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Abstract

Bulgarian Solitaire is a mathematical game played in the universe of integer partitions. It can

be represented as having a number of items divided into separate piles. The operation of the

game consists of taking one item from each pile and creating a new pile from the collected

items. This results in a new configuration of the items. The operation is then applied over

and over again. In this study we discuss and prove several properties of this game, such

as convergence and cycle lengths. The proofs are based on observations of the behavior of

the game, and are illustrated using rotated Young diagrams. The main purpose is however

to define a new, three-dimensional (3D) version of the game, and explore its properties.

This is done by defining the game on plane partitions, which can be visualized using three-

dimensional Young diagrams. In the 3D version we define six different moves, each based on

executing the original operation on different layers of the Young diagram individually.



1 Introduction

The known history of Bulgarian Solitaire began around 1980, when Konstantin Oskolkov of

the Steklov Mathematical Institute in Moscow met a man on a train who introduced him

to a simple game, which can be described as follows: imagine fifteen playing cards in front

of you. Arrange these cards into a number of piles. For consistency, keep the piles sorted in

order of decreasing height. Now, pick one card from each pile and create a new pile from

these cards. Repeat this step over and over again. Here are the pile heights from an example

execution:

(7, 4, 2, 2)⇒ (6, 4, 3, 1, 1)⇒ (5, 5, 3, 2)⇒ (4, 4, 4, 2, 1)⇒ (5, 3, 3, 3, 1)

⇒ (5, 4, 2, 2, 2)⇒ (5, 4, 3, 1, 1, 1)⇒ (6, 4, 3, 2)⇒ (5, 4, 3, 2, 1)⇒ (5, 4, 3, 2, 1)

Note that the final state is stable - it leads back to itself. When Oskolov reached this config-

uration he became intrigued and tried again a few times with different initial configurations.

Every time the result turned out to be the same: (5, 4, 3, 2, 1). Oskolov told his colleagues

about the game and it started to spread [1]. Via Bulgaria it reached Stockholm and Henrik

Eriksson, who gave the game its name when he published an article about it in 1981 [2]. It

then spread all over the world, referred to as Bulgarian Solitaire.

At first mathematicians were stumped, but it was soon proved that when the number of

cards is a triangular number (a number in the form 1 + 2 + 3 + ... + N) the game always

converges to the state (N,N−1, ..., 2, 1), which has a cycle of length 1, regardless of the initial

distribution [3]. When the number of cards is not a triangular number the game converges

to a longer cycle. Many questions arose, such as how many cycles there are for an arbitrary

number of cards, the lengths of these cycles and the largest possible number of moves that

can be performed before the game reaches a cycle. Although these questions have already
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been answered, some areas are still unexplored.

This study introduces a version of Bulgarian Solitaire extended to three dimensions, and in-

vestigates the properties of that version. Furthermore, some simple new proofs for properties

of the original game are presented.

2 Bulgarian Solitaire

2.1 Integer partitions

Bulgarian Solitaire can be described formally by making the abstraction from piles of playing

cards to integer partitions. A partition of n is a t-tuple λ of integers

λ = (λ1, λ2, λ3, ..., λt−1, λt) (1)

whose sum is n (
∑t

i=1 λi = n). The integers λ1, λ2, ..., λt are called parts of the partition. To

express that a partition λ is a partition of n, we write λ ` n. We also denote the number

of parts |λ| = t. The order of the parts in a partition is usually not of significance, but for

practical reasons we choose to order and index them in non-increasing order:

λ1 ≥ λ2 ≥ λ3 ≥ ... ≥ λt−1 ≥ λt (2)

For example, λ = (3, 2, 1) ` 6, since 3 + 2 + 1 = 6.

Bulgarian Solitaire is now defined as an operation B(λ) on partitions,

B(λ) = (|λ|, λ1 − 1, λ2 − 1, ..., λt − 1) (3)
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where parts of size 0 are discarded if they exist and where the parts are reordered to be

consistent with equation (2). This definition is equivalent to the more informal one in section

1: each part λi of a partition corresponds to a pile of cards, and the sizes of the parts

correspond to the heights of the piles.

2.2 The game graph

All information about how Bulgarian Solitaire operates on partitions of an integer n can

be contained in a directed graph, which we call the game graph of n. The graph consists of

all possible partitions of n and their relations, visualized as arrows where each arrow points

towards the partition which comes next in the game (directed edges). There are two examples

in figure 1.

