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ABSTRACT
The current process for the design of an urban master plan
typically involves a team of architects and urban planners that
conceive a handful of schemes based on zoning requirements
with the help of CAD software. They may intend for the
plan to achieve a set of performance goals (economic, envi-
ronmental, etc.), but quantitative analysis is rarely conducted
early and consistently through the design process. This makes
it difficult to understand the full range of approaches that
are possible on a site, and the relative performance of each
scheme. In order to best accommodate rapid urbanization
while making cities more sustainable, livable, and equitable,
designers must utilize quantitative tools to make informed de-
cisions about their designs. Computational design techniques
have been successfully used at the building scale to test nu-
merous designs and quantify their performance, but are chal-
lenging to apply at the urban scale due to increased computa-
tional expense, difficulty in limiting inputs, and more stake-
holders involved in the process. This paper outlines a method-
ology developed in practice for applying computational de-
sign at the urban scale through four steps: 1) Simplified In-
put Definition 2) Procedural Geometry Generation, 3) Per-
formance Evaluation and 4) Analysis & Communication to
generate and test thousands of master planning scenarios.
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1 INTRODUCTION
Issues as diverse as population growth, transportation, and
climate change, all present significant challenges for 21st cen-
tury cities, and require an approach to urban development that
is data-driven, iterative, and most importantly, engages the
broadest possible audience of stakeholders. Unfortunately,
the design tools traditionally available to the architects and ur-
ban planners shaping such developments struggle to integrate
these needs. In design practice, decisions regarding key urban
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performance drivers, such as land use, density, and building
morphology [16], are often made by refining a small number
of schemes, developed through manual iteration, without sys-
tematically analyzing the full range of possible designs and
their performance implications.

This designer-led time intensive process, can hardly integrate
the perspectives of the multitude of involved stakeholders
with differing, and often misaligned objectives and exper-
tise. Expert consultants, developers, planning agencies, city
councils, community boards, and the general public all bring
valid perspectives that must be synthesized into a coherent
vision1.). The authors, through their practice, have worked
on 28 master plans over the past 10 years and have expe-
rienced these challenges first-hand: key performance met-
rics must be agreed upon before meaningful design work
can commence (a process significantly more complex at the
urban-scale, compared with developer-driven, architectural-
scale projects); the long timescale of master planning work
requires adapting to shifting political priorities2); and the fi-
nal product of the master planning process is not a finished
urban form, but rather a series of rules which must be flex-
ible enough to accommodate a range of future development
scenarios. Practicing architects and planners require compu-
tational tools capable of evaluating performance goals based
on the information available at each step of the development
of a master plan, and communicating the impacts on those
goals of any decisions regarding land use, density and form.

This paper introduces a flexible methodology for Computa-
tional Urban Design (CUrbD ) as a response to these limi-
tations in current practice, details its application within the
Rhino3d CAD environment for the design of a hypothetical
district scale development, and discusses three case studies
related to urban design and stakeholder engagement. The
1The planning process in New York City includes the Community
Board, Borough President, City Planning Commission, City Council
and Mayor, in addition to the designers, consultants and client [9]
2The authors worked on the master plan of Hudson Yards in New
York City: started in 1997, initial master plan released in 2001 [24],
and last revisions occurring in 2009 [8].



Figure 1. Partial design space of generated master plans, showing representative schemes for each cluster and scores associated with select clusters.

methodology, described in section 2, is structured in four
main steps: 1) Input and Design Space Definition, based
on generic data formats such as raster images and vector
networks, 2) Procedural Geometry Generation of building
and block types, 3) Performance Evaluation and 4) Analysis,
Communication and Stakeholder Engagement, through visual
interfaces and statistical models.

