m) = [X1out; X2out; X3out; X4out]; 

%         is_fallen(1,m) = 0; 

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 
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%         energy_consumed(1,m) = hip_actuator_energy_added; 

% 

%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     end 

% end 

% 

% final_index = length(Base_angle) 

 

final_index = evalin('base','final_index'); 

 

 

X1out = IC_StLeg_position(2) - SwLeg_position(final_index,2); 

X2out = SwLeg_position(final_index,1) - IC_StLeg_position(1); 

X3out = Base_angvel(final_index); 

X4out = SwLeg_angvel_joint(final_index); 

 

states_out = [X1out; X2out; X3out; X4out]; 

 

% size_SwLeg_position = evalin('base','size(SwLeg_position)'); 

 

% states_out = 0; 

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1')); 

distance_traversed = evalin('base','SwLeg_position(final_index(1),1) - 

IC_StLeg_position(1)'); 

time_elapsed = evalin('base','final_index(1)*dt'); 

energy_consumed = energy_added + abs(energy_dissipated) + impulse_work; 

 

meet_threshold_vec = (abs(angle_des + 

evalin('base','interleg_angle(1:final_index(1))')) < 

threshold_values(1)).*(abs(evalin('base','interleg_velocity(1:final_in

dex(1))')) < threshold_values(2)); 

index_meet_threshold = find(meet_threshold_vec); 

 

Swing_ypos = evalin('base','SwLeg_position(:,2)'); 

 

if(~isempty(index_meet_threshold)) 

    y_converged = Swing_ypos(index_meet_threshold(1)); 

else 

    is_fallen = 1; 

    y_converged = min(Swing_ypos(1:final_index)); 

end 

 

min_stance_angvel = min(-1*Base_angvel(1:(numel(Base_angvel)-1))); 
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StepToStepTFEOM.m 

 
 

function [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed, controller_p_error, controller_d_error] = 

StepToStepTFEOM(state_in, action, delta_terrain_vec) 

 

% Initialize Parameters 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

ACTIVATE_AT_LEG_CROSS = action(5); 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

assignin('base','terrain_height_vector',0); 

 

InitStepToStepParams(state_in) 

 

applied_impulse = action(2); 

 

% sim('BipedSimGainSchedule',0) 

assignin('base','t_max',0); 

evalin('base','BipedOneStepEOM'); 

 

% pause 

 

% assignin('base','StLCG_position',StLCG_position); 

% assignin('base','MBCG_position',MBCG_position); 

% assignin('base','SwLeg_position',SwLeg_position); 

% assignin('base','SwLCG_position',SwLCG_position); 

%  

% assignin('base','MBCG_velocity',MBCG_velocity); 

% assignin('base','StLCG_velocity',StLCG_velocity); 

% assignin('base','Base_angvel',Base_angvel); 

% assignin('base','SwLCG_velocity',SwLCG_velocity); 

% assignin('base','SwLeg_angvel',SwLeg_angvel); 

% assignin('base','StLeg_angvel',StLeg_angvel); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 
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MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

 

% pause 

final_index = 1; 

 

EnergyComputationOneStep 

 

SwitchStanceOneStepEOM 

 

assignin('base','IC_StLeg_position',IC_StLeg_position); 

assignin('base','IC_Base_angle',IC_Base_angle); 

assignin('base','IC_StLeg_angle',IC_StLeg_angle); 

assignin('base','IC_SwLeg_angle',IC_SwLeg_angle); 

assignin('base','IC_StLeg_angvel',IC_StLeg_angvel); 

assignin('base','IC_SwLeg_angvel',IC_SwLeg_angvel); 

assignin('base','KE_vec',KE_vec); 

assignin('base','PE_vec',PE_vec); 

 

% KE_vec 

% PE_vec 

 

angle_des = action(1); 

PGain = action(3); 

DGain = action(4); 

 

assignin('base','terrain_height_vector',delta_terrain_vec); 

 

assignin('base','angle_des',angle_des); 

assignin('base','PGain',PGain); 

assignin('base','DGain',DGain); 

assignin('base','ACTIVATE_AT_LEG_CROSS',ACTIVATE_AT_LEG_CROSS); 

 

 

% myopts = simset('MinStep', evalin('base','min_step_size')); 

 

% sim('BipedSimGainSchedule', 10) 

assignin('base','t_max',1.5); 

evalin('base','BipedOneStepEOM'); 

% sim('BipedSimOneStep', 10, myopts) 

 