321 42

2211 411 33 222

3111

111111 6 51 21111
(a) Game graph of 6.

5 41

11111 2111

32

311 221
(b) Game graph of 5.

Figure 1: The game graphs of 6 and 5.

In figure 1a we see that for 6, which is a triangular number, all partitions lead to the

position (3, 2, 1). For 5, which is not a triangular number, all partitions instead lead to a

single cycle of length 3 (see figure 1b). The main questions regarding Bulgarian Solitaire are

about properties of the game graph. This paper will discuss the lengths of the cycles and

characterize the Garden of Eden partitions, that is: the partitions which are impossible to

achieve, unless one begins there.
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2.3 Visual representation

Partitions are often graphically represented by Young diagrams (see figure 2a). The columns

of a Young diagram each correspond to a part λi of the partition and the height of a column

shows the size of the same part. Young diagrams are usually drawn as in figure 2a, but the

mathematician Anders Björner came up with the idea to rotate the diagram 45◦ counter-

clockwise1, in order to obtain a more intuitive way to illustrate Bulgarian Solitaire (figure

2b). We will see that the squares will move consistently with how they would have moved if

they were affected by gravity.

(a) Standard form (b) Rotated diagram

1

2

3

4

(c) Enumeration of diagonals

Figure 2: Young diagrams

We define diagonals in a rotated Young diagram as in figure 2c. Also, the length of a diagonal

is the number of positions on it (which is the same as its index). Now we observe what happens

when performing the Bulgarian Solitaire operation B. Take a look at figure 3. First, between

step (1) and (2), the rightmost row is removed, which corresponds to taking one card from

each pile, and the remaining squares fall down a step. Then, between step (2) and (3) the

removed row is rotated 90◦ and inserted again, which corresponds to creating a new pile of

cards. Note that the dark square remains in the same diagonal after this operation, it just

moves one step to the right. If the procedure is repeated the same thing will happen, but the

square will instead move to the leftmost position on its diagonal (it is a cyclic permutation).

1According to personal communication with Henrik Eriksson.
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(1) (2) (3)

Figure 3: Bulgarian Solitaire on the partition λ = (3, 2, 1).

Figure 4 shows a slightly different example. The same procedure is performed, but this time

the inserted column is shorter than the one already there. This means that it will be inserted

in an incorrect position, as in step (3), where the columns are not sorted in non-increasing

order. Although, if one imagines the diagram being affected by gravity, one understands

that the dark square should slide down, which leaves the columns sorted in correct order

as in step (4). Notice also that the dark square moves to a different diagonal during this

procedure; it fills a hole in the diagonal beneath it. We say that in (1), the dark square was

in a non-optimal diagonal, since there was a hole in the diagonal beneath. In (4) it is in an

optimal diagonal, since there are no holes it can fill.

(1) (2) (3) (4)

Figure 4: Bulgarian Solitaire on a rotated Young diagram. (1) is the partition λ = (4, 2) and
(4) is the partition B(λ) = (3, 2, 1).

2.4 Convergence for triangular numbers

Definition 1. The kth triangular number Tk is defined as follows:

Tk = 1 + 2 + 3 + ...+ k
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Lemma 1. When playing Bulgarian Solitaire, if, in the Young diagram of the current par-

tition, there is at least one square in a non-optimal diagonal (a diagonal for which there is

at least one empty place in the diagonal below), a square will eventually drop down to the

diagonal below.

Proof. Consider an empty position in the rotated Young diagram of λ which is not in the

topmost diagonal (from now on referred to as a hole) and a square in the diagonal above.

Let the hole be in the kth diagonal and the square in the (k + 1)th diagonal. Notice that

the square and the hole will cycle on their respective diagonals when applying the operation

B(λ) multiple times. Because the hole has cycle length k and the square has cycle length

k + 1 they will shift one step with respect to each other every n moves (see figure 5). This

implies that the square will eventually be placed on top of the hole, and consequently fall

down into it, as in figure 4 (3). If, during this procedure, the square should fall down into

another hole or the hole should be filled by another square, the lemma is still fulfilled.

2 1

Figure 5: An example of how a hole and a square move relative to each other. Note that the
distance between them decreases by one every three steps (in this particular case).

Theorem 1. When performing Bulgarian Solitaire on an initial partition λ ` Tk (a partition

of a triangular number) one will always reach the state (k, k−1, ..., 2, 1) after a finite number

of operations.

