Desirable difficulties during the development of active inquiry skills

George Kachergis, Marjorie Rhodes, Todd Gureckis

A skill of central importance during development is learning how to ask informative questions in order to make sense of the world. The roots of these abilities are observable even in the early preschool years. For example, in simple causal reasoning tasks, preschool-aged children can distinguish confounded from unconfounded evidence to draw causal inferences (Gopnik, Sobel, Schulz, & Glymour, 2001; Kushnir & Gopnik, 2005, 2007; Schulz & Gopnik, 2004). Preschool-aged children also selectively explore confounded evidence in their own exploratory play (Cook, Goodman, & Schulz, 2011; Gweon & Schulz, 2008; Schulz & Bonawitz, 2007). Despite these early emerging abilities, many of the cognitive skills required for self-guided, active inquiry seem to follow protracted developmental trajectories. For example, in tasks designed to assess scientific reasoning abilities, children in the older elementary school years (ages 8–10) often have difficulty adopting systematic strategies, such as testing the effects of one variable at a time or selecting interventions that will lead to determinate evidence (Chen & Klahr, 1999). Although children in the older elementary school years can be taught to engage in these strategies via direct instruction (Klahr & Nigam, 2004; Kuhn & Dean, 2005), it is notable how difficult it is for them to discover and implement them on their own.

One reason for the difficulties children exhibit in these types of inquiry tasks may be that active inquiry depends on the coordination of a variety of component cognitive processes (Bonawitz & Griffiths, 2010; Coenen & Gureckis, 2015). For example, according to one popular view (Klein, Moon, & Hoffman, 2006a, 2006b; Russell, Stefik, Pirolli, & Card, 1993), active inquiry unfolds as a sequence of mental steps (see Fig. 1). Learners must generate possible hypotheses to explain their environment. They then must engage in decision making to ask questions or gather additional information to decide which of these hypotheses is most likely. They then must understand the results of these inquiry behaviors and update their beliefs accordingly, and so on. The various stages of this loop closely mirror the process of scientific reasoning engaged by scientists (Klein et al., 2006a, Klein, Moon, & Hoffman, 2006b; Russell et al., 1993). Inefficiencies in any or all of these interrelated processes may serve as developmental limitations. For example, young learners may be able to search efficiently for information given a particular set of hypotheses but have trouble updating their beliefs correctly given new evidence. In this sense active inquiry behavior is like a bicycle: when all the
1.1. Developmental change in the ability to ask revealing questions

Active inquiry fundamentally depends on the ability of learners to construct actions or queries which gain information (e.g., asking a question of a knowledgeable adult). A now classic way to study this behavior is through experimental tasks based on the 20-questions or “Guess Who?” game. In the game, the asker (participant) tries to determine a hidden object known only to the answerer (experimenter) by asking a series of yes-or-no questions. Mosher and Hornsby (1966) identified two broad question types commonly used in the game: hypothesis-scanning questions test a single hypothesis or specific instance (e.g., “Is it a monkey?”), whereas constraint-seeking questions attempt to constrain the hypothesis space faster by querying features that are present or absent in multiple objects (e.g., “Is it soft?”), but that do not directly identify the answer except by virtue of elimination.

A classic finding in this literature is that younger children (e.g., aged 6) tend to ask more hypothesis-scanning questions, while older children (e.g., aged 11) use more constraint-seeking questions, and also tend to find the answer after fewer questions (Mosher & Hornsby, 1966). One explanation is that only older children have developed the ability to focus on the high-level features that group the hypotheses, whereas younger children focus on individual stimuli. Consistent with this viewpoint, manipulations that help children focus on these higher-level features, such as cueing them with basic level category labels instead of exemplar names (Ruggeri & Feustel, 2015), increase the likelihood that young children will generate constraint-seeking questions (see also Herwig, 1982). Further, although young children are often relatively less likely than older children to ask constraint-seeking questions, even younger children (ages 7–9) are more likely to do so when such questions are particularly informative, such as when the hypothesis space is large and there are several equally probable solutions remaining (Ruggeri & Lombrizo, 2014, 2015). These results reinforce the viewpoint described above: having the right set of hypotheses in mind, or being primed with the right level of category information seems to drive more efficient information search.