1.1 Related Work
In contrast to traditional approaches to design, where solu-
tions are refined through manual iteration and experience,
computational design methods take advantage of parametric
CAD tools to explore larger design spaces. They are rou-
tinely utilized in architecture and engineering, typically for
the optimization of discrete problems, such as building form
and faade geometry for structural and environmental perfor-
mance, and primarily to address the needs of a single stake-
holder, the client [4]. More recently, parametric and genera-
tive computational models have been proposed as a tool for
urban design and planning [12], [22], but their adoption in
practice is still very limited [6]. Documented case studies
mainly focus on modeling individual aspects of a design [19],
rarely tackle the full scale of a master plan [18], and lack the
geometric complexity required for their application in prac-
tice [3]. To address the problem of generating a sufficiently
complex model out of easy to communicate design inputs at
a sufficiently large scale, the method here presented proposes
to use simple generic raster inputs, rather than full architec-
tural models, to prescribe land use and density, a variation on
the Cellular Automata approach to urban form generation by
Batty etal [2]. A similar technique is proposed by Stouffs et
al, in the design of large project representative of the full mas-
ter plan scale often found in practice [23], and by Beirao et
al [Beirao 2011] as a tool for interacting with a design team.
However, the resulting modeling workflow does not offer a
way to incorporate the necessary stakeholder engagement.

In addition, most published computational methods are built
around urban form optimization, a technique not well suited
to accommodate the changing priorities of the many stake-

holders involved in the planning process. Nagy etal, present
one of the few examples where this approach is applied in
practice, presenting a generative design cased study for the
planning of a multi block cluster optimized for profitability
and solar energy generation [18]. While necessary for under-
standing technical requirement sin an urban project, this and
any similar optimization takes on computational urban design
suggest a zero-sum game benefiting a single party [14].

An alternative solution to the optimization of multi stake-
holder urban design projects is that proposed in the Urban
Simulation Big Data” (URB) method [5]. In it, Cajot etal
introduce a multivariate optimization algorithm attempting to
balance the goals of all decision makers for the purpose of en-
ergy planning, and approximating their likely decisions once
the design is complete. However, it still focuses on finding
a single best design solution, rather than providing a suffi-
ciently adaptive computational workflow that remains in use
throughout an unpredictable, time-intensive master planning
process [16]. The methodology introduced in the following
sections, takes a different approach, by applying statistical
analysis and interactive visualization tools to present stake-
holders with families of solutions with distinct pros and cons.
This approach, new in an urban application, has been pro-
posed by Mueller for the exploration of structural design so-
lutions as an alternative to pure optimization [15].

2 METHODOLOGY
This section provides an overview of the CUrbD methodol-
ogy, which can be executed by computational experts sepa-
rate from the design team, or a computation designer embed-
ded on the design team, with engagement from stakeholders
at each step of the process.

1. Define Inputs & Design Space

2. Procedural Geometry Generation

3. Performance Evaluation

4. Analysis, Communication & Engagement



Figure 2. Comparison of traditional master planning process (top) with CUrbD methodology (bottom).

2.1 Inputs & Design Space
In the first step a set of input form related variables are defined
to drive variation in a ”design space” of thousands of master
plan iterations3. Initial inputs are grouped in 2 streams that
provide all necessary data for design variation while main-
taining computational efficiency; one conveying use and den-
sity, and another varying street grid, block size, shape and
orientation. If instead each building was defined individually
by more complex inputs, the design space would quickly get
too large to solve reaching millions of options for just one
hundred structures4. A more complex variation of individual
building sis tackled in the procedural modeling step.

The first input, the pixel map (Figure 3) represents a grid ap-
plied to the urban site, in which each point stores attributes
for use (e.g. ”residential”) and density (e.g. Floor Area Ratio
(FAR) of 4). This map can be generated both computationally
or by hand, sketching the combinations of density and uses
to be tested, adding flexibility to explore different patterns
through the site with minimal drawing work in an accessible
format for non-designer stakeholders to contribute in. The
second input, the street network (Figure 3) can also be gener-
ated analytically or manually, becoming a useful tool during
stakeholder meetings where street hierarchy and block sizes
can be discussed, and directly loaded into the CUrbD model.
As opposed to the latter procedural generation step, the spec-
ification of both maps requires input from the designers.