Proof. By lemma 1, all squares in non-optimal diagonals will eventually drop down to lower

diagonals. Since Tk squares fill exactly k diagonals, the only partition where no square is

in a non-optimal diagonal is the stable partition, where all diagonals are filled, that is:
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(k, k − 1, ..., 2, 1).

Corollary 1. The only cycle length that exists in the game graphs of triangular numbers is

the length 1.

Proof. By theorem 2.4 one will always reach the state (k, k − 1, ..., 2, 1) when starting with

a partition λ ` Tk. By equation (3) in section 2.1, if λ = (k, k − 1, ..., 2, 1), then B(λ) =

(k, k − 1, k − 2, ..., 1).

2.5 Cycle lengths

As previously mentioned, Bulgarian Solitaire always converges for partitions of Tk, but it is

easy to realize that all games of Bulgarian Solitaire eventually must return to an already

visited state, since there are only a finite number of partitions of n. However, there is no

partition of a non-triangular number which leads immediately back to itself, since there will

always be a few extra squares circulating on the topmost diagonal (by lemma 1 all holes will

be filled). Instead, the game will converge to a cycle of length longer than 1. There might be

multiple different cycles in a game graph, and the question is how long these cycles are.

Theorem 2. Let G be the game graph of Tk + r, where Tk < Tk + r < Tk+1. Then, for every

common divisor d of both k + 1 and r there is a cycle of length k+1
d

in G, and there are no

cycle lengths not fulfilling this criteria.

Proof. When all holes in a partition have been filled, we have r squares which are circulating

on the (k + 1)th diagonal, which has length k + 1. Thus, we can think of a position as the

distribution of r items over k + 1 positions on a circle. When applying the operation B, the

squares will get rotated one step around the circle (see figure 6).

For all divisors d of both k+1 and r we can construct a cycle as follows. Divide the r squares
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Figure 6: Here is an example of a cycle with length 2, represented both as rotated Young
diagrams and as items around a circle. The leftmost and rightmost positions are identical.
For this cycle: k + 1 = 4, r = 2, d = 2

into d identical groups of r/d elements each. Now place these groups symmetrically over the

circle. This is possible since d is a factor of k+1, and we will get an offset of l = k+1
d

between

each group. That is, after l operations, the game will be in a state identical to the first one.

Thus, we have the cycle length l = k+1
d

.

But are these cycle lengths the only possible lengths? If l is one of the lengths described,

then l is a factor of k + 1 and d = k+1
l

is a factor of r. We shall show that both of these

conditions are necessary. Firstly, k + 1 must be a multiple of the cycle length, since we can

always get to a state identical to the first one in k+ 1 steps. Secondly, in order to get a cycle

length l ≤ k + 1 it has to be possible to divide the squares into d = k+1
l

identical groups.

Therefore d must be a factor of the number of circulating squares, r.

2.6 Garden of Eden

Garden of Eden partitions (named by a biblical analogy) are partitions which can not be

reached unless one begins the game there, and are impossible to get back to, once one has left.

Graph theoretically a Garden of Eden partition is a node in the game graph with in-degree

0.
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Theorem 3. A partition λ is a Garden of Eden partition if and only if λ1 < |λ| − 1, that

is: if the highest column of the Young diagram has fewer squares than the remaining number

of columns.

Proof. Suppose that λ1 < |λ| − 1 and that there is a predecessor τ to λ. When performing

the operator B on τ , a new part is created, of size |τ |. Since |τ | ≥ |λ| − 1 (if all parts are

still nonzero after applying B, |λ| = |τ |+ 1), the size of this part is at least |λ| − 1. But the

largest part of λ was by the assumption smaller than this. Since this is a contradiction, the

partition λ cannot possibly have a predecessor and is therefore a Garden of Eden partition.

Now suppose that λ1 ≥ |λ| − 1. Then we can construct a predecessor as follows: remove

the biggest part of λ, λ1, and add 1 to each remaining part (this is possible thanks to the

assumption). Now, if λ1 > |λ| − 1, add λ1 − (|λ| − 1) new parts of size 1. When performing

the operator B on this new partition, we will get a new part of size λ1, all parts of size 1

are removed and the remaining parts are decreased by one. This leaves us with the original

partition λ.

2.7 The dual game

Another suggested way to look at Bulgarian Solitaire is the dual game. While the original

game is based on the principle of taking one card from each pile and forming a new pile,

the dual game does the opposite: it takes the biggest pile and hands out the cards from that

pile to the remaining piles. This corresponds to taking the leftmost column of the Young

diagram, rotating it 90◦ clockwise and inserting it as the bottom row (see figure 7). This can

be described using conjugates of partitions.