The behavioral distinction between constraint-seeking and hypothesis-scanning questions can also be studied from the perspective of normative models (Oaksford & Chater, 1994; Nelson, 2005; Tsividis, Gershman, Tenenbaum, & Schulz, 2013). These models attempt to objectively define the “quality” of a question and to see how people’s choices compare (see below for a larger discussion). A number of recent studies have explored how children’s question asking compared to such models. For example, Nelson, Divjak, Gudmundsdottir, Martignon, and Meder (2014) found that 8–10 year-old children can search a familiar structured domain (people with varying gender, hair color, etc.) fairly efficiently, tending to ask about frequent real-world features that roughly bisected the search space (e.g., gender first). Likewise, Ruggeri, Lombrizo, Griffiths, and Xu (2015) found that children’s patterns of search decisions were well-explained in terms of expected information gain (EIG), one popular model from this class which is described below. Perhaps most importantly, these models are highly context sensitive. Rather than arguing that either constraint-seeking or hypothesis-scanning questions are universally “better,” these models take into account the current context including the learner’s prior belief and the past evidence that has been revealed. This allows much more fine grained predictions. For example, on a given trial a hypothesis-scanning question might be equally informative compared to a constraint-seeking question (e.g., when only two hypotheses remain). In our study we will analyze children’s question asking with respect to these models to allow an objective measurement of the quality of their information seeking behavior.
1.2. Belief updating and active inquiry

While it is clear that there are developmental changes in how children formulate questions, less work has considered developmental changes in how children make use of the new evidence that their questions reveal (but see Denison, Reed, & Xu, 2013). However, there are many reasons to think that these two behaviors might be deeply entwined. The active inquiry loop in Fig. 1 suggests one obvious interaction because if questions or information gathering actions are made on the basis of current beliefs, and those beliefs are wrong, then a query may not have the expected effects (c.f., research on the hot stove effect, Denrell & March, 2001; Rich & Gureckis, 2015). There are certainly many examples where scientific progress has been derailed by incorrect interpretation of evidence, as in the case of experiments thought to support the theory of spontaneous generation of life (Needham, 1745).

Coenen and Gureckis (2015) describe a more fundamental reason for why belief updating and information search might be related. In particular, they focus on a popular computational model of active inquiry called Expected Information Gain (EIG). As mentioned above, this model has been widely used in both the adult and developmental literature to understand how people decide between different queries (Oaksford & Chater, 1994; Coenen, Rehder, & Gureckis, 2014; Gureckis & Markant, 2009; Nelson, 2005; Nelson et al., 2014; Markant & Gureckis, 2012; Ruggeri et al., 2015; Steyvers, Tenenbaum, Wageneakers, & Blum, 2003). Intuitively, EIG evaluates the quality of a question by considering how much is expected to be learned from each possible answer to that question. For example, in the constrained 20-questions game “Guess Who?”, a child might ask “Does your character have a hat?” or “Is your character male?”. To decide between these two queries EIG considers each possible answer (“yes” or “no” for each) and how much each answer would alter the learner’s current beliefs given the question. If all the remaining characters in the game were wearing hats then the answerer would never respond “no” to the hat question, and the received “yes” would not normatively alter the learner’s beliefs: no information would be gained by asking about hats. Even if one of the dozen remaining characters had a hat, asking about hats would have low EIG, since it would be unsurprising that the answer is “no”–only in one of twelve possible worlds does the hidden character happen to be wearing a hat, while in 11 of 12 worlds the character is not. In contrast, if half the remaining characters were male and half were female, then either answer to the gender question would strongly shift what the learner knows, eliminating half of the candidates (either the males, or the females). Thus, the more valuable question according to EIG would be “Is your character male?”. In this model, belief updating is fundamental to judging the information quality of a possible query: it is only by imagining how one’s beliefs would change given different answers that a question derives meaning and value. On the basis of this observation, Coenen and Gureckis (2015) reported a study aiming to relate individual differences in belief updating during a causal reasoning task to patterns of information seeking behaviors. Subjects that showed clear evidence of biased belief updating (e.g., incorrectly interpreting ambiguous evidence as unambiguous) also showed biased patterns of information gathering in a causal intervention learning task. This study highlights the strongly interactive nature of belief-updating and information seeking behaviors.

Interestingly, past work on the development of question asking abilities in children has tended not to emphasize belief updating as a dependent measure, or precluded studying updating beliefs by the design of the study. For example, Herwig (1982) presented children with a series of two-alternative forced choice decisions between hypothesis-scanning or constraint-seeking question but did not actually give feedback (and therefore could not detect errors in belief updating). In the 20-questions task of Nelson et al. (2014), 8- to 10-year-olds were asked to identify which of 18 people was the hidden target, and played the game to completion several times for different targets. Children eliminated hypotheses (flipping over cards) based on acquired evidence, but were given help by the experimenter if needed, which presumably means they were not allowed to make errors. In Ruggeri and Lombozro (2014), the experimenters did not explicitly represent the hypothesis space for participants in Experiment 1’s causal reasoning task (e.g., “Why was a man late to work yesterday?”), and when ten explicit reasons for being late were given in Experiment 2, they remained in view. That is to say, the process of hypothesis updating was not scrutinized in these prior studies.

