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Executive Summary 
 
The Nushagak River supports commercially, socially, and ecologically important runs of sockeye 
salmon that spawn and rear throughout this vast watershed. Adult fish are captured by commercial and 
subsistence fisheries in the lower river and estuary on their way to spawning grounds throughout the 
river basin. Because of the complexity and remoteness of this river system, the contributions of fish from 
different habitats to the fisheries remain poorly understood. Further, whether sockeye salmon production 
patterns across the watershed are relatively constant through time is also not understood. In this project 
we refined a spatial model characterizing strontium isotope ratios throughout the Nushagak River to 
provide a baseline to be used to assign fish caught in the lower river and estuary to their natal habitats. 
Because ear stones (otoliths) in salmon accumulate sequentially as a fish grows (similar to the rings of 
a tree) and reliably archive the strontium isotopes found in the water fish are living in at any point in 
time, otoliths from adult salmon can be analyzed to determine the birth location of fish caught in 
fisheries. 
 
Strontium isotopes from otoliths of adult sockeye salmon, caught as they migrated past Portage Creek 
on the lower Nushagak River in 2014 and 2015 were used to assign individual fish to their natal 
geographic origins throughout the river basin. Sample sizes were 262 and 296 sockeye salmon in 2014 
and 2015, respectively. In 2014, most sockeye salmon were inferred to be returning to spawn in Nuyakuk 
Lake, the King Salmon River, and the upper and middle stems of the Nushagak River; contributions 
from the lower Nushagak and the Mulchatna Rivers were relatively small. In 2015, sockeye salmon were 
inferred to be returning to spawn throughout a much larger fraction of the Nushagak basin than in 2014. 
In particular, contributions from the Mulchatna River and the lower Nushagak River were substantially 
more important in 2015 compared to 2014. 
 
These results emphasize that sockeye salmon are produced by most of the lake and river habitat found 
in the Nushagak River basin. Importantly, however, not all habitat supports substantial production in 
any given year. Rather, Nushagak River sockeye salmon are produced by a spatial mosaic of habitats 
whose profitability shifts from year to year, presumably in response to interactions between local habitat 
conditions and overriding environmental forcing (e.g., temperature and precipitation patterns). These 
results emphasize the importance of habitat complexity for stabilizing production of sockeye salmon 
through time from this, and other, river ecosystems. Environmental impact assessments of potential 
development activities must take into account the fact that habitat conditions are continuously varying 
and that the importance of any component of habitat can be disproportionately important for sustaining 
fisheries in some years, even if their average contribution are small over the long-term. Thus, 
maintenance of the habitat complexity across the river basin should be made a conservation priority for 
the Nushagak River, if sustaining reliable commercial and subsistence fisheries are a long-term goal for 
management.  
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Project Description and Objectives: 
 
The Nushagak River is a vast watershed that supports commercially and socially important fisheries for 
sockeye salmon. However, it remains unclear which regions of the Nushagak watershed produce the 
majority of sockeye salmon, and whether the contributions of production from different tributaries varies 
through time. Recent research (Brennan et al. 2015b) shows that naturally occurring geochemical tracers 
in Nushagak River waters enable determination of the natal origins of Chinook and sockeye salmon. The 
most powerful tracer is the ratio of two isotopes of the trace element strontium (Sr), which is incorporated 
from river waters into juvenile salmon otoliths (ear-stones), which provide a chemical history of each 
fish’s entire life. A baseline dataset quantifying the strontium ratios of potential habitats for sockeye 
salmon was refined and used to identify which regions of the Nushagak produce the most fish. 
 
The objectives of this project were to 1) fill in data gaps describing the water chemistry in the Tikchik 
Lakes region of the Nushagak basin, 2) finalize a geospatial model of Sr isotope ratios across the 
Nushagak River able to determine the natal origins of this river’s sockeye salmon populations, and 3) 
apportion the sockeye salmon returning in 2014 and 2015 to the Nushagak River using this geospatial 
model in order to elucidate the production patterns of salmon across the basin and among years. 
 
Methods: 
 
During the summer of 2014 we collected samples of river and lake waters from throughout the Tikchik 
Lakes region to supplement the isotope baseline we had previously developed for other parts of the 
watershed (Brennan et al. 2015a). The strontium concentrations [Sr] (mg/L) and the strontium isotope 
ratios (87Sr/86Sr) of these waters were measured at the University of Utah, Department of Geology and 
Geophysics, Inductively Couple Plasma Mass Spectrometry (ICPMS) laboratory using both single-
collector (SC) and multi-collector (MC) instruments, respectively. Using these data, plus the existing 
dataset across the Nushagak River basin (Brennan et al. 2015a), we generated a dendritic strontium 
isoscape, which predicted the 87Sr/86Sr ratios of river waters throughout the river network (Brennan et 
al. 2016). This model used a new class of geostatistical models that were built specifically for river 
networks, Spatial Stream Network Models (Peterson & Ver Hoef 2010; Ver Hoef & Peterson 2010).  
 
To demonstrate that dendritic isoscapes can accurately and precisely determine the natal origins of 
salmon produced from throughout the Nushagak River, we blindly determined the natal origins of 
known-origin juvenile Chinook salmon with >95% accuracy (correct geographic assignments of fish) 
and <4% precision (in terms of the proportion of habitat representing the natal origin relative to total) 
(Brennan & Schindler 2017). This model was then applied to a mixed-stock fishery sample of adult 
Chinook salmon captured in the Nushagak Fishing District during the 2011 return of Chinook salmon 
to the Nushagak River. By determining the natal origins of these adult Chinook salmon harvested in 
Nushagak Bay on the basis of strontium isotopes in otoliths, we were able to map the heterogeneous 
production patterns of the 2011 return (Brennan & Schindler 2017).  
 
Once the above modeling framework was in place (Brennan et al. 2016; Brennan & Schindler 2017), 
we applied the same methodology to sockeye salmon collected by the Alaska Department of Fish & 
Game at the Portage Creek sonar site on the lower Nushagak River in years 2014 and 2015. Migrating 
adult sockeye salmon were collected from the sonar site to ensure that the sample was composed of those 
fish bound for habitats within the Nushagak River basin. A collection from the Nushagak Fishing District 
would have included fish bound for the Wood and Igushik rivers. Individuals were collected over the 
course of the run for each year (Figure 1). These collections were then grouped into time strata, which 
were used to weight the geographic assignments of fish sampled within each strata so as to account for 
any difference in timing among geographically disparate, and therefore isotopically distinct, regions. 
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Specifically, all fish within a time strata were assigned to their most likely natal origins and then 
multiplied by the number of fish that passed the sonar during that same time strata. Weighting by the 
escapement instead of the total run (i.e., escapement+harvest) potentially introduced a temporal bias in 
our estimates if there was a significant timing difference between when fish entered the Nushagak 
Fishing District versus when they passed the sonar site. However, estimates for harvests solely on 
Nushagak River sockeye salmon are currently not available (Tyler Dann, ADFG, personal 
communication). 
 
The sockeye salmon assignment model uses the dendritic isoscape model (Figure 2) to evaluate the most 
likely geographic locations given the isotope signature measured in an otolith and those signatures 
predicted throughout the river system. A useful feature of using a Bayesian assignment framework is 
that habitat suitability indicators determined by GIS can be used as Bayesian ‘priors’ to complement the 
geographic assignments using habitat data beyond the strontium isotopes (Brennan & Schindler 2017). 
Because different species of salmon exhibit preferences for geomorphic features of rivers systems, and 
because some portions of a river system may be upstream of barriers to migration – such priors can be 
highly informative. Here, we used a uniform habitat prior that essentially required those lakes or reaches 
of rivers situated upstream of a barrier to salmon migration to have probability of zero and all other 
reaches downstream of such barriers to migration to have equal a priori probabilities (i.e., probability 
of 1). One known barrier to migration in the Nushagak River is the falls in the Allen River, which 
connects Chikuminuk Lake to Lake Chauekuktuli. As such, all habitats above this falls were assumed 
to produce zero sockeye salmon. Because 0 freshwater-age (e.g. 0.3 or 0.4) sockeye salmon can make 
up a substantial portion of the sockeye salmon produced out of the Nushagak River, we did not use a 
prior that would distinguish lake versus river habitats, assuming that 0 freshwater age sockeye salmon 
usually exhibit a sea-type life history (typically characterized by riverine habitat use). 
 
Otoliths from adult sockeye salmon captured at Portage Creek sonar site were mounted on petrographic 
slides and ground down in the sagittal plane to the otolith core in order to reveal the entire growth history 
of each individual. After polishing, these sections were sonicated in ultrapure MilliQ water to clean the 
exposed otolith surface. Using laser ablation (LA) MC-ICPMS, the 87Sr/86Sr ratios were measured along 
the growth axis of each otolith using a 53um diameter beam and scanning at 2um/second.  The laser 
energy was 3.23J/cm2 while firing and was shot at 10Hz. The resulting data for each individual was an 
estimate of the 87Sr/86Sr ratios from the otolith core, through the entire freshwater residence period, and 
approximately 200um into the marine residence period. The natal region of the otolith was determined 
by correlating the 87Sr/86Sr ratios and 88Sr (V) intensities (a proxy for the amount of Sr) with the otolith 
growth structure in order to identify the point at which the otolith was first in equilibrium with the 
ambient water of its natal habitat. This equilibrium usually occurred between 250-300 um from the 
core’s primordia, a feature also visually discernable in the otolith growth structure. The egg from which 
a salmon hatches influences the core of its otolith, as such it is important to avoid this material when 
determining the natal region. The core material is inherited from an individual’s mother and is ultimately 
from the ocean. Once identified, the 87Sr/86Sr ratios within the natal region were then used to determine 
a fish’s natal origin using the above Bayesian assignment framework, which determines the most likely 
geographic locations within the river basin based on isotope information (i.e. the isotopes measured in 
the otolith and the isotopes predicted throughout the river network). 
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Results and Discussion:  
 
The Nushagak River’s Dendritic Strontium Isoscape 
 
The additional measurements we made throughout the Tikchik Lakes region greatly improved the 
strontium isotope baseline of the Nushagak River filling in key data gaps, especially those related to 
sockeye salmon habitat. These measurements increased the total range of 87Sr/86Sr ratios by 
approximately 50%, lending even more power to this methodology to precisely and accurately determine 
the natal origins of salmon in the Nushagak. The geospatial model that analyzed these data and predicts 
Sr isotopes throughout the Nushagak River is outlined in detail in Brennan et al. (2016) and is also 
depicted in Figure 2. This dendritic isoscape forms the foundation of the isotope-based assignment model 
we developed during and used throughout this project and represents marked improvements in prediction 
accuracy (RMSPE = 0.0005) (Brennan et al. 2016) compared to other methods for building isoscapes of 
rivers (RMSPE = 0.0013) (Bataille & Bowen 2012; Bataille et al. 2014). 
 
The Production Patterns of Nushagak River Sockeye Salmon in 2014 and 2015 
 
1) Basin wide and inter-annual production patterns: 
Production patterns of sockeye salmon were spatially distributed throughout the Nushagak basin in both 
2014 and 2015, though the spatial distribution was different in these two years (Figure 3 and 4). For fish 
returning in 2014, the production of sockeye salmon was highly concentrated in the Tikchik Lakes 
region, specifically Nuyakuk Lake (Figure 3). In 2015, however, the production was more evenly 
distributed throughout the basin, where habitats within the eastern parts of the basin (e.g., the Alaskan-
Aleutian Range [AAR] tributaries and lakes, such as the Mulchatna, Chilikadrotna, and Koktuli) 
contributed substantially to the 2015 return. In 2015 these habitats were nearly twice as productive than 
they were in 2014 (Figure 4). 
 