Definition 2. The conjugate λ′ of a partition λ is the partition that corresponds to the Young

diagram obtained by mirroring the Young diagram of λ in the sense that rows are turned into
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(1) (2) (3) (4)

Figure 7: The dual game on the partition λ = (2, 2, 1, 1). Notice that the exact same thing
happens if we mirror the diagram horizontally, perform regular Bulgarian Solitaire on it, and
then mirror it back (compare to figure 4).

columns and columns are turned into rows.

Definition 3. The operator of the dual game, B′, is defined as follows:

B′(λ) = (B(λ′))′ (4)

That is, the dual game can be performed by mirroring the partition (taking its conjugate),

performing the original operator B on the mirrored partition, and finally mirroring it back.

Note that this is equivalent to creating a new row from the leftmost column in the Young

diagram, instead of doing the usual procedure of creating a new column from the bottom

row.

Theorem 4. All previously stated properties of Bulgarian Solitaire also apply to the dual

game (except for those involving right or left; the dual game is mirrored), i.e. the two games

are isomorph.

Proof. Since the dual game can be seen as Bulgarian Solitaire on the conjugates of the

partitions, the exact same properties must apply, except for the fact that the game is mir-

rored.

Also, from the visual interpretation of the dual game follows that B and B′ cancel each

other out, given that no holes are filled when applying either of the operations. B makes
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the squares of the Young diagram rotate to the right on their diagonals and B′ makes them

rotate to the left. All these properties of the dual game will be useful when defining Bulgarian

Solitaire in three dimensions.

2.8 Possible applications

Bulgarian Solitaire may seem to be a completely abstract game, lacking practical applica-

tions. To a certain extent that might be true, but there are acually connections between

Bulgarian Solitaire and real world phenomena. One example is taxes. The government col-

lects a small amount of money from each citizen, which is put into the public treasury. This

corresponds to regular Bulgarian Solitaire; each part of the partition is decreased by a small

amount, and the sum of these decreases forms a new part. Generally though, the government

takes a predefined percentage of the income of each citizen, instead of a constant amount,

but one might also define and explore the properties of such a variant of Bulgarian Solitaire.

Generally, every phenomena where something is taken from many entities and collected to

another entity could have common properties with Bulgarian Solitaire. The dual game, on

the other hand, applies the principles of Robin Hood: taking from the rich and giving it to

the poor. Lemma 1 actually implies that if Robin Hood continues to take from the rich and

give to the poor, the distribution of fortune in his community will become more triangular

(like the shape of the stable state) over time. Reorganization of companies is another ex-

ample. The board of directors might choose to remove one department and distribute the

employees from that department evenly over the remaining departments, which corresponds

to the dual game.
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3 Extension into three dimensions

3.1 Compatibility with the partition lattice

We define Young’s lattice (seen in figure 8) as a partially ordered set which describes inclu-

sion of Young diagrams. In other words, the lattice contains information for every pair of

Young diagrams whether it would be physically possible to place one Young diagram three-

dimensionally on top of the other, without any squares falling down due to gravity.

Definition 4. A Young diagram of a partition τ = (τ1, τ2, ..., τt) is included in the Young

diagram of a partition λ = (λ1, λ2, ..., λs) if and only if t ≤ s ∧ ∀i, 1 ≤ i ≤ t : τi ≤ λi.

Inclusion of τ in λ is from now on denoted by τ ≤ λ or λ ≥ τ .

In the visual representation of Young’s lattice there is an arrow from one partition to another

of adjacent size if the first one is included in the second one. Since the inclusion relation is

transitive, a Young diagram in the lattice is included in another if there is a directed path

from the first one to the second one. Notice also that the diagram is arranged into horizontal

levels, where the nth level consists of all partitions of n.

Theorem 5. Bulgarian Solitaire is compatible with the lattice order, i.e: τ ≤ λ ⇒ B(τ) ≤

B(λ). That is: If a Young diagram includes another Young diagram, that will still be the case

after applying the Bulgarian Solitaire operation on both of them.

Proof. Consider the Young diagram of a partition τ placed three-dimensionally on top of the

diagram of a partition λ, for which τ ≤ λ. Since λ includes τ , every square in the diagram

of τ is placed on top of a square in λ. Consider a pair of squares lying on top of each other.

