
© 2012-2021 Kickdrum CONFIDENTIAL

https://www.teamsecrets.io

for Jira

© 2012-2021 Kickdrum CONFIDENTIAL

End-to-end encryption

Team Secrets uses encryption to protect
attachments and text fields from the moment you
start uploading until they're opened by the
recipient. Snooping on the transfer or the file will
result in something undecipherable.

Real recipient verification

Team Secrets ensures that anyone opening your
secret is authenticated using up to 3 forms of ID.
Passphrase and mobile phone verification means
only the people you choose can assemble the keys
necessary to decrypt.

Secure fields and files

Your team is already sharing sensitive files and
text fields in Jira so it’s time to get them secured.
Encrypt passwords, SSH keys, secret tokens, AWS
credentials - any text or file you need to keep
secret.

Practice safe sharing
Team Secrets protects the sensitive files you share in Jira
with end-to-end encryption and real recipient verification.

© 2012-2021 Kickdrum CONFIDENTIAL

Recipient Access Management

Keys Management

Team Secrets: Sender

3

Upload file(s)
to configured S3 bucket

Alice
(Sender)

Save in Jira issue
transaction ID and key

Buy/Install Addon
Atlassian Marketplace

Open a JIRA Issue
sender’s Jira instance

“Post a Team Secret”
Team Secrets panel in issue

Add Recipients
 Jira Groups

Attach File(s)
“Post a Team Secret” dialog

Generate keys
client-side

Encrypt all file keys
client-side w/ transaction key

Transaction key
client-side, 256 bit

Upload file key(s)
to teamsecrets.io

File key(s)
client-side, 256 bit

Encrypt file w/ file key
client-side

Fetch Group details (group ID and
group name)

Client-side UI

Generate Participant
hash (unique Hash value)

Server-side

Save Participant
hash

to teamsecrets.io

© 2012-2021 Kickdrum CONFIDENTIAL 4

Key Management

Generate Key:

● Files key(s):

○ Each file is encrypted with the dedicated file key.

○ The file key(s) gets encrypted with the transaction key.

○ The encrypted file key(s) are stored into the ‘teamsecrets.io’

database.

● Transaction key:

○ Every transaction has one transaction key.

○ The transaction key gets stored in Jira issue properties.

Sender side

© 2012-2021 Kickdrum CONFIDENTIAL 5

Recipient Access Management for Group-level

Recipients

● Fetch group details: Fetch group details (group ID and group name) from

the selected recipient group list.

● Generate participant hash: The group details cause the participant hash

to be generated. The participant hash is a unique hash value. After

generation, it is stored in an RDS made by teamsecrets.io.

Sender side

© 2012-2021 Kickdrum CONFIDENTIAL 6

Sender

For each Team Secret created, a random 256 bit key (“transaction key”) is generated client-side

For each file within a Team Secret, a random 256 bit key (“file key”) is generated client-side

Each file is encrypted client-side with a different file key using ‘xsalsa20-poly1305’

All files keys are encrypted client-side with the transaction key using ‘xsalsa20-poly1305’

Encrypted file keys are uploaded to teamsecrets.io via HTTPS, stored in Team Secrets AWS RDS

Encrypted files are uploaded to teamsecrets.io via HTTPS, stored in Team Secrets AWS S3 buckets

NEW Customers can optionally configure a custom S3 bucket to store and control encrypted files

If passphrase is required, the transaction key is encrypted client-side using AES-256 and passphrase

The transaction key is saved in a Jira issue entity property and never uploaded to teamsecrets.io

Encryption

© 2012-2021 Kickdrum CONFIDENTIAL

 Recipient Access Management

7

Open a Jira issue
with attached Team Secret

Bob
(Unknown
Recipient)

Choose a secret
Team Secrets Jira panel

Download file key(s)
from teamsecrets.io

Fetch Participant
Hash

From RDS teamsecret.io

Download file(s)
from teamsecrets.io

Decrypt file keys
using transaction key

Save File(s) Locally
decrypted

Authenticate viewer
at teamsecrets.io

Fetch Group Detail
(group ID and
group name)

Client Side

Generate Participant
Hash (Unique Hash

Value)
EC2 instances in business

zone

Decrypt file(s)
using file key(s)

Transaction Key
from Jira issue property

Validate Participant
Hash

EC2 instances in business
zone

Team Secrets: Recipient (Jira logged in User)

Fetch the list of
groups of the jira

logged in user

© 2012-2021 Kickdrum CONFIDENTIAL 8

Recipient Access Management

● Fetch Group details: Fetch Group details i.e group ID and group name

from the logged in Jira user.

● Generate Participant Hash: A participant hash is generated from the

group details. This is a unique hash value.

● Fetch Participant Hash : Fetch participant hash from teamsecret.io.

● Validate Participant Hash: Logged in user will be able to access the secret

when “Generated Participant Hash” and “Stored Participant Hash” are

the same.

Key Management:

● Transaction Key: Fetch Transaction Key from the Jira issue properties.

● Files key(s): Retrieve file key(s) from the database for the team secret.

● Decrypt all the file key(s) with the “Transaction key”.

● Finally all the file(s) are decrypted with with the file key(s) and file is

downloaded on recipient’s machine.