In the present study, we hypothesize that biases in the way children search for information (e.g., by favoring hypothesis scanning questions over constraint seeking questions) may stem from difficulties in coordinating the belief updating and search process. There are a variety of specific reasons for this prediction. First, although the components of the sensemaking model described in Fig. 1 above are sequential, they likely rely on a common pool of cognitive and attentional resources, and are thus not completely independent. At a minimum, learners have constant and limited capacities for working memory and reasoning during the task, and may come to avoid strategies that tax these resources if they run into difficulty during the course of the experiment. In this case we hypothesize that the cognitive load from planning questions, or from updating beliefs, may impair performance on either task. Second, hypothesis scanning questions might be easier for young children in that they produce evidence that applies to a single hypothesis. If instead children ask constraint-seeking questions, they must eliminate from the hypothesis space any possibilities that are ruled out by the new information. This process could be cognitively taxing, and also prone to errors. Thus, although constraint-seeking questions are often more informative in theory, we posit that they might not always be so to young children, particularly if children have difficulty using the obtained information to update their representation of the hypothesis space accurately.

To test this hypothesis, in the present study we manipulated whether children received assistance in integrating evidence with the hypothesis space or had to undertake this process on their own. Our expectation was that aiding children in coordinating evidence and beliefs would enable more sophisticated, and informative, inquiry behavior. To evaluate this prediction we evaluated the quality of children’s question asking ability against an objective standard of informativeness given by the EIG model described in more detail below. We additionally analyze our data specifically in terms of constraint-seeking and hypothesis-scanning questions. Our central prediction was that assistance in belief updating should increase the relative EIG of children’s questions and the relative utilization of constraint-seeking questions. Given that older children (8–10 years) have previously been found to use more constraint-seeking questions than younger children (5–7 years), we tested across these two age groups, expecting that younger children would benefit more from the assistance in hypothesis updating than would older children.

2. Experiment

The purpose of the experiment is to investigate how children utilize hypothesis- scanning and constraint-seeking questions when trying to discover a hidden object. To that end we created a tablet-based game based on the popular “Guess Who?” paradigm. The study was conducted in the context of a children’s science museum and the materials and design of the study were selected to integrate with museum content. Our hope was that...
insights from the study might be used to help museum curators design more effective educational exhibits that target children of different ages. For example, if updating the hypothesis space is difficult for younger children, exhibits for this age group assist them in updating, and perhaps even attempt to teach them the process.

2.1. Methods

2.1.1. Participants

Participants in this experiment were 134 children between the ages of 5 and 10 years old who were recruited at the American Museum of Natural History’s Discovery Room. Of the 134 children recruited (67 per condition), we analyze the data from 121 children (21 5-year-olds, 20 6-year-olds, 22 7-year-olds, 20 8-year-olds, 20 9-year-olds, and 18 10-year-olds) who completed 5 or more rounds of the game, understood the instructions, and were not distracted (e.g., by other children or their parents). Participants were assigned in counterbalanced order to either the automatic-update condition or the manual-update condition (automatic: 32 5–7 year-olds and 29 8–10 year-olds; manual: 31 5–7 year-olds and 29 8–10 year-olds).

2.1.2. Stimuli

On each round, children were presented with a display containing sixteen insects. One of the insects was randomly selected to be the target which children attempted to identify by asking questions. The sixteen insects within a round shared the same body shape but were composed of varying perceptual features. In particular, insects were defined by the presence or absence of 9 features: green body, orange eyes, antennae, big spots, tiny spots, legs, leaves, water droplets, and blue “fur”. Fig. 2 shows an example of two of the body shapes used, each with all of the binary features present. Across rounds the body shapes (selected from a pool of 16 unique body shapes) varied randomly but within a round the body shape was shared between all sixteen items. The insect task was designed to fit thematically with the content of the AMNH Discovery Room activities which emphasize the often subtle differences between species of animals (specifically, many interactive exhibits involve insects).

2.1.3. Design

Across the sixteen exemplar insects (A-P in Table 1) some perceptual features were more frequent than others (e.g., F1 one was present on eight of the insects while feature F9 was present on only two insects). The features (F1-F9) in this semi-hierarchy were randomly assigned to the visual features for each participant, with a consistent assignment used from round to round. For example, if feature F9 was color (green versus white), then all the 16 bugs might be white except items C and I which would be filled in with a green body. Both the identity of the features and the meaning of the 0s and 1s in the table were randomly determined for each child. F10 was always assigned to a button for body shape, which was shared by all exemplars.