Now, perform the operation B on both partitions simultaneously. In the most common case

both of the squares move one position within their diagonals, and thereby stay on top of

each other. If both of them should fall into a hole in the diagonal below they also stay on
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Figure 8: The Hasse diagram of Young’s lattice drawn for n ≤ 4.

Figure 9: The Young diagram of τ = (2, 1) is included in the Young diagram of λ = (3, 2).
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top of each other. The last case is if the square from τ falls into a hole but the square from λ

does not. Then there has to be another square from λ in the new position of the square from

τ , since otherwise the square from λ would also have fallen. The case that the square from λ

falls but not the square from τ will never arise, since that contradicts the initial assumption

that τ ≤ λ. Therefore, if a square from τ lies on top of a square from λ before B is applied,

it still does afterwards. This applies to all squares in τ .

Corollary 2. If an arbitrary number of partitions form a chain in Young’s lattice (where

each chosen partition is included in all subsequently chosen partitions), then after performing

the Bulgarian Solitaire operation B on all of them, they still form a chain in Young’s lattice

and are still compatible in the same way.

Figure 10: This is an example of 4 parallel games. The states of the respective games are
marked with gray in Young’s lattice. Between each figure the operation B has been applied
on all 4 partitions. Notice that the currently chosen partitions stay under each other in the
lattice during all steps, which conforms with corollary 2

3.2 Plane partitions

In order to represent Bulgarian Solitaire on the partition lattice, we introduce plane parti-

tions. Plane partitions of n are like usual integer partitions in the sense that the sum of their

parts is n, but instead of just being a list of integers a plane partition forms a two-dimensional

grid of integers [4].

Definition 5. Define a plane partition of n as an array π = (πij), where i, j ≥ 1, all πij
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are nonnegative integers and
∑
πij = n. Every row and column should be sorted in non-

increasing order, that is:

∀i, j : πi,j ≥ πi+1,j ∧ πi,j ≥ πi,j+1 (5)

A plane partition can be represented by a three-dimensional Young diagram (see figure 11).

Here, each horizontal layer can be interpreted as a partition from Young’s lattice. We denote

the horizontal layers with b1, b2, b3, ... where the lowest layer has index one, the second has

index two, and so on. Note that the Young diagram of a layer bi includes all layers above it.

Therefore a plane partition can be interpreted as a chain in Young’s lattice.

b1

b2

b3

b4

Figure 11: A visualization of the following plane partition of 26:

4 4 2 2
3 2 1 1
2 1 1 1
1 1

Notice that the 3D diagram is aligned and sorted against three sides: the left side (denoted

l), the right side (denoted r) and the bottom (denoted b). Then, by symmetry, it follows that

the layers parallel with the left side (denoted l1, l2, ...) and the layers parallel with the right

side (denoted r1, r2, ...) also form chains in Young’s lattice. Generally:

s1 ≥ s2 ≥ s3 ≥ ... (6)
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l1 r1
l2 r2

Figure 12: The operations B′(π, b) and B(π, b) visualized. When performing operations with
respect to b, the left layer rotates 90◦ clockwise and is inserted on the right, or the right
layer is rotated counter-clockwise and inserted on the right.

3.3 The 3D game

Definition 6. We define Bulgarian Solitaire on plane partitions with two basic operations,

B(π, s) and B′(π, s), where π is a plane partition and s is one of the sides b, l and r with

respect to which the operation will be performed.

B(π, s) performs the original Bulgarian Solitaire operator B on the partitions of all layers

parallel to the side s, that is: s1, s2, ....

B′(π, s) performs the dual game operator B′ on the partitions of all layers parallel to the side

s, that is: s1, s2, ....

This definition is possible thanks to the results of corollary 2, since applying B(π, s) or

B′(π, s) can be seen as applying B(λ) or B′(λ) on a chain of diagrams in Young’s lattice.

The conservation of the lattice order (see theorem 5 and corollary 2) is equivalent to the

plane partition still being arranged in a way consistent with equation (5).