% assignin('base','StLCG_position',StLCG_position); 

% assignin('base','MBCG_position',MBCG_position); 

% assignin('base','SwLeg_position',SwLeg_position); 

% assignin('base','SwLCG_position',SwLCG_position); 

%  

% assignin('base','MBCG_velocity',MBCG_velocity); 

% assignin('base','StLCG_velocity',StLCG_velocity); 

% assignin('base','Base_angvel',Base_angvel); 
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% assignin('base','SwLCG_velocity',SwLCG_velocity); 

% assignin('base','SwLeg_angvel',SwLeg_angvel); 

% assignin('base','StLeg_angvel',StLeg_angvel); 

 

StLCG_position = evalin('base','StLCG_position'); 

MBCG_position = evalin('base','MBCG_position'); 

SwLeg_position = evalin('base','SwLeg_position'); 

SwLCG_position = evalin('base','SwLCG_position'); 

MBCG_velocity = evalin('base','MBCG_velocity'); 

StLCG_velocity = evalin('base','StLCG_velocity'); 

Base_angvel = evalin('base','Base_angvel'); 

SwLCG_velocity = evalin('base','SwLCG_velocity'); 

SwLeg_angvel = evalin('base','SwLeg_angvel'); 

StLeg_angvel = evalin('base','StLeg_angvel'); 

MBCG_angvel = evalin('base','MBCG_angvel'); 

StLCG_angvel = evalin('base','StLCG_angvel'); 

SwLeg_angle = evalin('base','SwLeg_angle'); 

Base_angle = evalin('base','Base_angle'); 

 

final_index = evalin('base','final_index'); 

 

EnergyComputationOneStep 

 

impulse_work = KE_vec(2) - KE_vec(1); 

collision_work = KE_vec(3) - KE_vec(2); 

hip_actuator_work = energy_net; 

hip_actuator_energy_added = energy_added; 

gravity_work = -1*PE_delta; 

hip_actuator_work = hip_actuator_work - gravity_work; 

 

total_work = impulse_work + collision_work + hip_actuator_work + 

gravity_work; 

% added_kinetic_energy = KE_vec(1) - KE_vec_prev(1) 

 

% energy_step_to_step = KE_vec(1)+PE_vec(1)-KE_vec_prev(1)-

PE_vec_prev(1); 

 

 

%% DEBUG 

 

% for(m = 1:length(HitCheck(1,:))) 

%     index = find(HitCheck(:,m),1); 

%     if(isempty(index)) 

%         states_out(:,m) = [0;0;0;0]; 

%         is_fallen(1,m) = 1; 

%          

%         distance_traversed(1,m) = 0; 

%         time_elapsed(1,m) = 0; 

%          

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%         energy_consumed(1,m) = hip_actuator_energy_added; 
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%          

%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     else 

%         X1out = IC_StLeg_position(2) - SwLeg_position(index,2); 

%         X2out = SwLeg_position(index,1) - IC_StLeg_position(1); 

%         X3out = Base_angvel(index); 

%         X4out = SwLeg_angvel_joint(index); 

%          

%         distance_traversed(1,m) = MBCG_position(index,1) - 

MBCG_position(1,1); 

%         time_elapsed(1,m) = sim_time(index) - sim_time(1); 

%          

%         states_out(:,m) = [X1out; X2out; X3out; X4out]; 

%         is_fallen(1,m) = 0; 

%         %         energy_consumed(1,m) = impulse_work + 

hip_actuator_energy_added; 

%         energy_consumed(1,m) = hip_actuator_energy_added; 

%          

%         controller_error(1:2,m) = [angle_error(index); 

angle_vel_error(index)]; 

%     end 

% end 

 

% final_index = length(Base_angle) 

 

final_index = evalin('base','final_index'); 

% size_SwLeg_position = evalin('base','size(SwLeg_position)'); 

 

states_out = 0; 

is_fallen = (final_index==evalin('base','length(HitCheck_raw)-1')); 

distance_traversed = evalin('base','SwLeg_position(final_index(1),1) - 

SwLeg_position(1,1)'); 

time_elapsed = evalin('base','final_index(1)*dt'); 

energy_consumed = energy_added + abs(energy_dissipated)+impulse_work; 

controller_p_error = 

abs(angle_des+evalin('base','interleg_angle(final_index(1))')); 

controller_d_error = 

abs(evalin('base','interleg_velocity(final_index(1))')); 
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SwitchStanceOneStepEOM.m 

 
See page 166 

 
 