2) Production patterns among different freshwater age classes: 
The Nushagak River is unique among the major rivers draining into Bristol Bay because it is composed 
of both large lakes and extensive riverine habitats. This diversity in habitat has led to all three of the 
general freshwater life history strategies, or eco-types, of sockeye salmon being expressed in the 
Nushagak River: ‘lake-type’ (sockeye that spend 1 or more years rearing in a lake before outmigration), 
‘river-type’ (sockeye that spend 1 year rearing in riverine habitats), and ‘sea-type’ (sockeye that migrate 
to the sea as sub-yearlings). Here, we assume that adults with a freshwater age of 0 were of the ‘sea-
type’ life history, as these individuals migrated to sea as sub-yearlings; and those individuals with 
freshwater ages of 1 or 2 years were either ‘lake’ or ‘river-type’ sockeye, spending at least one full year 
in either a lake or riverine habitat. Sometimes river- and sea-type are grouped together given that both 
of these eco-types do not use lake habitats (Wood 2010), but we make the distinction here due to the 
substantial numbers of 0 freshwater age sockeye originating from the Nushagak basin. 
 
In both years of returns, there were distinct differences in the production patterns of 0 freshwater age 
sockeye salmon (sea-type) versus those that spent at least one full year in freshwater before migrating 
to the ocean (lake or river type (Figure 5). The freshwater age 0 fish show much higher production out 
of riverine habitats, namely those of the Mulchatna basin. This is especially apparent in 2015, where the 
highest producing reaches of 0 freshwater age sockeye were from the Mulchatna River. Much of the 
difference in production between 2014 and 2015 is likely due to the strong return of 0 freshwater age 
fish, which originated largely from the Mulchatna River basin. 
 
 
3) Patterns at the sub-basin geographic scale within the Nushagak: 
Evaluating production at the scale of the major sub-basins within the Nushagak indicates that the 
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estimates herein scale positively with the proportion of habitat represented within a sub-basin (Figure 6 
and Table 1). However, the isotope-based production estimates for sub-basins differ substantially from 
production estimates assuming that production of sockeye salmon is directly proportional to the amount 
of habitat available (Table 1). For example, the Nuyakuk Lake basin (excluding the Nuyakuk River) 
represents approximately 23% of the habitat available to sockeye salmon, but in both 2014 and 2015 its 
production was 49% and 35% of the basin wide total, respectively. This corresponds to a nearly 100% 
and 50% increase, respectively, in production compared to the amount of habitat available. Most of this 
difference is likely due to the relatively productive lake-associated life history of sockeye salmon. 
However, the substantial reduction in production from the Nuyakuk Lake basin in 2015 relative to 2014 
levels was largely driven by a strong return of 0.3 fish (Figure 7), which originated primarily from 
isotopic regions not associated with large lakes and instead had isotopic signatures more aligned to the 
Mulchatna River and AAR tributaries. Habitats within these regions are largely composed of rivers and 
streams with some small spring-fed ponds (e.g. Swan River within the Koktuli River) and smaller lakes 
(e.g., Turquoise Lake). An example of a large lake system that showed relatively weak production, 
relative to its size, was Lake Chauekuktuli (i.e., production values 64% and 92% lower than an 
expectation based on basin size [its proportion of the total amount of habitat]). Lake Chauekuktuli and 
its northern tributaries are isotopically unique in the Nushagak (Figure 1) yielding a high degree of power 
and precision in determining its sockeye populations. Nonetheless, in both 2014 and 2015 there were 
relatively few sockeye salmon returning to Lake Chauekuktuli.  
 
Conclusions: 
 
The results of this project demonstrate how production of sockeye salmon throughout the Nushagak 
River basin is heterogeneous at multiple spatial and temporal scales. Production patterns within and 
among the years evaluated here illustrate the interplay between habitat and life history diversity, and 
how these components of salmon biology influence the overall production of sockeye salmon at regional 
scales (Schindler et al. 2010; Schindler, Armstrong & Reed 2015). Life history eco-types of sockeye 
salmon are locally adapted to different habitats (e.g., lakes versus rivers). Because the Nushagak basin 
is composed of both large lakes and vast rivers and streams the risk of a low return of sockeye salmon 
for any given year is spread across not just the differing life history strategies expressed throughout the 
basin, but also across its diverse habitats at multiple geographic scales. These findings emphasize how 
conserving both habitat and life history diversity within the Nushagak River basin is probably necessary 
to ensure reliable returns of salmon from this watershed. In the Nushagak, although the Tikchik Lakes 
region produced many of the fish in both 2014 and 2015, the riverine habitats throughout places such as 
the Mulchatna River represent important producers of a unique life history strategy that in certain years 
(e.g. 2015) can be particularly productive. Because the biodiversity of salmon is structured hierarchically 
in both space and time, salmon productivity is buffered against environmental changes, which can play 
out at multiple scales. By using strontium isotopes in otoliths of sockeye salmon we were able to unravel 
how these features of salmon biology contribute to the inter-annual variation in sockeye salmon to the 
Nushagak basin. 
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Figure 1: Run timing in years 2014 and 2015 of i) harvest in the Nushagak Fishing District (black line), 
ii) escapement into the Nushagak River counted at the Portage Creek sonar site (red line), iii) samples 
used for the herein analysis (blue circles; size of circle scales with number of samples in strata) to 
determine natal origins and production patterns of sockeye salmon. Vertical black lines denote the time 
strata used to weight the geographic assignments by the number of sockeye salmon that passed the sonar 
for a given strata. 
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Figure 2: Strontium isoscape of the Nushagak River. Redrawn from Brennan et al. (2016). Habitats 
with the same color are characterized by the same strontium isotope ratios (87Sr/86Sr). Color groupings 
correspond to a range of 0.0006 in 87Sr/86Sr ratios. This represents the approximate limits of isotopic 
resolution when determining the natal origin of a fish based on isotopic information in its otolith. In the 
Nushagak, the natal origins of salmon can be assigned to habitats with distinct isotope ratios – those 
habitats with isotope ratios not different by more than ~0.0006 than that measured in an otolith (e.g., the 
distinct colors shown here). 
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Figure 3: The relative production patterns of sockeye salmon returning to the Nushagak River in 
2014.The production values have been scaled to range from 0 to 1 to ease visualization.  
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Figure 4: The relative production patterns of sockeye salmon returning to the Nushagak River in 
2015.The production values have been scaled to range from 0 to 1 to ease visualization.  
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Figure 5: Production patterns of sockeye salmon that migrated to the ocean as sub-yearlings (e.g., 0.3 
or 0.4 sockeye salmon) versus sockeye salmon that spent at least one year in freshwater before migrating 
to the ocean (e.g., 1.3 or 2.3 sockeye salmon). In 2014 and 2015, the production patterns of zero 
freshwater age fish (sea-type sockeye) were more diffuse throughout the basin than were patterns of 
sockeye salmon with freshwater ages of 1 or 2 (river- and lake-type sockeye), highlighting the 
importance of habitat and life history complexity in the Nushagak basin. 
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Figure 6: How production of sockeye salmon scales with the amount of available habitat. In 2014, 
production patterns were not particularly correlated with the amount of habitat; in 2015, the correlation 
was much stronger. The right panel zooms-in on the production patterns of sub basins that represent 
<15% of the total habitat. 
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Figure 7: Age composition of the samples taken from the Portage Creek sonar site (2014 n=262; 2015 
n=296 sockeye salmon). 
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Table 1: Major tributaries throughout the Nushagak River basin and the proportion of sockeye salmon that 
returned in 2014 and 2015 that were produced from each of these habitats. The proportion of the Nushagak 
sockeye salmon habitat represented by each of these tributaries is shown for comparison. Also shown in the 
two colored columns is the degree to which each habitat under- or over-produced sockeye salmon based on 
the amount of habitat in each tributary. The last two columns show best model estimates of the total number 
of sockeye salmon produced from each tributary (in thousands of fish). 

 
** The estimates for the total number of sockeye salmon in 2014 and 2015 were provided by ADF&G’s 
Fishery Management Reports No. 15-24 and 16-13, respectively.  
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Abstract A critical challenge for the Earth sciences is to trace the transport and flux of matter within and
among aquatic, terrestrial, and atmospheric systems. Robust descriptions of isotopic patterns across space
and time, called “isoscapes,” form the basis of a rapidly growing and wide-ranging body of research aimed at
quantifying connectivity within and among Earth’s systems. However, isoscapes of rivers have been limited
by conventional Euclidean approaches in geostatistics and the lack of a quantitative framework to apportion
the influence of processes driven by landscape features versus in-stream phenomena. Here we demonstrate
how dendritic network models substantially improve the accuracy of isoscapes of strontium isotopes and
partition the influence of hydrologic transport versus local geologic features on strontium isotope ratios in a
large Alaska river. This work illustrates the analytical power of dendritic network models for the field of
isotope biogeochemistry, particularly for provenance studies of modern and ancient animals.

1. Introduction

Isotopic tracers are used widely to quantify spatial and temporal patterns in the transport and flux of matter
across Earth’s surface [Bowen, 2010]. Such patterns provide the foundation of numerous interdisciplinary
applications aiming to discern connectivity within and among aquatic, terrestrial, and atmospheric systems
[Good et al., 2015], and the provenance, movement, and habitat use of organisms [Hobson et al., 2010]. The
underlying framework of these applications is in robust representations of environmental isotopic variation,
both with respect to sources and associated isotopic effects during transport (mixing and fractionation).
Those representations have been called isoscapes or isotopic landscapes [Bowen, 2010].

Most isoscapes have been constructed by integrating (i) process-orientedmodeling based on knownmechanisms
producing isotopic variation (e.g., fractionation and radioactive decay) and (ii) statistical modeling to compute the
relative effects of different covariates via regression analysis and taking advantage of spatial dependencies via
geostatistical interpolation. The latter is particularly important in the generation of spatially continuous estimates
of isotopic variation across landscapes. Although substantial advancements have beenmade in the development
of isoscapes, two current limitations face the field with respect to aquatic systems. First, geostatistical
interpolations used to predict isotope values at unsampled locations have been limited to Euclidean space
(the closest straight-line distance between two sites). Second, a quantitative framework is lacking that is able
to apportion the influence of in-stream processes (e.g., downstream transport) and processes driven by
connectivity to landscape features on observed isotopic patterns (e.g., aridity, vegetation cover, or geology).
Spatial dependency in Euclidean space is likely adequate for modeling isoscapes of atmospheric, terrestrial,
and oceanic systems, but isotopic patterns in rivers may be defined by a combination of Euclidean patterns
and those dependencies unique to the dendritic networks of rivers, such as downstream transport.

A new class of geostatistical models has been developed to account for the unique spatial relationships of
dendritic networks [Peterson and Ver Hoef, 2010; Ver Hoef and Peterson, 2010] and is able to apportion variance
among in-stream versus landscape driven processes [Ganio et al., 2005; McGuire et al., 2014]. Unlike classical
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geostatistics, spatial stream network models (SSNMs) use autocovariance structures to account for the spatial
dependences unique to rivers [Isaak et al., 2014], such as the branching networks of streams, abrupt changes
at confluences, direction of flow, and longitudinal connectivity of flowing water [Peterson et al., 2013]. The applica-
tion of these models to generate isoscapes of rivers has broad implications but has not yet been demonstrated.
Here we show how SSNMs can be applied to improve the accuracy of riverine isoscapes and to discern the
relative influence of in-stream processes versus landscape connectivity on isotopic patterns throughout rivers.