Table 1

<table>
<thead>
<tr>
<th>Exemplar</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
<th>F9</th>
<th>F10</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>0</td>
</tr>
<tr>
<td>M</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>O</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Fig. 2. Examples of two insect body types with all 9 of the binary features present. Each round used one of 16 possible body shapes.

2.1.4. Procedure

After being trained by an experimenter on a simpler version of the task with unrelated stimuli† (a dog searching dog houses) so that they understood how to query exemplars and features, and how to eliminate hypotheses, children played 5 or more rounds of the iPad game asking them to identify which one of 16 insects was button, children could at any time query an exemplar by tapping it to determine if it was the hidden insect or not. This choice is equivalent to a “hypothesis–scanning” query. The interactive dynamics of the display varied across conditions. After making a feature query in the manual-update condition, children must select which insects (i.e., hypotheses) are consistent with the feedback. In contrast, in the automatic-update condition the hypothesis space automatically updated to be consistent with the feedback received.

† Download full task code, data, instruction, and analysis scripts: https://github.com/kachergis/bugguess.
hidden under a cartoon rug (see Fig. 3). The task alternated between
the query phase and the elimination phase. In the query phase, play-
ers could either query an individual insect by tapping one (equiva-
 lent to asking, “Is this the hidden bug?”), or choose to use a
feature query button (e.g., the green button asks “Is the hidden
bug green?”) to find out whether the hidden insect had a particular
feature.

If a single exemplar was tapped on (i.e., a hypothesis-scanning
query), and the item was the experimenter-determined hidden
insect, a smiley face appeared and the round was completed. If
the tapped exemplar was not the hidden insect, a red “X” was
shown on top of the tapped insect and the insect became grayed
out (i.e., eliminated).

After a feature query (i.e., constraint-seeking query), the insect
under the rug gave feedback, saying “Yes!” (indicating it had the
feature; narrated by the experimenter), or “No!” (if it did not have the
feature). This was followed by the elimination phase, during
which insects that were inconsistent with the feedback were elimi-
nated, and the hypothesis space was thus narrowed. The elimina-
tion phase varied based on condition. In the automatic-update
condition, after the feedback from a feature query, subjects merely
pressed the “Eliminate” button, all the no longer relevant insects
were eliminated (grayed out), and the game returned to the query
phase. In the manual-update condition, after a subject made a fea-
ture query and saw feedback, they had to select each insect that
was consistent with the feedback for that feature, as shown in
the top right of Fig. 3. Insects were selected (denoted by a green
box) by tapping, and could be deselected by tapping again. Only
when children verified they were done selecting insects did the
experimenter press the “Eliminate” button, which eliminated any
insects that were not selected.

Before children were allowed to begin, the experimenter
explained a random selection of at least three of the feature but-
tons (more if the child asked), and asked children to point to an
exemplar exhibiting each of the explained features. In the
manual-update condition it was possible for mistakes to be made
during the elimination phase, as the software did not aid in updat-
ing the hypothesis space. Insects that should have been eliminated
but were kept (a ‘miss’) continued to be visible options. Insects that
were consistent with the query but wrongly eliminated (a ‘false
alarm’) were grayed out. Our analyses below take into account
the role that such errors may have played in the manual-update
condition. In the event that the hidden insect was wrongly elimi-
nated during a manual-update error, the round was played out
until all of the insect/hypotheses were grayed out. The experi-
menter would then indicate that the insect must have been mis-
takenly eliminated (but not at what point), and would end the
round by clicking the grayed-out exemplars until the hidden one
was found. These final clicks (beyond when all hypotheses were
eliminated) were not included in the analysis.
At the beginning of each round, the experimenter would say, “Let’s try to find which insect is hiding pretty quickly, so we can do more!” Thus, the task mostly relied on intrinsic motivation to solve the puzzle quickly, providing no explicit cost incentive to be efficient. This was chosen primarily due to the difficulty of rewarding children in the museum. Children were welcome to complete more than five rounds, if they desired to: after the fifth and each successive round, they were asked, “Do you want to play again?”.

2.2. Results

2.2.1. Overall

We analyzed only the first 10 rounds from each child (only 8 children played more than 10 rounds, including one who played 51 rounds). This covers 722 rounds from the 121 children who understood the instructions and completed a minimum of five rounds (61 in the automatic condition and 60 in manual). The mean number of total queries (feature and exemplary) taken to complete a round was 6.07 in the automatic-update condition, and 5.08 in the manual-update condition. Based on bootstrapped means, the 95% confidence intervals (Cs) for these distributions did not overlap (bias-corrected and accelerated (BCA) 95% Cs for manual condition: (4.75, 5.44), for automatic condition: (5.77, 6.37)), with the manual condition taking fewer queries. However, we note that in the manual condition, before removing the queries following mistakes in which the correct answer had been eliminated, rounds took an average of 7.36 queries (95% Cs: (6.91, 7.85)) to complete—more than the automatic condition. For comparison, we simulated 700 rounds of the automatic condition. For comparison, we simulated 700 rounds of the automatic condition.