Once both are defined, pixel values are aggregated by block
polygon accodring to the streets. Pixel attributes are then as-
signed to the block with the closest centroid. Small enough
pixel dimensions need to be defined depending on the site to
guarantee that blocks can contain a mix of uses. Next, den-
sity and use values are added together to get the total each use
type within the block. Parks and open spaces are the only use
3A design space is the combination of all input variables.
4If a master plan has 100 buildings, each with 2 inputs (ex. height
and orientation) that would result in 2 to the 150 combinations.
treated differently, aggregated to blocks as a percent coverage
of their total area (Figure 3).

2.2 Procedural Geometry Generation
Procedural generation allows for geometry with the complex-
ity required in practice while maintaining a reasonably sized
design space, by defining buildings based on dependant re-
lationships rather than independent inputs. The procedural
generation approach outlined in this section is representative
of a large family of methods that have been applied in urban
modeling in the past [13] [11], but offers a level of complexity
appropriate for this application.

In the proposed approach, after the aggregation of the pixel
map within the street network, the blocks are split into
parcels, by applying a readily available algorithm as part of
the Decoding Spaces tool kit [1]. The size and shape of the
parcels are generated procedurally based on the density and
uses of the block or proximity to other elements of the plan,
such as transit or landscape features. For example, low den-
sity residential may result in small parcels, while high density
residential may result in large parcels. Once the parcels are
generated, each one is allocated a portion of the density pro-
portional to it’s lot area. They are then populated with build-
ing types procedurally generated based on the shape of the
parcel, density, and use(Figure 3).

Building typologies for different densities are defined or
sketched out in advance with stakeholders to include desired
formal characteristics appropriate the project. in the experi-
ence of the authors, it is especially important to develop a li-
brary of generic low, mid and high density building types that
can be modified for each project to avoid generating com-
pletely new procedural types. Each iteration resulting from
this process is stored as a packaged file that includes pixel
map, street network, blocks, parcels, parks, and procedurally
generated 3D building geometry. Geometry generation is of-
ten much faster than performance evaluation, and separating
the two allows the next step to be processed in batches dis-
tributed across multiple instance of the modeling environment
of choice; in this case Rhino.



Figure 3. Inputs and procedural generation.

Figure 4. Scout parallel coordinate plots (left) and ”explorer” mode (right). URL: kpfui-scout.s3-website-us-east-1.amazonaws.com/SimAUD2019

2.3 Performance Evaluation
Once the design space has been generated and the geometry
exported, performance evaluation tools are applied on each
iteration to produce a set of analysis metrics. Any type of
evaluation (environmental, economic, mobility) can be used
based on location specific data (climate, transit, real estate
value, etc.) as long as the necessary geometry was generated
by the procedural generation model.

Although exploring the optimal analysis tool for each possi-
ble urban performance metric is not the purpose of this pa-
per, the authors have found in practice that it is best to select
them based on the following criteria: First, tools and metrics
should be chosen based on consultation with stakeholders and
their specific goals. Second, performance metrics that have
direct correlation (e.g. daylight access and views in build-
ings) should be avoided to reduce computation time while
maintaining performance trends. Finally, and the converse
to the previous point, metrics that and inversely correlated
should be favored for a better understanding of the design
(e.g. daylight access VS public space shading ratios). Work-
ing with performance tools and metrics at the urban scale pro-
duces a unique challenge due to the computation expense of
simulation where hundreds of buildings are evaluated. Since
CUrbD generates many options for comparison, often rela-
tive performance is more important than absolute accuracy as
the performance trends will remain the same in either sce-
nario. Computational expense can be addressed by reducing
the resolution of the simulation or through the use of proxies,
such as the one for urban daylighting established by Dogan,
et al. [10].

2.4 Analysis and Interpretation
Results produced by the evaluation tools are dense, multivari-
ate, and challenging to disentangle. However, there are sev-
eral analysis methods available that can derive actionable in-
sights and drive the design process forward, all while engag-
ing the myriad stakeholders and conflicting agendas typically
associated in large urban projects (clients, city governments,
designers, and the public).