Recipient side

© 2012-2021 Kickdrum CONFIDENTIAL 9

Recipient

An authenticated Jira user that passes mobile phone and/or passphrase verification can download:

- The encrypted files from teamsecrets.io

- The encrypted file keys from teamsecrets.io

- The transaction key from the local Jira issue entity property

The file keys are decrypted client-side using the transaction key

Each file is decrypted client-side using a file key

The browser presents a standard file save dialog for each file so the recipient can save files locally

Decryption

© 2012-2021 Kickdrum CONFIDENTIAL 10

Secure Audit Log

● All the action performed by logged in user on secrets under UI components like create, delete and

access are recorded under the Secure Audit Log.

● Secure audit log is a service and all the audit based data is stored inside Teamsecrets.io’s RDS .

Create

Access

Delete

Click on secure
audit log tab

Secure
Audit
Log
Service

RDS
 teamsecret.io

Alice
(Logged in

user)

Action
(performed on

Secrets)

HTTPS

HTTPS

TCP
+

SG(Web server)

HTTPS

Client Side Team Secrets

© 2012-2021 Kickdrum CONFIDENTIAL 11

Facts

● We use the xsalsa20-poly1305 algorithm with 256 bit keys for each transfer and each

file within a transfer

● If a secure passphrase is used, we encrypt the secret key with AES-256 as well

● All encryption and decryption of the files protected with Team Secrets happens using

JavaScript on the client-side in the browser

● Since we never have the transaction key, we cannot decrypt your keys or files

● Someone accessing your Jira instance alone cannot decrypt the files

● Decryption requires transaction key in Jira, files AND keys from our servers

● If you lose the transaction key we can’t help you decrypt

● If you forgot the passphrase, we can’t help you decrypt

© 2012-2021 Kickdrum CONFIDENTIAL 12

Logical Trust Zone/boundaries:

We have divided the complete network under AWS infrastructure into three logical trust

zone/boundaries and we maintain different security level/policies for each:

Perimeter Zone

The perimeter zone is front facing and can be accessed through Jira with a web browser. It

hosts the user interface(UI) component of Team Secrets for each Jira instance.

Business Zone

The business zone is on the next level and it consists of all our core business logic. All our service logic

is inside this zone. When the logged-in user uses the Jira UI with the embedded team secret panel,

the business layer is called from the team secret panel.

Restricted zone

The restricted zone is secure and can only be accessed from the internal dedicated server in the

“Business Zone”. All the data and metadata resides in this zone.

Trust Zone

© 2012-2021 Kickdrum CONFIDENTIAL 13

Availability Zone #2

Security Group #1

 Private S3

RDS Multi-AZ
Slave DB

EC2 (Auto Scaling)

Elastic Load Balancer

Security Group #2

services.teamsecrets
.io

User’s browser

CloudFront

EC2 (Auto Scaling)

RDS Multi-AZ
Master DB

Availability Zone #1

app.teamsecrets.io

Jira instance

encrypted files

transaction details

encrypted file keys

encryption/
decryption

Browser

Perimeter zone

UI Component

Business zone Restricted zone

Https

Https Https
+

Auth Token

TCP
+

SG(Web server)

Team Secrets

Logical
Architecture

Version 2.1
Revised: April 9, 2020

Logical Zone/Trust
boundaries and
there level of
securities:

Perimeter Zone:
HTTPS, TLS, SSL,
IPv6

Business Zone:
HTTPS, Auth
Token, Security
zone policies

Restricted Zone:
 TCP, Special
Security Zone
Policy

Https

Team Secrets S3

© 2012-2021 Kickdrum CONFIDENTIAL 14

Threat Property Violated Threat Defence provide by Team Secrets

S Spoofing Identity Authentication HTTPS, SSL, TLS, Multi-factor Authentication (Jira Credential, Mobile verification and pass
phrase)

T Tempering with Data Integrity All data are inside the restricted zone/trust boundary and computed at run time.

R Repudiation Non-Repudiation Every action we record along with associated metadata, we maintain Audit logs.

I Information Disclosure Confidentiality We assure all the secrets are kept confidential, We use 256 bit key to encrypt all the secrets.

D Denial of Service Availability We use DDOS protection provided by AWS.

E Elevation of Privilege Authorization For every access of service, it requires a special AUTH TOKEN (teamSecrets.io generated). It
is refreshed after a certain time interval.
We maintain Role based access for the system administrator to access the resource with
multi-factor authentication.

Team Secrets: Threat Model analysis

We use STRIDE model to analysis/evaluation of level of trust

© 2012-2021 Kickdrum CONFIDENTIAL 15

Encryption algorithm: xsalsa20-poly1305
XSalsa20 is a stream cipher based upon Salsa20 but with a much longer nonce: 192 bits instead of 64 bits.

XSalsa20 uses a 256-bit key as well as the first 128 bits of the nonce in order to compute a subkey. This subkey, as well as

the remaining 64 bits of the nonce, are the parameters of the Salsa20 function used to actually generate the stream.

We achieve “Forward Secrecy” by using a different key for each transfer/file.

Libraries
https://github.com/dchest/tweetnacl-js

https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/crypto-js/CryptoJS%20v3.1.2.zip

© 2012-2021 Kickdrum CONFIDENTIAL

https://www.teamsecrets.io/support

Questions?