One tracer proven to be very useful in provenance and geochemical weathering research is strontium isotope
ratios (87Sr/86Sr). Variation in 87Sr/86Sr has been used in a wide variety of contexts including discerning the
relative influence of mantle-driven processes from continental weathering at millennia time scales on the
composition of sea water [Burke et al., 1982], reconstructing landscape use patterns of ancient hominids
[Copeland et al., 2011] and extinct megafauna [Hoppe et al., 1999], and apportioning complex fishery harvests
to distinct natal sources and life history strategies [Brennan et al., 2015b; Kennedy et al., 1997]. Current
87Sr/86Sr isoscapes [Bataille et al., 2014] perform well at large continental spatial scales and at reproducing
general patterns but poorly in geologically complex areas (e.g., metasedimentary regions). Their uncertainty
is also relatively high (≥0.0015) compared to the resolution relevant for many provenance applications
(e.g., 0.0004 in Brennan et al. [2015b]). Improving the accuracy of 87Sr/86Sr river isoscapes, thus, has broad
implications for provenance and geochemical weathering research.

To demonstrate the application of SSNMs for developing isoscapes and quantifying landscape versus in-stream
driven processes on isotopic patterns in rivers, we applied these models to 87Sr/86Sr ratios in water through-
out the Nushagak River in southwestern Alaska (Figure 1). 87Sr/86Sr ratios were temporally stable at subannual
and interannual time scales within this watershed [Brennan et al., 2015a], thus simplifying any interpretation
of spatial patterns. We expected SSNMs to improve accuracy of predictions and that landscape features

Figure 1. Geology of the Nushagak River. Black bold line indicates extent of most recent glaciation in the Nushagak basin.
Black-filled circles indicate observation sites; width of streamlines is proportional to product of [Sr] and accumulated flow.
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would play a dominant role in shaping isotopic patterns (i.e., geologic heterogeneity) but would be modified
by longitudinal transport as Sr is routed downstream through the network.

2. Materials and Methods

Estimating 87Sr/86Sr ratios in surface waters throughout the Nushagak River using SSNMs required (i) synthe-
sizing multiple geospatial data products (Text S1 in the supporting information), including geologic maps, a
digital elevation model (DEM), a network topology free of geometric errors, and measured 87Sr/86Sr and
strontium concentrations (mg/L, referred to hereafter as [Sr]) values throughout the network, (ii) an SSNM
of [Sr] throughout the network, (iii) an SSNM of 87Sr/86Sr ratios which incorporated the results from themodel
of [Sr] in the form of a spatial weighting scheme, (iv) identifying the best performing models, and (v) using
this model to estimate 87Sr/86Sr ratios for each stream segment within the river network. All data analyses
were conducted in R (http://cran.r-project.org/) using the Spatial Stream Network (SSN) package [Ver Hoef
et al., 2014] and Spatial Tools for the Analysis of River Systems (STARS) toolbox in ArcGIS 10.2 [Peterson and
Ver Hoef, 2014].

2.1. Spatial Linear Mixed Models

We used SSNMs to analyze a published water data set [Brennan et al., 2015a], with additional data (total n=86
sites) describing 87Sr/86Sr ratios throughout the Nushagak River (Figure 1). Complete formulations of these
models are described elsewhere [Peterson and Ver Hoef, 2010; Ver Hoef and Peterson, 2010]. Briefly, SSNMs
use a moving average (MA) construction based on hydrologic distance, which is the shortest distance
between any two points measured along the stream network. The branching nature of river systems requires
the MA functions to split at stream junctions, and this is done by using spatial weighting schemes based on
watershed features, such as upstream area or volume of flow. By using a mixed-effects modeling framework,
SSNMs are able to account for the variance explained by a set of covariates as fixed effects (e.g., percent geol-
ogy type) and the variance explained by different autocovariance functions as random effects. In addition to
Euclidean autocorrelation, SSNMs can explicitly quantify the spatial dependence between flow-connected
and flow-unconnected sites via “tail-up” and “tail-down” autocovariance structures, respectively [Ver Hoef
and Peterson, 2010]. Tail-up models account for autocorrelation among flow-connected sites in an upstream
direction. Tail-down models account for autocorrelation among flow-connected and flow-unconnected sites
in a downstream direction. The general form of these spatial linear mixed models is

y ¼ Xβþ zTU þ zTD þ zE þ ε; (1)

where y is the vector of the response variable (87Sr/86Sr ratios or [Sr]), X is a matrix of covariates (e.g., percent
geology types), β is a vector of the parameters for each covariate, zTU, zTD, and zE are vectors of random
variables with tail-up, tail-down, and Euclidean correlation structures, respectively, and ε is a vector of
independent random errors.

2.2. Spatial Weights

SSNMs require spatial weights computed along the stream network to inform how the MA functions split at
stream junctions. SSNMs use “segment proportional influence” to compute the relative influence of each
stream segment on its downstream segment. A “segment” corresponds to the length of stream between
two junctions within a river network. For example, if q denotes some watershed quantity measured at all seg-
ments, such as upstream area, and i and j are segments flowing into segment k, then SSNMs compute
weights, ωi, as ωi= qi/(qi + qj), and ωj= qj/(qj + qi) where ωi+ωj= 1, such that ωi and ωj denote the propor-
tional influence of segments i and j on k based on upstream area. Commonly, SSNM spatial weights are based
on watershed area. Other weighting schemes include using estimates of stream flow. As a proxy for flow, we
used a gridded estimate of the decadal mean annual precipitation amount (mm) throughout the entire basin
(Text S1) and accumulated these estimates at each river segment using the STARS toolbox in ArcGIS [Peterson
and Ver Hoef, 2014]. In addition to the amount of water flowing past any location within the network, the
reactivity of different geologic materials (e.g., carbonate minerals versus silicates) influence how much Sr is
released into rivers. As such, we combined estimates of the precipitation and [Sr] in river water into one
spatial weight defined as the product of these two parameters (Figure 1). Thus, to estimate 87Sr/86Sr ratios
throughout the entire Nushagak River, we first used SSNMs to estimate [Sr] values throughout the network
using precipitation to compute weights. We then used these estimates to calculate the spatial weights for
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the 87Sr/86Sr model, defined as the product of [Sr] and precipitation from all upstream components of the
watershed at a given site.

2.3. Predictors

To make this approach transferrable among systems, we used a set of simple covariates as predictors of
87Sr/86Sr ratios derived from commonly available geospatial data products (Table S1). The geology of the
Nushagak basin was simplified into seven major groups based on lithology type and age (Figure 1 and
Text S1). The percent area was computed for each lithological group contributing to all downstream locations
throughout the catchment. Here these locations included “prediction sites” (the midpoint of each unique
stream segment) and “observation sites” (Figure 1). Using the mixed-effects framework of SSNMs we fit
equation (1) using observation sites. We compared multiple candidate models differing in fixed effects and
autocovariance functions using AIC (Akaike information criterion: a measure of model performance by
balancing trade-offs between overfitting and complexity). Multiple types of autocovariance functions for
each spatial relationship were tested (e.g., exponential, spherical, and linear sill) available in the SSN R
package [Ver Hoef et al., 2014]. After identifying the best model via AIC, we then estimated 87Sr/86Sr ratios
at each prediction-site throughout the network.

To develop an SSNM for [Sr] throughout the Nushagak River, we tested additional predictors also known to
influence geochemical weathering including relief and the watershed area recently glaciated (Table S1). We
estimated relief using multiple metrics including percent slope and “local relief,” which we define as the
difference between the maximum and minimum elevations within each reach contributing area—the local
basin area that contributes to each segment within the network. To evaluate the effect of recent glaciations,
we computed the percent area upstream of each segment that was glaciated during the Late Wisconsin
(Figure 1) [Manley and Kaufman, 2002].

2.4. Empirical Semivariograms

We used empirical semivariograms (ES), which describe spatial structure in [Sr] and 87Sr/86Sr ratios by calcu-
lating the semivariance (γ of observations as a function of distance (d), to analyze patterns in flow-connected,
flow-unconnected, and Euclidean spatial relationships. ESs of the former two are referred to as Torgegrams,
which illustrate the γ(d) of each network relationship separately [Peterson et al., 2013]. Semivariance was cal-
culated using the robust estimator of Cressie [1993] (as in Ganio et al. [2005]) and a lag class interval of 15 km;
calculations of γ were based on ≥30 pairs of sample points [Rossi et al., 1992]. Torgegrams were evaluated
visually based on the methods of McGuire et al. [2014] to identify broad scale, fine scale, or nested scales
of heterogeneity in [Sr] and 87Sr/86Sr ratios.

2.5. Water Analyses

The additional water samples reported here (n= 20 sites) were collected, filtered, and acidified as in Brennan
et al. [2014]. These samples came from the Tikchik Lakes region (Figure 1), a geologically complex area with
the oldest and most chemically reactive (marine limestone) lithologies in the basin (Table S2). Water samples
were analyzed for [Sr] and 87Sr/86Sr ratios using single and multicollector inductively coupled plasma mass
spectrometry (Text S1).

3. Results
87Sr/86Sr ratios from the 20 new sites ranged from 0.70477 to 0.71163 (Table S3), a 50% increase in the range
of observed 87Sr/86Sr ratios in the Nushagak River basin [Brennan et al., 2015a]. [Sr] ranged from 0.0220 to
0.1462mg/L; [Sr] in the field blank was below the limit of detection (<0.00003mg/L). Standard deviations
(2SD) of 87Sr/86Sr ratios and [Sr] of the field triplicate were ±0.00002 and ±0.0003mg/L (King Salmon
River), respectively, which is consistent with previous work in this watershed [Brennan et al., 2015a].

3.1. Multiscale Spatial Structure of 87Sr/86Sr and [Sr] Within the Nushagak
87Sr/86Sr ratios and [Sr] showed multiscale spatial structure with respect to flow-connected, flow-
unconnected, and Euclidean relationships (Figure 2). Torgegrams for both tracers showed evidence of
fine-scale structure at <50–85 km, as indicated by consistent inflection points in γ at these distances;
the fine-scale inflection points for flow-unconnected and Euclidean were more subtle for 87Sr/86Sr ratios.
Flow-unconnected and Euclidean semivariograms also exhibited consistently higher and more variable γ
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compared to flow-connected sites,
especially at distances >150 km.
Broad-scale spatial structure in [Sr]
and 87Sr/86Sr was more variable,
persisting to distances of 150 km
for Euclidean relationships and
>250 km for flow-connected and
flow-unconnected relationships. These
ranges also corresponded well with
patch sizes for the geologic groups
considered here (Table S1).

3.2. Model Results

The distribution of [Sr] exhibited posi-
tive skew, so data were log trans-
formed before fitting models. The
best model for predicting [Sr] through-
out the Nushagak River included all
geology types (Geo1–7), local relief,
and the extent of the most recent gla-
ciation as fixed effects (Figure 3a and
Table S4). As random effects, this
model included Epanechnikov tail-up
[Garreta et al., 2010] and Gaussian
Euclidean autocovariance functions.
Of all themodels tested, the nonspatial
model performed most poorly
(ΔAIC=70.9, the difference in AIC
between a candidate model and the
best model) and the model including
only Euclidean autocovariance was
also one of the lowest ranked

(ΔAIC=49.2). In the best model, the fixed effects explained 42.0% of variation (r2) in [Sr], while the tail-up and
Euclidean autocorrelation functions explained 38.7% and 17.5% of the variation, respectively (Table S5).

