Abstract
Chronic stress in mice induces a variety of anxiety- and depressive-like phenotypes at the neuronal, circuit, and behavioral levels. More specifically, social and hedonic-like states are dramatically impaired across many psychiatric disorders, though the underlying mechanisms sufficient to precipitate or alleviate such impairments remain largely unknown.

Here, we utilize an activity-dependent and inducible tagging strategy to modulate dorsal dentate gyrus (dDG) cells of the hippocampus (HPC) cells processing positive, neutral, or negative memories prior to chronic immobilization stress exposure. We hypothesized that chronic negative memory stimulation would impair social behavior and decrease hedonic-like activity, while positive memory stimulation would promote social behavior and increase hedonic-like activity.

We find that chronically stimulating dDG cells processing a valence-specific experience is sufficient to affect social but not anxiety-like behaviors. Furthermore, chronic reactivation of positive and negative memories modulates the behavioral response to chronic stress. We also find that chronic memory stimulation followed by chronic immobilization stress differentially affects body weight.

Our current experiments examine whether reactivating discrete positive and negative memories to modulate chronic memory modulation with discrete maladaptive behavioral states and provide insight into the specificity of the behavioral effects induced by HPC ensemble reactivation.

Methods
Activity-dependent Tagging of Hippocampal Cells
- When taken off doxycycline (dox) diet, tetracycline transactivator (tTa) binds to tetracycline response element (TRE), leading to expression of ChR2 only in active (cFos+) cells
- Dox system allows opening/closing of labeling window
- Cells active during a particular memory (ChR2+) can be manipulated at later time point

Behavioral Analysis Following Chronic Reactivation of Tagged Cells

Chronic Reactivation of Tagged dDG Cells Modulates Behavior and Bodyweight

Social and Hedonic Behavior

- Resident Intruder Test
 - No Stress
 - Stress
- Social Interaction Test
 - No Stress
 - Stress

Female Exposure Test
- No Stress
- Stress

Tail Suspension Test
- No Stress
- Stress

Bodyweight Change

- On Dox
 - Timepoint 1 vs. Timepoint 2
 - Timepoint 2 vs. Timepoint 3
 - Total Change

Neurogenesis

- On Dox
 - Timepoint 1 vs. Timepoint 2
 - Timepoint 2 vs. Timepoint 3
 - Total Change

Conclusions
• Chronic optogenetic stimulation of dDG cells encoding a negative or positive experience is sufficient to affect social and hedonic behavior and percent change in body weight in an experience-dependent manner.
• Animals exposed to chronic stress following chronic memory stimulation show valence-specific differences in social and hedonic behaviors, as well as percent change in body weight

Acknowledgements
Funding sources: T32 DP3 179912, Brain and Behavior Research Foundation, National Institute of Mental Health. Authors and contacts listed in the poster. Support from the National Science Foundation.

Contact
@eadouce, eadouce@bu.edu