TestGS1.m 

 
min_step_size = 0; 

 

NUM_SAMPLES = 500; 

 

current_time = clock; 

str_store = [num2str(current_time(1)) '_' num2str(current_time(2)) '_' 

num2str(current_time(3)) '_' num2str(current_time(4)) '_' 

num2str(current_time(5)) '_' num2str(floor(current_time(6)))]; 

savefile = ['TestGS_' str_store '.txt']; 

 

result_vector = zeros(NUM_SAMPLES, 6); 

 

test_schedule = GenerateTestSchedule(test_conditions, NUM_SAMPLES); 

 

Impulse_min = test_conditions(5,1); 

Impulse_max = test_conditions(5,2); 

alpha_des_min = test_conditions(6,1); 

alpha_des_max = test_conditions(6,2); 

terrain_height_min = test_conditions(7,1); 

terrain_height_max = test_conditions(7,2); 

 

for r = 1:NUM_SAMPLES 

     

    X1 = test_schedule(1,r); 

    X2 = test_schedule(2,r); 

    X3 = test_schedule(3,r); 

    X4 = test_schedule(4,r); 

     

%     gain_schedule = parent_gain_schedule; 

%     ratio_schedule = parent_ratio_schedule; 

     

    angle_des = rand*(alpha_des_max-alpha_des_min)+alpha_des_min; 

    impulse_magnitude = parent_impulse; %rand*(Impulse_max-

Impulse_min)+Impulse_min; 

    PGain = 0; 

    DGain = 0; 

    ACTIVATE_AT_LEG_CROSS = 0; 

     

    terrain_height_vec = test_schedule(5,r); 

     

    states_in = [X1; X2; X3; X4]; 

    action = [angle_des, impulse_magnitude, PGain, DGain, 

ACTIVATE_AT_LEG_CROSS]; 
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    [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed, y_converged] = StepToStepGOA(states_in, action, 

terrain_height_vec, [1, 5]); 

     

    sct = energy_consumed/(distance_traversed*3*9.81); 

     

    result_vector(r,:) = [is_fallen energy_consumed time_elapsed 

distance_traversed y_converged sct]; 

     

end 

 

save(savefile,'WEIGHTING','NUM_DISCRETE_POINTS','NUM_OFFSPRING','NUM_T

ESTS','MUTATION_SIGMA_GAIN','MUTATION_SIGMA_RATIO','test_conditions','

angle_ratio_vec','gain_schedule','ratio_schedule','test_conditions','r

esult_vector','save_mat','-ascii'); 
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Gradient-Descent Heuristic Parameter Tuning Code 

Step 1:  Run “GradientDescentHeuristic.m” 

 
 

BipedOneStepEOM.m 

 
See page 195 

 
 

EnergyComputationOneStep.m 

 
See page 123 

 
 

GetHeuristicFitness.m 

 
 

function [cost, new_heuristic_parameters, step_speed_vec, sct_vec, 

fallen_vec] = GetHeuristicFitness(heuristic_parameters, num_points, 

initial_states, angle_des, weights, angle_ratio_vec, gain_schedule, 

ratio_schedule) 

 

NUM_POINTS = num_points; 

 

current_time = clock; 

str_store = [num2str(current_time(1)) '_' num2str(current_time(2)) '_' 

num2str(current_time(3)) '_' num2str(current_time(4)) '_' 

num2str(current_time(5)) '_' num2str(floor(current_time(6)))]; 

savefile = ['HeuristicTest_' str_store '.txt']; 

 

threshold_values(1) = 1; 

threshold_values(2) = 5; 

 

X1 = initial_states(1); 

X2 = initial_states(2); 

X3 = initial_states(3); 

X4 = initial_states(4); 

 

% angle_des = 20; 

impulse_magnitude = 1.9; 

PGain = -100*pi/180; 

DGain = PGain/10; 

ACTIVATE_AT_LEG_CROSS = 0; 

 

% angle_ratio_vec = [-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1]; 

% gain_schedule = 1.0.*[3.217524076 2.854678338 3.476241818

 3.823100867 3.871491193 4.046413024 4.290005978

 4.634429007 4.844104976 5.049151904]; 
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% ratio_schedule = [1.486095457 1.045793855 1.085561499

 0.993975082 0.903970409 0.804858655 0.695194153

 0.460624279 0.228208339 0.752267483]; 

 

root_gain_schedule = gain_schedule; 

root_ratio_schedule = ratio_schedule; 

 

terrain_height_vec = [0]; 