The best model for predicting 87Sr/86Sr ratios across the Nushagak River included three geology types (Table S6),
Geo3Kk, Geo6Mzm, and Geo7JPz_carb_seds (Figure 3b). As random effects, it included Epanechnikov tail-up and
exponential tail-down autocovariance functions. As with the [Sr] model, the nonspatial 87Sr/86Sr model per-
formed the worst (ΔAIC=51.6), and a model including only Euclidean autocovariance also performed poorly
(ΔAIC=48.9) (Table S6). In the best model, the fixed effects explained 70.5% of the variation in 87Sr/86Sr, while
the tail-up and tail-down autocorrelation models explained 22.9% and 4.4%, respectively (Table S7). Using
leave-one-out cross validation, the root-mean-square prediction error (RMSPE) of the best model was 0.00051,
and the r2 ofmodeled versus observed ratios was 0.90 (Figure S1). The standard error (SE) of all predictions across
the network ranged from 0.0002 to 0.0012 (Figure S2).

4. Discussion and Conclusions

By explicitly modeling the unique spatial structure of rivers, we generated an 87Sr/86Sr isocape that produced
excellent fit to observations distributed throughout the watershed (RMSPE=0.00051). We also identified multi-
scale spatial patterns of [Sr] and 87Sr/86Sr ratios in rivers via flow-connected, flow-unconnected, and Euclidean
relationships, indicating interactive effects of landscape and in-stream processes on these constituents.

4.1. In-Stream and Landscape Processes Shape [Sr] and 87Sr/86Sr Ratios in Rivers

Flow-connected, flow-unconnected, and Euclidean relationships of 87Sr/86Sr ratios and [Sr] all exhibited
nested spatial structure, where both broad-scale and fine-scale processes influenced these constituents

Figure 2. Semivariograms of (a) [Sr] and (b) 87Sr/86Sr ratios for the Nushagak
basin, indicating nested spatial structure for flow-unconnected, flow-
connected, and Euclidean relationships. Vertical dotted lines indicate fine- and
broad-scale ranges visually determined by inflection points. Solid lines were
smoothed to data using LOWESS (locally weighted scatterplot smoothing;
smoothing factor = 1/3).
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[McGuire et al., 2014]. Inspection of ESs provided insights into the degree of control by landscape and in-
stream processes on observed patterns (Figure 2). Flow-connected relationships may indicate in-stream driven
processes, i.e., longitudinal connectivity via downstream transport, whereas flow-unconnected and Euclidean
relationships may reflect the influence of landscape features, including geology. Here flow connections consis-
tently yielded lower variance as a function of distance compared to the other spatial relationships, illus-
trating the strong influence of longitudinal transport on 87Sr/86Sr and [Sr]. Strong coherence at fine spatial
scales in the flow-unconnected and Euclidean semivariograms (Figure 2), and their similarly nested
profiles, illustrates the influence of geologic heterogeneity across the landscape. The fine-scale structure,
in the Torgegrams (<50–85 km), likely reflects abrupt changes occurring at stream confluences and
geologic boundaries (faults). The large areas, or “patch sizes” (Table S1), of some geologic units likely drive
broad-scale patterns. Thus, isotopic homogeneity is characteristic within units, which can correspond to
broad ranges, whereas isotopic heterogeneity defines areas proximate to geologic boundaries at fine
scales and at broad scales between discrete lithological units with large patch sizes.

Figure 3. Predicted (a) [Sr] and (b) 87Sr/86Sr ratios across the Nushagak River. Colored circles indicate observations; colors
of both circles and streams use the same breaks (natural breaks in data set; intervals> SE of prediction).
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The best 87Sr/86Sr model indicated that landscape processes explained 75% (fixed effects + tail down) of the
variation, while 23% (tail up) was accounted for by longitudinal connectivity via hydrological transport.
Incorporating Euclidean autocovariance did not improve the model, suggesting that the covariates of
geology type accounted for Euclidean patterns. The tail-down autocovariance (explaining 4%) is likely due to
similarities in landscape features located upstream of confluences sharing similar geology (range< 150 km,
Figure S3). Longitudinal connectivity explained the majority of the variance not explained by fixed effects
(23%), reflecting the process of downstream routing of Sr through the river network and the mixing of isotopi-
cally different tributaries into higher-order reaches.

Landscape processes (fixed effects + Euclidean) explained less variation in the [Sr] model (60%) compared to
the 87Sr/86Sr model, while longitudinal connectivity explained the remainder (tail up = 39%). The fact that
fixed effects alone only explained 42%, while Euclidean patterns absorbed an additional 18%, suggests that
geology-type, relief, and recent glaciation history were not sufficient at explaining all the landscape processes
influencing spatial variation in [Sr]. Possible landscape features affecting [Sr] could be differences in the
temperature effect on chemical weathering across the basin or vegetation cover via documented effects
of interspecific differences on Sr cycling in boreal forests [Poszwa et al., 2004]. Nonetheless, the flexible mixed
modeling framework of the SSNMwas able to account for this variation by including Euclidean autocovariance.
Similar to the isotope model, longitudinal connectivity was an important process shaping [Sr], explaining 39%
of the variation.

4.2. SSNMs Improve Predictions of [Sr] and 87Sr/86Sr Ratios in Rivers

The RMSPE of the best 87Sr/86Sr model was almost an order of magnitude smaller than the process-oriented
approach of Bataille et al. [2014] (RMSPE = 0.0045; if excluding four outliers = 0.0015). Comparing the Bataille
et al. [2014] model to the SSNMs here requires caution, as the two models differ in spatial scale and also in
the nature of their target predictions (prediction of each grid cell as in Bataille et al. [2014] versus each river
segment within a network via SSNMs). However, metrics such as r2 and RMSPE of their cross-validation tests
provide some insight into the relative performance of these approaches, both of which show marked
improvements for the SSNMs (Figure S1 and Tables 3 and 4) [Bataille et al., 2014]. Although caution is
required when comparing cross-validation tests, from a modeling process standpoint, the SSNMs here
also point out the advantages of accounting for the dendritic spatial structure of rivers and of making
predictions at the level of stream segments versus grid cells when the goal is to analyze isotopic patterns
throughout rivers.

To date, the general approach for generating 87Sr/86Sr isoscapes has been to estimate isotopic values at the
“local” level (1 km grid cells) using a mixture of process-oriented and statistical methods and then to apply a
flow accumulation model to represent values along a river network [Bataille and Bowen, 2012; Bataille et al.,
2014]. To estimate local values, these efforts integrate bedrock geology and chemical weathering models.
87Sr/86Sr ratios of bedrock are estimated as a function of rock age, rock type, and also the recycling history
of siliclastic sediments during the tectonic evolution of geologic terranes [Bataille et al., 2014]. The only
statistical aspects of this formulation are the geostatistical interpolations used to compute the needed
parameters for the 87Sr/86Sr evolution equations of bedrock at all locations. The chemical weathering portion
of the Bataille et al. [2014] model is primarily statistical, using a multiple regression to predict [Sr] at all
locations as a function of lithology type and other parameters, such as slope and permafrost. To represent
the isotopic composition of river networks, a flow accumulation model is then applied to these local estimates
using a DEM and gridded estimates of precipitation via ArcGIS’s “Flow Accumulation” tool (Spatial Analyst
Toolbox) [Bataille et al., 2014].

Implicit in such approaches is that the model accurately predicts local isotope values and there is no
modification of isotope values during transport. Although the latter may be valid for conservative constitu-
ents such as [Sr] and 87Sr/86Sr, the former is likely not valid at all locations. In primarily igneous terranes,
predictions of 87Sr/86Sr perform well, due to accurate dating techniques and the known half-life of 87Rb.
However, sedimentary and metamorphic processes, which reconstitute and mix multiple source rock materi-
als, pose difficult challenges to process-oriented approaches, as is evident by significant reductions in perfor-
mance of sedimentary bedrock models [Bataille and Bowen, 2012; Bataille et al., 2014] and the significant
deviations of river water predictions in metamorphic regions [Bataille et al., 2014].
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The primarily statistical approach of SSNMs outlined here allows predictions of stream segments to be based
on known drivers of isotopic variation (bedrock heterogeneity and differential chemical weathering), but not
restricted by deterministic estimates at each local grid cell. Thus, in SSNMs the effects of covariates are
calibrated to regional and local conditions and what is not explained by covariates can be incorporated via
different spatial autocovariance functions. The importance of network and Euclidean spatial structure is
particularly evident in the ESs of both tracers after the fixed effects have been fit to the data (Figure S3), all
of which show spatial dependence. Furthermore, the utility of SSNMs is not limited to solely generating iso-
scapes. Rather, SSNMs also yield unique insights into the elusive interplay between in-stream and landscape
processes driving isotopic patterns in rivers.

The limitations of the SSNM approach include the need for a spatially representative data set and a topo-
logically correct network. The SE of predictions from SSNMs are sensitive to the sampling distribution
throughout a study region, where extrapolation yields larger errors than interpolation (Figure S2). Thus, it
is important to obtain observations in both headwater and downstream regions. Provenance and geo-
chemical weathering studies, however, require sampling surveys that span the topological and geological
variation expressed across watersheds. As the use of SSNMs grows, and improvements to hydrography data
sets and DEMs accumulate, topologically correct networks will be easier to obtain. Coupling SSNMs with
process-oriented approaches should lead to better predictions and insights into isotopic patterns at fine
to continental scales.

4.3. Implications for Other Isotope Systems

SSNMs have broad implications for the analysis and prediction of spatial patterns of other isotope systems in
rivers. For example, similar to the more process-oriented 87Sr/86Sr isoscapes, the best performing δ2H and
δ18O river isoscapes apply a flow accumulation model to gridded estimates of precipitation isotope values
[Bowen et al., 2011]. However, the same implicit assumptions apply because these model formulations
assume that local predictions are accurate and there is no isotopic modification during transport. For the
stable isotope systems of 2H/1H and 18O/16O, these assumptions are not likely met, particularly the latter at
all locations along a flow path. River isoscapes of δ2H and δ18O generated using flow accumulation models
perform quite well, but they also exhibit systematic biases in predictions. These biases may be due to
evaporative effects on the isotopic composition of waters during transport or to the relative influence of
transpiration across basins [Bowen et al., 2011]. SSNMs provide a viable framework to quantify these effects
separately. Furthermore, final isoscape surfaces produced via these formulations incorporate a “residual
correction” step, whereby a Euclidean geostatistical model is used to interpolate between observed residuals,
which are subtracted from the original model. Because SSNMs account for flow-connected and flow-
unconnected spatial dependencies of river networks, their predictions will likely be more accurate than
nonspatial models or those based solely on Euclidean distance (Tables S4 and S6). SSNMs may minimize
the need for circular residual corrections, or if needed, will make the interpolated residual surface more
accurate by accounting for network relationships.