Filtering & Visual Exploration. The most rudimentary ap-
proach to analysis is to export results into a spreadsheet and
sort the metrics for minima or maxima. This allows the user
to filter out low performing options, but is insufficient for
multivariate trends, and ineffective for graphic communica-
tion. Visual Interfaces, such as web-based data visualization
tools like Core Studio’s Thread [7] and Scout, which was de-
veloped by the authors, allows users to explore, sort, and filter
the design space of iterations based on their relative perfor-
mance. Scout features two interfaces that anticipate different
levels of user sophistication. The first has a side menu con-
taining sliders that allow the user to set the input values and
view each iteration one by one. Metrics are displayed be-
low the inputs so the user can understand the performance
of one option at a time, hiding the complexity of the design
space and making exploration more accessible. The second
interface introduces a parallel coordinates plot that provides
dynamic exploration, allowing users to set bounds for an in-
dividual metric, and then revealing the remaining iterations
and their scores across the other criteria (Figure 4).



These tools quickly surface strong trends in the results, and
engage a broad audience of non-experts in exploring the data.
At the same time, the emphasis on accessibility and intuitive
user experience does limit the sophistication of the analysis,
particularly regarding weak, or inconsistent trends that hold
for one subset of the data but dissipate elsewhere.

Correlation & High Performance Design Trends. Of the
many tools available within descriptive statistics, Correlation
Matrices produce a visual summary of the relationship be-
tween every parameter of the model, giving designers imme-
diate insights into the association of each input (form) to each
output (performance,) as well as each output to each output
(the association of inputs with inputs is predetermined by the
design of the model). Rather than using a Visual Interface
to filter through every value for a given input and tracking
the results for each output metric, the viewer can simply scan
across the relevant row in the matrix and see the numerical
correlations. This approach can be used to establish a frame-
work of performance-based design guidelines that can then
be graphically communicated to the team, but is worse suited
for engage non expert stakeholders (Figure 5).

Clustering & Establishing Design Schemes. Moving one
step beyond performance-based guidelines, Unsupervised
Learning (a subset of machine learning methods), allows the
data-set to speak for itself [25], auto-generating trends based
on myriad relationships in the results, both strong and weak.
The most common form of unsupervised learning is cluster-
ing, which groups iterations together into coherent sets of re-
lationships (i.e. a combination of particular inputs that lead to
a consistent sets of results). Designers can then use each clus-
ter as a starting point to direct the early stages of a project, or
a family of similar urban solutions which can be easily com-
municated to stakeholders.

The Scikit-Learn implementation of the k-Means algorithm
is both user-friendly and broadly applicable to computational
design, but it is also fairly generic, and several steps should
be taken to ensure meaningful results. First, breaking the data
into subsets will generate more specific trends. These sub-
sets can be based on whichever criteria is most relevant to
the project, and since density (FAR) is the central driver of
building typology in the CUrbD model (and a prime concern
for cities and developers alike), it is used here to separate
the data. Second, it is important to recognize that k-Means
clustering will include every iteration in one of the clusters,
so filtering out low-performing options will increase the clar-
ity of relevant trends. Given that overall performance should
be relative to all the evaluation metrics, this filtering can be
accomplished one of two ways: either a ”most-of-the-best”
approach that applies an exponential function to identify can-
didates with the highest possible scores across the greatest
number of metrics, or a ”least-of-the-worst” approach that
applies a logarithmic function to avoid candidates with low
scores on any single metric. Lastly, k-Means does not deter-
mine the optimal number of clusters automatically, but this
can be found by testing a range of options and solving for
the best balance of the Silhouette parameter, which indicates
the degree of separation between each cluster, and Distortion
parameter, which measures the distance between each obser-
vation and the centroid of the cluster.

3 DEMONSTRATION
In order to demonstrate the CUrbD methodology, we ap-
plied it to a hypothetical, rectangular site with the climate
profile of Toronto, Canada, and produced a design space of
1,152 iterations. For the procedural generation of these it-
erations we used Rhinoceros, a computer-aided drafting pro-
gram, and Grasshopper, which is a graphical scripting plugin
for Rhinoceros [21] [20]. We augmented Grasshopper with
python scripts to handle some of the more complex geom-
etry and file management. The parcelization algorithm was
supplied by the plugin Decoding Spaces [1].