2.2.2. Qualitative querying behavior

Participants’ mean number of queries per round were subjected to an ANOVA with update condition (automatic vs. manual) and age group (5–7 vs. 8–10) as between-subjects factors and button type as a within-subject factor. This analysis indicated a significant main effect of age group (F(1,223) = 7.82, p < .01), and no significant main effect of condition (F(1,223) = 0.29, p = .59) or query type (F(1,229) = 0.93, p = .33). Overall, older children required fewer queries of either type to complete a round and age (in years: 5–10; t(119) = 2.39, p = .02, r = –.21). There were significant interactions of condition and query type (F(1,223) = 12.72, p < .001), and age group and query type (F(1,223) = 9.75, p < .001), detailed below. No other interactions were significant (all F-values < 1). In comparison to the manual condition, there were fewer exemplary queries in the automatic condition (M_{man} = 4.16, M_{auto} = 2.99, t(100.5) = 2.97, p < .01), while there were fewer feature queries in the manual condition (M_{man} = 3.88) (M_{man} = 3.01, t(85.8) = 2.41, p < .05). The participants’ feature query rates in both conditions were lower than the simulated random rounds’ mean number of feature queries (5.41, bootstrapped 95% Cs = (5.19, 5.64)), but above the optimal. The participants’ number of exemplary queries in the manual round were similar to the simulated agents (4.02, bootstrapped 95% Cs = (3.86, 4.19)), but lower in the automatic condition.4

Fig. 4a shows the average number of query types used per round for participants by age group. Both age groups in the manual-update condition used more exemplary queries than feature queries, and older participants in both conditions use fewer exemplar queries than younger participants (M_{5–7} = 4.28, M_{8–10} = 2.64, t(113) = 3.64, p < .001). Older participants used a greater proportion of feature queries than younger participants in the automatic condition (M_{5–7} = 49 vs. M_{8–10} = 66; t(57.8) = 3.31, p < .01), but there was no significant difference in the manual condition (M_{5–7} = 44 vs. M_{8–10} = 53, t(49.3) = 1.31, p = 20). Thus, the automatic condition replicates the Mosher and Hornsby (1966) finding that older children use a greater proportion of constraint-seeking questions, but this finding is not reliably found in the manual condition alone.

The finding of more feature queries in the automatic condition and more exemplar queries in the manual condition raises a number of questions about when and why participants are choosing particular queries in each condition. We next investigate response times to reveal how much thought participants are putting into making each type of query.

2.2.3. Response times

Participants’ median RT for each button type (feature and exemplar) was computed and these data were subjected to an ANOVA with condition (automatic, manual) and age group (5–7, 8–10) as between-subjects factors and button type as a within-subject factor. There were significant main effects of button type (F(1,229) = 26.33, p < .001) and condition (F(1,229) = 7.36, p < .01), but not a significant main effect of age group (F(1,229) = 1.89, p = 0.17). On average, participants took longer to make queries in the manual condition (5219 ms) than in the automatic condition (4016 ms). Overall, participants took much longer to make feature queries (5841 ms) than to make an exemplar query (2424 ms), perhaps indicating more thought before making the more complex queries (i.e., feature queries, as they may pertain to multiple exemplars). There was also a significant interaction effect of query type and condition (F(1,229) = 11.81, p < .001). Fig. 4b shows the mean of subjects’ median RTs for each query type, split by condition. Feature queries were slower in the manual-update condition (8347 ms vs. 5435 ms in automatic).

2 This threshold was chosen after seeing the distribution of rounds played to limit undue influence on by-round analysis of the few children who chose to play more than 10 rounds (whose behavior may be expected to change in later rounds, and who may be different than the majority of children who played < 10 rounds), without throwing out too much of the data (92% remains).

3 Behavior across rounds was investigated for evidence of learning, but no consistent changes in behavior were evident.

4 Note that although there are at first more exemplars (16) than feature buttons (10), after the first query or two there will likely be few exemplars remaining to query, which is why the expected number of exemplar queries is lower than the expected number of feature queries in the simulation.

5 Response times are right-skewed, so medians are a less biased measure of central tendency.
which could indicate (1) more careful thought given to features in this condition, and/or (2) general hesitance to use feature queries, perhaps because it is time-consuming (even difficult) to manually update hypotheses. Exemplar queries, on the other hand, were at least as fast in the manual-update condition as in the automatic-update condition (2248 ms vs. automatic: 2597 ms). Other interactions were not significant (all F-values < 1).