4.4. Implications for Provenance Studies

The ability to generate accurate 87Sr/86Sr isoscapes has important implications for provenance research. The
uncertainty of current Sr isoscapes [Bataille et al. [2014]] represents an isotopic range potentially meaningful
to a variety of provenance investigations. For example, 87Sr/86Sr ratios were used to assign adult Chinook sal-
mon caught in a coastal fishery back to seven natal regions in the Nushagak River; the 2SD of each natal
region was ±0.0004 [Brennan et al., 2015b]. Further, nearly 50% of the Earth’s surface, and 70% of Alaska’s,
is composed of siliclastic sedimentary rocks [Hartmann and Moosdorf, 2012]. Because current process-
oriented models indicate reduced performance in these geologically complex regions, application of
SSNMs in these areas will refine applications of isoscapes to provenance research. For example, the eastern
interior of Alaska is defined by metasedimentary lithologies, where predicted river 87Sr/86Sr ratios exhibit
large deviations from observed [Bataille et al., 2014]. Interior Alaska supports several species of Pacific salmon
and was also ice free during the last glaciation, providing important refugia for ancient humans [Potter et al.,
2011] and extinct megafauna [Guthrie, 2006]. The radiogenic composition of the eastern interior defines a
strong east-west isotopic gradient within this corridor. Accurately characterizing such a gradient will provide
a viable framework to discern migrations of ancient and modern animal populations.
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Linking otolith microchemistry and dendritic isoscapes to map  
heterogeneous production of fish across river basins

Sean R. Brennan1 and Daniel E. Schindler

School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98105 USA

Abstract.   Production patterns of highly mobile species, such as anadromous fish, often 
exhibit high spatial and temporal heterogeneity across landscapes. Such variability is often 
asynchronous in time among habitats, which stabilizes production at aggregate scales of 
complexity. Reconstructing production patterns explicitly in space and time across multiple 
scales, however, remains difficult but is important for prioritizing habitat conservation. This is 
especially true for fishes inhabiting river basins due to long-range dispersal, high mortality at 
early life stages, complex population structure and elusive life history variation. We develop a 
new approach for mapping production patterns of Pacific salmon across a large river basin by 
integrating otolith microchemistry and dendritic isoscape models. The geographically contin-
uous Bayesian assignment framework presented here yielded high accuracies (>90%) and rela-
tively high precisions (precisions <4%; i.e., assignment areas of <530 river km of the 13 100 km 
total river length) when used to determine the natal source of known-origin juvenile Chinook 
salmon captured throughout the study region. Integrating these methods enabled us to base 
estimates of provenance and habitat use of individuals on a per location basis using strontium 
isotopic data throughout the continuous spatial domain of a river network. Such a framework 
provides substantial advantages over the more common nominal approach to employing 
otolith microchemistry to reconstruct movement patterns of fish. In doing so, we reconstructed 
the spatial production patterns of adult Chinook salmon returning to a large watershed in 
Bristol Bay, Alaska and illustrate the power of such an approach to conservation efforts.

Key words:   Chinook salmon; habitat mosaic; habitat portfolio; isoscape; migration; otolith microchemistry; 
provenance; strontium isotopes.

Introduction

Conservation and habitat management are often chal-
lenged by weak understanding of how animals inhabit and 
move across heterogeneous landscapes over the course of 
their life cycles (Levin 1992). Such efforts are hampered for 
multiple reasons, including non-linear interactions of 
population dynamics and the biophysical drivers shaping 
habitats and population responses. This is especially true 
for migratory organisms (Runge et al. 2014).

Natural tracers, such as genetic and chemical signatures 
(e.g., trace elements, specific organic compounds, or 
isotope ratios) recorded in biogenic tissues, provide a 
powerful way to reconstruct the habitat use of highly 
mobile organisms (Hobson and Norris 2008). Because 
these tags are present in all individuals of a population, 
they are particularly useful for organisms that exhibit high 
dispersal from natal sites, high mortality at early life 
stages, wide ranges in life-history strategies, and extensive 
mixing of distinct populations during migration, foraging, 
or periods of human exploitation (Webster et al. 2002).

Natural tags, however, also possess important limita-
tions requiring careful consideration. Fundamental to 

effectively employing natural tags is having a robust under-
standing of potential source populations and habitats in 
space and time with respect to the tracer of interest, and 
how the tracer may be modified during transport or bio-
genic incorporation (Elsdon et  al. 2008, Hobson et  al. 
2010). Homogeneity within and among environments or 
populations of interest with respect to any tracer limits its 
utility. Natural tags are most powerful when the tag is able 
to distinguish populations or habitats unequivocally.

In application, the most common method for gener-
ating robust spatial baselines of natural tags involves 
characterizing all known source populations or usable 
habitats on the basis of specific tags. If significantly dif-
ferent, these groups or locations can then be used as the 
entities into which assignments of individuals of unknown 
origin are made. Alternatively, they can be further com-
bined into larger groups on the basis of observed vari-
ation in the tag (those populations genetically or 
chemically similar) or the relevant scale for the question 
at hand. Such approaches are called the “nominal” 
method of assignment, which can be implemented in a 
number of ways; most often it is done using discriminant 
function analyses (DFA), classification trees, or their 
Bayesian alternatives (Wunder 2012). Although the 
nominal approach remains effective, it is limited by the 
need for users to define potential groups a priori, which 
can be arbitrary and overly rigid in many systems. This is 
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especially true with respect to chemical signatures, which 
tend to be continuously distributed throughout eco-
systems, such as the δ2H and δ18O signatures of precipi-
tation across continental, latitudinal, or elevation 
gradients, or the 87Sr/86Sr ratios of Sr dissolved in surface 
waters and routed through river networks.

Recent advances in isotope-based provenance research 
have paved the way for a probabilistic assignment method 
that can be used on a per location basis throughout con-
tinuous spatial domains (Wunder 2010). In so doing, this 
approach allows researchers to avoid the arbitrary step of 
grouping geographic locations a priori and to transpar-
ently incorporate all variance-generating processes on a 
spatially explicit basis, e.g., as opposed to aggregating 
multiple locations per group in order to train a DFA 
model (Walther et  al. 2008, Hegg et  al. 2013, 2015, 
Brennan et al. 2015b). This approach is referred to as the 
“continuous” method of assignment. The necessary ele-
ments to apply the continuous approach for isotope-
based provenance research include (1) a spatially and 
temporally robust characterization of isotopic variability 
across the geographic region of interest, called an 
“isoscape,” and (2) a calibration, or rescaling, function 
relating the isotopic composition of an individual’s envi-
ronment at a geographic location to the biogenic tissue 
being analyzed for its isotopic composition. The result is 
a spatially explicit and continuous map of expected 
isotope values of an organism’s tissue synthesized at a par-
ticular location. Then, by using Bayes’ Rule to invert con-
ditional probabilities, a probability density function can 
be computed throughout the entire spatial domain to 
estimate the most likely geographic origins given the iso-
topic information recorded in a tissue.

The continuous approach has been successfully applied 
to many taxa including migratory birds (Wunder and 
Norris 2008, Hobson et al. 2009b, Hobson 2011), insects 
(Hobson et al. 2012a, Flockhart et al. 2013, Vander Zanden 
et al. 2014), bats (Cryan et al. 2014), and recently sea turtles 
(Vander Zanden et al. 2015). However, it has not yet been 
demonstrated for migratory fishes that inhabit physically 
bounded, but complex, river basins. Here, we integrate 
three recent advances to resolve a commonly elusive and 
persistent problem in the ecology of migratory fish: 
explicitly constraining heterogeneous production 
throughout a vast array of potential habitat in space and 
time. These advances include (1) the use of strontium iso-
topes recorded in otoliths (Koch et al. 1992, Kennedy et al. 
1997) to delineate freshwater production patterns of ana-
dromous fish harvested during a coastal fishery (Brennan 
et al. 2015b), (2) generating river isoscapes using dendritic 
network models (Brennan et  al. 2016), and (3) applying 
Bayes’ Rule to map probability surfaces for natal origins of 
organisms based on isotopic information (Wunder 2010). 
By integrating these new approaches, we demonstrate how 
freshwater production patterns in a highly mobile fish are 
spatially heterogeneous and that they can be accurately 
mapped inter-annually at fine-spatial scales via a flexible, 
transparent, and powerful analytical framework.

We focus on Chinook salmon (Oncorhynchus 
tshawytscha) from the Nushagak River (Fig. 1) of western 
Alaska, which exhibit low genetic differentiation (Larson 
et al. 2014), but inhabit isotopically heterogeneous fresh-
water environments during their first year of life (Brennan 
et  al. 2015b). Salmon populations exhibit substantial 
asynchrony in their production patterns (Griffiths et al. 
2014), which acts to buffer their inter-annual variability 
in production at aggregated spatial scales. Heterogeneity 
in habitat, locally adapted populations (e.g., genetic pop-
ulation structure and life history variation), and differ-
ential responses of populations to environmental 
perturbations, all act to stabilize production patterns at 
the aggregate level (e.g., Bristol Bay-wide production vs. 
one of the nine major river basins flowing into the bay; 
Hilborn et al. 2003, Schindler et al. 2010). Because of the 
importance of asynchronous production of populations 
and habitats for stabilizing the regional production of 
salmon, developing ways to explicitly map such heteroge-
neity at multiple spatial and temporal scales simultane-
ously will provide unique insights into how and why 
production changes across space and through time. It will 
also help prioritize ongoing habitat conservation efforts 
throughout the region.

Methods

Dendritic isoscape model and data sources

We used a recently published dataset of otolith meas-
urements (Brennan et  al. 2015b) and a new dendritic 
87Sr/86Sr river isoscape (Fig.  1; Brennan et  al. 2016) to 
demonstrate a novel application of a Bayesian assignment 
framework (Wunder 2010) to map the freshwater pro-
duction of Chinook salmon throughout the Nushagak 
River. In this system, commercial fisheries intercept 
Chinook salmon where the river discharges to Bristol Bay 
en route to natal sources distributed throughout a large 
river basin encompassing a vast array of diverse habitats. 
Brennan et  al. (2015b) published 87Sr/86Sr ratios 
measured  in the natal region of otoliths from adult 
Chinook salmon caught during a commercial fishery con-
ducted in Nushagak Bay. We used a 87Sr/86Sr river 
isoscape (Brennan et al. 2016) produced using a new class 
of geostatistical models, spatial stream network models 
(SSNMs; Peterson and Ver Hoef 2010, Ver Hoef and 
Peterson 2010), to generate the baseline to which the natal 
origins of individual Chinook salmon were then assigned. 
87Sr/86Sr ratios throughout this river network are tempo-
rally stable at sub- and inter-annual time scales (Brennan 
et al. 2015a). We used the best model reported by Brennan 
et al. (2016) as our river isoscape (Fig. 1). For the purposes 
of the analyses herein we considered only those streams of 
stream order 3 and larger because Chinook salmon are 
primarily associated with larger order streams. We also 
excluded the watershed area upstream of the Northwest 
Passage in the Tikchik Lakes region, because Chinook 
salmon are not associated with lake habitats.
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Assigning adult fish to their natal habitat

In general, applying the continuous method of 
assignment to Chinook salmon intercepted during fishery 
harvests in Nushagak Bay, but bound for their natal 
origin somewhere in the Nushagak River involved (1) 
defining a rescaling function that relates river isoscape 
values to isotope values recorded in otoliths, (2) devel-
oping a model structure that incorporates the primary 
variance-generating processes defining the distribution of 
potential isotope ratios recorded in otoliths at any 
location within the river network, and (3) applying Bayes’ 
Rule to conditional probabilities of isotope ratios at all 
locations (constructed from steps 1 and 2) to generate 
probability density functions across the river basin.

Because of the clearly defined relationship between 
ambient water and otolith 87Sr/86Sr ratios (Barnett-
Johnson et al. 2008, Muhlfeld et al. 2012, Brennan et al. 
2015a, b), we assumed a rescaling function where the 
87Sr/86Sr ratio of an otolith, oi, synthesized at location j is 

equivalent to the 87Sr/86Sr ratio of the river water flowing 
past location j, rj, according to: 

where rj is the predicted isotope ratio at location j from 
the dendritic river isoscape model of (Brennan et al. 2016) 
and ε is the normally distributed error term associated 
with all processes that relate the river water isotope ratio 
at location j to an otolith’s isotope ratio synthesized at 
location j.