Define Inputs & Design Space. In order to generate varia-
tion across the master plans, we varied 5 of the inputs (street
network, density, density distribution, park space %, and park
attractor), and applied a ”brute force” method of cross refer-
encing the variables in Grasshopper to ensure every possible
permutation of inputs was tested. This is a markedly different
approach than optimizing for top performing designs (i.e. us-
ing a genetic algorithm or similar method), and while it has a
significantly higher compute time, it creates the potential for
a far more engaging exploration of the results, particularly for
a general audience whose design preferences are not known
beforehand.

Some input values, like ”street network” and ”park attractor”
are simply an index that tells the script to import manually
drawn geometry. For instance, there were 6 options for the
street network. Choosing one of the indices from the range
0-5 would determine which of these street networks would
be imported. The same was done for the park attractor. The
park attractors were simply geometry that the parks would
cluster around. We used 3 park attractors: the first were
dozens of points distributed evenly across the site to simulate
a distributed park scheme, the second was a single point that
would generate a centralized park, the last was a line along
one edge of the side simulating a linear park. The rest of the
inputs represented specific values that were communicated to
the model. ”Density” was the total FAR for the site. This was
communicated to the pixel map by providing an even FAR
across the entire site. ”Density distribution” redistributed this
density so that it peaked in the center of the site. The value
for this input represented the ratio of the least dense pixel, to
the most dense pixel in the center of the site. The park space
% represented the percent of pixels that would be designated
as park space.

Procedural Geometry Generation. We then ran the proce-
dural generation algorithm on each design iteration to pro-
duce a design space. In order to demonstrate how buildings
could populate the site, we used a diversity of building types
that we distributed based on 3 density categories. High den-
sity blocks were populated with either a tower/podium type,
or a simple lot-line extrusion if the lot was too small. Medium
density parcels were given either a courtyard building, or
a simple extrusion if the lot was too small. Small parcels
all received a simple extrusion with a rear setback. While
these are the particular rules and building types we imple-
mented for this example, the metholdogy is exible and can



be implemented with any rule based building type and distri-
bution logic. Once the procedural geometry generation was
complete, we saved each iteration as CSV for the pixel map,
json for the street network, and a 3dm file for blocks, parks,
parcels, and buildings.

Figure 5. Correlation Matrix showing relationship between all inputs and
evaluation metrics.

Performance Evaluation. For this study, we produced a
score for each of the following: views, daylight, comfort, en-
ergy generation, and visual interest. For facade based eval-
uation tools, like views and daylight, we created a grid of
sensor points on each facade. ”Views” refers to the unob-
structed percentage of human field of vision, while ”Day-
light” measures the vertical sky angle for each facade point.
In the analysis of public space, ”Visual interest” evaluates the
variation of density between adjacent study points and ”Com-
fort” evaluates the Universal Thermal Climate Index (UTCI)
index. Last, ”Energy generation”, which measures solar PV
potential, generates an analysis grid only on building roofs.
We then export the scores from each metric, along with their
associated inputs, to a CSV of results that can be used for
analysis.

Analysis. To analyze the results of the study, we followed
the steps outlined above in the Methodology section. First
uploading results into a visual interface for initial exploration
and testing. Second producing a correlation matrix to under-
stand the fundamental relationships between design parame-
ters and performance metrics, and to either confirm macro as-
sumptions, or identify areas of interest within the data; Next
creating subfamilies of design options based on the density
values, and generating summary for each (both the most-of-
the-best exponential score, and the least-of-the-worst loga-
rithmic score) to filter out low-performing iterations. Finally,
k-Means clustering was implemented to group observations
together into the most relevant trends allowing for categoriza-
tion of high-performing and distinct design schemes. Each
one of these analysis tools was presented and discuss to the
design teams working with the authors.