The definition of Bulgarian Solitaire in 3D opens up for six different possible moves: B(π, b),

B′(π, b), B(π, l), B′(π, l), B(π, r) and B′(π, r). This makes the game more complex, but also

changes the nature of the game: it is no longer deterministic, the player can now choose

between moves.
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3.4 Convergence

For two-dimensional Bulgarian Solitaire we have shown that squares in a Young diagram

either stays in the same diagonal or drops to a lower one when B or B′ is applied (see figure

3 and 4). The same thing applies to the 3D game. A cube in a three-dimensional Young

diagram is able to traverse the diagonals of the layers it occupies. For example, if B(π, b) is

applied, all cubes will cycle on diagonals parallel to the bottom layer. The set of positions

to which a cube can be moved (assuming it does not fall into a hole in the process) using

the six operations form a diagonal plane. For exemple, all visible cubes in figure 13 form a

diagonal plane. A cube can never move to a higher diagonal plane; it can either stay in its

current plane or fall into a hole in a lower plane.

Definition 7. The tetrahedral number Pk is the sum of the k first triangular numbers. That

is:

Pk =
k∑

i=1

Ti =
k∑

i=1

i∑
j=1

j (7)

The tetrahedral number Pk can also be expressed with the following formula (easily provable

by induction):

Pk =
n(n+ 1)(n+ 2)

6
(8)

There is a three-dimensional equivalence to the two-dimensional stable state, as visualized

in figure 13. This state loops back to itself, no matter which of the six different moves is

performed. The stable form exists in the 3D game graphs of tetrahedral numbers and is

formed by the Young diagrams of stable two-dimensional forms (seen in for example figure

3). The stable plane partition of Pk consists of the stable partition of Tk as the bottom layer,

the stable partition of Tk−1 as the second layer etc.

Lemma 2. If there exists a cube in one diagonal plane and a hole in a lower diagonal plane,

then there exists a sequence of moves which leads to the hole being filled.

17



Figure 13: This is the stable form of the tetrahedral number P5 = 35.

Proof. Let there be a cube in one diagonal plane and a hole in a lower one. We shall now

construct a sequence of moves fulfilling the criteria given above. This problem can be reduced

to moving the cube and the hole to the same layer, because then by lemma 1 there exists a

sequence fulfilling the criteria. In order to put them in the same layer, use the six operations

to place the cube in the pile of π1,1. Notice that this place, in every layer parallel to b,

corresponds to the first diagonal - the one of length 1. When performing the moves B(π, b)

and B′(π, b) all cubes and holes are cycling on their diagonals parallel to b. That is: the cube

in the first diagonal will not change position at all, whilst the hole will move. Just apply

B(π, b) until they are in the same layer (figure 14a). Then use operations with respect to the

side parallel to that layer, until the hole has been filled as by lemma 1 (figure 14b). If during

this procedure the hole is prematurely filled by another cube or the cube fills another hole,

the lemma is still fulfilled.

Theorem 6. For each plane partition π of Pk, there is a path in the game graph from π to

the stable state.

Proof. By lemma 2, it is possible to fill all holes, as long as there are still cubes in higher

diagonal planes. Since Pk cubes exactly fill k diagonal planes, after filling all holes the stable

state has been achieved.
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(a) Make the cube and the hole go into
the same layer.

(b) Perform moves with respect to the
side parallel to that layer.

Figure 14: The key ideas of constructing a sequence of moves which fills a hole.

We can now define a game with an objective, based on the three-dimensional Bulgarian

Solitaire: start at an arbitrary plane partition π of Pk. Use the 6 operations to transform π

into the stable state of Pk in as few moves as possible. By theorem 6 this game always has

a solution, no matter which plane partition of Pk the player starts at.

The game could also be made slightly harder, for example by restricting the allowed opera-

tions to B(π, b) and B(π, l). It can be proved solvable with these limitations, but we leave

this proof as an excercise for the reader.

4 Future research

The research on Bulgarian Solitaire in three dimensions has only just begun; there are still

many unexplored areas. One interesting question is if there exists any Garden of Eden par-

titions in the three-dimensional game. I think that it does not, but this is yet to be proven.

This conjecture has been confirmed for plane partitions π up to
∑
πij = 9 through computer
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simulations made as part of this study.

Conjecture 1. Using the six defined operations, there are no plane partitions which can not

be reached from another plane partition.

There are also many questions related to the game proposed in the end of section 3.4: is

there an optimal strategy to minimize the number of moves needed to change an arbitrary

plane partition of a tetrahedral number into the stable state? What is the maximum number

of moves needed if playing optimally? Can this be generalized into a competitive multiplayer

game?

Also, it would be interesting to investigate how the game would behave if allowing parts of

infinite size, or infinitely many parts. Furthermore, could it be possible to define Bulgarian

Solitaire on continous functions?
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