In summary, it is clear that the manual-update condition results in fewer feature queries and more reliance on exemplar queries. Manual-update participants may be reluctant to use feature queries for at least two reasons: (1) it demands more time and cognitive effort to manually update the hypothesis space after a feature query than in the automatic-update condition, and (2) the manual update process is error-prone, and any mistakes may in turn lead to more exemplar queries in order to recover.6 Therefore we proceed to investigate errors in manual updating.

2.2.4. Manual update mistakes

The manual-update condition allows participants to commit two types of error during hypothesis updating: a miss is defined as a failure to eliminate a insect, and a false alarm is a failure to keep a hypothesis that was consistent with the query. Note that a miss is an error of commission—i.e., the insect had to be tapped whereas a false alarm is an error of omission (i.e., failing to tap a insect), and thus we expect more of the latter. Comparing the manual-update subjects’ mean number of errors of each type per round, indeed there were more false alarms ($M = 6.9$, $sd = 1.9$) than misses ($M = 1.8$, $sd = 1.3$; paired $t(58) = 19.8$, $p < .001$). A MANCOVA to determine if error rates were related to age did not find a significant effect for either misses ($F(1,56) = 0.77$, $p > .05$) or false alarms ($F(1,56) = 0.23$, $p > .05$). Consistent with our hypothesis that manual updating increases cognitive load and reduces information seeking behavior, fewer feature queries and more exemplar queries were made in the manual condition. However, RT analyses also indicated that feature queries took longer under manual updating. One possibility is that feature queries were more carefully considered in this condition than under the ease of automatic updating. To evaluate this idea, we conducted a model-based analysis of children’s feature queries which provides a context-sensitive measure of query informativeness.

2.2.5. Expected information gain

Each successive query reduces the size of the remaining hypothesis space to some degree: on the first move, querying the appropriate feature (F1) can cut the space in half. When two hypotheses remain, even an exemplar query will cut the space in half. As a result, the distinction between constraint-seeking and hypothesis scanning queries is not absolute (either could be better in different circumstances). As described in the Introduction, one way to analyze the contextual sensitivity of participants’ queries is to calculate the Expected Information Gain (EIG) of the query they made.

We first introduce key terms used to define EIG. Entropy measures uncertainty about the outcome of a random variable X and is denoted $H(X)$. Entropy is 0 when there is only one possible outcome, and maximal when all possible outcomes are equiprobable (i.e., a uniform distribution).

$$H(X) = -\sum_x p(x) \cdot \log_2(p(x))$$

Mutual information gain, $I(X;Y)$, measures the change in entropy as we receive a new piece of information Y, i.e., how much does our uncertainty about X change given that we know Y?

$$I(X;Y) = H(X) - H(X|Y)$$
The Expected Information Gain (EIG) of a query Q is the weighted average of the information possible from each possible answer to the query, weighted by the current probability of receiving that answer.

$$EIG(Q) = -\sum_{Y} P(Y|Q)/P(X;Y)$$ \hspace{1cm} (3)

This will be 0 (or near-0) for queries that can be expected to eliminate none or just one or two hypotheses in a large space, and more positive for queries that are likely to eliminate a larger number of hypotheses. In this task, EIG is maximal (1) for a feature query that will eliminate half the remaining hypotheses. Such a query is always available at the beginning of any round (feature F1), and due to the partially-nested feature structure used (see Table 1), maximal EIG queries are often available at other stages of the round. Note that maximizing EIG would result in the same choices as maximizing the expected number of deleted hypotheses, taking into account the number eliminated by both possible outcomes of the query, and the likelihood of each outcome. Due to the semi-hierarchical distribution of features, there is often a single feature with near-maximal EIG, while once a feature query is made, some other feature query will now have near-minimal EIG.