The results for the 5.0 FAR clusters (Figure 1) show that
while there were seven distinct clusters, there were only three
main trends: Clusters 1, 4, and 5 all had a low Density Distri-
bution and the voronoi-based Grid 5, while clusters 0, 2, and
3 had a higher Density Distribution and the radial Gird 4. All
six of these clusters had the lowest possible amount of parks
(5%), and all six scored similarly across the evaluation met-
rics. This strongly suggested that the best performing low-
density iterations would privilege Daylighting, Unobstructed
Views, and Energy Generation, with above average scores for
Outdoor Comfort, and low scores for Visual Interest.

In terms of inputs, we could be confident that minimal parks,
and either 1.0 Density Distribution / Grid 5, or 2.0 Density
Distribution / Grid 4 would return the best results. Contrari-
wise, Cluster 6 provided an interesting alternative strategy to
privilege Visual Interest and Views at the cost of Energy Ef-
ficiency, but it should be noted that it contained only a sin-
gle observation out of the twenty represented across all seven
clusters. This made it a much less robust trend, and therefore
far less likely to preserve its performance as the final design
inevitably deviates from the simplifications of the iterative
model. Taken together, this data-driven analysis, combined
with the 3-D geometry and visualizations produced by the
model, provided clear design direction for any low-density
scheme on this site, while preserving optionality and setting
expectations for performance.

To fully explore the trends, the k-means clustering process
was repeated for each density (FAR 5.0, 6.3, 7.6, and 9.0) and
for each scoring approach (i.e. the Logarithmic and Exponen-
tial methods). While it is beyond the scope of this paper to
report on the full conclusions of this analysis, the results for
the Logarithmic scoring of FAR 9.0 are included for compar-
ison, and it is worth noting both the extreme variation in the
geometry of each cluster, as well as the more balanced results
(Figure 1.)

4 APPLICATION IN PRACTICE
This section illustrates the CUrbD methodology through its
application in three real projects, and outlines best practices
for successful implementation.

A new district in Hangzhou. We used CUrbD to create a
design tool for a 620 acre master plan in Hangzhou, China
to create a new mixed-use district. Here CUrbD was used to
address a discrete challenge in the planning process. Federal
regulations require a minimum duration of direct sun on the
winter solstice for residential units (two hours in Hangzhou).
Typically, this regulation results in a modernist tower-in-the-
park building type, making it difficult for the design team to
achieve their intent to create smaller blocks, continuous street
walls, and narrower streets. To address this challenge, we
defined inputs as a range of block size, street width, gross
floor area, and street wall height resulting in a design space
of 7,400 options (A pixel map was not used since it was a sin-
gle use project). From those inputs we applied a procedurally
generated courtyard-with-towers block type, which was then
evaluated for compliance with the direct sunlight regulations
for residential buildings in China. We uploaded the results
into Scout and provided the app as a tool for the design team.



Figure 6. Interactive interface for Sidewalk Toronto

They used the parallel coordinates chart to filter for the de-
sired inputs, such as street width and target GFA, and picked
from the complying options. It allowed them to find solutions
that achieved the kind of urban character that they desired,
while meeting the regulations, without defaulting to a typical
tower-in-the-park urban design scheme.

Stakeholder engagement for Sidewalk Toronto. Working
with Sidewalk Labs, we developed a CUrbD model to as-
sist with the master planning of the Sidewalk Toronto project
(URL: https://sidewalktoronto.ca/). As part of a public-facing
exhibition at their Toronto workspace we ran the model for an
abstract site with inputs that included a representative sam-
pling of options under consideration for the waterfront devel-
opment, as well as more experimental edges cases that fea-
tured lower and higher densities, abstract street grids, and am-
bitiously large green spaces. (The model was very similar to
the example in the demonstration section and with the same
performance evaluation criteria.) The results of this model
where used for a physical interface that allowed the pubic to
engage with the CUrbD process (Figure 6). Visitors explored
combinations of density, public space and street grids by tog-
gling wooden knobs to change design inputs. This allowed
users to create the type of neighborhood they wanted and to
then understand how those design decisions impact the func-
tioning of a complex system like a city, encouraging design
and introspection in equal measure. For example, one partic-
ipant started with the lowest population and the most green
space (she wanted a backyard of her own), but quickly real-
ized that this led to low scores for outdoor comfort and energy
efficiency (two things she valued). By making a few quick ad-
justments she found an option that performed well for those
two priorities. Looking ahead to future implementations, this
sort of user engagement could also be recorded, aggregating
participant feedback into implicit, qualitative metrics which
could, in turn be used to drive further generation of additional
design options. [17]