 

states_in = [X1; X2; X3; X4]; 

action = [angle_des, impulse_magnitude, PGain, DGain, 

ACTIVATE_AT_LEG_CROSS]; 

 

% clock 

q = 0; 

 

impulse_magnitude_vec = 

linspace(heuristic_parameters(1),heuristic_parameters(2),NUM_POINTS); 

gain_scale = 

linspace(heuristic_parameters(3),heuristic_parameters(4),NUM_POINTS); 

ratio_scale = 

linspace(heuristic_parameters(5),heuristic_parameters(6),NUM_POINTS); 

 

% heuristic_parameters 

% pause 

 

for impulse_magnitude = impulse_magnitude_vec 

    action = [angle_des, impulse_magnitude, PGain, DGain, 

ACTIVATE_AT_LEG_CROSS]; 

     

     

    q = q + 1; 

     

    gain_schedule = root_gain_schedule * gain_scale(q); 

    ratio_schedule = root_ratio_schedule * ratio_scale(q); 

     

     

    assignin('base','angle_ratio_vec',angle_ratio_vec); 

    assignin('base','gain_schedule',gain_schedule); 

    assignin('base','ratio_schedule',ratio_schedule); 

     

    [states_out, is_fallen, distance_traversed, time_elapsed, 

energy_consumed, y_converged, min_stance_angvel] = 

StepToStepGOA(states_in, action, terrain_height_vec, threshold_values); 

     

    sct = energy_consumed/((distance_traversed)*3*9.81); 

    step_speed = (distance_traversed)/time_elapsed; 

     

    fallen_vec(q) = is_fallen(1); 

    y_converged_vec(q) = y_converged; 

    min_stance_angvel_vec(q) = min_stance_angvel; 

    sct_vec(q) = sct; 
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    step_speed_vec(q) = step_speed; 

     

     

    %     is_fallen 

    %     sct 

    %     step_speed 

     

     

end 

 

fallen_vec = fallen_vec.*fallen_vec; 

 

x_fitted = linspace(0.3, 1.3, 1000); 

y_fitted = 0.9247*x_fitted.^2 - 0.1634*x_fitted + 0.2335; 

 

 

% 

save(savefile,'angle_ratio_vec','gain_schedule','ratio_schedule','impu

lse_magnitude_vec','gain_scale','ratio_scale','fallen_vec','sct_vec','

step_speed_vec','y_converged_vec','min_stance_angvel_vec','X1','X2','X

3','X4','angle_des','-ascii'); 

hold on 

plot(step_speed_vec, sct_vec.*(fallen_vec), 'rx', step_speed_vec, 

sct_vec.*(1-fallen_vec), 'b.', x_fitted, y_fitted, 'k--') 

axis([0 1.4 0 1.8]) 

grid on 

 

 

VEC = [0, 1-fallen_vec, 0]; 

heur_breadth = max(diff(find(1-VEC)))-1; 

heur_index = find(find(max(diff(find(1-VEC))) == diff(find(1-VEC)),1) 

== cumsum(1-VEC),1); 

 

min_crop_index = heur_index 

max_crop_index = heur_index+heur_breadth-1 

cropped_indices = min_crop_index:max_crop_index; 

 

if(min_crop_index == 0 || max_crop_index == 0 || max_crop_index > 

length(step_speed_vec)) 

    speed_range = 0; 

    sct_mean = 10; 

    min_crop_index = 1; 

    max_crop_index = length(step_speed_vec); 

else 

    min_speed = step_speed_vec(min_crop_index); 

    max_speed = step_speed_vec(max_crop_index); 

     

     

    speed_range = abs(max_speed-min_speed); 

    sct_mean = mean(sct_vec(cropped_indices)); 

end 
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cost = sct_mean - 2*speed_range; 

% find(1-fallen_vec) 

 

new_heuristic_parameters = [impulse_magnitude_vec(min_crop_index), 

impulse_magnitude_vec(max_crop_index), gain_scale(min_crop_index), 

gain_scale(max_crop_index), ratio_scale(min_crop_index), 

ratio_scale(max_crop_index)]; 
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GradientDescentHeuristic.m 

 
 

clear 

clc 

 

NUM_POINTS = 10; 

NUM_GEN = 50; 

 

% X1 = 0.05; 

% X2 = 0.55; 

% X3 = -30; 

% X4 = 0; 

 

X1 = 0.00; 

X2 = 0.45; 

X3 = -60; 

X4 = 0; 