Next, we constructed a variance model that included 
three primary sources of variance for otolith 87Sr/86Sr 
ratios synthesized at any location within the network: 
analytical error, within-population variance, and the 
error associated with isoscape estimates at each location 
throughout the network (Appendix S1: Fig. S1). We 
assumed all three errors were normally distributed and 
combined them via 

(1)oi,j = rj+ε

(2)σcombined =

√
σ2

analytical
+σ2

within−pop
+σ2

isoscape

Fig. 1.  The Nushagak River and variation in 87Sr/86Sr ratios in river waters (colored stream lines), redrawn from Brennan et al. 
(2016). Color-filled circles indicate locations of measured water ratios that were used to create river isoscape. Black-filled diamonds 
indicate collection sites of known-origin juvenile Chinook salmon. Colors of lines and circles use same breaks in legend. [Color 
figure can be viewed at wileyonlinelibrary.com]
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where σ2
analytical

 is the variance of repeat measurements of 
an internal marine shell standard (Brennan et al. 2015b). 
σ2

within−pop
 reflects the variance of otolith ratios among 

individuals captured at the same known-origin site. This 
was estimated by subtracting σ2

analytical
 from the prediction 

intervals of a water–otolith regression of juvenile Chinook 
salmon (n = 146; 5–10 individuals per site) collected from 
throughout the Nushagak basin (Brennan et al. 2015b). 
Regression prediction intervals reflect both analytical 
and within population variance. Last, σ2

isoscape
 represents 

the error associated with the isoscape model’s estimation 
at any location (Brennan et al. 2016), which is the squared 
standard error of each prediction (Garreta et al. 2010). 
The residuals of this river isoscape model approximated 
normality (Appendix S1: Fig. S2). The former two errors 
were defined as single values (σ2

within−pop
  =  1.1  ×  10−4; 

σ2
analytical

 = 5.5 × 10−5) applied at all locations throughout 
the network, while the latter represents a raster surface of 
errors computed along the network from Brennan et al. 
(2016). Thus, the general form of the probability density 
function for any oi is 

This equation defines the probability distribution of 
87Sr/86Sr ratios synthesized into otoliths at location j 
within the network given the isoscape ratio of river water 
at j taking into account the primary variance-generating 
processes. However, from a provenance research per-
spective, we are more interested in the inverse of this 
statement, i.e., the probability that location j is the true 
origin given an otolith’s isotope ratio. As such, we used 
Bayes’ Rule to invert the conditional probabilities from 
above. The algorithm we used to apply Bayes’ Rule is 
explained in detail in Wunder (2010) and is similar to 
Vander Zanden et al. (2015). Briefly, here, Bayes’ Rule 
was written as 

where J is a random variable defining the posterior prob-
ability distribution for all locations j within a river 
network composed of ξ locations, P(O = oi,j|R = rj) is the 
conditional probability distribution for otolith 87Sr/86Sr 
ratios from Eq. 3, and (P(J = j)) is the probability the j is 
the location in the absence of isotope information (i.e., 
the prior probability). This computes the probability that 
location j is the true origin given the isotope ratio 
measured in an otolith and the ratios existing throughout 
the river network. The denominator integrates to a con-
stant and so the probability density function is propor-
tional to the numerator 

where j is a location within the river network, o is the 
87Sr/86Sr ratio measured in the otolith of a fish of 
unknown origin, and Ihabitat is a prior on location, such 
that only the areas within the river known to support 
Chinook salmon populations were considered (i.e., a 
multiplier of zero was assigned to locations in the network 
that are not known to produce Chinook salmon, such as 
the Tikchik Lakes region; Fig. 1).

During our comparison of different approaches to sum-
marize assignments across the population of returning 
Chinook salmon (see Estimating basin-wide production 
patterns), we also used an index of habitat suitability for 
spawning Chinook salmon in the Nushagak River (Woll 
et al. 2014) as a prior, P(J = j) in Eq. 4 and Ihabitat in Eq. 5 
(Appendix S1: Fig. S3). Once posterior probabilities were 
computed across the network, they were normalized so 
that the probabilities of all locations summed to 1. To aid 
in visualization and to compare among all individuals, 
these were then rescaled so that values ranged from 0 to 1 
by dividing by the maximum posterior probability (Fig. 2).

Model accuracy and precision

To assess the accuracy of the model to correctly assign 
fish back to the correct source location, we used juvenile 
Chinook salmon (n = 146) captured at specific locations 
throughout the watershed (Brennan et al. 2015b). These 
individuals were not used to build the isoscape; as such, 
they provide an independent test of model accuracy and 
precision. We defined the accuracy as the proportion 
(presented as a percentage) of correctly assigned indi-
viduals to known locations. The assignment of each indi-
vidual corresponds to those reaches of river with posterior 
probabilities above a user-defined probability threshold. 
Each fish’s assignment is transformed into a binary 
surface indicating those locations most likely and those 
locations least likely at the defined probability threshold. 
If the known location of a fish is included in the set of 
most likely locations, then that fish was considered as 
correctly assigned. To demonstrate how the accuracy 
changes as the probability threshold becomes more con-
strained (i.e., closer to 1), we computed the accuracy over 
a range of thresholds (0–0.99) as in (Vander Zanden et al. 
2014).

We estimated model precision as the proportion of the 
river network where a positive assignment could be made; 
high precision corresponds to low proportions and vice 
versa. The amount of suitable salmon habitat (as kilom-
eters of river) corresponding to an individual’s assignment 
was computed at a specified posterior probability 
threshold (ranging from 0 to 0.99) and compared to the 
total amount of habitat of the Nushagak River (i.e., a 
proportion of km/km of the total habitat in the system, 
13 100 km, which is the total length of all third-order and 
higher streams). To demonstrate how assignment pre-
cision changed as a function of the probability threshold, 
we computed the mean and standard deviation of 
assignment precisions of all known-origin fish over the 

(3)oj|rj ∼N(rj, σ
2
combined

).

(4)P(J= j|O=oi,j,R= rj)=
P(O=oi,j|R= rj)P(J= j)

∫ P(O=oi,j|R= rξ)P(J=ξ)dξ
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range of probability thresholds. Additionally, we tested 
whether the precision of assignments varied as a function 
of a fish’s otolith isotope ratio by computing how the pre-
cision changed over the range of observed otolith isotope 
ratios in known-origin fish. This test is essentially an 
accounting of the relative abundance of predicted isotope 
values throughout the Nushagak River (some ratios are 
more spatially restricted than others).

To further assess model accuracy and precision, we 
also used odds ratios (the odds of being correct vs. 
incorrect) to evaluate the performance of the isotope-
based model to correctly assign known-origin juvenile 
Chinook salmon compared to what would be expected by 
chance alone (Wunder 2012). We used the same pro-
cedure as above to determine “likely” and “unlikely” 
regions, but evaluated the accuracy and precision over a 
range of expected odds ratios (0.01:1 to 99:1). Here, each 
location in the probability surface of each individual was 
normalized by its sum and the locations corresponding to 
the highest probabilities above a set proportion of the 
sum were designated as “likely” (i.e., the odds of being 
correct) and all other locations were determined as 
“unlikely” (i.e., the odds of being incorrect). For example, 
for an odds ratio of 2:1, the “likely” locations would con-
stitute the top 67% of all probabilities, whereas the 
“unlikely” locations would correspond to the lowest 
33%. Thus, we would expect 2:1 odds of determining the 
correct location; correctly assigning >67% of known-
origin fish would indicate the isotope-based model is 
more accurate than expected.

Estimating basin-wide production patterns

To estimate the overall production patterns across the 
Nushagak River basin in 2011, we compared three dif-
ferent approaches to summarizing the assignments made 
for all Chinook salmon: (1) a “binary transformation” 

approach (Hobson et  al. 2009b, Flockhart et  al. 2013, 
Vander Zanden et al. 2015), (2) an approach that simply 
sums the probability surfaces of all individuals, referred 
to as the “summed probability” approach hereafter, and 
(3) an approach that uses a non-uniform prior of habitat 
suitability for Chinook salmon (referred to as the “habitat 
prior” method hereafter). The former two approaches 
use a uniform prior across all potential stream habitats. 
We compared these three approaches by splitting the 
entire basin into its major sub-basins (n = 29) and com-
puting each sub-basin’s proportion of the basin-wide 
production. Additionally, we also compared these sub-
basin estimates to the Strontium Isotopic Groups (SIGs) 
of Brennan et al. (2015b), which were determined therein 
by grouping streams a priori based on isotopic and geo-
graphic similarities (Table 1).

To assign adult Chinook salmon back to their natal 
sources using the binary transformation approach, we 
defined a relative probability threshold that designated 
locations as “likely” and “unlikely,” such that all likely 
locations were considered to be the assignment area. To 
date, this has been the most common way to summarize 
patterns at the population level using a continuous 
approach (Hobson et al. 2009a, 2012a, Flockhart et al. 
2013, Vander Zanden et  al. 2015). The threshold was 
determined by evaluating the precision and accuracy over 
a range of relative probability thresholds and selecting 
the threshold that provided the best trade-off between 
accuracy and precision. Once determined, those locations 
that corresponded to relative posterior probabilities 
greater than the set threshold were determined to be the 
assignment area for each fish from the 2011 sample 
(n = 255). The result was 255 binary rasters of the same 
extent and resolution, where all locations with a value of 
1 delineated the assignment for each fish. These rasters 
were then summed, such that the value in each grid cell 
corresponded to the number of fish assigned to that 

Fig. 2.  Examples of the posterior probability surfaces of individual Chinook salmon (NB_K1 and NB_K2) with 87Sr/86Sr ratios 
of 0.70458 and 0.70846. Only those locations with probabilities >0.50 are colored red, all others are gray. [Color figure can be viewed 
at wileyonlinelibrary.com]
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location using the defined threshold. In the second 
approach, we did not apply a binary transformation to 
the probability surface to any of the individuals. Instead, 
the probability surfaces of all individuals were simply 
summed. The third approach, applied a non-uniform 
prior describing variation in habitat suitability for 
spawning Chinook salmon across the Nushagak River 
(Woll et al. 2014; i.e., via Eq. 5). The resulting probability 
surfaces of all individuals were then simply summed, as 
in the second approach. This prior employed a habitat 
suitability index that ranked Chinook spawning habitat 
on a five-point integer scale (0, not suitable, to 4, highly 
suitable), which was determined on the basis of well-
known geomorphological features of streams preferred 
by spawning Chinook salmon (e.g., channel width and 
depth; Woll et al. 2014). By using this index, we assumed 
that in the absence of isotope information the probability 
that a Chinook salmon was produced from any particular 
stream reach is proportional to its habitat suitability 
ranking (e.g., a stream reach with a rank of 4 is four times 
as likely as a stream reach with a rank of 1, and so on).

In all three approaches, we normalized the sum of all 
assignments (i.e., binary transformation approach) or the 
sum of all probabilities (i.e., summed probability 
approaches) at each location by the basin-wide sum of 
each respective metric. The production estimates for the 
entire basin for each method summed to 1. We then esti-
mated the proportion of the 2011 run that was produced 
from the different major sub-basins within the watershed 
in order to compare how the approaches differed.

