Japan’s Electricity Mix, 2017

- **Oil**: 34%
- **Coal**: 40%
- **Gas**: 6%
- **Nuclear**: 8%
- **Hydro**: 3%
- **Solar**: 1%
- **Wind**: 1%
- **Biomass, Geothermal & Other**: 3%

Source: Data from BP Statistical Review of World Energy, referring to 2017 electricity generation percentage
Japan’s Electricity Mix, 2017

- Fossil: 79%
- Nuclear: 3%
- Solar: 6%
- Wind: 8%
- Hydro: 1%
- Biomass, Geothermal & Other: 1%

Source: Data from BP Statistical Review of World Energy, referring 2017 electricity generation percentage
Japan’s Electricity, 1985-2017

Japan’s Electricity, 2000-2017

Source: Data from BP Statistical Review of World Energy, referring to 1985 - 2017 electricity generation
Japan’s CO2 Emissions, 1985-2017

Source: Data from BP Statistical Review of World Energy, emissions only include consumption of oil, gas and coal for combustion related activities
Japan’s Share of Clean Electricity, 2000-2017

Source: Data from BP Statistical Review of World Energy, referring to 2000 - 2017 electricity generation percentage
Wind uses 925 times more land than Nuclear

Source: Comparison between a facility like Takahama and assumed production from Aoyama Plateau Wind farm. Takahama 3220 MW net capacity would produce 24 TWh per year on an approximate land area of .78 square kilometers, for a density of 31 TWh per square kilometer. Aoyama has a power density of .033 TWh per square kilometer.
Solar uses 386 times more land than Nuclear

Source: Comparison between a facility like Takahama and assumed production from Setouchi Kirei Mega Solar Power Plant. Takahama 3220 MW net capacity would produce 24 TWh per year on an approximate land area of .78 square kilometers, for a density of 31 TWh per square kilometer. Setouchi has a power density of .08TWh per square kilometer.
Assuming that they build 9 more plants with each having 4 ABWRs with an 80% capacity, increasing the electricity total to 1200 TWh.
Japan’s electricity with French levels of nuclear

Assuming that they build 17 new plants with each having 4 ABWRs with an 80% capacity, increasing the electricity total to 1200 TWh.