We analyze the EIG for each participant's feature queries separately, as well as in aggregate with the exemplar queries. Participants' mean feature query EIG was subjected to an ANOVA with condition and age group (5–7 vs. 8–10) as between-subjects factors. This ANOVA indicated significant main effects of condition ($F(1,115) = 55.03, p < .001$) and age group ($F(1,115) = 12.42, p < .001$), with no significant interaction ($F(1,115) = 0.20, p = .66$). The same ANOVA applied to participants' mean EIG of all queries indicated a significant main effect of condition ($F(1,116) = 25.11, p < .001$) and a significant main effect of age group ($F(1,116) = 21.43, p < .001$), with no significant interaction ($F(1,116) = 1.02, p = .31$). Fig. 5 shows mean EIG per feature query (a) and for all queries (b) by age group and condition, along with a baseline showing the mean EIG of all the remaining feature queries (i.e., as if each subject had chosen randomly from the feature queries available at any given point). Note that although randomly-chosen features for the manual-update subjects have a slightly higher EIG than for automatic-update subjects (driven in part by update errors quickly reducing the hypothesis space), the baseline random EIGs are far below the corresponding human data. Feature queries made by 8–10 year-olds had significantly higher EIG than those made by 5–7 year-olds ($M_{5.7} = .71, M_{8.10} = .63, t(117) = 3.06, p = .003$), showing that older children tended to use more relevant feature queries. The feature queries made by participants in the automatic condition had significantly lower EIG than those made in the manual condition ($M_{manual} = .59, M_{automatic} = .75, t(112.7) = 7.15, p < .001$). To verify this finding, we examined in what proportion of feature feature queries participated in each condition chose the most informative feature query, in terms of the actual EIG for the current hypothesis space. Automatic-update participants queried the most informative feature in 30.3% of the situations, while manual-update participants chose the most informative feature in 37.6% of the situations. Thus, although manual-update participants used fewer feature queries overall, and did make some mistakes during hypothesis updating, they queried features with higher expected information gain than automatic-update participants. Along with the reaction time results described above, this suggests that these children thought more before making their choices and managed to choose more informative feature queries. Indeed, there was a weak but significant correlation of participants' mean feature query RT and EIG ($r = .20, r(116) = 2.17, p < .05$), verifying that longer RTs are associated with more informative feature queries.

2.2.6. Query-by-query behavior

Fig. 6 shows the mean proportion of feature vs. exemplar queries by query index within a round for each update condition split by age group, contrasted with simulated agents choosing any available buttons uniformly at random throughout the game. Older children show a much higher proportion of feature queries in the first three clicks of the automatic condition, and the first two of the manual condition. In both update conditions, the first three clicks are more likely to be feature than exemplar queries, and automatic-update subjects often make a fourth feature query before likely moving to exemplar queries. Both human conditions are quite different than the simulated random agent. Rather, the response profile of human participants looks generally like the optimal sequence: 3 feature queries and then one (sometimes two) exemplar queries. However, as was shown earlier, participants rarely chose the most informative feature to query at any given time, and manual participants made a number of updating errors. Where does the higher EIG for manual-update feature queries come from? Are they choosing the best feature query from the start, or are they simply better at testing more contextually-relevant features later in the round?

Fig. 7 shows the mean EIG of feature queries by feature query index (left), and for all queries (right), with a simulation based on the participants' data for comparison: although following the same sequence of situations as participants, this simulation shows the EIG if a query (just feature at left, or feature and exemplar at right) had been chosen at random in each instance. Fig. 7 reveals that people in the two update conditions had similarly informative first queries—especially for the 5–7 year-olds, who were not much better than random, but that manual subjects' subsequent few feature queries were more informative than automatic subjects' or the random choices. That is to say, manual-update participants chose feature queries that were more contextually appropriate for the particular set of remaining hypotheses, in contrast to automatic-update participants who—despite finding an informative feature for the first query—paid less attention to the unfolding situation. In fact, after the initial high-quality query, the younger automatic-update participants chose queries with nearly the same EIG as the random simulation, implying that they more or less ignored the features of the remaining hypotheses. For older automatic-update participants, feature query EIG was better than random after the first query, although it remained below manual-update EIG across feature queries.

3. General discussion

In the present study, we manipulated the support children were given while updating a hypothesis space during a self-directed learning task. After making a feature (or constraint-seeking) query, participants in the automatic update condition were shown which insects were effectively ruled out at the press of a button, whereas manual update participants were required to select the insects that were consistent with the feedback themselves.

In line with previous research (Mosher & Hornsby, 1966; Ruggeri & Lombrozo, 2014), older children (ages 8–10) asked a

7 Exemplar query EIGs alone are less interesting, as they are a simple function of how many hypotheses remain. Participants' choice of feature query, on the other hand, indicates how sensitive they are to the relevance of each feature—and to the context of their current situation. However, as the space shrinks, it is interesting to see whether participants' persist in making (now less informative) feature queries, or switch to (increasingly informative) exemplar queries.

8 The same significant effects and similar mean EIG values were obtained when analyzing only the first two feature queries per round, when manual- and automatic-update participants were on more equal footing (i.e., before further manual errors—which could raise or lower the EIG of the remaining feature queries).
higher proportion of constraint-seeking questions than younger children (ages 5–7), who relied more on hypothesis-scanning (i.e., exemplar queries), in both conditions. These qualitative analyses also found that children use more constraint-seeking questions (i.e., feature queries) in the automatic-update condition. On the surface then, these children were using a more efficient strategy than the manual-update children.