Results

Accuracy and precision of known-origin juveniles

The model was >90% accurate for all relative proba-
bility thresholds <0.75 when determining the natal loca-
tions of known-origin juvenile Chinook salmon; the 
accuracy decreased rapidly as thresholds became more 
restrictive toward 1 (Fig.  3a). Precision of assignments 
was poor at low thresholds (<0.45), at which point the 

precision improved substantially to <4% of the total river 
length for thresholds >0.50 (Fig.  3b). Thus, we used a 
relative posterior probability threshold of 0.50 (i.e., rel-
ative posterior probabilities >0.50) to generate the pro-
duction heat-maps for the 2011 fishery harvest when 
employing the binary transformation method. At this 
threshold, the accuracy was 96% and the precision was 
340 ± 72 km. Precision of assignments also changed as a 
function of the isotope ratio in an otolith, where ratios 
between 0.7071–0.7073 yielded the most precise estimates 
(Fig. 3c) because these mapped on to habitat locations 
with more spatially restricted isotope values. Using odds 
ratios of >0.12:1 (i.e., expected accuracies of >0.11; 
Appendix S1: Fig. S4) the model yielded >90% correct 
determination of the known-origin locations of juvenile 
Chinook salmon. Precision of assignments for these odds 
ratios (>0.12:1) were <3% of the total river length.

Assignment of harvested adults to natal habitat

Using the three assignment approaches outlined here 
we determined that the relative production of Chinook 
salmon caught in 2011 was spatially heterogeneous across 
the Nushagak River basin, where the largest areas of 
production were in the Upper Nushagak River, the 
Mulchatna River, and its tributaries draining the 
Alaskan-Aleutian Range (AAR; Fig.  4). Overall, these 
results generally agreed with our previous estimates of 
production using a nominal approach (Table 1; Brennan 
et al. 2015b). The two dominant age-classes returning to 
the Nushagak in 2011 (age 1.3 and 1.4, i.e., fish that spent 
1 yr as a juvenile in freshwater and 3 and 4 yr, respec-
tively, in the ocean) exhibited similar production patterns 
(Fig. 5), where the Upper Nushagak River was the most 
productive section of the river. The distribution of age 1.5 
individuals was more evenly spread across the basin, but 
with regions of relatively high production from the AAR 
tributaries along the eastern side of the river basin 
(Fig. 5).

The binary transformation, summed probability, and 
non-uniform prior of habitat suitability methods 

Table 1.  Comparison of production estimates between a nominal approach (Strontium Isotopic Groups [SIGs] of Brennan et al. 
[2015b]), and the three continuous approaches considered here, the binary transformation, summed probability, and habitat as 
prior methods.

SIG

Production estimates

Nominal Continuous

SIG Binary transformation Summed probabilities Habitat as prior

SIG1 0.22 0.25 0.23 0.25
SIG2 0.22 0.18 0.18 0.19
SIG3 0.10 0.10 0.07 0.09
SIG4 0.04 0.03 0.02 0.02
SIG5 0.11 0.06 0.04 0.04
SIG6 0.27 0.34 0.22 0.25
SIG7 0.05 0.03 0.04 0.05

Notes: SIGs were determined by considering isotopic and geographic similarities (see Brennan et  al. 2015b). The small,  
low-gradient tributaries to the lower river were not included in these comparisons, as they were not considered by Brennan et al. (2015b).
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generated similar production patterns when comparing 
estimates for the major sub-basins within the watershed 
(Table 2). All three identified the Upper Nushagak River, 
Mulchatna River, and AAR tributaries as the principal 
producers of Chinook salmon. However, the binary 

transformation approach assigned zero fish to regions of 
the river characterized by high uncertainties in the 
87Sr/86Sr isoscape (Brennan et  al. 2016). These regions 
were consistently those where the water isotope ratios 
were estimated via extrapolation in the isoscape model 
(Brennan et  al. 2016). As a result, the probabilities of 
these reaches were always <0.5, and were determined as 
“unlikely” during binary transformation. In contrast, 
both summed probability approaches assigned some pro-
portion of fish to these regions because the probabilities 
of these stream reaches were non-zero for individual fish. 
The production estimates of these regions, however, were 
markedly less (i.e., <50%) when compared to isotopically 
similar reaches characterized by smaller errors. The esti-
mates made via all three methods scaled positively with 
basin size (Table 2 and Appendix S1: Fig. S5). Production 
estimates made via the summed probability approach 
exhibited the strongest positive correlation with basin 
size (r > 0.9, Appendix S1: Fig. S5). As a result, the larger 
basins were estimated to have produced larger propor-
tions of the 2011 run. When compared to the estimates 
based solely on the amount of suitable habitat, sub-basins 
differed by 0.2–41.5% when including isotopic infor-
mation using Bayes’ Rule (Table 2). This illustrates that 
some sub-basins produced more or less fish than what is 
expected based on the amount of suitable habitat alone.

Discussion

By integrating river isoscapes built using dendritic 
network models, a geographically continuous Bayesian 
assignment framework, and otolith microchemistry, we 
reconstructed the production patterns of Chinook 
salmon across a large river basin with high precision and 
accuracy.

Model performance

There was a trade-off between precision and accuracy 
across a range of posterior probability thresholds (Fig. 3). 
The accuracy decreased (i.e., the probability of an 
incorrect assignment increased) as the threshold became 
more restricted toward 1; the precision of assignments 
increased (i.e., fish were assigned to increasingly smaller 
proportions of the river basin) as the threshold became 
more restrictive toward 1. Both of these relationships 
reflect the fact that, by successively constraining the 
threshold toward 1, the size of the geographical area 

Fig. 3.  (a) Accuracy and (b) precision of assignments made 
using Bayesian assignment approach outlined herein computed 
using individual juvenile Chinook salmon (n = 146) of known 
origin. (c) How the isotope ratio of fish otoliths influence the 
precision of assignments over thresholds of 0.50, 0.67, 0.75, and 
0.90 (numbers on plot), i.e., accounting for the relative 
abundance of predicted isotope ratios throughout river basin. 
Dotted lines in panel a correspond to relative posterior 
probability threshold used during binary transformation. Thin 
lines in panel b correspond to standard deviation of precision 
estimates.
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corresponding to each assignment decreases. An 
assignment with a smaller geographical area will have a 
greater tendency to misclassify an individual relative to 
its true source location. Thus, by constraining the geo-
graphical area, the precision of assignment to natal 
habitat increases but the likelihood of a misclassification 
increases. By testing our assignment model with an inde-
pendent validation set of known-origin juvenile Chinook 
salmon captured throughout the river network, the 
model still yielded high accuracies (>90% correct classifi-
cations) with relatively high precisions (<0.04 of all 
available habitat, or <530 river km of the 13 100  km 
available). Although some river water isotope ratios are 
more common than others (i.e., 0.7073–0.7075), the pre-
cision is relatively constrained at all isotope ratios 
(Fig.  3c). Furthermore, over the entire range of odds 
ratios evaluated (Appendix S1: Fig. S4) the assignment 
model demonstrated substantial improvements in both 
accuracy and precision relative to what would be expected 
at any defined odds ratio (Appendix S1: Fig. S4). Because 
accuracies of 90% often represent the lower limit for 
applying assignment models in Alaskan salmon man-
agement (Dann et al. 2013), the isotope-based assignment 
model here is amenable to such applications. Evaluating 

the model over a range of user-defined relative proba-
bility thresholds and odds ratios enabled the determi-
nation of the thresholds at which the model performed 
well enough to satisfy such a guideline.

Advantages of building variance models from  
first principles

One of the advantages of the geographically con-
tinuous approach to assignment is being able to identify 
which variance-generating processes have the greatest 
effect on assignment efficacy. There are multiple ways to 
estimate σ2

combined
 and this remains an important topic of 

research, but one of the most useful ways is to partition 
the variance and build it from first principles (Wunder 
2010, Bowen et al. 2014). Here, the error in our isoscape 
strongly influenced the locations of assignments. 
Specifically, the highest posterior probabilities of assign-
ments were biased toward areas where the isoscape pre-
dictions have low error. Because areas of low error are 
near to where 87Sr/86Sr water measurements were made 
and where 87Sr/86Sr ratios were estimated via interpo-
lation along the network, assignments are biased toward 
regions proximal to observations and those areas 

Fig. 4.  Heat-map of the relative production of Chinook salmon returning to the Nushagak River in 2011. To ease visualization, 
only those stream reaches with relative posterior probabilities >0.5 for each individual were considered as the region of its origin 
(see Estimating basin-wide production patterns). We scaled the production estimates at each location by the maximum proportion of 
production (3.74  ×  10−5) computed throughout the basin; as such values range from 0 to 1. [Color figure can be viewed at 
wileyonlinelibrary.com]
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situated downstream along the network. The distri-
bution of posterior probabilities depends on both the 
difference between the otolith and river water ratios, and 
the combined error at each location (i.e., Eq. 5). Thus, 
those locations with larger errors have relatively lower 
posterior probabilities. For example, if the difference 
between an otolith’s isotope ratio and the river water was 
the same at two different locations, but the error of one 
location was 0.0002 (e.g., estimated via interpolation), 
and the error of the other location was 0.0007 (e.g., esti-
mated via extrapolation upstream): the former location 
would have a posterior probability three times the latter, 
as computed by Eq. 5. The overall result is that very few 
fish were assigned to regions where the isoscape pre-
diction errors (σisoscape) those areas estimated via extrap-
olation in the isoscape model. were >0.0006 in the 
87Sr/86Sr ratio, i.e., Because the river isoscape includes 
only 3rd order and larger streams (Brennan et al. 2016), 
it is likely that some Chinook salmon are produced, or 
at least rear, in some of the reaches characterized by 
errors >0.0006. Thus, the regions of the Sr isoscape 
where 87Sr/86Sr ratios were estimated via extrapolation 
may understate the actual production from those 
reaches. Although this is an obvious limitation, the 
current 87Sr/86Sr sampling distribution of the Nushagak 
does include the large majority of the tributaries known 
to produce Chinook salmon.

Explicitly incorporating each source of variance asso-
ciated with assigning individuals to their natal locations 
enables the identification of which sources of variance 
would benefit most from additional research effort. 
Because of the conservative nature of 87Sr/86Sr ratios, 
both analytical and within-population variances are 
relatively well constrained herein and are likely not to 
improve much with additional effort. However, given 
the biases driven by the range of errors in the isoscape, 
additional sampling would substantially improve the 
model at specific locations known to support Chinook 
salmon (e.g., above “Big Bend” in the Upper Nushagak, 
upper Mosquito, and Iowithla Rivers). That said, the 
model herein realistically reflects our abilities to 
determine provenance and habitat use throughout a con-
tinuous spatial domain using isotopic information 
recorded in otoliths.

Fig. 5.  Age-specific relative production heat maps of Chinook 
salmon returning in 2011 including age 1.3, 1.4, and 1.5 (the first 
number indicates the number of years spent in freshwater; the 
second number indicates the number of years spent in the ocean 
before returning to spawn) determined via binary transformation. 
To ease visualization, we scaled the age-specific production 
estimates at each location by their maximum proportion of 
production computed throughout the basin; as such values range 
from 0 to 1 (maximum proportion of age 1.3 = 3.98 × 10−5, age 
1.4 = 3.85 × 10−5, and age 1.5 = 4.11 × 10−5). [Color figure can be 
viewed at wileyonlinelibrary.com]
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The continuous vs. nominal approach for  
otolith microchemistry

Although the continuous approach to assignment has 
broad implications for reconstructing the provenance 
and movements of fish using otolith microchemistry, this 
study represents its first demonstration. Currently, the 
nominal method has been the only approach used for 
determining provenance and habitat-use of fish using 
otolith microchemistry. Most notably, DFAs are the 
most common (Mercier et  al. 2011). Although these 
remain effective approaches in many settings, they can be 
arbitrary in their construction and also overly con-
strained due to the necessity of a priori grouping proce-
dures. This is especially important given the continuous 
nature by which chemical and isotopic tracers are dis-
tributed throughout aquatic ecosystems. By adopting a 
Bayesian framework, the distribution of tracer data also 
need not be normal and other distributions can be used 
(Wunder 2010).