Technology Campus in Southern China. Lastly, we applied
CUrbD in the design of a 30 million sq ft master plan (mostly
RD and residential with some retail and event space) in a hot,

humid city in southern China (the actual location and client
are confidential). The application of the methodology hap-
pened in parallel with the design team. Ideally, the method-
ology is used prior to the design team starting on a project,
which is often not possible. This example will outline ap-
proaches for application in the often not ideal circumstances
that occur in practice.

To compliment the design as it developed in parallel to our
work, we focused the analysis of the CUrbD process on rec-
ommendations specific what was still flexible in the design
scheme, such as changing massing orientation and program
distribution in order to reduce solar radiation and decrease
average trip duration. To do this we established a combi-
nation of inputs that were computational derived and man-
ually drawn by the designers. Next, we developed procedural
versions of the building types being developed by the design
team. This allowed us to tailor design guidelines (using the
correlation approach in section 2.4) to the design issues that
could still changed within in the design. When they integrated
our guidelines into their scheme, they resulted in increasing
outdoor comfort by 33.7%, decreasing average trip duration
24.7%, and decrease solar radiation on buildings by 15.2 %
when compared to initial design.

As illustrated through application in practice, effective com-
munication of the results of a CUrbD can be difficult, but is
crucial for it to have meaningful impact in the master plan-
ning process.

5 DISCUSSION & NEXT STEPS

5.1 Challenges
A challenge of this methodology that requires further work
is the relationship between form and performance. At the
building scale, if you change height, orientation, or loca-
tion, the link to the resulting performance is clear. At the
urban scale, performance is being analyzed across a heteroge-
neous urban fabric. This means different parts of the master
plan can perform differently. When you distill the analysis
of the master plan to a single metric, most of this variation
is lost. For instance, in the same master plan there may be
one group of short buildings which score poorly for the view
score, whereas a group of tall, widely spaced buildings score
extremely well. An average of these view scores would not
reflect the variation of the site or the equity of the score. Fur-
ther development of analysis tools will focus on addressing
the spatial distribution of the performance evaluation.

Because the CUrbD process is composed of algorithms, it
would be a mistake to think that its unbiased. The range of
values supplied for inputs could exclude certain possibilities
that might be desirable to some stakeholders. One solution to
limit bias is to provide a much larger range of options in terms
of the inputs and logic upon which the model is built. Another
solution is to solicit specific inputs from all stakeholder since
this methodology allows for manually generated inputs. The
potential for bias also illustrates the need for design and judg-
ment in the CUrbD process and the active engagement in with
stakeholders so that, while not every option is explored, the
critical ones are represented.



6 CONCLUSION
While computational urban design shows much promise for
providing an iterative, quantitative approach to master plan-
ning, its place within the master planning process remains in
question. While we’ve shown how the CUrbD process can
generate useful insights in real projects, how these insights
influence what actually gets built is unknown. These insights
must be utilized within the complex, multi-stakeholder envi-
ronment of both the design process, and the implementation
of the master plan over the long term. As a result, computa-
tional urban design, at least initially, needs to work in coordi-
nation with the traditional master planning process. However,
with the increasing challenges of population grown, trans-
portation, and climate change, master planning must take ad-
vantage of iterative and quantitative approaches to urban de-
sign. A process such as CUrbD provides an opportunity to
navigate the myriad of seemingly contradictory constraints
and stakeholder interests of a master planning project.
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