However, in terms of expected information gain, a context-sensitive measure of how well a chosen feature bisects the remaining hypothesis space, children in the automatic-update condition made less informative feature queries. We suggest that the greater mental effort required by manual updating actually led to more careful consideration of which feature query to use, and ultimately a better choice. This is a type of desirable difficulty in the sense that aspects that made the learning task ostensibly more difficult led to more sophisticated question asking behavior. Indeed, response times for feature queries were slower under manual updating, indicating that greater thought went into making those choices.

Our results provide important nuance to recent findings showing that children’s question asking behavior conforms to the predictions of normative models such as EIG (Ruggeri & Lombrozo, 2014).
Although even the youngest children asked more informative questions than a random guesser, the quality of children’s questions varied widely and depended on the overall nature of the learning task and environment. This type of finding follows from the sensemaking loop in Fig. 1, which argues for a more interactive and integrated reasoning process.

Prior work has found that although quite young children show some of the requisite skills for successful active inquiry, such as the ability to distinguish confounded from unconfounded evidence to draw causal inferences (Gopnik et al., 2001; Kushnir & Gopnik, 2005, 2007; Schulz & Gopnik, 2004), the capacity to make use of these skills to engage in efficient self-directed explorations in complex tasks follows a protracted developmental trajectory (Chen & Lombrozo, 2015). Although even the youngest children show some of the requisite skills for successful active inquiry, such as the ability to distinguish confounded from unconfounded evidence to draw causal inferences (Gopnik et al., 2001; Kushnir & Gopnik, 2005, 2007; Schulz & Gopnik, 2004), the capacity to make use of these skills to engage in efficient self-directed explorations in complex tasks follows a protracted developmental trajectory (Chen & Lombrozo, 2015). Children’s abilities to ask informative questions and to benefit from the information yielded by their questions depends on the nature of the learning environment. Further, effective active inquiry involves the coordination of multiple cognitive processes—the ability to ask and learn from an effective question depends not only on children’s capacity to recognize the most informative question given a particular context, but also to properly integrate the information that the question yields with the current hypothesis space (and then to realize what question will be informative to ask next). Children’s actual capacity to engage in effective active inquiry to navigate a new learning environment thus depends on more than the ability to generate the right question, but also the coordination of this skill with other somewhat demanding cognitive processes.

We found evidence for a type of “desirable difficulty” in children’s abilities to ask informative questions—children asked more informative questions when they had to update the hypothesis space on their own. It is, however, important to put this “desirable difficulty” finding into perspective. Although children overall seemed to ask more sophisticated questions in the manual update condition, they also made more mistakes. As a result they took more time to identify the bug and often failed at the task. These results speak to the complex interplay of component processes in self-directed learning. The interconnectedness of information-driven and motivational components makes it difficult to even identify what makes a task “easier” for a young child without first defining which aspect of behavior one wants to influence. At the very least, this study provides evidence that hypothesis updating is a difficult, error-prone step in the active inquiry process (which has often been under-appreciated in past work). From both theoretical and practical perspectives, it would be useful in future research to identify exactly what accounts for the benefits observed in the manual-update condition (e.g., increased motivation to avoid uninformative questions, deeper processing of the obtained evidence and so on) so that learning environments could be designed that maintain these benefits while also helping children to avoid some of the associated costs, such as errors in the updating phase. Moreover, it is worth noting that the hypothesis space in this task was explicitly represented—both in full, and during updating—unlike the mental hypothesis space in a verbal game of 20 questions, or in the realm of science. Although representing the hypothesis space explicitly made it possible to use a novel domain in which we could manipulate feature informativeness, and in which we could observe and support hypothesis updating and observe errors, this departure from a purely mental hypothesis space could mean...
that children’s errors were due to visual attention, and may not apply in the same way in mental hypothesis spaces. Future work might examine the behavioral effects of dropping the external representation of the hypothesis space after familiarization. However, using an external representation of the hypothesis space, and manipulating in this study allowed us to unveil an interaction between belief updating and question asking, two nonadjacent steps of the sensemaking loop. We hope this study will serve as a reminder that task design can have effects further downstream than expected in theory, for learners are sensitive to difficulty across task stages, and may choose strategies to ease their burden.

Acknowledgments

This paper is an extended and modified version of a paper that was presented at the Annual Conference of the Cognitive Science Society in 2016. This work was supported by the John Templeton Foundation “Varieties of Understanding” grant to TMG and MR and Grant No. BCS-1255538 from the National Science Foundation to TMG. We are grateful to Kathryn Yee, Aja Blanco, Christina Chu, and Talena Smith for data collection, and to Daniel Zeiger and the staff of the Discovery Room at the American Museum of Natural History for their support of this project.

References