 

drift_magnitude_vec = [0.1, 0.1, 0.1, 0.1, 0.05 0.05]; 

 

angle_des = 25; 

 

current_time = clock; 

str_store = [num2str(current_time(1)) '_' num2str(current_time(2)) '_' 

num2str(current_time(3)) '_' num2str(current_time(4)) '_' 

num2str(current_time(5)) '_' num2str(floor(current_time(6)))]; 

savefile = ['AutoTunerData_' str_store '.txt']; 

 

initial_states = [X1; X2; X3; X4]; 

 

% heuristic_parameters = [2.6, 4.8, 0.4, 1.5, 0.6667, 1.0]; 

% heuristic_parameters = [3.25, 4.8, 0.4, 1.5, 0.6667, 1.0]; 

 

heuristic_parameters = [2.9284    5.6000    0.6506    2.3000    0.6560    

1.4000]; 

 

root_angle_ratio_vec = [-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1]; 

root_gain_schedule = 1.0.*[3.217524076 2.854678338 3.476241818

 3.823100867 3.871491193 4.046413024 4.290005978

 4.634429007 4.844104976 5.049151904]; 

root_ratio_schedule = [1.486095457 1.045793855 1.085561499

 0.993975082 0.903970409 0.804858655 0.695194153

 0.460624279 0.228208339 0.752267483]; 

 

current_heuristic_parameters = heuristic_parameters; 

 

weighting = 0; 

 

figure(2) 

[cost, new_heuristic_parameters, step_speed_vec, sct_vec, fallen_vec] 

= GetHeuristicFitness(heuristic_parameters, NUM_POINTS, initial_states, 
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angle_des, weighting, root_angle_ratio_vec, root_gain_schedule, 

root_ratio_schedule) 

 

cost 

% pause 

figure(1) 

 

cost_gen(1) = cost; 

nhp_gen(1,:) = new_heuristic_parameters; 

ssm_gen(1,:) = step_speed_vec; 

sct_gen(1,:) = sct_vec; 

fallen_gen(1,:) = fallen_vec; 

 

for gen = 2:NUM_GEN 

    cost_vec = zeros(2^6,1); 

    nhp_matrix = zeros(2^6,6); 

    step_speed_matrix = zeros(2^6,NUM_POINTS); 

    sct_matrix = zeros(2^6,NUM_POINTS); 

    fallen_matrix = zeros(2^6,NUM_POINTS); 

     

    for s = 1:(2^6) 

        adjust_vec = (dec2binvec(s-1,6)*2-1).*drift_magnitude_vec; 

        heuristic_parameters = current_heuristic_parameters + 

adjust_vec; 

        % 

        figure(1) 

        [cost, new_heuristic_parameters, step_speed_vec, sct_vec, 

fallen_vec] = GetHeuristicFitness(heuristic_parameters, NUM_POINTS, 

initial_states, angle_des, weighting, root_angle_ratio_vec, 

root_gain_schedule, root_ratio_schedule); 

        cost_vec(s) = cost; 

        nhp_matrix(s,:) = new_heuristic_parameters; 

        step_speed_matrix(s,:) = step_speed_vec; 

        sct_matrix(s,:) = sct_vec; 

        fallen_matrix(s,:) = fallen_vec; 

        pause(0.05) 

    end 

    clf 

     

    figure(2)     

    if(gen > 2) 

        plot(best_ssm, best_sct, 'b.') 

    end 

     

    minimum_cost = min(cost_vec); 

    min_index = find(minimum_cost == cost_vec,1); 

    best_hp = nhp_matrix(min_index,:); 

    best_ssm = step_speed_matrix(min_index,:); 

    best_sct = sct_matrix(min_index,:); 

    best_fallen = fallen_matrix(min_index,:); 

     

    cost_gen(gen) = minimum_cost; 
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    nhp_gen(gen,:) = best_hp; 

    ssm_gen(gen,:) = best_ssm; 

    sct_gen(gen,:) = best_sct; 

    fallen_gen(gen,:) = best_fallen; 

     

     

    plot(best_ssm, best_sct, 'g.') 

    axis([0 1.4 0 1.8]) 

    title('Tuned Heuristic Progression') 

    figure(1) 

     

    current_heuristic_parameters = best_hp; 

     

    

save(savefile,'cost_gen','nhp_gen','ssm_gen','sct_gen','fallen_gen','-

ascii'); 

     

end 
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ImpulseComputationEOM.m 

 
See page 136 

 
 

End of appendix. 