In contrast to the nominal method, a continuous 
approach that is based on a realistic baseline of the spa-
tially continuous distribution of isotope variation, allows 
each location in a network to be assessed relative to all 
other locations as a function of isotope information. 
Although, we only present this method for 87Sr/86Sr 
ratios in otoliths, this framework can also be multivariate 
(e.g., Vander Zanden et al. 2015) or used similarly with 
other singular tracers (e.g., element-to-calcium ratios, 
δ2H, and δ18O values). To do so, however, still requires 
constraining the fundamental features and assumptions 
of provenance studies including a characterization of 
each tracer in space and time, and a well-defined rescaling 
function describing how the tracer routes from the envi-
ronment into the otolith. Constraining a rescaling 
function is likely the most important step in a continuous 
assignment framework, especially when applying tracers 
that are modified during biogenic incorporation via phys-
iological, environmental, ontogenetic, or species-specific 
effects (Walther et al. 2010, Sturrock et al. 2015).

A primary advantage of using 87Sr/86Sr within this 
framework is the fact that the ratios recorded in otoliths 
directly reflect those of the habitats of fish in a 1:1 fashion. 
This feature alone substantially simplifies interpretation 
of 87Sr/86Sr ratios in otoliths relative to other tracers or 
tissues. For example, constraining a rescaling function 
has been one of the most challenging aspects and sources 
of uncertainty in the δ2H system (the isotope system most 
commonly used) when rescaling δ2H of precipitation 
isoscapes to the δ2H of keratinous materials of organisms 
(Wunder 2010, Hobson et al. 2012b, Bowen et al. 2014, 
van Dijk et  al. 2014, Vander Zanden et  al. 2014). 
Mischaracterizations of rescaling functions may also lead 
to erroneous results (Wittenberg et al. 2013). Similarly, 
because many tracers in fish otoliths are also subject to 
similar sources of uncertainty, such as physiological, 
environmental, temporal, ontogenetic and species-
specific effects on elemental incorporation into otoliths 

(Campana 1999, Walther et  al. 2010, Sturrock et  al. 
2015), careful attention will be required when using other 
otolith tracers within a continuous framework. However, 
the clearly defined relationship between ambient water 
and otolith 87Sr/86Sr ratios makes Sr isotopes particularly 
well suited for applying the continuous approach to 
migratory fish.

Characterizing production patterns via binary  
transformation and summed probability methods

Overall, the relative production patterns estimated by 
the binary, summed probability, and non-uniform prior 
on habitat methods were similar (Table 2), but their dif-
ferences highlighted important implications for applying 
the continuous method to migratory fish. In particular, 
the binary method concentrated assignments (and 
therefore the proportion of returning fish) into reaches 
characterized by low uncertainty in the isoscape model 
(Eq. 2). The summed probability methods did as well, but 
less so. The result was that the summed probability 
methods tended to spread the proportion of fish out 
among stream reaches more than the binary method. To 
illustrate this point, Fig. 6 shows how the production pat-
terns within the King Salmon sub-basin varied at these 
finer spatial scales depending on the summarization 
method employed (Fig. 6). This difference was driven pri-
marily by the fact that, when the summed probability 
method was used, those reaches with probabilities less 
than a set threshold still received some non-zero pro-
portion of the production. Thus, how the uncertainty in 
our isoscape varied in space influenced the relative 
production patterns within any given sub-basin. When 
comparing production patterns among methods at the 
sub-basin level, however, the estimates were more similar 
(Table 2 and Fig. 6). Such results highlight the fact that 
useful information may be lost when applying a binary 
threshold to probability surfaces of individuals. This is 
especially true if an individual’s probability surface is 
substantially influenced by the spatially explicit error 
structure of the underlying isoscape with which assign-
ments are determined.

Both the binary and summed probability methods pro-
duced spatial distributions of Chinook salmon pro-
duction that scaled strongly with the proportion of stream 
length within each sub-basin (r  >  0.57), but the rela-
tionship was more pronounced in the latter approaches 
(Appendix S1: Fig. S5). Because the proportion of each 
sub-basin was estimated by summing the proportion of 
all reaches within that basin, the larger basins accrued 
larger proportions. This also led to differences between 
sub-basins, which are isotopically similar (e.g., Koktuli 
and Stuyahok Rivers), but differing in their proportion of 
the river basins total stream length. Furthermore, by not 
applying a binary transformation when employing a 
summed probability method, there were more reaches 
with non-zero values contributing to each sub-basin’s 
sum, leading to its stronger relationship with stream 
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length. This relationship also drove the large difference 
between methods in production estimates of the small 
low gradient tributaries flowing into the mainstem of the 
lower Nushagak River (Table 2). Probabilities were never 
>0.5 in these stream reaches, as such their relative pro-
duction as estimated via the binary transformation 
method, was near zero. However, by not applying a 
threshold, the summed probability method estimated a 
much larger proportion even though the maximum prob-
abilities for any individual were always <0.5. The streams 
in this part of the river are very low gradient and sinuous, 
features that naturally increase stream length, but they 
are also not suitable for spawning Chinook salmon. The 
habitat data available for this lower river region (Woll 
et al. 2014) indicate that the majority of stream reaches 
within these tributaries have low suitability for spawning 
Chinook salmon (>88% of stream reaches are not suitable 
or have low suitability). As such, by treating all stream 
reaches as equally suitable during the summed proba-
bility assignment method (i.e., uniform prior across all 
streams of third-order or higher), the relative production 
was likely overestimated in the low gradient tributaries.

When we incorporated habitat suitability as a prior 
into our assignment algorithm, the summed probability 
production estimates changed substantially for the 
regions where large proportions of the stream reaches 
within a sub-basin were mapped to be of low suitability 
for spawning Chinook salmon. In particular, the pro-
duction estimate for the small tributaries flowing into the 
main-stem of the lower Nushagak River decreased by 
half (Table  2). Overall, these differences highlight the 
advantages of coupling this Bayesian assignment 
approach with habitat suitability estimates in the form of 
informative priors describing habitat features. Similarly, 
the relative abundance of respective populations has been 
shown to be important for isotope-based Bayesian 

assignment frameworks (Royle and Rubenstein 2004). 
Such an approach, however, requires reliable estimates of 
relative abundance and an assumption that abundance 
patterns are fixed in time. Because individual salmon 
populations exhibit asynchronous production patterns 
(Schindler et  al. 2010), the relative abundances of dif-
ferent populations distributed across a variety of habitats 
likely vary temporally at multiple spatial scales. Since 
abundance patterns of different populations within the 
Nushagak are not known, and since such patterns likely 
exhibit asynchronous temporal variability, we used 
instead a prior informed by known geomorphic features 
of rivers that are preferred by Chinook salmon. 
Geomorphic habitat features (e.g., channel width or 
depth) are also generally more stable with respect to time 
and covary strongly with species-specific habitat prefer-
ences of salmonids (Whited et al. 2012, 2013). Thus, such 
geomorphic attributes of streams are effective as priors 
within a spatially continuous Bayesian assignment 
framework for migratory fish. Ultimately, coupling the 
isotope-based continuous method of assignment with 
habitat models, which assume that suitable aquatic 
habitat for fishes is influenced by the geomorphic 
structure of watersheds (e.g., Intrinsic Potential models; 
Bidlack et  al. 2014), will likely improve estimates of 
production patterns.

A new way to map fish production across riverscapes

The approach outlined here represents a new way to 
map freshwater production of salmon or any other 
species that are migratory and occupy complex river-
scapes. Production of salmon is heterogeneous across 
space and time, and such heterogeneity acts to buffer the 
overall productivity of salmon at aggregate levels of 
population structure and habitat complexity (e.g., 

Fig. 6.  Example comparison of relative production estimates within a sub-basin (King Salmon River) using methods of binary 
transformation, summed probability, and habitat suitability as a prior. Each basin-wide relative production estimate is indicated in 
the upper-right corner (from Table 2). The relative production estimates within each basin (colored lines) of each method have been 
scaled by the maximum proportion of production computed by each respective method, so that values scaled from 0 to 1 (note that 
the maximum value was not within the King Salmon River). The heavy black streamlines have been scaled inversely proportional 
to the standard error of predictions of the river water isoscape. [Color figure can be viewed at wileyonlinelibrary.com]
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regional vs. local) from perturbation. This phenomenon 
has been likened to a portfolio effect, where habitat com-
plexity, locally adapted populations, and differential 
responses of those populations to change, all contribute 
to spreading the risk of an ecosystem service (e.g., salmon 
production) across space and time at aggregated scales 
(Schindler et al. 2010, 2015). Insights into how this pro-
duction is distributed across space and time, however, are 
difficult to obtain, particularly at fine temporal and 
spatial scales. Similarly, because salmon populations 
exhibit variation in their age structure (i.e., salmon from 
the same cohort may spend a different amount of time in 
the freshwater and ocean before returning to the spawning 
grounds, denoted by number of years spent in each envi-
ronment), their production patterns are also apportioned 
by age. Rarely, however, has the production of salmon 
been apportioned at finer timescales, such as between dif-
ferent habitat-use strategies during the juvenile fresh-
water life phase (but see Walsworth et  al. 2014 and 
Brennan et al. 2015b). Thus, although smaller spatial and 
temporal scales play an important role in understanding 
habitat use by individual juvenile salmon that recruit to 
adulthood (Bourret et  al. 2016), insights have been 
limited to relatively coarse scales due to the resolution of 
current methodologies to resolve individual populations 
in fishery harvests and our ability to monitor across mul-
tiple scales simultaneously.

Using a geographically continuous assignment 
approach we were able to explicitly match individuals to 
specific habitats during specific time periods. Because this 
analysis was done on fishery harvests taken at the river’s 
terminus during the annual spawning migration of adults, 
the sample represents a complex mixture of fish origi-
nating from a vast array of potential habitats and poten-
tially exhibiting different life history strategies. Being 
able to apportion such aggregates provides a powerful 
way to evaluate the importance of different habitats over 
time for the overall productivity of populations. For 
example, the individuals of different age returning in 
2011 to the Nushagak River experienced the freshwater 
conditions of different years (2007, 2006, and 2005). The 
production heat maps of the different age classes indicate 
that, although the age 1.3 and 1.4 fish showed similar 
geographic patterns, the age 1.5 fish did not (production 
for the 1.5 age class was weighted toward the AAR trib-
utaries along the eastern margin of the river basin; Fig. 4). 
Because analyses like the ones outlined here explicitly 
link individuals to habitats in time, they provide a way to 
evaluate how environmental parameters of such habitats 
affect production. Perhaps more importantly, if such 
analyses were extended across multiple years, the brood 
tables of each year contributing to the annual returns of 
adults could be reconstructed at spatial and temporal 
scales not usually accessible via other methods. Effective 
conservation that takes into account the lessons and 
insights of how portfolio effects buffer ecological systems 
is dependent on ways to quantify how productivity is dis-
tributed across space and time at multiple scales. The 

approach outlined here provides a viable framework to 
do so for migratory fishes which inhabit isotopically or 
chemically heterogeneous environments.
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